See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/312332458](https://www.researchgate.net/publication/312332458_Parametric_Marcinkiewicz_integral_operator_on_generalized_Orlicz-Morrey_spaces?enrichId=rgreq-cec6418851c7a548ce809f252c2df9cc-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMzMjQ1ODtBUzo0NTA3MjA1MDA1ODg1NDdAMTQ4NDQ3MTU0OTM2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[Parametric Marcinkiewicz integral operator on generalized Orlicz-Morrey](https://www.researchgate.net/publication/312332458_Parametric_Marcinkiewicz_integral_operator_on_generalized_Orlicz-Morrey_spaces?enrichId=rgreq-cec6418851c7a548ce809f252c2df9cc-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMzMjQ1ODtBUzo0NTA3MjA1MDA1ODg1NDdAMTQ4NDQ3MTU0OTM2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf) spaces

Article · January 2016

CITATIONS 2

READS 106

2 authors, including:

[Ahi Evran Üniversitesi](https://www.researchgate.net/institution/Ahi_Evran_Ueniversitesi?enrichId=rgreq-cec6418851c7a548ce809f252c2df9cc-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMzMjQ1ODtBUzo0NTA3MjA1MDA1ODg1NDdAMTQ4NDQ3MTU0OTM2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf) **26** PUBLICATIONS **246** CITATIONS

[SEE PROFILE](https://www.researchgate.net/profile/Fatih-Deringoz?enrichId=rgreq-cec6418851c7a548ce809f252c2df9cc-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMzMjQ1ODtBUzo0NTA3MjA1MDA1ODg1NDdAMTQ4NDQ3MTU0OTM2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf)

All content following this page was uploaded by [Fatih Deringoz](https://www.researchgate.net/profile/Fatih-Deringoz?enrichId=rgreq-cec6418851c7a548ce809f252c2df9cc-XXX&enrichSource=Y292ZXJQYWdlOzMxMjMzMjQ1ODtBUzo0NTA3MjA1MDA1ODg1NDdAMTQ4NDQ3MTU0OTM2Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf) on 15 January 2017.

Parametric Marcinkiewicz integral operator on generalized Orlicz-Morrey spaces

Fatih Deringoz · Sabir G. Hasanov

Received: 07.01.2016 / Revised: 03.06.2016 / Accepted: 05.08.2016

Abstract. In this paper we study the boundedness of the parametric Marcinkiewicz integral operator μ_{Ω}^{ρ} on generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}$. We find the sufficient conditions on the pair $(\varphi_1, \varphi_2, \Phi)$ which ensure the boundedness of the operators μ_Q^{ρ} from one generalized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} . As an application of the above result, the boundedness of the Marcinkiewicz operator associated with Schrödinger operator μ_j^L on generalized Orlicz-Morrey spaces is also obtained.

Keywords. Parametric Marcinkiewicz integrals, generalized Orlicz-Morrey spaces.

Mathematics Subject Classification (2010): 42B20, 42B25, 42B35.

1 Introduction

Suppose that S^{n-1} be the unit sphere in \mathbb{R}^n $(n \geq 2)$ equipped with the normalized Lebesgue measure $d\sigma = d\sigma(x')$. Let Ω is a homogeneous function of degree zero on \mathbb{R}^n satisfying $\Omega \in L^1(S^{n-1})$ and the following property

$$
\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0,
$$

where $x' = x/|x|$ for any $x \neq 0$.

In 1960, Hörmander [9] defined the parametric Marcinkiewicz integral operator of higher dimension as follows.

$$
\mu_{\Omega}^{\rho}(f)(x) = \left(\int_0^{\infty} \left| \frac{1}{t^{\rho}} \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-\rho}} f(y) dy \right|^2 \frac{dt}{t} \right)^{1/2},
$$

where $0 < \rho < n$. It is well-known that the operator $\mu_{\Omega}^1 \equiv \mu_{\Omega}$ is just introduced by Stein in [16].

