See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312332458

Parametric Marcinkiewicz integral operator on generalized Orlicz-Morrey spaces

Article · January 2016

CITATIONS
2

READS

2 authors, including:

Ahi Evran Üniversitesi 26 PUBLICATIONS 246 CITATIONS

SEE PROFILE

All content following this page was uploaded by Fatih Deringoz on 15 January 2017.

Parametric Marcinkiewicz integral operator on generalized Orlicz-Morrey spaces

Fatih Deringoz · Sabir G. Hasanov

Received: 07.01.2016 / Revised: 03.06.2016 / Accepted: 05.08.2016

Abstract. In this paper we study the boundedness of the parametric Marcinkiewicz integral operator μ_{Ω}^{ρ} on generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}$. We find the sufficient conditions on the pair $(\varphi_1, \varphi_2, \Phi)$ which ensure the boundedness of the operators μ_{Ω}^{ρ} from one generalized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} . As an application of the above result, the boundedness of the Marcinkiewicz operator associated with Schrödinger operator μ_{j}^{L} on generalized Orlicz-Morrey spaces is also obtained.

Keywords. Parametric Marcinkiewicz integrals, generalized Orlicz-Morrey spaces.

Mathematics Subject Classification (2010): 42B20, 42B25, 42B35.

1 Introduction

Suppose that S^{n-1} be the unit sphere in \mathbb{R}^n $(n \ge 2)$ equipped with the normalized Lebesgue measure $d\sigma = d\sigma(x')$. Let Ω is a homogeneous function of degree zero on \mathbb{R}^n satisfying $\Omega \in L^1(S^{n-1})$ and the following property

$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0,$$

where x' = x/|x| for any $x \neq 0$.

In 1960, Hörmander [9] defined the parametric Marcinkiewicz integral operator of higher dimension as follows.

$$\mu_{\Omega}^{\rho}(f)(x) = \left(\int_0^{\infty} \left|\frac{1}{t^{\rho}} \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-\rho}} f(y) dy\right|^2 \frac{dt}{t}\right)^{1/2},$$

where $0 < \rho < n$. It is well-known that the operator $\mu_{\Omega}^1 \equiv \mu_{\Omega}$ is just introduced by Stein in [16].

F. Deringoz

Department of Mathematics, Ahi Evran University, Kirsehir, Turkey E-mail: deringoz@hotmail.com

S.G. Hasanov Ganja State University, Ganja, Azerbaijan E-mail: sabhasanov@gmail.com

The research of F. Deringoz was partially supported by the grant of Ahi Evran University Scientific Research Project (FEF.A3.16.011).

A natural step in the theory of functions spaces was to study Orlicz-Morrey spaces where the "Morrey-type measuring" of regularity of functions is realized with respect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were first introduced and studied by Nakai [11]. Then another kind of generalized Orlicz-Morrey spaces were introduced by Sawano *et al.* [13]. Our definition of generalized Orlicz-Morrey spaces introduced in [2] and used here is different from that of the papers [11] and [13].

Boundedness of classical operators of harmonic analysis on generalized Orlicz-Morrey spaces were recently studied in various papers, see for example [2,7,8,12]. In the present work, we shall prove the boundedness of the Marcinkiewicz operator μ_{Ω}^{ρ} from one generalized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} .

ized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} . By $A \leq B$ we mean that $A \leq CB$ with some positive constant C independent of appropriate quantities. If $A \leq B$ and $B \leq A$, we write $A \approx B$ and say that A and B are equivalent.

2 Preliminaries

Recall that a function $\Phi : [0, +\infty) \to [0, \infty)$ is called a Young function if it is a convex increasing function satisfying $\Phi(0) = 0$, $\Phi(t) > 0$ for all $t \in (0, \infty)$ and $\Phi(t) \to \infty$ as $t \to \infty$.

For a Young function Φ , its inverse Φ^{-1} is defined by setting, for all $t \in (0, \infty)$

$$\Phi^{-1}(t) := \inf\{s \in (0,\infty) : \Phi(s) > t\}.$$

Recall that the Δ_2 -condition, denoted also as $\Phi \in \Delta_2$, is $\Phi(2r) \leq k\Phi(r)$, and the ∇_2 condition, denoted also by $\Phi \in \nabla_2$, is $\Phi(r) \leq \frac{1}{2k}\Phi(kr)$, $r \geq 0$, where k > 1. The function $\Phi(r) = r$ satisfies the Δ_2 -condition but does not satisfy the ∇_2 -condition. If $1 , then <math>\Phi(r) = r^p$ satisfies both the conditions. The function $\Phi(r) = e^r - r - 1$ satisfies the ∇_2 -condition but does not satisfy the Δ_2 -condition.

