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Higher Order Commutators of Vector-Valued Intrinsic
Square Functions on Vector-Valued Generalized Weighted
Morrey Spaces
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Abstract. In this paper, we will obtain the strong type and weak type estimates for vector-valued
analogues of intrinsic square functions in the generalized weighted Morrey spaces MP¥(R™). We
study the boundedness of intrinsic square functions including the Lusin area integral, Littlewood-
Paley g-function and g3 -function and their higher order commutators on vector-valued generalized
weighted Morrey spaces M2:?(lz). In all the cases the conditions for the boundedness are given
in terms of Zygmund-type integral inequalities on ¢(z,r) without assuming any monotonicity
property of ¢(x,r) in r.

Key Words and Phrases: intrinsic square functions; vector-valued generalized weighted Morrey
spaces; vector-valued inequalities; A, weights; commutators; BMO

2010 Mathematics Subject Classifications: 42B25, 42B35

1. Introduction

It is well-known that the commutator is an important integral operator and it plays
a key role in harmonic analysis. In 1965, Calderon [2, 3] studied a kind of commutators,
appearing in Cauchy integral problems of Lip-line. Let K be a Calderén-Zygmund singular
integral operator and b € BMO(R"™). A well known result of Coifman, Rochberg and Weiss
[9] states that the commutator operator [b, K]f = K(bf)—bK f is bounded on LP(R™) for
1 < p < co. The commutator of Calderén-Zygmund operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second order
(see, for example, [6]-[8], [5], [10], [11]).

The classical Morrey spaces were originally introduced by Morrey in [31] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [10, 11, 18,
31]. Recently, Komori and Shirai [28] first defined the weighted Morrey spaces LP*(w)
and studied the boundedness of some classical operators such as the Hardy-Littlewood
maximal operator, the Calderén-Zygmund operator on these spaces. Also, Guliyev [21, 22]
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introduced the generalized weighted Morrey spaces ML¥ and studied the boundedness
of the sublinear operators and their higher order commutators generated by Calderdn-
Zygmund operators and Riesz potentials in these spaces (see, also [25, 27, 34]).

The intrinsic square functions were first introduced by Wilson in [39, 40]. They are
defined as follows. For 0 < a < 1, let C, be the family of functions ¢ : R — R such that
¢’s support is contained in {z : |z| <1}, [p. ¢(z)dz =0, and for z, 2’ € R",

|6(x) = ¢(a")] < o — 2|
For (y, t) € R and f € LYW°(R™) | set

Aoef(tv y) = sup ’f*¢t(y)’7
peCy

where ¢(y) = t_”qS(%) . Then we define the varying-aperture intrinsic square (intrinsic

Lusin) function of f by the formula

G () = ( /] B(x)(Aaf(tay))Q?ﬁf) ,

where T'5(z) = {(y, t) € R : |z — y| < Bt}. Denote Go1(f) = Galf) -

This function is independent of any particular kernel, such as Poisson kernel. It dom-
inates pointwise the classical square function(Lusin area integral) and its real-variable
generalizations. Although the function G, 5(f) is dependent of kernels with uniform com-
pact support, there is pointwise relation between G, 5(f) with different 3:

3n

Gaps(f)(z) < B2 HCo(f) () .

Details can be found in [39].
The intrinsic Littlewood-Paley g-function and the intrinsic g} function are defined

respectively by
wf @) = ([ at0r )

. B t nA dydt :
graf (@) = (/ /Ri“ <m> (Aaf(yat))2m> :

Y o)

When we say that f maps into ls, we mean that f(z) = (fj)jzl’
Lebesgue measurable and, for almost every x € R"

where each f; is

e}

. 1/2
17l = (S 1eE)

J=1
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Let f = (f1, f2, ...) be a sequence of locally integrable functions on R™. For any
x € R™, Wilson [40] also defined the vector-valued intrinsic square functions of f by
|Gof ()|, and proved the following result.

Theorem A. Let1 <p <oo, 0 <a <1 andw € A,. Then the operators G, and
8. are bounded from LE,(I2) into itself for p > 1 and from L} (l3) to WLL (l3).