F. Deringoz

Department of Mathematics, Ahi Evran University, Kirsehir, Turkey E-mail: deringoz@hotmail.com

S.G. Hasanov Ganja State University, Ganja, Azerbaijan E-mail: sabhasanov@gmail.com

The research of F. Deringoz was partially supported by the grant of Ahi Evran University Scientific Research Project (FEF.A3.16.011).

A natural step in the theory of functions spaces was to study Orlicz-Morrey spaces where the "Morrey-type measuring"of regularity of functions is realized with respect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were first introduced and studied by Nakai [11]. Then another kind of generalized Orlicz-Morrey spaces were introduced by Sawano *et al.* [13]. Our definition of generalized Orlicz-Morrey spaces introduced in [2] and used here is different from that of the papers [11] and [13].

Boundedness of classical operators of harmonic analysis on generalized Orlicz-Morrey spaces were recently studied in various papers, see for example $[2, 7, 8, 12]$. In the present work, we shall prove the boundedness of the Marcinkiewicz operator $\mu_{\mathcal{C}}^{\rho}$ $\frac{\rho}{\Omega}$ from one generalized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} .

By $A \leq B$ we mean that $A \leq CB$ with some positive constant C independent of appropriate quantities. If $A \leq B$ and $B \leq A$, we write $A \approx B$ and say that A and B are equivalent.

2 Preliminaries

Recall that a function $\Phi : [0, +\infty) \to [0, \infty)$ is called a Young function if it is a convex increasing function satisfying $\Phi(0) = 0$, $\Phi(t) > 0$ for all $t \in (0,\infty)$ and $\Phi(t) \to \infty$ as $t\to\infty$.

For a Young function Φ , its inverse Φ^{-1} is defined by setting, for all $t \in (0, \infty)$

$$
\Phi^{-1}(t) := \inf\{s \in (0, \infty) : \Phi(s) > t\}.
$$

Recall that the Δ_2 -condition, denoted also as $\Phi \in \Delta_2$, is $\Phi(2r) \leq k\Phi(r)$, and the ∇_2 condition, denoted also by $\Phi \in \nabla_2$, is $\Phi(r) \leq \frac{1}{2l}$ $\frac{1}{2k}\Phi(kr)$, $r \geq 0$, where $k > 1$. The function $\Phi(r) = r$ satisfies the Δ_2 -condition but does not satisfy the ∇_2 -condition. If $1 < p < \infty$, then $\Phi(r) = r^p$ satisfies both the conditions. The function $\Phi(r) = e^r - r - 1$ satisfies the ∇_2 -condition but does not satisfy the Δ_2 -condition.

The function

$$
\Phi(r) = \sup\{rs - \Phi(s) : s \in [0, \infty)\}, \quad r \in [0, \infty)
$$

complementary to a Young function Φ , is also a Young function and $\Phi = \Phi$. We will also use the numerical characteristics

$$
a_{\Phi} := \inf_{t \in (0,\infty)} \frac{t\Phi'(t)}{\Phi(t)}, \qquad b_{\Phi} := \sup_{t \in (0,\infty)} \frac{t\Phi'(t)}{\Phi(t)}.
$$

of Young functions.

Remark 2.1 It is known that $\Phi \in \Delta_2 \cap \nabla_2$ if and only if $1 < a_{\Phi} \le b_{\Phi} < \infty$, see [10].

Orlicz space everywhere in the sequel is defined by a Young function Φ via the norm

$$
||f||_{L_{\Phi}} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\lambda}\right) dx \le 1 \right\}.
$$

The space $L_{\Phi}^{\text{loc}}(\mathbb{R}^n)$ is defined as the set of all functions f such that $f\chi_B \in L_{\Phi}(\mathbb{R}^n)$ for all balls $B \subset \mathbb{R}^n$.