The function

$$\tilde{\Phi}(r) = \sup\{rs - \Phi(s) : s \in [0, \infty)\}, \quad r \in [0, \infty)$$

complementary to a Young function Φ , is also a Young function and $\tilde{\Phi} = \Phi$. We will also use the numerical characteristics

$$a_{\varPhi} := \inf_{t \in (0,\infty)} \frac{t \varPhi'(t)}{\varPhi(t)}, \qquad b_{\varPhi} := \sup_{t \in (0,\infty)} \frac{t \varPhi'(t)}{\varPhi(t)}.$$

of Young functions.

Remark 2.1 It is known that $\Phi \in \Delta_2 \cap \nabla_2$ if and only if $1 < a_{\Phi} \leq b_{\Phi} < \infty$, see [10].

Orlicz space everywhere in the sequel is defined by a Young function Φ via the norm

$$||f||_{L_{\varPhi}} = \inf\left\{\lambda > 0 : \int_{\mathbb{R}^n} \varPhi\left(\frac{|f(x)|}{\lambda}\right) dx \le 1\right\}.$$

The space $L_{\Phi}^{\text{loc}}(\mathbb{R}^n)$ is defined as the set of all functions f such that $f\chi_B \in L_{\Phi}(\mathbb{R}^n)$ for all balls $B \subset \mathbb{R}^n$.

The following generalized version of Hölder's inequality holds:

$$||fg||_{L_1} \le 2||f||_{L_{\Phi}} ||g||_{L_{\widetilde{\Phi}}}.$$

As is well known, Morrey spaces are widely used to investigate the local behavior of solutions to second order elliptic partial differential equations. Recall that the classical Morrey spaces $M_{p,\lambda}(\mathbb{R}^n)$ are defined by

$$M_{p,\lambda}(\mathbb{R}^n) = \left\{ f \in L^p_{\text{loc}}(\mathbb{R}^n) : \|f\|_{M_{p,\lambda}} := \sup_{x \in \mathbb{R}^n, \, r > 0} r^{-\frac{\lambda}{p}} \|f\|_{L_p(B(x,r))} < \infty \right\},$$

where $0 \le \lambda \le n, 1 \le p < \infty$. The spaces $M_{p,\varphi}(\mathbb{R}^n)$ defined by the norm

$$||f||_{M_{p,\varphi}} = \sup_{x \in \mathbb{R}^n, r > 0} \varphi(x, r)^{-1} |B(x, r)|^{-\frac{1}{p}} ||f||_{L_p(B(x, r))}$$

with a function $\varphi(x, r)$ positive on $\mathbb{R}^n \times (0, \infty)$ are known as generalized Morrey spaces.

Generalized Orlicz-Morrey Spaces which unify the generalized Morrey and Orlicz spaces are defined as follows.

Definition 2.1 ([2])(Generalized Orlicz-Morrey Space) Let $\varphi(x, r)$ be a positive measurable function on $\mathbb{R}^n \times (0,\infty)$ and Φ any Young function. The generalized Orlicz-Morrey space $M_{\Phi,\varphi}(\mathbb{R}^n)$ is the space of functions $f \in L^{\mathrm{loc}}_{\Phi}(\mathbb{R}^n)$ with finite norm

$$||f||_{M_{\Phi,\varphi}} = \sup_{x \in \mathbb{R}^n, r > 0} \varphi(x, r)^{-1} \Phi^{-1}(|B(x, r)|^{-1}) ||f||_{L_{\Phi}(B(x, r))}$$

According to this definition, we recover the generalized Morrey space $M_{p,\varphi}$ under the choice $\Phi(r) = r^p$, $1 and Orlicz space under the choice <math>\varphi(x, r) = \Phi^{-1}(|B(x, r)|^{-1})$.