Moreover, in [30], Lerner showed sharp L%, norm inequalities for the intrinsic square
functions in terms of the A, characteristic constant of w for all 1 < p < co. Also Huang and
Liu [12] studied the boundedness of intrinsic square functions on weighted Hardy spaces.
Moreover, they characterized the weighted Hardy spaces by intrinsic square functions.
In [37] and [38], Wang and Liu obtained some weak type estimates on weighted Hardy
spaces. In [36], Wang considered intrinsic functions and the commutators generated by
BMO functions on weighted Morrey spaces. Let b be a locally integrable function on R™.
Setting

)

/n [b(x) — b(z)]k(;ﬁt(y — 2)f(2)dz

AL pf(ty) = sup
$eCa

the commutators are defined by

1

bGalt =<//F >2%>5,

bl = (/ooouz,bf(t,y»?%)%

w10~ (f o (i) b2

A function b € LY(R™) is said to be in BMO(R") if

and

1
bll« = sup ——— b(y) — bpe.m|dy < oo,
” ” xER™, r>0 |B($7T)| B(w,r)‘ ( ) B(=, )‘

where bp(, ) = m fB(x,r) b(y)dy.

In [36], Wang proved the following result.

Theorem B. Let 1 < p < o0, 0 < a <1, we A, and b € BMO(R"™). Then the
commutator operators [b, Go] and [b,g} ] are bounded from Li(12) into itself.

By the similar argument as in [13] and [36], we can get

Theorem B’. Let 1 < p < o0, 0 < a <1, we A, and b € BMO(R"™). Then the
kth-order commutator operators [b, Go]* and [b, g’;\,a]k are bounded from L4, (l2) into itself.

In this paper, we will consider the boundedness of the operators G, g, g3, and
their commutators on vector-valued generalized weighted Morrey spaces. Let ¢(z, 7‘) be a
positive measurable function on R" x R, and w be non-negative measurable function on
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R™. For any f € Lﬁ,’loc(lg) , we denote by M ?(Iy) the vector-valued generalized weighted
Morrey spaces, if

- _1 -
Il = _sup ol ) w(Ba, ) IF Ol By < oo

If w = 1, then M%7 (l) coincide with the vector-valued generalized Morrey spaces MP#(l5).
There are many papers which discussed the conditions on ¢(z,r) to obtain the bounded-
ness of operators on the generalized Morrey spaces. For example, in [17] (see also [18]),
Guliyev imposed the following condition on the pair (¢1, ¢2) :

| a0 < Contwn), (1)

where C > 0 does not depend on x and r. Under the above condition, Guliyev obtained
the boundedness of Calderén-Zygmund singular integral operators from MP:#1(R™) to
MP¥2(R™). Also, in [1] and [20], Guliyev et al. introduced a weaker condition: If 1 < p <
oo, then there exits a constant C' > 0 such that for any z € R™ and r > 0,

bess AT dt < C po(z,r). (2)

o ess inf ¢ (x, s)s%
o
J
If the pair (¢1, ¢2) satisfies condition (1), then (1, p2) satisfies condition (2). But the
opposite is not true. See Remark 4.7 in [20] for details.
Recently, in [21, 22] (see also [25, 27, 34]), Guliyev introduced a weighted condition:
If 1 < p < o0, then there exits a constant C' > 0 such that for any x € R™ and ¢t > 0,

tes< — < Cy(z,r). (3)

/Oo ess ilgg o1(z, s)w(B(x, S))% dt
T w(B(:E,t))% t

In this paper, we will obtain the boundedness of the vector-valued intrinsic function,
the intrinsic Littlewood-Paley g function, the intrinsic g} function and their commutators
on vector-valued generalized weighted Morrey spaces when w € A, and the pair (¢1, 2)
satisfies condition (3) or the following inequalities

S

o0 ess inf p1(x, s)w(B(z, s))
/ lnk (6 + E) fs<oo : 1 ﬂ S CQOQ (‘Ta T)? (4)
: r w(B(z, ) t

where C' does not depend on x and r. Our main results in this paper are stated as follows.

Theorem 1. Let 1 < p < o0, 0 < a <1, w € A, and (y1,p2) satisfy the condition
(3). Then the operator G, is bounded from ML*'(l3) to ME¥?(ly) for p > 1 and from
My?(1y) to W Mw#2(ls).
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Theorem 2. Let1 <p < oo, 0 <a <1, weA, A\>3+ a and (p1,p2) satisfy the
n

condition (3). Then the operator g , is bounded from MEP (1) to MEF?(l) for p > 1

and from Mwy#" (l3) to W My?2(l3).