The following generalized version of Hölder's inequality holds:

$$
||fg||_{L_1} \le 2||f||_{L_{\Phi}}||g||_{L_{\tilde{\Phi}}}.
$$

As is well known, Morrey spaces are widely used to investigate the local behavior of solutions to second order elliptic partial differential equations. Recall that the classical Morrey spaces $M_{p,\lambda}(\mathbb{R}^n)$ are defined by

$$
M_{p,\lambda}(\mathbb{R}^n) = \left\{ f \in L_{\text{loc}}^p(\mathbb{R}^n) : ||f||_{M_{p,\lambda}} := \sup_{x \in \mathbb{R}^n, r > 0} r^{-\frac{\lambda}{p}} ||f||_{L_p(B(x,r))} < \infty \right\},\,
$$

where $0 \leq \lambda \leq n, 1 \leq p \leq \infty$.

The spaces $M_{p,\varphi}(\mathbb{R}^n)$ defined by the norm

$$
||f||_{M_{p,\varphi}} = \sup_{x \in \mathbb{R}^n, r>0} \varphi(x,r)^{-1} |B(x,r)|^{-\frac{1}{p}} ||f||_{L_p(B(x,r))}
$$

with a function $\varphi(x, r)$ positive on $\mathbb{R}^n \times (0, \infty)$ are known as generalized Morrey spaces.

Generalized Orlicz-Morrey Spaces which unify the generalized Morrey and Orlicz spaces are defined as follows.

Definition 2.1 ([2])(Generalized Orlicz-Morrey Space) Let $\varphi(x, r)$ be a positive measurable function on $\mathbb{R}^n \times (0,\infty)$ and Φ any Young function. The generalized Orlicz-Morrey $space\ M_{\Phi,\varphi}(\mathbb R^n)$ *is the space of functions* $f\in L_{\Phi}^{\rm loc}(\mathbb R^n)$ *with finite norm*

$$
||f||_{M_{\Phi,\varphi}} = \sup_{x \in \mathbb{R}^n, r>0} \varphi(x,r)^{-1} \Phi^{-1}(|B(x,r)|^{-1}) ||f||_{L_{\Phi}(B(x,r))}.
$$

According to this definition, we recover the generalized Morrey space $M_{p,\varphi}$ under the choice $\Phi(r) = r^p$, $1 < p < \infty$ and Orlicz space under the choice $\varphi(x, r) = \Phi^{-1}(|B(x, r)|^{-1})$.

3 Marcinkiewicz operator in the spaces $M_{\Phi,\varphi}$

The following result concerning the boundedness of parametric Marcinkiewicz integral operator μ_f^{ρ} $_{\Omega}^{\rho}$ on L^{p} is known.

Theorem 3.1 [15] Suppose that $1 < p, q < \infty$, $\Omega \in L^q(S^{n-1})$ and $0 < \rho < n$. Then, *there is a constant* C *independent of* f *such that*

$$
\|\mu_{\Omega}^{\rho}(f)\|_{L^{p}(\mathbb{R}^{n})}\leq C\|f\|_{L^{p}(\mathbb{R}^{n})}.
$$

The following interpolation result is from [4].

Lemma 3.1 Let T be a sublinear operator of weak type (p, p) for any $p \in (1, \infty)$. Then T *is bounded on* $L^{\Phi}(\mathbb{R}^n)$, where Φ *is a Young function satisfying that* $1 < a_{\Phi} \leq b_{\Phi} < \infty$.

As a consequence of Lemma 3.1 and Theorem 3.1, we get the following result.

Corollary 3.1 Let Φ be a Young function, $0 < \rho < n$ and $\Omega \in L^q(S^{n-1})$ $(q > 1)$. If $1 < a_{\Phi} \leq b_{\Phi} < \infty$, then μ_{Φ}^{ρ} P_{Ω} is bounded on $L^{\Phi}(\mathbb{R}^n)$.

We will use the following statements on the boundedness of the weighted Hardy operator

$$
H_w^*g(r):=\int_r^\infty g(s)w(s)ds,\quad r\in (0,\infty),
$$

where w is a weight.

