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Characterizations for the Nonsingular Integral Opera-
tor and its Commutators on Generalized Orlicz-Morrey
Spaces

A. Eroglu, V.S. Guliyev∗, M.N. Omarova

Abstract. We show continuity in generalized Orlicz-Morrey spaces MΦ,ϕ(Rn
+) of nonsingular in-

tegral operators and its commutators with BMO functions. We shall give necessary and sufficient
conditions for the boundedness of the nonsingular integral operator and its commutators on gen-
eralized Orlicz-Morrey spaces MΦ,ϕ(Rn

+).
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1. Introduction

The classical Morrey spaces were introduced by Morrey [26] to study the local behavior
of solutions to second-order elliptic partial differential equations. Although such spaces
allow to describe local properties of functions better than Lebesgue spaces, they have some
unpleasant issues. It is well known that Morrey spaces are non separable and that the usual
classes of nice functions are not dense in such spaces. Moreover, various Morrey spaces
are defined in the process of study. Mizuhara [25] and Nakai [27] introduced generalized
Morrey spaces Mp,ϕ(Rn). Later, Guliyev [10] defined the generalized Morrey spaces Mp,ϕ

with normalized norm

‖f‖Mp,ϕ ≡ sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−1/p ‖f‖Lp(B(x,r)),

where the function ϕ is a positive measurable function on Rn×(0,∞). Here and everywhere
in the sequel B(x, r) is the ball in Rn of radius r centered at x and |B(x, r)| = vnr

n is its
Lebesgue measure, where vn is the volume of the unit ball in Rn.
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The Orlicz spaces were first introduced by Orlicz in [31, 32] as generalizations of
Lebesgue spaces Lp(Rn). Since then, the theory of Orlicz spaces themselves has been
well developed and the spaces have been widely used in probability, statistics, potential
theory, partial differential equations, as well as harmonic analysis and some other fields of
analysis.

In [6], the generalized Orlicz-Morrey space MΦ,ϕ(Rn) was introduced to unify Orlicz
and generalized Morrey spaces. Other definitions of generalized Orlicz-Morrey spaces
can be found in [28] and [34]. In words of [16], our generalized Orlicz-Morrey space is the
third kind and the ones in [28] and [34] are the first kind and the second kind, respectively.
According to the examples in [9], one can say that the generalized Orlicz-Morrey spaces
of the first kind and the third kind are different and that second kind and third kind are
different. However, we do not know the relation between the first and the second kind.

Note that, Orlicz-Morrey spaces unify Orlicz and generalized Morrey spaces. We ex-
tend some results on generalized Morrey space in the papers [1, 8, 10, 12, 13, 17, 18] to
the case of Orlicz-Morrey space in [6, 14, 15, 16].

As based on the results of [10, 12], the following conditions were introduced in [6] (see,
also [14]) for the boundedness of the singular integral operators on MΦ,ϕ(Rn):∫ ∞

r

(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n

))Φ−1
(
t−n
)dt
t
≤ C ϕ2(x, r), (1)

where C does not depend on x and r.

Consider the half-space Rn+ = Rn−1 × (0,∞). For x = (x′, xn) ∈ Rn+, let x̃ = (x′,−xn)

be the ”reflected point”. Let x ∈ Rn+. The nonsingular integral operator T̃ is defined by

T̃ f(x) =

∫
Rn+

|f(y)|
|x̃− y|n

dy, x̃ = (x′,−xn). (2)

The commutators generated by b ∈ L1
loc(Rn) and the operator T̃ are defined by

[b, T̃ ]f(x) =

∫
Rn+

b(x)− b(y)

|x̃− y|n
f(y)dy.

The operator |b, T̃ | is defined by

|b, T̃ |f(x) =

∫
Rn+

|b(x)− b(y)|
|x̃− y|n

f(y)dy.

The operator T̃ and its commutator appear in [4] in connection with boundary esti-
mates for solutions to elliptic equations.
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Therefore, the purpose of this paper is mainly to study the boundedness of the nonsin-
gular integral operator T̃ and its commutators [b, T̃ ] on generalized Orlicz-Morrey spaces
of the third kind MΦ,ϕ(Rn+) .

A function ϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

For a Young function Φ, we denote by GΦ the set of all decreasing functions ϕ : (0,∞)→
(0,∞) such that t ∈ (0,∞) 7→ Φ−1(t−n)ϕ(t)−1 is almost decreasing.

The following results are the fundamental theorems in this paper:

Theorem 1. Let Φ ∈ ∆′ and ϕ1, ϕ2 ∈ ΩΦ.
1. The condition (1) is sufficient for the boundedness of T̃ from MΦ,ϕ1(Rn+) to WMΦ,ϕ2(Rn+).

If, in addition, Φ ∈ ∇2, then the condition (1) is sufficient for the boundedness of T̃ from
MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+).

2. If ϕ1 ∈ GΦ, then the condition

ϕ1(x, r) ≤ Cϕ2(x, r), (3)

where C does not depend on x and r, is necessary for the boundedness of T̃ from MΦ,ϕ1(Rn+)
to WMΦ,ϕ2(Rn+) and from MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+).

