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Rough Fractional Multilinear Integral Operators on Gene-
ralized Weighted Morrey Spaces

A. Akbulut∗, V.H. Hamzayev, Z.V. Safarov

Abstract. In this paper, we study the boundedness of fractional multilinear integral operators
with rough kernels TA,mΩ,α on the generalized weighted Morrey spaces Mp,ϕ(w). We find the sufficient
conditions on the pair (ϕ1, ϕ2) with w ∈ Ap(Rn) which ensures the boundedness of the operators

TA,mΩ,α from Mp,ϕ1
(w) to Mp,ϕ2

(w) for 1 < p <∞. In all cases the conditions for the boundedness

of the operator TA,mΩ,α is given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2) and w,
which do not assume any assumption on monotonicity of ϕ1(x, r), ϕ2(x, r) in r.
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1. Introduction and results

The classical Morrey spaces were originally introduced by Morrey in [20] to study the lo-
cal behavior of solutions to second order elliptic partial differential equations. For the prop-
erties and applications of classical Morrey spaces, we refer the readers to [7, 8, 11, 20, 23].
Mizuhara [19] introduced generalized Morrey spaces. Later, Guliyev [11] defined the gen-
eralized Morrey spaces Mp,ϕ with normalized norm. Recently, Komori and Shirai [18]
considered the weighted Morrey spaces Lp,κ(w) and studied the boundedness of some clas-
sical operators such as the Hardy-Littlewood maximal operator, the Calderón-Zygmund
operator on these spaces. Guliyev [12] gave a concept of generalized weighted Morrey
space Mp,ϕ(w) which could be viewed as extension of both generalized Morrey space Mp,ϕ

and weighted Morrey space Lp,κ(w). In [12] Guliyev also studied the boundedness of the
classical operators and its commutators in the spaces Mp,ϕ(w) (see also Guliyev et al.
[15, 16, 17]).

Suppose that Ω ∈ Ls(Sn−1) (s > 1) is homogeneous of degree zero on Rn with zero
means value on Sn−1, A is a function defined on Rn. Following [3], the rough fractional
multilinear integral operator TA,mΩ,α , is defined by

TA,mΩ,α (f)(x) =

∫
Rn

Rm(A;x, y)

|x− y|n−α+m−1
Ω(x− y)f(y)dy, (1)

∗Corresponding author.
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where 0 < α < n, and Rm(A;x, y) is the m-th remainder of Taylor series of A at x about
y. More precisely

Rm(A;x, y) = A(x)−
∑
|γ|<m

1

γ!
DγA(y)(x− y)γ . (2)

When m = 1, then TAΩ,α ≡ T
A,1
Ω,α is just the commutator of the fractional integral TΩ,αf(x)

with a function A:

TAΩ,α(f)(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
(A(x)−A(y))f(y)dy.

The weighted (Lp, Lq)-boundedness of such a commutator is given by Ding and Lu in [4].
When m ≥ 2, TAΩ,α is a non-trivial generalization of the above commutator. Wu and Yang
in [27] proved the following results.

Theorem 1. Let m ≥ 2, 0 < α < n, 1 ≤ s′ < p < n/α and 1/q = 1/p − α/n. Suppose
that Ω ∈ Ls(Sn−1), ωs

′ ∈ A(p/s′, q/s′) and A has derivatives of order m−1 in BMO(Rn).
Then there exists a constant C, independent of A and f , such that

‖TA,mΩ,α f‖Lq,ωq (Rn) ≤ C
∑

|γ|=m−1

‖DγA‖∗‖f‖Lp,ωp (Rn). (3)

Here, and in the sequel, we always denote by p′ the conjugate index of any p > 1, that
is 1/p+ 1/p′ = 1, and by C a constant which is independent of the main parameters and
may vary from line to line.

We define the generalized weighted Morrey spaces as follows.