The following theorem was proved in [6].

Theorem 3.2 Let v_1 , v_2 and w be weights on $(0, \infty)$ and $v_1(t)$ be bounded outside a neigh*borhood of the origin. The inequality*

$$
\sup_{r>0} v_2(r) H_w^* g(r) \le C \sup_{r>0} v_1(r) g(r) \tag{3.1}
$$

holds for some $C > 0$ *for all non-negative and non-decreasing* q *on* $(0, \infty)$ *if and only if*

$$
B := \sup_{r>0} v_2(r) \int_r^{\infty} \frac{w(t)dt}{\sup_{t
$$

Moreover, the value $C = B$ *is the best constant for* (3.1).

We also use the following lemma to prove our main estimates.

Lemma 3.2 *For a Young function* Φ *and all balls* B*, the following inequality is valid*

 $||f||_{L_1(B)} \leq 2|B|\Phi^{-1}(|B|^{-1})||f||_{L_{\Phi}(B)}.$

Proof. The proof follows from Hölder's inequality and the well known facts

$$
r \le \Phi^{-1}(r)\widetilde{\Phi}^{-1}(r) \le 2r \quad \text{for} \quad r \ge 0 \tag{3.2}
$$

and $\|\chi_B\|_{L_{\Phi}} = \frac{1}{\Phi^{-1}(|B|^{-1})}$.

The following lemma was a generalization of the [1, Lemma 3.2] for Orlicz spaces.

Lemma 3.3 Let Φ be a Young function and $\Omega \in L^{\infty}(S^{n-1})$. If $1 < a_{\Phi} \le b_{\Phi} < \infty$, then *the inequality*

$$
\|\mu_{\Omega}^{\rho}(f)\|_{L_{\Phi}(B(x_0,r))} \lesssim \frac{1}{\Phi^{-1}(|B(x_0,r)|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t},
$$

holds for any ball $B(x_0, r)$, $0 < \rho < n$ *, and for all* $f \in L_{\Phi}^{\text{loc}}(\mathbb{R}^n)$ *.*

Proof. For arbitrary $x_0 \in \mathbb{R}^n$, set $B = B(x_0, r)$ for the ball centered at x_0 and of radius r. We represent f as

$$
f = f_1 + f_2
$$
, $f_1(y) = f(y)\chi_{2B}(y)$, $f_2(y) = f(y)\chi_{\mathfrak{C}_{(2B)}}(y)$, $r > 0$,

and have

$$
\|\mu_{\varOmega}^{\rho}(f)\|_{L_{\Phi}(B)} \leq \|\mu_{\varOmega}^{\rho}(f_1)\|_{L_{\Phi}(B)} + \|\mu_{\varOmega}^{\rho}(f_2)\|_{L_{\Phi}(B)}.
$$

Since $L^{\infty}(S^{n-1}) \subsetneq L^{q}(S^{n-1})$, from the boundedness of $\mu_{\mathcal{C}}^{\rho}$ $L_{\Phi}(\mathbb{R}^n)$ provided by Corollary 3.1 it follows that

$$
\|\mu_{\Omega}^{\rho}(f_1)\|_{L_{\Phi}(B)} \leq \|\mu_{\Omega}^{\rho}(f_1)\|_{L_{\Phi}(\mathbb{R}^n)} \lesssim \|f_1\|_{L_{\Phi}(\mathbb{R}^n)} = \|f\|_{L_{\Phi}(2B)}.
$$

It's clear that $x \in B$, $y \in {}^0(2B)$ implies $\frac{1}{2}|x_0 - y| \le |x - y| \le \frac{3}{2}|x_0 - y|$. Then by the Minkowski inequality and conditions on Ω , we get

$$
\mu_{\Omega}^{\rho}(f_2)(x) \le \int_{\mathbb{R}^n} \frac{|\Omega(x-y)|}{|x-y|^{n-\rho}} |f_2(y)| \left(\int_{|x-y|}^{\infty} \frac{dt}{t^{1+2\rho}} \right)^{1/2} dy
$$

$$
\lesssim \int_{\mathfrak{C}_{(2B)}} \frac{|f(y)|}{|x-y|^n} dy \lesssim \int_{\mathfrak{C}_{(2B)}} \frac{|f(y)|}{|x_0-y|^n} dy.
$$
 (3.3)