3. If ϕ1 ∈ GΦ satisfies the regularity type condition∫ ∞
t

ϕ1(r)
dr

r
≤ Cϕ1(t), (4)

for all t > 0, where C > 0 does not depend on t, then the condition (3) is necessary and
sufficient for the boundedness of T̃ from MΦ,ϕ1(Rn+) to WMΦ,ϕ2(Rn+). If, in addition,

Φ ∈ ∇2, then the condition (3) is necessary and sufficient for the boundedness of T̃ from
MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+).

If we take Φ(t) = tp, p ∈ [1,∞) in Theorem 1, we get the following new result for
generalized Morrey spaces.

Corollary 2. Let p ∈ [1,∞) and ϕ1, ϕ2 ∈ Ωp ≡ Ωtp.
1. The condition ∫ ∞

r

ess inf
t<s<∞

ϕ1(s)s
n
p

t
n
p

+1
dt ≤ Cϕ2(r), (5)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of T̃
from Mp,ϕ1(Rn+) to WMp,ϕ2(Rn+). If 1 < p < ∞, then the condition (5) is sufficient for

the boundedness of T̃ from Mp,ϕ1(Rn+) to Mp,ϕ2(Rn+).
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2. If ϕ1 ∈ Gp, then the condition (3) is necessary for the boundedness of T̃ from
Mp,ϕ1(Rn+) to WMp,ϕ2(Rn+) and from Mp,ϕ1(Rn+) to Mp,ϕ2(Rn+).

3. If ϕ1 ∈ Gp satisfies the regularity condition (4), then the condition (3) is necessary

and sufficient for the boundedness of T̃ from Mp,ϕ1(Rn+) to WMp,ϕ2(Rn+). If, in addition,

1 < p < ∞, then the condition (3) is necessary and sufficient for the boundedness of T̃
from Mp,ϕ1(Rn+) to Mp,ϕ2(Rn+).

Theorem 3. Let b ∈ BMO(Rn+), Φ ∈ ∆′ and ϕ1, ϕ2 ∈ ΩΦ.
1. If Φ ∈ ∇2, then the condition∫ ∞

r

(
1 + ln

t

r

)(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n

))Φ−1
(
t−n
)dt
t
≤ C ϕ2(x, r), (6)

where C does not depend on x and r, is sufficient for the boundedness of |b, T̃ | from
MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+).

2. If ϕ1 ∈ GΦ, then the condition (3) is necessary for the boundedness of |b, T̃ | from
MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+).

3. If Φ ∈ ∇2 and ϕ1 ∈ GΦ satisfies the regularity type condition∫ ∞
t

(
1 + ln

t

r

)
ϕ1(r)

dr

r
≤ Cϕ1(t), (7)

for all t > 0, where C > 0 does not depend on t, then the condition (3) is necessary and
sufficient for the boundedness of |b, T̃ | from MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+).

If we take Φ(t) = tp, p ∈ [1,∞) in Theorem 3, we get the following new result for
generalized Morrey spaces.

Corollary 4. Let p ∈ [1,∞), ϕ1, ϕ2 ∈ Ωp and b ∈ BMO(Rn+).
1. If 1 < p <∞, then the condition

∫ ∞
r

(
1 + ln

t

r

)ess inf
t<s<∞

ϕ1(s)s
n
p

t
n
p

+1
dt ≤ Cϕ2(r),

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of |b, T̃ |
from Mp,ϕ1(Rn+) to Mp,ϕ2(Rn+).

2. If ϕ1 ∈ Gp, then the condition (3) is necessary for the boundedness of |b, T̃ | from
Mp,ϕ1(Rn+) to Mp,ϕ2(Rn+).

3. If 1 < p < ∞ and ϕ1 ∈ Gp satisfies the regularity type condition (7), then the

condition (3) is necessary and sufficient for the boundedness of |b, T̃ | from Mp,ϕ1(Rn+) to
Mp,ϕ2(Rn+).
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By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2. Definitions and Preliminary Results

2.1. On Young Functions and Orlicz Spaces

We recall the definition of Young functions.

Definition 5. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If
there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that

0 < Φ(r) <∞ for 0 < r <∞
will be denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on every closed interval
in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r <∞.

It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (8)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r) for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1.
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Definition 6. (Orlicz space). For a Young function Φ, the set

LΦ(Rn+) =

{
f ∈ L1

loc(Rn+) :

∫
Rn+

Φ(k|f(x)|)dx <∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn+) = Lp(Rn+). If Φ(r) =
0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn+) = L∞(Rn+). The space LΦ

loc(Rn+) is
defined as the set of all functions f such that fχB ∈ LΦ(Rn+) for all balls B ⊂ Rn+.

LΦ(Rn+) is a Banach space with respect to the norm

‖f‖LΦ(Rn+) = inf

{
λ > 0 :

∫
Rn+

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

We note that ∫
Rn+

Φ
( |f(x)|
‖f‖LΦ(Rn+)

)
dx ≤ 1. (9)

The weak Orlicz space

WLΦ(Rn+) = {f ∈ L1
loc(Rn+) : ‖f‖WLΦ(Rn+) < +∞}

is defined by the norm

‖f‖WLΦ(Rn+) = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.