3 Marcinkiewicz operator in the spaces $M_{\Phi,\omega}$

The following result concerning the boundedness of parametric Marcinkiewicz integral operator μ_{Ω}^{ρ} on L^{p} is known.

Theorem 3.1 [15] Suppose that $1 < p, q < \infty$, $\Omega \in L^q(S^{n-1})$ and $0 < \rho < n$. Then, there is a constant C independent of f such that

$$\|\mu_{\Omega}^{\rho}(f)\|_{L^{p}(\mathbb{R}^{n})} \leq C \|f\|_{L^{p}(\mathbb{R}^{n})}.$$

The following interpolation result is from [4].

Lemma 3.1 Let T be a sublinear operator of weak type (p, p) for any $p \in (1, \infty)$. Then T is bounded on $L^{\Phi}(\mathbb{R}^n)$, where Φ is a Young function satisfying that $1 < a_{\Phi} \leq b_{\Phi} < \infty$.

As a consequence of Lemma 3.1 and Theorem 3.1, we get the following result.

Corollary 3.1 Let Φ be a Young function, $0 < \rho < n$ and $\Omega \in L^q(S^{n-1})$ (q > 1). If $1 < a_{\Phi} \leq b_{\Phi} < \infty$, then μ_{Ω}^{ρ} is bounded on $L^{\Phi}(\mathbb{R}^n)$.

We will use the following statements on the boundedness of the weighted Hardy operator

$$H^*_wg(r):=\int_r^\infty g(s)w(s)ds, \quad r\in (0,\infty),$$

where w is a weight.

The following theorem was proved in [6].

Theorem 3.2 Let v_1 , v_2 and w be weights on $(0, \infty)$ and $v_1(t)$ be bounded outside a neighborhood of the origin. The inequality

$$\sup_{r>0} v_2(r) H_w^* g(r) \le C \sup_{r>0} v_1(r) g(r)$$
(3.1)

holds for some C > 0 for all non-negative and non-decreasing g on $(0, \infty)$ if and only if

$$B := \sup_{r>0} v_2(r) \int_r^\infty \frac{w(t)dt}{\sup_{t< s<\infty} v_1(s)} < \infty$$

Moreover, the value C = B is the best constant for (3.1).

We also use the following lemma to prove our main estimates.

Lemma 3.2 For a Young function Φ and all balls B, the following inequality is valid

$$||f||_{L_1(B)} \le 2|B|\Phi^{-1}(|B|^{-1}) ||f||_{L_{\Phi}(B)}.$$

Proof. The proof follows from Hölder's inequality and the well known facts

$$r \le \Phi^{-1}(r)\overline{\Phi}^{-1}(r) \le 2r \quad \text{for} \quad r \ge 0$$
(3.2)

and $\|\chi_B\|_{L_{\varPhi}} = \frac{1}{\varPhi^{-1}(|B|^{-1})}.$

The following lemma was a generalization of the [1, Lemma 3.2] for Orlicz spaces.

Lemma 3.3 Let Φ be a Young function and $\Omega \in L^{\infty}(S^{n-1})$. If $1 < a_{\Phi} \leq b_{\Phi} < \infty$, then the inequality

$$\|\mu_{\Omega}^{\rho}(f)\|_{L_{\varPhi}(B(x_{0},r))} \lesssim \frac{1}{\varPhi^{-1}(|B(x_{0},r)|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\varPhi}(B(x_{0},t))} \varPhi^{-1}(|B(x_{0},t)|^{-1}) \frac{dt}{t},$$

holds for any ball $B(x_0, r)$, $0 < \rho < n$, and for all $f \in L^{\text{loc}}_{\varPhi}(\mathbb{R}^n)$.

Proof. For arbitrary $x_0 \in \mathbb{R}^n$, set $B = B(x_0, r)$ for the ball centered at x_0 and of radius r. We represent f as

$$f=f_1+f_2, \quad f_1(y)=f(y)\chi_{_{2B}}(y), \quad f_2(y)=f(y)\chi_{_{\mathbb{C}_{(2B)}}}(y), \quad r>0,$$

and have

$$\|\mu_{\Omega}^{\rho}(f)\|_{L_{\Phi}(B)} \leq \|\mu_{\Omega}^{\rho}(f_{1})\|_{L_{\Phi}(B)} + \|\mu_{\Omega}^{\rho}(f_{2})\|_{L_{\Phi}(B)}$$