By Fubini's theorem we have

$$
\begin{aligned} \int_{\mathfrak{c}_{(2B)}} \frac{|f(y)|}{|x_0-y|^n} dy &\approx \int_{\mathfrak{c}_{(2B)}} |f(y)| \int_{|x_0-y|}^{\infty} \frac{dt}{t^{n+1}} dy \\ &= \int_{2r}^{\infty} \int_{2r \leq |x_0-y| < t} |f(y)| dy \frac{dt}{t^{n+1}} \\ &\lesssim \int_{2r}^{\infty} \int_{B(x_0,t)} |f(y)| dy \frac{dt}{t^{n+1}}. \end{aligned}
$$

By Lemma 3.2, we get

$$
\int_{\mathfrak{C}_{(2B)}} \frac{|f(y)|}{|x_0 - y|^n} dy \lesssim \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0, t))} \Phi^{-1}(|B(x_0, t)|^{-1}) \frac{dt}{t}.
$$
 (3.4)

Moreover

$$
\|\mu_{\Omega}^{\rho}(f_2)\|_{L_{\Phi}(B)} \lesssim \frac{1}{\Phi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}.
$$
 (3.5)

is valid. Thus

$$
\|\mu_{\Omega}^{\rho}(f)\|_{L_{\Phi}(B)} \lesssim \|f\|_{L_{\Phi}(2B)} + \frac{1}{\Phi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}.
$$

On the other hand, by (3.2) we get

$$
\Phi^{-1}(|B|^{-1}) \approx \Phi^{-1}(|B|^{-1})r^n \int_{2r}^{\infty} \frac{dt}{t^{n+1}}
$$

$$
\lesssim \int_{2r}^{\infty} \Phi^{-1}(|B(x_0, t)|^{-1}) \frac{dt}{t}
$$

and then

$$
||f||_{L_{\Phi}(2B)} \lesssim \frac{1}{\Phi^{-1}(|B|^{-1})} \int_{2r}^{\infty} ||f||_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}.
$$
 (3.6)

Thus

$$
\|\mu_{\Omega}^{\rho}(f)\|_{L_{\Phi}(B)} \lesssim \frac{1}{\Phi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}.
$$

Theorem 3.3 *Let* $0 < \rho < n$, Φ *any Young function*, φ_1 , φ_2 *and* Φ *satisfy the condition*

$$
\int_{r}^{\infty} \left(\underset{t < s < \infty}{\text{ess sup}} \frac{\varphi_1(x, s)}{\Phi^{-1}(|B(x_0, s)|^{-1})} \right) \Phi^{-1}(|B(x_0, t)|^{-1}) \frac{dt}{t} \le C \varphi_2(x, r),\tag{3.7}
$$

where C does not depend on x and r. Let also $\Omega \in L^{\infty}(S^{n-1})$. If Φ satisfy the condition $1 < a_{\Phi} \leq b_{\Phi} < \infty$ then the operator μ_{Λ}^{ρ} $\frac{\rho}{\Omega}$ is bounded from $M_{\Phi,\varphi_1}(\mathbb{R}^n)$ to $M_{\Phi,\varphi_2}(\mathbb{R}^n)$.