Definition 1. Let 1 ≤ p < ∞, ϕ be a positive measurable function on Rn × (0,∞) and
w be non-negative measurable function on Rn. We denote by Mp,ϕ(w) the generalized
weighted Morrey space, i.e. the space of all functions f ∈ Lloc

p,w(Rn) with finite norm

‖f‖Mp,ϕ(w) = sup
x∈Rn,r>0

ϕ(x, r)−1w(B(x, r))
− 1

p ‖f‖Lp,w(B(x,r)),

where Lp,w(B(x, r)) denotes the weighted Lp-space of measurable functions f for which

‖f‖Lp,w(B(x,r)) ≡ ‖fχB(x,r)
‖Lp,w(Rn) =

(∫
B(x,r)

|f(y)|pw(y)dy

) 1
p

,

and χB denotes the characteristic function of f in the set of B.
Furthermore, by WMp,ϕ(w) we denote the weak generalized weighted Morrey space of

all functions f ∈WLloc
p,w(Rn) for which

‖f‖WMp,ϕ(w) = sup
x∈Rn,r>0

ϕ(x, r)−1w(B(x, r))
− 1

p ‖f‖WLp,w(B(x,r)) <∞,



130 A. Akbulut, V.H. Hamzayev, Z.V. Safarov

where WLp,w(B(x, r)) denotes the weak Lp,w-space of measurable functions f for which

‖f‖WLp,w(B(x,r)) ≡ ‖fχB(x,r)
‖WLp,w(Rn) = sup

t>0
t

(∫
{y∈B(x,r): |f(y)|>t}

w(y)dy

) 1
p

.

The commutators are useful in many nondivergence elliptic equations with discontin-
uous coefficients, [5, 6, 7, 13, 14]. In the recent development of commutators, Pérez and
Trujillo-González [24] generalized the multilinear commutators and proved the weighted
Lebesgue estimates. Moreover, they showed that some classical integral operators and
corresponding commutators are bounded in weighted Morrey spaces. Ye and Zhu in
[26] obtained the boundedness of the multilinear commutators in weighted Morrey spaces
Lp,κ(w) for 1 < p < ∞ and 0 < κ < 1, where the symbol ~b belongs to bounded mean
oscillation (BMO)n. Furthermore, they established the weighted weak type estimate for
these operators in weighted Morrey spaces of Lp,κ(w) for p = 1 and 0 < κ < 1.

It has been proved by many authors that most of the operators which are bounded
on a weighted Lebesgue space are also bounded in an appropriate weighted Morrey space
(see [2, 25]). As far as we know, there is no research regarding boundedness of the frac-
tional multilinear integral operator on Morrey space. In this paper, we are going to prove
that these results are valid for the rough fractional multilinear integral operator TAΩ,α on
generalized weighted Morrey space. Our main results can be formulated as follows.

Theorem 2. Let 0 < α < n, 1 ≤ s′ < p < n/α and 1/q = 1/p − α/n. Suppose that
Ω ∈ Ls(Sn−1), ωs

′ ∈ A p
s′ ,

q
s′

, and (ϕ1, ϕ2) satisfies the condition

∫ ∞
r

(
1 + ln

t

r

) ess inf
t<τ<∞

ϕ1(x, τ)(ωp(B(x, τ)))
1
p

(ωq(B(x, t)))
1
q

dt

t
≤ C0 ϕ2(x, r), (4)

where C0 does not depend on x and r. If A has derivatives of order m− 1 in BMO(Rn),
then the operator TA,mΩ,α is bounded from Mp,ϕ1(ωp) to Mq,ϕ2(ωq). Moreover, there is a
constant C > 0 independent of f such that

‖TA,mΩ,α f‖Mq,ϕ2 (ωq) ≤ C
∑

|γ|=m−1

‖DγA‖∗‖f‖Mp,ϕ1 (ωp).

In the case ω ≡ 1 we get the following corollary proved in [1].

Corollary 1. [1] Let 0 < α < n, 1 ≤ s′ < p < n/α and 1/q = 1/p − α/n. Suppose that
Ω ∈ Ls(Sn−1), and (ϕ1, ϕ2) satisfies the condition

∫ ∞
r

(
1 + ln

t

r

) ess inf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
q

dt

t
≤ C0 ϕ2(x, r), (5)

where C0 does not depend on x and r. If A has derivatives of order m− 1 in BMO(Rn),
then the operator TA,mΩ,α is bounded from Mp,ϕ1(Rn) to Mq,ϕ2(Rn). Moreover, there is a
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constant C > 0 independent of f such that

‖TA,mΩ,α f‖Mq,ϕ2
≤ C

∑
|γ|=m−1

‖DγA‖∗‖f‖Mp,ϕ1
.

2. Some preliminaries

We begin with some properties of Ap weights which play a great role in the proofs of
our main results.