Since $L^{\infty}(S^{n-1}) \subseteq L^q(S^{n-1})$, from the boundedness of μ_{Ω}^{ρ} in $L_{\Phi}(\mathbb{R}^n)$ provided by Corollary 3.1 it follows that

$$\|\mu_{\Omega}^{\rho}(f_{1})\|_{L_{\varPhi}(B)} \leq \|\mu_{\Omega}^{\rho}(f_{1})\|_{L_{\varPhi}(\mathbb{R}^{n})} \lesssim \|f_{1}\|_{L_{\varPhi}(\mathbb{R}^{n})} = \|f\|_{L_{\varPhi}(2B)}$$

It's clear that $x \in B$, $y \in {}^{\complement}(2B)$ implies $\frac{1}{2}|x_0 - y| \le |x - y| \le \frac{3}{2}|x_0 - y|$. Then by the Minkowski inequality and conditions on Ω , we get

$$\mu_{\Omega}^{\rho}(f_{2})(x) \leq \int_{\mathbb{R}^{n}} \frac{|\Omega(x-y)|}{|x-y|^{n-\rho}} |f_{2}(y)| \left(\int_{|x-y|}^{\infty} \frac{dt}{t^{1+2\rho}} \right)^{1/2} dy$$

$$\lesssim \int_{\mathfrak{c}_{(2B)}} \frac{|f(y)|}{|x-y|^{n}} dy \lesssim \int_{\mathfrak{c}_{(2B)}} \frac{|f(y)|}{|x_{0}-y|^{n}} dy.$$
(3.3)

By Fubini's theorem we have

$$\begin{split} \int_{\mathfrak{l}_{(2B)}} \frac{|f(y)|}{|x_0 - y|^n} dy &\approx \int_{\mathfrak{l}_{(2B)}} |f(y)| \int_{|x_0 - y|}^{\infty} \frac{dt}{t^{n+1}} dy \\ &= \int_{2r}^{\infty} \int_{2r \leq |x_0 - y| < t} |f(y)| dy \frac{dt}{t^{n+1}} \\ &\lesssim \int_{2r}^{\infty} \int_{B(x_0, t)} |f(y)| dy \frac{dt}{t^{n+1}}. \end{split}$$

By Lemma 3.2, we get

$$\int_{\mathfrak{c}_{(2B)}} \frac{|f(y)|}{|x_0 - y|^n} dy \lesssim \int_{2r}^{\infty} \|f\|_{L_{\varPhi}(B(x_0, t))} \varPhi^{-1} \big(|B(x_0, t)|^{-1} \big) \frac{dt}{t}.$$
(3.4)

Moreover

$$\|\mu_{\Omega}^{\rho}(f_{2})\|_{L_{\Phi}(B)} \lesssim \frac{1}{\Phi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_{0},t))} \Phi^{-1}(|B(x_{0},t)|^{-1}) \frac{dt}{t}.$$
 (3.5)

is valid. Thus

$$\|\mu_{\Omega}^{\rho}(f)\|_{L_{\varPhi}(B)} \lesssim \|f\|_{L_{\varPhi}(2B)} + \frac{1}{\varPhi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\varPhi}(B(x_{0},t))} \varPhi^{-1}(|B(x_{0},t)|^{-1}) \frac{dt}{t}.$$

On the other hand, by (3.2) we get

$$\Phi^{-1}(|B|^{-1}) \approx \Phi^{-1}(|B|^{-1})r^n \int_{2r}^{\infty} \frac{dt}{t^{n+1}}$$
$$\lesssim \int_{2r}^{\infty} \Phi^{-1}(|B(x_0,t)|^{-1})\frac{dt}{t}$$

and then

$$\|f\|_{L_{\Phi}(2B)} \lesssim \frac{1}{\Phi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}.$$
 (3.6)

Thus

$$\|\mu_{\Omega}^{\rho}(f)\|_{L_{\varPhi}(B)} \lesssim \frac{1}{\varPhi^{-1}(|B|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\varPhi}(B(x_0,t))} \varPhi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}.$$