Proof. By Lemma 3.3 and Theorem 3.2 we have

$$
\|\mu_{\Omega}^{\rho}(f)\|_{M_{\Phi,\varphi_2}(\mathbb{R}^n)} \lesssim \sup_{x \in \mathbb{R}^n, r > 0} \varphi_2(x,r)^{-1} \int_r^{\infty} \Phi^{-1}(|B(x,t)|^{-1}) \|f\|_{L_{\Phi}(B(x,t))} \frac{dt}{t}
$$

$$
\lesssim \sup_{x \in \mathbb{R}^n, r > 0} \varphi_1(x,r)^{-1} \Phi^{-1}(|B(x,r)|^{-1}) \|f\|_{L_{\Phi}(B(x,r))}
$$

$$
= \|f\|_{M_{\Phi,\varphi_1}(\mathbb{R}^n)}.
$$

4 Applications

The study of Schrödinger operator $L = -\Delta + V$ recently attracted much attention. In particular, Shen [14] considered L_p estimates for Schrödinger operators L with certain potentials which include Schrödinger Riesz transforms $R_j^L = \frac{\delta}{\partial x}$ $\frac{\partial}{\partial x_j} L^{-\frac{1}{2}}, j = 1, \ldots, n$. Then, Dziubanński and Zienkiewicz [3] introduced the Hardy type space $H_L^1(\mathbb{R}^n)$ associated with the Schrödinger operator L, which is larger than the classical Hardy space $H^1(\mathbb{R}^n)$.

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz functions μ_j associated with the Schrödinger operator L by

$$
\mu_j^L f(x) = \left(\int_0^\infty \left| \int_{|x-y| \le t} K_j^L(x, y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2},
$$

where $K_j^L(x, y) = K_j^L(x, y) |x - y|$ and $K_j^L(x, y)$ is the kernel of $R_j = \frac{\delta}{\partial x}$ $\frac{\partial}{\partial x_j} L^{-\frac{1}{2}}, \, j\,=\,$ 1,..., *n*. In particular, when $V = 0$, $K_j^{\Delta}(x, y) = K_j^{\Delta}(x, y) |x - y| = \frac{(x - y)_j/|x - y|}{|x - y|^{n-1}}$ and $K_j^{\Delta}(x, y)$ is the kernel of $R_j = \frac{\partial}{\partial x_j}$ $\frac{\partial}{\partial x_j} \Delta^{-\frac{1}{2}}$, $j = 1, \ldots, n$. In this paper, we write $K_j(x, y) =$ $K_j^{\Delta}(x, y)$ and

$$
\mu_j f(x) = \left(\int_0^\infty \left| \int_{|x-y| \le t} K_j(x, y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}
$$

Obviously, μ_j are classical Marcinkiewicz functions. Therefore, it will be an interesting thing to study the property of μ_j^L . In this section, we show that Marcinkiewicz integrals associated with Schrödinger operators are bounded from one generalized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} .

Note that a nonnegative locally L_q integrable function $V(x)$ on \mathbb{R}^n is said to belong to B_q $(1 < q < \infty)$ if there exists $C > 0$ such that the reverse Hölder inequality

$$
\left(\frac{1}{|B(x,r)|}\int_{B(x,r)}V^q(y)dy\right)^{1/q}\leq C\left(\frac{1}{|B(x,r)|}\int_{B(x,r)}V(y)dy\right)\tag{4.1}
$$

.

holds for every ball $x \in \mathbb{R}^n$ and $r > 0$, see [14]. It is worth pointing out that the B_q class is that, if $V \in B_q$ for some $q > 1$, then there exists $\varepsilon > 0$, which depends only n and the constant C in (4.1), such that $V \in B_{q+\varepsilon}$. We always assume that $0 \neq V \in B_n$.

Lemma 4.1 *Let* $V \in B_n$ *and* Φ *be a Young function satisfying the condition* $1 < a_{\Phi} \le$ $b_{\Phi} < \infty$, then the inequality

$$
\|\mu_j^L(f)\|_{L_{\Phi}(B(x_0,r))} \lesssim \frac{1}{\Phi^{-1}(|B(x_0,r)|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}
$$

holds for any ball $B(x_0, r)$ *, and for all* $f \in L_{\Phi}^{\text{loc}}(\mathbb{R}^n)$ *.*

Proof. The validity of the following inequality was proved in [5]

$$
\mu_j^L f(x) \le \mu_j f(x) + CMf(x), \ \ a.e. \ \ x \in \mathbb{R}^n,
$$

where M denotes the well-known Hardy-Littlewood maximal operator. Statements of the Lemma 4.1 for the operators M and μ_i was proved in [2, Lemma 4.4] and Lemma 3.3, respectively. Then we get that the statements of the Lemma 4.1 also true for the operators $\mu_j^L, j = 1, \ldots, n$.