A weight ω is a nonnegative, locally integrable function on Rn. Let B = B(x0, rB)
denote the ball with the center x0 and radius rB. For a given weight function ω and a
measurable set E, we also denote the Lebesgue measure of E by |E| and set weighted
measure ω(E) =

∫
E ω(x)dx. For any given weight function ω on Rn, Ω0 ⊆ Rn and

0 < p <∞, denote by Lp,ω(Ω0) the space of all functions f satisfying

‖f‖Lp,w(Ω) =

(∫
Ω0

|f(x)|pw(x)dx

) 1
p

<∞.

A weight w is said to belong to Ap for 1 < p <∞, if there exists a constant(
1

|B|

∫
B
w(x)dx

)(
1

|B|

∫
B
w(x)1−p′dx

)p−1

≤ C, (6)

where s′ is the dual of s, such that 1
s + 1

s′ = 1. The class A1 is defined by

1

|B|

∫
B
ω(y)dy ≤ C · ess inf

x∈B
ω(x) for every ball B ⊂ Rn. (7)

A weight ω is said to belong to A∞(Rn) if there are positive numbers C and δ such that

ω(E)

ω(B)
≤ C

( |E|
|B|

)δ
for all balls B and all measurable E ⊂ B. It is well known that

A∞ =
⋃

1≤p<∞
Ap.

The classical Ap weight theory was first introduced by Muckenhoupt in the study of
weighted Lp-boundedness of Hardy-Littlewood maximal function in [21].

We also need another weight class Ap,q introduced by Muckenhoupt and Wheeden in
[22] to study the weighted boundedness of fractional integral operators.

Given 1 ≤ p ≤ q <∞, we will say that ω ∈ Ap,q if there exists a constant C such that
for every ball B ⊂ Rn, the inequality( 1

|B|

∫
B
ω(y)−p

′
dy
)1/p′( 1

|B|

∫
B
ω(y)qdy

)1/q
≤ C, (8)
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holds when 1 < p <∞, and for every ball B ⊂ Rn the inequality( 1

|B|

∫
B
ω(y)qdy

)1/q
≤ C ess inf

x∈B
ω(x), (9)

holds when p = 1.
By (8), we have(∫

B
ω(y)−p

′
dy
)1/p′(∫

B
ω(y)qdy

)1/q
≤ C|B|1/p′+1/q. (10)

We summarize some properties about weights Ap,q (see [9, 22]).

Lemma 1. Given 1 ≤ p ≤ q <∞, we have.
(i) ω ∈ Ap,q if and only if ωq ∈ A1+q/p′;

(ii) ω ∈ Ap,q if and only if ω−p
′ ∈ A1+p′/q;

(iii) ω ∈ Ap,p if and only if ωp ∈ Ap;
(iV ) If p1 < p2 and q2 > q1, then Ap1,q1 ⊂ Ap2,q2.

In this paper, we need the following statement on the boundedness of the Hardy type
operator

(H1g)(t) :=
1

t

∫ t

0
ln
(
e+

t

r

)
g(r)dµ(r), 0 < t <∞,

where µ is a non-negative Borel measure on (0,∞).
The following lemma was proved in [12].

Lemma 2. Let b be a function in BMO(Rn). Let also 1 ≤ p <∞, x ∈ Rn, and r1, r2 > 0.
Then (

1

|B(x, r1)|

∫
B(x,r1)

|b(y)− bB(x,r2)|pdy

) 1
p

≤ C
(

1 +
∣∣∣ ln r1

r2

∣∣∣) ‖b‖∗,
where C > 0 is independent of f , x, r1 and r2.

The following lemma was proved by Guliyev in [12].

Lemma 3 ([12]). i) Let w ∈ A∞ and b be a function in BMO(Rn). Let also 1 ≤ p <∞,
x ∈ Rn, and r1, r2 > 0. Then( 1

w(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|pw(y)dy
) 1

p ≤ C
(

1 +
∣∣∣ ln r1

r2

∣∣∣) ‖b‖∗,
where C > 0 is independent of f , x, r1 and r2.

ii) Let w ∈ Ap and b be a function in BMO(Rn). Let also 1 < p < ∞, x ∈ Rn, and
r1, r2 > 0. Then( 1

w1−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|p
′
w(y)1−p′dy

) 1
p′ ≤ C

(
1 +

∣∣∣ ln r1

r2

∣∣∣) ‖b‖∗,
where C > 0 is independent of f , x, r1 and r2.
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Below we present some conclusions about Rm(A;x, y).