Lemma 7. ([22], Lemma 1.3.2) Let Φ ∈ ∆2. Then there exist p > 1 and b > 1 such that

Φ(t2)

tp2
≤ bΦ(t1)

tp1

for 0 < t1 < t2.

Lemma 8. ([33], Proposition 62.20) Let Φ be a Young function with canonical represen-
tation

Φ(t) =

∫ t

0
ϕ(s)ds, t ≥ 0.

(1) Assume that Φ ∈ ∆2. More precisely Φ(2t) ≤ AΦ(t) for some A ≥ 2. If p >
1 + log2A, then ∫ ∞

t

ϕ(s)

sp
ds .

Φ(t)

tp
, t > 0.

(2) Assume that Φ ∈ ∇2. Then∫ t

0

ϕ(s)

s
ds .

Φ(t)

t
, t > 0.
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The following lemmas are valid.

Lemma 9. [2, 24] Let Φ be a Young function and B a set in Rn+ with finite Lebesgue
measure. Then

‖χB‖WLΦ(Rn+) = ‖χB‖LΦ(Rn+) =
1

Φ−1 (|B|−1)
.

Lemma 10. For a Young function Φ and all balls B in Rn+, the following inequality is
valid

‖f‖L1(B) ≤ 2|B|Φ−1
(
|B|−1

)
‖f‖LΦ(B).

2.2. Generalized Orlicz-Morrey Space

Various versions of generalized Orlicz-Morrey spaces were introduced in [28], [34] and
[6]. We used the definition of [6] which runs as follows.

We now define generalized Orlicz-Morrey spaces of the third kind. The generalized
Orlicz-Morrey space MΦ,φ(Rn+) of the third kind is defined as the set of all measurable
functions f for which the norm

‖f‖MΦ,φ(Rn+) ≡ sup
x∈Rn+, r>0

1

φ(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r))

is finite, where B+(x, r) = B(x, r) ∩Rn+. Also by WMΦ,ϕ(Rn+) we denote the weak gener-
alized Orlicz-Morrey space of the third kind of all functions f ∈WLΦ

loc(Rn+) for which

‖f‖WMΦ,ϕ(Rn+) = sup
x∈Rn+,r>0

ϕ(x, r)−1Φ−1(|B+(x, r)|−1) ‖f‖WLΦ(B+(x,r)) <∞,

where WLΦ(B+(x, r)) denotes the weak LΦ-space of measurable functions f for which

‖f‖WLΦ(B+(x,r)) ≡ ‖fχB+(x,r)
‖WLΦ(Rn+).

Note that MΦ,φ(Rn+) covers many classical function spaces.

Example 11. Let 1 ≤ q ≤ p < ∞ and Φ ∈ ∆2 ∩ ∇2. From the following special cases,
we see that our results will cover the Lebesgue space Lp(Rn+), the classical Morrey space
Mp
q (Rn+), the generalized Morrey space Mφ,p(Rn+) and the Orlicz space LΦ(Rn+) with norm

coincidence:

1. If Φ(t) = tp and φ(t) = t
−n
p , then MΦ,φ(Rn+) = Lp(Rn+) with norm equivalence.

2. If Φ(t) = tq and φ(t) = t
−n
p , then MΦ,φ(Rn+), which is denoted by Mp

q (Rn+), is the
classical Morrey space.
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3. If Φ(t) = tp, then MΦ,φ(Rn+) = Mp,φ(Rn+) is the generalized Morrey space which was
discussed in [10, 25, 27].

4. If φ(t) = Φ−1(t−n), then MΦ,φ(Rn+) = LΦ(Rn+), which is beyond the reach of gener-
alized Orlicz-Morrey spaces of the second kind defined in [9] according to an example
constructed in [34].

Other definitions of generalized Orlicz-Morrey spaces can be found in [28, 29, 30, 9].
Therefore, our definition of generalized Orlicz-Morrey spaces here is named “third kind”.

In the case ϕ(x, r) =
Φ−1
(
|B(x,r)|−1

)
Φ−1
(
|B(x,r)|−λ/n

) , we get the Orlicz-Morrey spaceMΦ,λ(Rn) from

generalized Orlicz-Morrey spaceMΦ,ϕ(Rn). We refer to [7, Lemmas 2.8 and 2.9] for more
information about Orlicz-Morrey spaces.

Lemma 12. [7, Lemma 2.12] Let Φ be a Young function and ϕ be a positive measurable
function on Rn × (0,∞).

(i) If

sup
t<r<∞

Φ−1(|B(x, r)|−1)

ϕ(x, r)
=∞ for some t > 0 and for all x ∈ Rn, (10)

then MΦ,ϕ(Rn) = Θ.

(ii) If Φ ∈ ∆′ and

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (11)

then MΦ,ϕ(Rn) = Θ.

Remark 13. Let Φ be a Young function. We denote by ΩΦ the sets of all positive mea-
surable functions ϕ on Rn × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|B(x, r)|−1)

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞,

and
sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 12, we always assume that ϕ ∈ ΩΦ

and Φ ∈ ∆′.