Theorem 4.1 *Let* $V \in B_n$ *,* Φ *be a Young function and* (φ_1, φ_2) *satisfies the condition* (3.7)*.* If $1 < a_\Phi \leq b_\Phi < \infty$, then the operator μ_j^L is bounded from M_{Φ, φ_1} to M_{Φ, φ_2} .

Proof. The statement of Theorem 4.1 follows by Lemma 4.1 and Theorem 3.2 in the same manner as in the proof of Theorem 3.3.

References

[View publication stats](https://www.researchgate.net/publication/312332458)

- 1. Aliyev, S.S., Guliyev, V.S.: *Boundedness of parametric Marcinkiewicz integral operator and their commutators on generalized Morrey spaces*. Georgian Math. J. 19, 195– 208 (2012).
- 2. Deringoz, F., Guliyev, V.S., Samko, S.: *Boundedness of maximal and singular operators on generalized Orlicz-Morrey spaces*. Operator Theory, Operator Algebras and Applications, Series: Operator Theory: Advances and Applications 242, 139–158 (2014).
- 3. Dziubański, J., Zienkiewicz, J.: *Hardy space* H^1 *associated to Schrödinger operator with potential satisfying reverse Hölder inequality*. Rev. Mat. Iber. 15, 279–296 (1999).
- 4. Fu, X., Yang, D., Yuan, W.: *Boundedness of multilinear commutators of Calderon- ´ Zygmund operators on Orlicz spaces over non-homogeneous spaces*. Taiwanese J. Math. 16, 2203–2238 (2012).
- 5. Gao, W., Tang, L.: *Boundedness for Marcinkiewicz integrals associated with Schrödinger operators*. Proc. Indian Acad. Sci. (Math. Sci.) **124** (2), 193–203 (2014).
- 6. Guliyev, V.S.: *Generalized local Morrey spaces and fractional integral operators with rough kernel*. J. Math. Sci. (N. Y.) 193 (2), 211–227 (2013).
- 7. Hakim, D.I., Nakai, E., Sawano, Y.: *Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz-Morrey spaces*. Rev. Mat. Complut. 29 (1), 59–90 (2016).
- 8. Hasanov, J.J.: Φ*-admissible sublinear singular operators and generalized Orlicz-Morrey spaces*. J. Funct. Spaces, Article ID 505237, 7 pages (2014).
- 9. Hörmander, L.: *Translation invariant operators*. Acta Math. 104, 93–139 (1960).
- 10. Krasnoselskii, M.A., Rutickii, Ya.B.: Convex Functions and Orlicz Spaces, *English translation P. Noordhoff Ltd., Groningen* (1961).
- 11. Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and Function Spaces (Kitakyushu, 2003), *Yokohama Publishers, Yokohama* 323–333 (2004) .
- 12. Nakai, E.: *Orlicz-Morrey spaces and the Hardy-Littlewood maximal function*. Studia Math. **188** (3), 193–221 (2008).
- 13. Sawano, Y., Sugano, S., Tanaka, H.: *Orlicz-Morrey spaces and fractional operators*. Potential Anal. 36 (4), 517–556 (2012).
- 14. Shen, Z.: L^p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995).
- 15. Shi, X., Jiang, Y.: *Weighted boundedness of parametric Marcinkiewicz integral and higher order commutator*. Anal. Theory Appl. 25 (1), 25–39 (2009).
- 16. Stein, E.M.: *On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz*. Trans. Amer. Math. Soc. 88, 430–466 (1958).