Theorem 3.3 Let $0 < \rho < n$, Φ any Young function, φ_1, φ_2 and Φ satisfy the condition

$$\int_{r}^{\infty} \left(\operatorname{ess\,sup}_{t < s < \infty} \frac{\varphi_1(x, s)}{\Phi^{-1}(|B(x_0, s)|^{-1})} \right) \Phi^{-1}(|B(x_0, t)|^{-1}) \frac{dt}{t} \le C \,\varphi_2(x, r), \tag{3.7}$$

where C does not depend on x and r. Let also $\Omega \in L^{\infty}(S^{n-1})$. If Φ satisfy the condition $1 < a_{\Phi} \leq b_{\Phi} < \infty$ then the operator μ_{Ω}^{ρ} is bounded from $M_{\Phi,\varphi_1}(\mathbb{R}^n)$ to $M_{\Phi,\varphi_2}(\mathbb{R}^n)$.

Proof. By Lemma 3.3 and Theorem 3.2 we have

$$\begin{aligned} \|\mu_{\Omega}^{\rho}(f)\|_{M_{\Phi,\varphi_{2}}(\mathbb{R}^{n})} &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{r}^{\infty} \Phi^{-1} \big(|B(x, t)|^{-1} \big) \|f\|_{L_{\Phi}(B(x, t))} \frac{dt}{t} \\ &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{1}(x, r)^{-1} \Phi^{-1} \big(|B(x, r)|^{-1} \big) \|f\|_{L_{\Phi}(B(x, r))} \\ &= \|f\|_{M_{\Phi,\varphi_{1}}(\mathbb{R}^{n})}. \end{aligned}$$

4 Applications

The study of Schrödinger operator $L = -\Delta + V$ recently attracted much attention. In particular, Shen [14] considered L_p estimates for Schrödinger operators L with certain potentials which include Schrödinger Riesz transforms $R_j^L = \frac{\partial}{\partial x_j} L^{-\frac{1}{2}}$, $j = 1, \ldots, n$. Then, Dziubanński and Zienkiewicz [3] introduced the Hardy type space $H_L^1(\mathbb{R}^n)$ associated with the Schrödinger operator L, which is larger than the classical Hardy space $H^1(\mathbb{R}^n)$.

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz functions μ_j associated with the Schrödinger operator L by

$$\mu_j^L f(x) = \left(\int_0^\infty \left| \int_{|x-y| \le t} K_j^L(x,y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}$$

where $K_j^L(x,y) = \widetilde{K_j^L}(x,y)|x-y|$ and $\widetilde{K_j^L}(x,y)$ is the kernel of $R_j = \frac{\partial}{\partial x_j}L^{-\frac{1}{2}}$, $j = 1, \ldots, n$. In particular, when V = 0, $K_j^{\Delta}(x,y) = \widetilde{K_j^{\Delta}}(x,y)|x-y| = \frac{(x-y)_j/|x-y|}{|x-y|^{n-1}}$ and $\widetilde{K_j^{\Delta}}(x,y)$ is the kernel of $R_j = \frac{\partial}{\partial x_j}\Delta^{-\frac{1}{2}}$, $j = 1, \ldots, n$. In this paper, we write $K_j(x,y) = K_j^{\Delta}(x,y)$ and

$$\mu_j f(x) = \left(\int_0^\infty \left| \int_{|x-y| \le t} K_j(x,y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}$$

Obviously, μ_j are classical Marcinkiewicz functions. Therefore, it will be an interesting thing to study the property of μ_j^L . In this section, we show that Marcinkiewicz integrals associated with Schrödinger operators are bounded from one generalized Orlicz-Morrey space M_{Φ,φ_1} to another M_{Φ,φ_2} .

Note that a nonnegative locally L_q integrable function V(x) on \mathbb{R}^n is said to belong to B_q $(1 < q < \infty)$ if there exists C > 0 such that the reverse Hölder inequality

$$\left(\frac{1}{|B(x,r)|} \int_{B(x,r)} V^q(y) dy\right)^{1/q} \le C\left(\frac{1}{|B(x,r)|} \int_{B(x,r)} V(y) dy\right)$$
(4.1)

holds for every ball $x \in \mathbb{R}^n$ and r > 0, see [14]. It is worth pointing out that the B_q class is that, if $V \in B_q$ for some q > 1, then there exists $\varepsilon > 0$, which depends only n and the constant C in (4.1), such that $V \in B_{q+\varepsilon}$. We always assume that $0 \neq V \in B_n$.