Lemma 4 ([22]). Suppose b is a function on Rn with the m-th derivatives in Lq(Rn),
q > n. Then

|Rm(b;x, y)| ≤ C|x− y|m
∑
|γ|=m

(
1

B(x, 5
√
n|x− y|)

∫
B(x,5

√
n|x−y|)

|Dγb(z)|dz

)1/q

.

The following property is valid.

Lemma 5. Let x ∈ B(x0, r), y ∈ B(x0, 2
j+1r)\B(x0, 2

jr). Assume that A has derivatives
of order m−1 in BMO(Rn). Then there exists a constant C, independent of A, such that

|Rm(A;x, y)|

≤ C|x− y|m−1

j ∑
|γ|=m−1

‖DγA‖∗ +
∑

|γ|=m−1

|DγA(y)− (DγA)B(x0,r)|

 . (11)

Proof. For fixed x ∈ Rn, let

Ā(x) = A(x)−
∑

|γ|=m−1

1

γ!
(DγA)B(x,5

√
n|x−y|)x

γ .

Then

|Rm(A;x, y)| = |Rm(Ā;x, y)| ≤

≤ |Rm−1(Ā;x, y)|+
∑

|γ|=m−1

1

γ!
|(DγĀ(y))||x− y|m−1. (12)

From Lemma 4 we have

|Rm−1(Ā;x, y)| ≤ C|x− y|m−1
∑

|γ|=m−1

‖DγA‖∗. (13)

If x ∈ B(x0, r), y ∈ B(x0, 2
j+1r)\B(x0, 2

jr), then 2j−1r ≤ |x− y| ≤ 2j+2r. Thus, we have

B(x0, 2
j−1r) ⊂ B(x, 5

√
n|x− y|) ⊂ 100

√
nB(x0, 2

jr).

Then

|100
√
nB(x0, 2

jr)|
|B(x, 5

√
n|x− y|)|

≤ |100
√
nB(x0, 2

jr)|
|B(x0, 2j−1r)|

≤ C.

Hence

|(DγA)B(x,5
√
n|x−y|) − (DγA)B(x0,2jr)| ≤
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≤ 1

|B(x, 5
√
n|x− y|)|

∫
B(x,5

√
n|x−y|)

|DγA(y)− (DγA)B(x0,2jr)|dy ≤

≤ 1

|100
√
nB(x0, 2jr)|

∫
100
√
nB(x0,2jr)

|DγA(y)− (DγA)B(x0,2jr)|dy ≤

≤ C‖DγA‖∗.

Note that

|(DγA)B(x0,2jr) − (DγA)B(x0,r)| ≤

≤
j∑

k=1

|(DγA)B(x0,2kr) − (DγA)B(x0,2k−1r)| ≤

≤ 2nj‖DγA‖∗.

Then

|(DγA)B(x,5
√
n|x−y|) − (DγA)B(x0,r)| ≤

≤ |(DγA)B(x,5
√
n|x−y|) − (DγA)B(x0,2jr)|+ |(D

γA)B(x0,2jr) − (DγA)B(x0,r)| ≤
≤ Cj‖DγA‖∗.

Thus

|DγĀ(y)| = |DγA(y)− (DγA)B(x,5
√
n|x−y|)| ≤

≤ |DγA(y)− (DγA)B(x0,r)|+ |(D
γA)B(x,5

√
n|x−y|) − (DγA)B(x0,r)| ≤

≤ |DγA(y)− (DγA)B(x0,r)|+ Cj‖DγA‖∗. (14)

Combining (12), (13) and (14), we get the validity of (11).

3. A local weighted estimates

In the following theorem we get the local weighted estimate (see, for example, [10, 11]
in the case w = 1, m = 1 and [12] in the case w ∈ Ap, m = 1) for the operator TA,mΩ,α .