The following lemma plays a key role in our main results.
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Lemma 14. Let B+
0 := B+(x0, r0) be a ball in Rn+. If ϕ ∈ GΦ, then there exists C > 0

such that
1

ϕ(r0)
≤ ‖χB+

0
‖MΦ,ϕ(Rn+) ≤

C

ϕ(r0)
.

Proof. Let B+ = B+(x, r) denote an arbitrary ball in Rn+. By the definition and
Lemma 9, it is easy to see that

‖χB+
0
‖MΦ,ϕ = sup

x∈Rn+,r>0
ϕ(r)−1Φ−1(|B+|−1)

1

Φ−1(|B+ ∩ B+
0 |−1)

≥ ϕ(r0)−1Φ−1(|B+
0 |
−1)

1

Φ−1(|B+
0 ∩ B

+
0 |−1)

=
1

ϕ(r0)
.

Now if r ≤ r0, then ϕ(r0) ≤ Cϕ(r) and

ϕ(r)−1Φ−1(|B+|−1)‖χB+
0
‖LΦ(B+) ≤

1

ϕ(r)
≤ C

ϕ(r0)
.

On the other hand, if r ≥ r0, then ϕ(r0)

Φ−1(|B+
0 |−1)

≤ C ϕ(r)
Φ−1(|B+|−1)

and

ϕ(r)−1Φ−1(|B+|−1)‖χB+
0
‖LΦ(B+) ≤

C

ϕ(r0)
.

This completes the proof.J

3. Nonsingular integral operators in the Orlicz space LΦ(Rn
+)

The following theorem was proved in [5].

Theorem 15. Let 1 ≤ p <∞ and f ∈ Lp(Rn+). Then there exists a constant Cp indepen-
dent of f , such that

‖T̃ f‖Lp(Rn+) ≤ Cp‖f‖Lp(Rn+), 1 < p <∞

and

‖T̃ f‖WL1(Rn+) ≤ C1‖f‖L1(Rn+).

Theorem 16. Let Φ be a Young function and T̃ be a nonsingular integral operator, defined
by (2). If Φ ∈ ∆2

⋂
∇2, then the operator T̃ is bounded on LΦ(Rn+) and if Φ ∈ ∆2, then

the operator T̃ is bounded from LΦ(Rn+) to WLΦ(Rn+).
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Proof. First, let’s prove that for Φ ∈ ∆2 the nonsingular integral operator T̃ is bounded
from LΦ(Rn+) to WLΦ(Rn+).

We take f ∈ LΦ(Rn+) satisfying ‖f‖LΦ = 1. Fix λ > 0 and define f1 = χ{|f |>λ} · f and
f2 = χ{|f |≤λ} · f . Then f = f1 + f2. We have

∣∣{x ∈ Rn+ :
∣∣T̃ f(x)

∣∣ > λ}
∣∣ ≤ ∣∣{x ∈ Rn+ :

∣∣T̃ f1(x)
∣∣ > λ

2

}∣∣+
∣∣{x ∈ Rn+ :

∣∣T̃ f2(x)
∣∣ > λ

2

}∣∣
and

Φ(λ)
∣∣{x ∈ Rn+ :

∣∣T̃ f(x)| > λ}
∣∣

≤ |Φ(λ)
{
x ∈ Rn+ :

∣∣T̃ f1(x)
∣∣ > λ

2

}
|+ Φ(λ)|

{
x ∈ Rn+ :

∣∣T̃ f2(x)
∣∣ > λ

2

}
|.

We know that from the weak (1,1) boundedness and Lp, p ∈ (1,∞) boundedness of T̃

∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |>λ} · f)(x)

∣∣ > λ}
∣∣ . 1

λ

∫
{x∈Rn+:|f(x)|>λ}

|f(x)|dx

and ∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |≤λ} · f)(x)

∣∣ > λ}
∣∣ . 1

λp

∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx.

Since f1 ∈WL1(Rn+) and Φ(λ)
λ is increasing, we have

Φ(λ)
∣∣{x ∈ Rn+ : |T̃ f1(x)| > λ

2

}∣∣ . Φ(λ)

λ

∫
Rn+
|f1(x)|dx

=
Φ(λ)

λ

∫
{x∈Rn+:|f(x)|>λ}

|f(x)|dx .
∫
Rn+
|f(x)|Φ(|f(x)|)

|f(x)|
dx =

∫
Rn+

Φ(|f(x)|)dx.

By Lemma 7 and f2 ∈ Lp(Rn+) we have

Φ(λ)
∣∣{x ∈ Rn+ : |T̃ f2(x)| > λ

2

}∣∣ . Φ(λ)

λp

∫
Rn+
|f2(x)|pdx

=
Φ(λ)

λp

∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx .
∫
Rn+
|f(x)|pΦ(|f(x)|)

|f(x)|p
dx =

∫
Rn+

Φ(|f(x)|)dx.