Lemma 4.1 Let $V \in B_n$ and Φ be a Young function satisfying the condition $1 < a_{\Phi} \leq b_{\Phi} < \infty$, then the inequality

$$\|\mu_j^L(f)\|_{L_{\Phi}(B(x_0,r))} \lesssim \frac{1}{\Phi^{-1}(|B(x_0,r)|^{-1})} \int_{2r}^{\infty} \|f\|_{L_{\Phi}(B(x_0,t))} \Phi^{-1}(|B(x_0,t)|^{-1}) \frac{dt}{t}$$

holds for any ball $B(x_0, r)$, and for all $f \in L^{\text{loc}}_{\Phi}(\mathbb{R}^n)$.

Proof. The validity of the following inequality was proved in [5]

$$\mu_j^L f(x) \le \mu_j f(x) + CMf(x), \ a.e. \ x \in \mathbb{R}^n$$

where M denotes the well-known Hardy-Littlewood maximal operator. Statements of the Lemma 4.1 for the operators M and μ_j was proved in [2, Lemma 4.4] and Lemma 3.3, respectively. Then we get that the statements of the Lemma 4.1 also true for the operators μ_j^L , $j = 1, \ldots, n$.

Theorem 4.1 Let $V \in B_n$, Φ be a Young function and (φ_1, φ_2) satisfies the condition (3.7). If $1 < a_{\Phi} \leq b_{\Phi} < \infty$, then the operator μ_i^L is bounded from M_{Φ,φ_1} to M_{Φ,φ_2} .

Proof. The statement of Theorem 4.1 follows by Lemma 4.1 and Theorem 3.2 in the same manner as in the proof of Theorem 3.3.

References

- Aliyev, S.S., Guliyev, V.S.: Boundedness of parametric Marcinkiewicz integral operator and their commutators on generalized Morrey spaces. Georgian Math. J. 19, 195– 208 (2012).
- Deringoz, F., Guliyev, V.S., Samko, S.: Boundedness of maximal and singular operators on generalized Orlicz-Morrey spaces. Operator Theory, Operator Algebras and Applications, Series: Operator Theory: Advances and Applications 242, 139–158 (2014).
- Dziubański, J., Zienkiewicz, J.: Hardy space H¹ associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iber. 15, 279–296 (1999).
- Fu, X., Yang, D., Yuan, W.: Boundedness of multilinear commutators of Calderón-Zygmund operators on Orlicz spaces over non-homogeneous spaces. Taiwanese J. Math. 16, 2203–2238 (2012).
- 5. Gao, W., Tang, L.: Boundedness for Marcinkiewicz integrals associated with Schrödinger operators. Proc. Indian Acad. Sci. (Math. Sci.) **124** (2), 193–203 (2014).
- Guliyev, V.S.: Generalized local Morrey spaces and fractional integral operators with rough kernel. J. Math. Sci. (N. Y.) 193 (2), 211–227 (2013).
- Hakim, D.I., Nakai, E., Sawano, Y.: Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz-Morrey spaces. Rev. Mat. Complut. 29 (1), 59–90 (2016).
- Hasanov, J.J.: Φ-admissible sublinear singular operators and generalized Orlicz-Morrey spaces. J. Funct. Spaces, Article ID 505237, 7 pages (2014).
- 9. Hörmander, L.: Translation invariant operators. Acta Math. 104, 93–139 (1960).
- Krasnoselskii, M.A., Rutickii, Ya.B.: Convex Functions and Orlicz Spaces, *English* translation P. Noordhoff Ltd., Groningen (1961).
- 11. Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and Function Spaces (Kitakyushu, 2003), *Yokohama Publishers, Yokohama* 323–333 (2004).
- 12. Nakai, E.: Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math. **188** (3), 193–221 (2008).
- Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36 (4), 517–556 (2012).
- 14. Shen, Z.: L^p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) **45**, 513–546 (1995).
- 15. Shi, X., Jiang, Y.: Weighted boundedness of parametric Marcinkiewicz integral and higher order commutator. Anal. Theory Appl. 25 (1), 25–39 (2009).
- 16. Stein, E.M.: On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Amer. Math. Soc. 88, 430–466 (1958).