Theorem 3. Let 1 ≤ s′ < p < n/α and 1/q = 1/p− α/n. Suppose that ωs
′ ∈ A p

s′ ,
q
s′

and

A has derivatives of order m− 1 in BMO(Rn). Then for any r > 0 there is a constant C
independent of f such that

‖TA,mΩ,α (f)‖Lq,ωq (B(x0,r)) ≤ (15)

≤ C
∑

|γ|=m−1

‖DγA‖∗(ωq(B(x0, r)))
1
q

∫ ∞
2r
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
.
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Proof. We write f as f = f1 + f2, where f1(y) = f(y)χB(x0,2r)
(y), χB(x0,2r) denotes the

characteristic function of B(x0, 2r). Then

‖TA,mΩ,α (f)‖Lq,ωq (B(x0,r)) ≤ ‖T
A,m
Ω,α (f1)‖Lq,ωq (B(x0,r)) + ‖TA,mΩ,α (f2)‖Lq,ωq (B(x0,r)).

Since f1 ∈ Lp,ωp(Rn), by the boundedness of TAΩ,α from Lp,ωp(Rn) to Lq,ωq(Rn) (Theorem
1) we get

‖TA,mΩ,α (f1)‖Lq,ωq (B(x0,r)) ≤ ‖T
A,m
Ω,α (f1)‖Lq,ωq (Rn) ≤

≤ C
∑

|γ|=m−1

‖DγA‖∗‖f1‖Lp,ωp (Rn) =

= C
∑

|γ|=m−1

‖DγA‖∗‖f‖Lp,ωp (B(x0,2r)).

Note that q > p > 1 and s′p
p′(p−s′) ≥ 1, then by Holder’s inequality

1 ≤
(

1

|B|

∫
B
w(y)pdy

) 1
p
(

1

|B|

∫
B
w(y)−p

′
dy

) 1
p′

≤

≤
(

1

|B|

∫
B
w(y)qdy

) 1
q
(

1

|B|

∫
B
w(y)

− s′p
p−s′ dy

) p−s′
s′p

.

This means

r
n
s′−α ≤ (ωq(B(x0, r)))

1
q ‖ω−1‖

L
s′p
p−s′ (B(x0,r))

.

Then

‖f‖Lp(ωp,B(x0,2r)) ≤ Cr
n
s′−α‖f‖Lp,ωp (B(x0,2r))

∫ ∞
2r

tα−
n
s′−1 dt ≤

≤ C(ωq(B(x0, r)))
1
q ‖ω−1‖

L
s′p
p−s′ (B(x0,r))

∫ ∞
2r
‖f‖Lp,ωp (B(x0,t))t

α− n
s′−1 dt ≤

≤ C(ωq(B(x0, r)))
1
q

∫ ∞
2r
‖f‖Lp,ωp (B(x0,t))‖ω

−1‖
L

s′p
p−s′ (B(x0,t))

tα−
n
s′−1 dt.

Since ωs
′ ∈ A p

s′ ,
q
s′

, by (10), for all r > 0 we get

(ωq(B(x0, r)))
1
q ‖ω−1‖

L
s′p
p−s′ (B(x0,r))

≤ Cr
n
s′−α. (16)

Then

‖TA,mΩ,α (f1)‖Lq,ωq (B(x0,r)) ≤



136 A. Akbulut, V.H. Hamzayev, Z.V. Safarov

≤ C
∑

|γ|=m−1

‖DγA‖∗(ωq(B(x0, r)))
1
q

∫ ∞
2r
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
. (17)

Let 4i = (B(x0, 2
j+1r)) \ (B(x0, 2

jr)), and let x ∈ B(x0, r). By Lemma 5,

|TA,mΩ,α (f2)(x)| ≤

∣∣∣∣∣
∫

(B(x0,2r))c

Rm(A;x, y)

|x− y|n−α+m−1
Ω(x− y)f(y)dy

∣∣∣∣∣ ≤
≤ C

∞∑
j=1

∫
4i

|Ω(x− y)f(y)|
|x− y|n−α

×

×

j ∑
|γ|=m−1

‖DγA‖∗ +
∑

|γ|=m−1

|DγA(y)− (DγA)B(x0,r)|

 dy ≤

≤ C
∑

|γ|=m−1

‖DγA‖∗
∞∑
j=1

j

∫
4i

|Ω(x− y)f(y)|
|x− y|n−α

dy+

+ C
∑

|γ|=m−1

∞∑
j=1

∫
4i

|Ω(x− y)f(y)|
|x− y|n−α

|DγA(y)− (DγA)B(x0,r)|dy =

= I1 + I2. (18)

By Holder’s inequalities∫
4i

|Ω(x− y)f(y)|
|x− y|n−α

≤
(∫
4i

|Ω(x− y)|sdy
) 1

s
(∫
4i

|f(y)|s′

|x− y|(n−α)s′
dy
) 1

s′
.