Thus we get∣∣{x ∈ Rn+ :
∣∣T̃ f(x)

∣∣ > λ}
∣∣ ≤ C

Φ(λ)

∫
Rn+

Φ(|f(x)|)dx ≤ 1

Φ
(

λ
C‖f‖

LΦ

) .
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Since ‖ · ‖LΦ norm is homogeneous, this inequality is true for every f ∈ LΦ(Rn+).

Now let’s prove that for Φ ∈ ∆2
⋂
∇2 the nonsingular integral operator T̃ is bounded

in LΦ(Rn+).

Using the distribution functions, we have∫
Rn+

Φ

(
|T̃ f(x)|

Λ

)
dx =

1

Λ

∫ ∞
0

ϕ

(
λ

Λ

)
|{x ∈ Rn+ : |T̃ f(x)| > λ}|dλ

=
2

Λ

∫ ∞
0

ϕ

(
2λ

Λ

)
|{x ∈ Rn+ : |T̃ f(x)| > 2λ}|dλ.

The following inequality is valid:∣∣{x ∈ Rn+ :
∣∣T̃ f(x)| > 2λ}

∣∣ ≤ ∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |>λ} · f)

∣∣ > λ}
∣∣

+ |{x ∈ Rn+ : |T̃ (χ{|f |≤λ} · f)(x)| > λ}|.

Let p > 1 be sufficiently large. By the weak (1, 1) boundedness and Lp-boundedness of T̃
(see Theorem 15) we have

∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |>λ} · f)(x)

∣∣ > λ}
∣∣ . 1

λ

∫
{x∈Rn+:|f(x)|>λ}

|f(x)|dx

and ∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |≤λ} · f)(x)

∣∣ > λ}
∣∣ . 1

λp

∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx.

The same calculation as we used for the maximal operator works for the first term to
obtain

1

Λ

∫ ∞
0

ϕ

(
2λ

Λ

)
|{x ∈ Rn+ : |T̃ (χ{|f |>λ} · f)(x)| > λ}|dλ ≤

∫
Rn+

Φ

(
c|f(x)|

Λ

)
dx. (12)

As for the second term, a similar computation still works, but we use the fact that Φ ∈ ∆2.

1

Λ

∫ ∞
0

ϕ

(
2λ

Λ

) ∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |≤λ} · f)(x)

∣∣ > λ}
∣∣dλ

.
1

Λ

∫ ∞
0

ϕ

(
2λ

Λ

)(∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx

)
dλ

λp

.
1

Λ

∫
Rn+
|f(x)|p

(∫ ∞
|f(x)|

ϕ

(
2λ

Λ

)
dλ

λp

)
dx.
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Using Lemma 8 (1), we have

1

Λ

∫ ∞
0

ϕ

(
2λ

Λ

) ∣∣{x ∈ Rn+ :
∣∣T̃ (χ{|f |≤λ} · f)(x)

∣∣ > λ}
∣∣dλ

.
∫
Rn+

Φ

(
2|f(x)|

Λ

)
dx ≤

∫
Rn+

Φ

(
c|f(x)|

Λ

)
dx. (13)

Thus, putting together (12) and (13), we obtain∫
Rn+

Φ

(
|T̃ f(x)|

Λ

)
dx ≤

∫
Rn+

Φ

(
c0|f(x)|

Λ

)
dx.

Again we shall label the constant we want to distinguish from other less important con-
stants. As before, if we set Λ = c2‖f‖LΦ(Rn+), then we obtain∫

Rn+
Φ

(
|T̃ f(x)|

Λ

)
dx ≤ 1.

Hence the operator norm of T̃ is less than c2.J

4. Nonsingular integral operators in the space MΦ,ϕ(Rn
+)

We will use the following statement on the boundedness of the weighted Hardy operator

H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.
The following theorem was proved in [11, 13] and in the case w = 1 in [3].

Theorem 17. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t)g(t) (14)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞
t

w(s)ds

sups<τ<∞ v1(τ)
<∞. (15)

Moreover, the value C = B is the best constant for (14).
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Remark 18. In (14) and (15) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

For any x ∈ Rn+ define x̃ = (x′,−xn) and recall that x0 = (x′, 0). Also define B+
r ≡

B+(x0, r) = B(x0, r) ∩ Rn+, 2B+
r = B+(x0, 2r).

Lemma 19. Let Φ be any Young function and f ∈ LΦ
loc(Rn+) be such that∫ ∞

1
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
<∞ (16)

i) If Φ ∈ ∆2
⋂
∇2, then

‖T̃ f‖LΦ(B+(x0,r)) ≤
C

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
. (17)

ii) If Φ ∈ ∆2, then

‖T̃ f‖WLΦ(B+(x0,r)) ≤
C

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
, (18)

where the constants are independent of x0, r and f .

Proof. i) Denote B+
r = B+(x0, r), B+

t = B+(x0, t) and for any f ∈ LΦ
loc(Rn+) write

f = f1 + f2 with f1 = fχ2B+
r

and f2 = fχ(2B+
r )c . Because of the Φ-boundedness of the

operator T̃ (see Theorem 16) and f1 ∈ LΦ(Rn+), we have

‖T̃ f1‖LΦ(B+
r ) ≤ ‖T̃ f1‖LΦ(Rn+) ≤ C‖f1‖LΦ(Rn+) = C‖f‖LΦ(2B+

r ).

It is easy to see that for arbitrary points x ∈ B+
r and y ∈ (2B+

r )c it holds

1

2
|x0 − y| ≤ |x̃− y| ≤ 3

2
|x0 − y|. (19)

Applying the Fubini theorem to T̃ f2, we get

|T̃ f2(x)| ≤ C
∫
Rn+

|f2(y)|
|x̃− y|n

dy

≤ C
∫

(2B+
r )c

|f(y)|
|x0 − y|n

dy ≤ C
∫

(2B+
r )c
|f(y)|dy

∫ ∞
|x0−y|

dt

tn+1

≤ C
∫ ∞

2r

(∫
2r≤|x0−y|<t

|f(y)|dy

)
dt

tn+1
≤ C

∫ ∞
2r

(∫
B+
t

|f(y)|dy

)
dt

tn+1
.
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Applying the Hölder’s inequality (see, Lemma 10), we get∫
(2B+

r )c

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r
‖f‖LΦ(B+

t )‖1‖LΦ̃(B+
t )

dt

tn+1

=

∫ ∞
2r
‖f‖LΦ(B+

t )

1

Φ̃−1(|B+
t |−1)

dt

tn+1

≈
∫ ∞

2r
‖f‖LΦ(B+

t )Φ
−1
(
t−n
)dt
t
.

(20)

Direct calculations give

‖T̃ f2‖LΦ(B+
r ) ≤ C

1

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+

t ) Φ−1
(
t−n
) dt
t

(21)

and the last estimate holds for all f ∈ LΦ(Rn+) satisfying (16). Thus

‖T̃ f‖LΦ(B+
r ) ≤ C

(
‖f‖LΦ(2B+

r ) +
1

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+

t ) Φ−1
(
t−n
) dt
t

)
. (22)

On the other hand,

‖f‖LΦ(2Br) =
C

Φ−1
(
r−n

) ‖f‖LΦ(2Br)

∫ ∞
2r

Φ−1
(
t−n
) dt
t

≤ C

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+

t ) Φ−1
(
t−n
) dt
t

(23)

which unified with (22) gives (17).
ii) Let now f ∈ LΦ(Rn+). Then the weak (Φ,Φ)-boundedness of T̃ (see Theorem 16)

implies
‖T̃ f1‖WLΦ(B+

r ) ≤ ‖T̃ f1‖WLΦ(Rn+) ≤ C‖f1‖LΦ(Rn+) = C‖f‖LΦ(2B+
r ).

The estimate (18) follows by (21).J

For proving our main results, we need the following estimate.

Lemma 20. If B+
0 := B+(x0, r0), then C ≤ T̃ χB+

0
(x) for every x ∈ B+

0 .

Proof. If x, y ∈ B+
0 , then |x̃− y| ≤ |x̃− x0|+ |y− x0| < 2r0. We get Cr−n0 ≤ |x̃− y|−n.

Therefore

T̃ χB+
0

(x) =

∫
Rn
χB+

0
(y)|x̃− y|−ndy =

∫
B+

0

|x̃− y|−ndy ≥ Cr−n0 |B
+
0 | = C.

J
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Theorem 21. Let Φ be any Young function, and ϕ1, ϕ2 : Rn+ × R+ → R+ be measurable
functions satisfying (1).
i) If Φ ∈ ∆2

⋂
∇2, then it is bounded from MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+) and

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C‖f‖MΦ,ϕ1 (Rn+). (24)

ii) If Φ ∈ ∆2, then it is bounded from MΦ,ϕ1(Rn+) to WMΦ,ϕ2(Rn+) and

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C‖f‖WMΦ,ϕ1 (Rn+)

with constants independent of f.

Proof. Let T̃ be bounded in LΦ(Rn+). Then by Lemma 19 we have

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C sup
x0, r>0

ϕ2(x0, r)−1

∫ ∞
r
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
.

Applying Theorem 17 to the above integral with

w(r) = Φ−1
(
r−n

)
, v2(x0, r) = ϕ2(x0, r)−1, v1(x0, r) = ϕ1(x0, r)−1 Φ−1

(
r−n

)
,

g(x0, r) = ‖f‖LΦ(B+(x0,r)), H∗wg(x0, r) =

∫ ∞
r
‖f‖LΦ(B+(x0,t))w(t)dt,

where the condition (15) is equivalent to (1), we get

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C sup
x∈Rn+, r>0

ϕ1(x0, r)−1 Φ−1
(
r−n

)
‖f‖LΦ(B+(x0,r)) = C‖f‖MΦ,ϕ1 (Rn+).

The case p = 1 is treated in the same manner making use of (18) and (15):

‖T̃ f‖WM1,ϕ2 (Rn+) ≤ C sup
x0∈Rn+, r>0

ϕ2(x0, r)−1

∫ ∞
r
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t

= C sup
x0, r>0

ϕ1(x0, r)−1 Φ−1
(
r−n

)
‖f‖LΦ(B+(x0,r)) = C‖f‖MΦ,ϕ1 (Rn+).