If x ∈ B(x0, s) and y ∈ 4i, then by direct calculation we can see that 2j−1r ≤ |y − x| <
2j+1r. Hence (∫

4i

|Ω(x− y)|sdy
) 1

s ≤ C‖Ω‖Ls(Sn−1)|B(x0, 2
j+1r)|

1
s . (19)

We also note that if x ∈ B(x0, r), y ∈ B(x0, 2r)
c, then |y − x| ≈ |y − x0|. Consequently(∫

4i

|f(y)|s′

|x− y|(n−α)s′
dy
) 1

s′ ≤ 1

|B(x0, 2j+1r)|1−α/n
(∫

B(x0,2j+1r)
|f(y)|s′dy

) 1
s′
. (20)

Then

I1 ≤ C
∑

|γ|=m−1

‖DγA‖∗
∞∑
j=1

j(2j+1r)α−
n
s′
(∫

B(x0,2j+1r)
|f(y)|s′dy

) 1
s′
. (21)

Since s′ < p, it follows from Holder’s inequality that(∫
B(x0,2j+1r)

|f(y)|s′dy
) 1

s′ ≤ C‖f‖Lp,ωp (B(x0,2j+1r))‖ω−1‖
L

s′p
p−s′ (B(x0,2j+1r))

. (22)
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Then

I1 ≤ C
∑

|γ|=m−1

‖DγA‖∗
∞∑
j=1

j(2j+1r)α−
n
s′
(∫

B(x0,2j+1s)
|f(y)|q′dy

) 1
q′ ≤

≤ C
∑

|γ|=m−1

‖DγA‖∗
∞∑
j=1

(
1 + ln

2j+1r

r

)
(2j+1r)α−

n
s′ ‖f‖Lp,ωp (B(x0,2j+1r))×

× ‖ω−1‖
L

s′p
p−s′ (B(x0,2j+1r))

≤ C
∑

|γ|=m−1

‖DγA‖∗
∞∑
j=1

∫ 2j+2l

2j+1r

(
1 + ln

t

r

)
×

× ‖f‖Lp,ωp (B(x0,t))‖ω
−1‖

L
s′p
p−s′ (B(x0,t))

tα−
n
s′−1dt ≤

≤ C
∑

|γ|=m−1

‖DγA‖∗
∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp,ωp (B(x0,t))‖ω

−1‖
L

s′p
p−s′ (B(x0,t))

tα−
n
s′−1 dt.

From (16) we know

‖ω−1‖
L

s′p
p−s′ (B(x0,r))

≤ Cr
n
s′−α(ωq(B(x0, r)))

− 1
q . (23)

Then

I1 ≤ C
∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
. (24)

On the other hand, by Holder’s inequality and (19), (20), we have∫
4i

|Ω(x− y)f(y)|
|x− y|n−α

|DγA(y)− (DγA)B(x0,r)|dy ≤

≤
(∫
4i

|Ω(x− y)|sdy
) 1

s
(∫
4i

|DγA(y)− (DγA)B(x0,r)f(y)|s′

|x− y|(n−α)s′
dy
) 1

s′ ≤

≤ C
∑

|γ|=m−1

∞∑
j=1

(2j+1r)α−
n
s′

(∫
B(x0,2j+1r)

|DγA(y)− (DγA)B(x0,r)|
s′ |f(y)|s′dy

) 1
s′

.

Applying Holder’s inequality, we get(∫
B(x0,2j+1r)

|DγA(y)− (DγA)B(x0,r)|
s′ |f(y)|s′dy

) 1
s′

≤

≤ C‖f‖Lp,ωp (B(x0,2j+1r))‖(DγA(·)− (DγA)B(x0,r))ω(·)−1‖
L

ps′
p−s′ (B(x0,2j+1r))

.

Consequently

I2 ≤ C
∑

|γ|=m−1

∞∑
j=1

∫ 2j+2r

2j+1r
(2j+1r)α−

n
s′ ‖f‖Lp(ωp,B(x0,t))×
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× ‖(DγA(·)− (DγA)B(x0,r))ω(·)−1‖
L

ps′
p−s′ (B(x0,t))

dt ≤

≤ C
∑

|γ|=m−1

∫ ∞
2r
‖f‖Lp(ωp,B(x0,t))×

× ‖(DγA(·)− (DγA)B(x0,r))ω(·)−1‖
L

ps′
p−s′ (B(x0,t))

tα−
n
s′−1 dt.