J

Proof of Theorem 1. The first part of the theorem follows from Lemma 19 and
Theorem 21. We shall now prove the second part. Let B+

0 = B+(x0, r0) and x ∈ B+
0 . It is

easy to see that T̃ χB+
0

(x) = 1 for every x ∈ B+
0 . Therefore, by Lemmas 9 and 20

1 = Φ−1(w(B+
0 )−1)‖T̃ χB+

0
‖LΦ(B+

0 ) ≤ ϕ2(B+
0 )‖T̃ χB+

0
‖MΦ,ϕ2
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≤ Cϕ2(B+
0 )‖χB+

0
‖MΦ,ϕ1 ≤ C

ϕ2(B+
0 )

ϕ1(B+
0 )
.

Since this is true for every B+
0 , we are done.

The third statement of the theorem follows from the other statements of the theorem.J

5. Commutators of nonsingular integrals in the space MΦ,ϕ(Rn
+)

For a function b ∈ BMO define the commutator [b, T̃ ] = T̃ [b, f ] = bT̃ f − T̃ (bf). Our
aim is to show the boundedness of [b, T̃ ] in MΦ,ϕ(Rn+). For this goal we recall some well
known properties of the BMO functions.

Lemma 22. (John-Nirenberg lemma, [19]) Let b ∈ BMO and p ∈ (1,∞). Then for any
ball B there holds (

1

|B|

∫
B
|b(y)− bB|pdy

) 1
p

≤ C(p)‖b‖∗. (25)

Definition 23. A Young function Φ is said to be of upper type p (resp. lower type p) for
some p ∈ [0,∞), if there exists a positive constant C such that, for all t ∈ [1,∞)(resp.
t ∈ [0, 1]) and s ∈ [0,∞),

Φ(st) ≤ CtpΦ(s).

Remark 24. We know that if Φ is lower type p0 and upper type p1 with 1 < p0 ≤ p1 <∞,
then Φ ∈ ∆2 ∩∇2. Conversely if Φ ∈ ∆2 ∩∇2, then Φ is lower type p0 and upper type p1

with 1 < p0 ≤ p1 <∞ (see [22]).

Before proving the main theorems, we need the following lemma.

Lemma 25. [20] Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

|bBr − bBt | ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.

In the following lemma which was proved in [15] we provide a generalization of the
property (25) from Lp-norms to Orlicz norms.

Lemma 26. Let b ∈ BMO and Φ be a Young function. Let Φ be lower type p0 and upper
type p1 with 1 ≤ p0 ≤ p1 <∞. Then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
r−n

) ∥∥b(·)− bB(x,r)

∥∥
LΦ(B(x,r))

.
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Remark 27. Note that, the Lemma 26 for the variable exponent Lebesgue space Lp(·) case
was proved in [21].

Definition 28. Let Φ be a Young function. Define

bΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
, bΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)
.

Remark 29. It is known that Φ ∈ ∆2 ∩ ∇2 if and only if 1 < bΦ ≤ bΦ < ∞ (See, for
example, [23]).

Remark 30. Remark 29 and Remark 24 show us that a Young function Φ is lower type
p0 and upper type p1 with 1 < p0 ≤ p1 <∞ if and only if 1 < bΦ ≤ bΦ <∞.

To estimate the commutator, we use the same idea which we used in the proof of
Lemma 19.

Lemma 31. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2 and b ∈ BMO(Rn+). Suppose
that for all f ∈ LΦ

loc(Rn+) and r > 0 it holds∫ ∞
1

(
1 + ln

t

r

)
‖f‖LΦ(B+

t (x0,t)) Φ−1
(
t−n
)dt
t
<∞. (26)

Then

‖[b, T̃ ]f‖LΦ(B+
r ) ≤

C‖b‖∗
Φ−1

(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
)dt
t
.

Proof. Decompose f as f = fχ2B+
r

+ fχ(2B+
r )c = f1 + f2. From the boundedness of

[b, T̃ ] in LΦ(Rn+) it follows that

‖[b, T̃ ]f1‖LΦ(B+
r ) ≤ ‖[b, T̃ ]f1‖LΦ(Rn+) ≤ C‖b‖∗ ‖f1‖LΦ(Rn+) = C‖b‖∗ ‖f‖LΦ(2B+

r ).

On the other hand, because of (19) we can write

‖[b, T̃ ]f2‖LΦ(B+
r ) ≤ C

(∫
B+
r

(∫
(2B+

r )c

|b(x)− b(y)||f(y)|
|x0 − y|n

dy

)p
dx

) 1
p

≤ C

(∫
B+
r

(∫
(2B+

r )c

|b(y)− bB+
r
||f(y)|

|x0 − y|n
dy

)p
dx

) 1
p

+ C

(∫
B+
r

(∫
(2B+

r )c

|b(x)− bB+
r
||f(y)|

|x0 − y|n
dy

)p
dx

) 1
p

= I1 + I2.
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We estimate I1 as follows:

I1 ≤ C
1

Φ−1
(
r−n

) ∫
(2B+

r )c

|b(y)− bB+
r
||f(y)|

|x0 − y|n
dy

= C
1

Φ−1
(
r−n

) ∫
(2B+

r )c
|b(y)− bB+

r
||f(y)|

∫ ∞
|x0−y|

dt

tn+1
dy

= C
1

Φ−1
(
r−n

) ∫ ∞
2r

∫
2r≤|x0−y|≤t

|b(y)− bB+
r
||f(y)|dy dt

tn+1

≤ C 1

Φ−1
(
r−n

) ∫ ∞
2r

∫
B+
t

|b(y)− bB+
r
||f(y)|dy dt

tn+1
.

Applying Hölder’s inequality, Lemma 22 and (25), we get

I1 ≤C
( 1

Φ−1
(
r−n

) ∫ ∞
2r

∫
B+
t

|b(y)− bB+
t
||f(y)|dy dt

tn+1

+
1

Φ−1
(
r−n

) ∫ ∞
2r
|bB+

r
− bB+

t
|
∫
B+
t

|f(y)|dy dt

tn+1

)
≤C

( 1

Φ−1
(
r−n

) ∫ ∞
2r

∥∥∥b(·)− bB+
t

∥∥∥
LΦ̃(B+

t )
‖f‖LΦ(B+

t )

dt

tn+1

+
1

Φ−1
(
r−n

) ∫ ∞
2r
|bB+

r
− bB+

t
|‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t

)
≤ C‖b‖∗

1

Φ−1
(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t
.

In order to estimate I2, note that

I2 =
∥∥∥b(·)− bB+

r

∥∥∥
LΦ(B+

r )

∫
(2B+

r )c

|f(y)|
|x0 − y|n

dy.

By Lemma 22 and (21) we get

I2 ≤
C‖b‖∗

Φ−1
(
r−n

) ∫
(2B+

r )c

|f(y)|
|x0 − y|n

dy

≤ C‖b‖∗
Φ−1

(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t
.

Summing up I1 and I2 we get that for all p ∈ (1,∞)

‖[b, T̃ ]f2‖LΦ(B+
r ) ≤

C‖b‖∗
Φ−1

(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t
.
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Finally,

‖[b, T̃ ]f‖LΦ(B+
r ) ≤ C‖b‖∗ ‖f‖LΦ(2B+

r ) +
C‖b‖∗

Φ−1
(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t

and the statement follows by (23).J

Theorem 32. Let Φ be a Young function with Φ ∈ ∆2 ∩∇2, b ∈ BMO(Rn+) and ϕ1, ϕ2 :

Rn+ × R+ → R+ be measurable functions satisfying (6). Then [b, T̃ ] is bounded from
MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+) and

‖[b, T̃ ]f‖MΦ,ϕ2 (Rn+) ≤ C‖b‖∗ ‖f‖MΦ,ϕ1 (Rn+) (27)

with a constant independent of f.

The statement of the theorem follows by Lemma 31 and Theorem 17 in the same
manner as in the proof of Theorem 21.

Lemma 33. If b ∈ L1
loc(Rn+) and B+

0 := B+(x0, r0), then

|b(x)− bB+
0
| ≤ C|b, T̃ |χB+

0
(x)

for every x ∈ B+
0 , where bB+

0
= 1
|B+

0 |

∫
B+

0
b(y)dy.

Proof. If x, y ∈ B+
0 , then |x− y| ≤ |x− x0|+ |y− x0| < 2r0. We get Cr−n0 ≤ |x− y|−n.

Therefore

|b, T̃ |χB+
0

(x) =

∫
B+

0

|b(x)− b(y)||x− y|−ndy ≥ Cr−n0

∫
B+

0

|b(x)− b(y)|dy

≥ Cr−n0

∣∣∣∣∣
∫
B+

0

(b(x)− b(y))dy

∣∣∣∣∣ = C|b(x)− bB+
0
|.

J

Proof of Theorem 3.
The first part of the theorem follows from Lemma 19 and Theorem 21.
We shall now prove the second part. Let B+

0 = B+(x0, r0) and x ∈ B+
0 . By Lemma 33

we have |b(x)− bB+
0
| ≤ C|b, T̃ |χB+

0
(x). Therefore, by Lemma 26 and Lemma 14

1 ≤ C
‖|b, T̃ |χB+

0
‖LΨ(B+

0 )

‖b(·)− bB+
0
‖LΨ(B+

0 )

≤ C

‖b‖∗
‖|b, T̃ |χB+

0
‖LΨ(B+

0 )Ψ
−1(|B+

0 |
−1)
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≤ C

‖b‖∗
ϕ2(r0)‖|b, T̃ |χB+

0
‖MΨ,ϕ2 ≤ Cϕ2(r0)‖χB+

0
‖MΦ,ϕ1 ≤ C

ϕ2(r0)

ϕ1(r0)
.

Since this is true for every r0 > 0, we are done.

The third statement of the theorem follows from first and second parts of the theorem.
J
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A , 1932, 207-220; reprinted in: Collected Papers, PWN, Warszawa, 1988, 217-230.
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