By ωs
′ ∈ A p

s′ ,
q
s′

and (ii) of Lemma 1 we know ω
− s′p

p−s′ ∈ A
1+ ps′

(p−s′)q
. Then it follows from

Lemma 3 and the inequality (23) that

‖(DγA(·)− (DγA)B(x0,r))ω(·)−1‖
L

ps′
p−s′ (B(x0,t))

≤

≤
(∫

B(x0,t)
|DγA(y)− (DγA)B(x0,r)|

ps′
p−s′ ω

− ps′
p−s′ (y)dy

) p−s′
ps′ ≤

≤ C‖DγA‖∗
(

1 + ln
t

r

)
(ω
− ps′

p−s′ (B(x0, r)))
p−s′
ps′ =

= C‖DγA‖∗
(

1 + ln
t

r

)
‖ω−1‖

L
ps′
p−s′ (B(x0,r))

≤

≤ C‖DγA‖∗
(

1 + ln
t

r

)
r

n
s′−α(ωq(B(x0, r)))

− 1
q .

Then

I2 ≤ C
∑

|γ|=m−1

‖DγA‖∗
∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
. (25)

Combining the estimates for I1 and I2, we have

sup
x∈B(x0,r)

|TA,mΩ,α (f2)(x)| ≤

≤ C
∑

|γ|=m−1

‖DγA‖∗
∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
.

Then we get

‖TA,mΩ,α (f2)‖Lp(ω,B(x0,r)) ≤

≤ C
∑

|γ|=m−1

‖DγA‖∗(ωq(B(x0, r)))
1
q

∫ ∞
2r
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
. (26)

This completes the proof of Theorem 3.
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4. Proof of Theorem 2

Since f ∈ Mp,ϕ1(ωp), then by the fact ‖f‖Lp(ωp,B(x0,t)) is a non-decreasing function of
t, we get

‖f‖Lp,ωp (B(x0,t))

ess inf
0<t<τ<∞

ϕ1(x0, τ)(wp(B(x0, τ)))
1
p

≤

≤ ess sup
0<t<τ<∞

‖f‖Lp,ωp (B(x0,t))

ϕ1(x0, τ)(wp(B(x0, τ)))
1
p

≤

≤ sup
τ>0,x0∈Rn

‖f‖Lp,ωp (B(x0,τ))

ϕ1(x0, τ)(wp(B(x0, τ)))
1
p

≤

≤ ‖f‖Mp,ϕ1 (ωp).

Since (ϕ1, ϕ2) satisfies (5), we have∫ ∞
r

(
1 + ln

t

r

)
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
≤

≤
∫ ∞
r

‖f‖Lp,ωp (B(x0,t))

ess inf
t<τ<∞

ϕ1(x0, τ)(wp(B(x0, τ)))
1
p

(
1 + ln

t

r

)ess inf
t<τ<∞

ϕ1(x0, τ)(wp(B(x0, τ)))
1
p

(ωq(B(x0, t)))
1
q

dt

t
≤

≤ C‖f‖Mp,ϕ1 (ωp)

∫ ∞
r

(
1 + ln

t

r

)ess inf
t<τ<∞

ϕ1(x0, τ)(wp(B(x0, τ)))
1
p

(ωq(B(x0, t)))
1
q

dt

t
≤

≤ C‖f‖Mp,ϕ1 (ωp)ϕ2(x0, t).

Then by (15) we get

‖TA,mΩ,α (f)‖Mq,ϕ2 (ωq) ≤

≤ C sup
x0∈Rn,t>0

1

ϕ2(x0, t)

( 1

ωq(B(x0, t))

∫
B(x0,t)

|TA,mΩ,α (f)(y)|qωq(y)dy
)1/q

≤

≤ C
∑

|γ|=m−1

‖DγA‖∗ sup
x0∈Rn,t>0

1

ϕ2(x0, t)

∫ ∞
r

(
1 + ln

t

r

)
‖f‖Lp,ωp (B(x0,t))(ω

q(B(x0, t)))
− 1

q
dt

t
≤

≤ C
∑

|γ|=m−1

‖DγA‖∗‖f‖Mp,ϕ1 (ωp).
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