Theorem 3. Let 1 <p < oo, 0 < a <1 weA,bec BMO and (v1,p2) satisfy the
condition (4). Then [b, Go)* is bounded from ME¥(l3) to MEF*(12) .

Theorem 4. Let 1 < p < o0, 0 < a <1, we A, b€ BMO and (p1,p2) satisfy the
condition (4). Then for A >3+ %, [b, g’;\’a]k is bounded from My**(ly) to ME??(lo).

In [39], the author proved that the functions G, f and g, f are pointwise comparable.
Thus, as a consequence of Theorem 1 and Theorem 3, we have the following results.

Corollary 1. Let 1 < p < o0, 0 < a <1, w € A, and (p1,p2) satisfy the condition
(3). Then gy is bounded from ME?'(ly) to ME?*(Iy) for p > 1 and from My¥' (ly) to
W My?2(ly).

Corollary 2. Let 1 <p < o0, 0<a <1, we A, b€ BMO and (p1,p2) satisfy the
condition (4). Then [b,g.] is bounded from ME¥'(I3) to Miy**(ls).

Remark 1. Note that, in the scalar valued case with w = 1 the Theorems 1 - 4 and
Corollaries 1 - 2 were proved in [26]. Also, in the scalar valued case with w = A, and

K

v1(x,r) = pa(z,r) = w(B(x,7)) » , 0 < kK <1 Theorems 1-4 and Corollaries 1-2 were
k=1

proved by Wang in [36, 35]. How as, if ¢(x,r) = w(B(z,r)) » , then the vector-valued

generalized weighted Morrey space ME¥ (ls) coincides with the vector-valued weighted Mor-

K—1 k=1

rey space L™ (l2) and the pair (w(B(z,r)) » , w(B(x,r)) » ) satisfies both conditions (3)
and (4). Indeed, by Lemma 1 there exist C > 0 and § > 0 such that for all z € R and
t>r:

w(B(z, 1)) > C’(;)n&w(B(x,r)).

Then
[ gy B
. w(B(z,t)/r ¢ . r w(B(z,t))\/P t
= /T In® <e+ ;) w(B(:p,t))% dt
0 ns Aot
< [ (e ) () ) T
ne s nds—L
= w(B(x,r))T1 /T In* <e + ;) (;) P %
= w(].’?(x,r))m;1 /1 In® (e + 7') O Ci_—T
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Throughout this paper, we use the notation A < B to mean that there is a positive
constant C' independent of all essential variables such that A < C'B. Moreover, C may be
different from place to place.

2. Vector-valued generalized weighted Morrey spaces

The classical Morrey spaces MP were originally introduced by Morrey in [31] to study
the local behavior of solutions to second order elliptic partial differential equations. For
the properties and applications of classical Morrey spaces, we refer the readers to [15, 29].

We denote by MP*(ly) = MPAR™, y) the vector-valued Morrey space, the space of
all vector-valued functions f € LP1°¢(l,) with finite quasinorm

P
= su rop ) 1o)s
Hﬂ‘M”'A(lz) :ceR”,I:ﬂ>0 ”f”Lp(B( k)

where 1 <p<oocand 0 <\ < n.

Note that MP9(ly) = LP(ly) and MP"(ly) = L>®(ly). If A < 0 or A > n, then MPA (1) =
O, where O is the set of all vector-valued functions equivalent to 0 on R".

We define the vector-valued generalized weighed Morrey spaces as follows.

Definition 1. Let 1 < p < 00, ¢ be a positive measurable vector-valued function on
R"™ x (0,00) and w be non-negative measurable function on R™. We denote by M (1)
the vector-valued generalized weighted Morrey space, the space of all vector-valued functions
F e LE°(1y) with finite norm

. 1
I lazey = sup ()" w(B(@,m) "7 | £l e (o) i)
zER™,r>0

where L4, (B(x,7),l2) denotes the vector-valued weighted LP-space of measurable functions
f for which

P

1A 22, By = 1 X piam 122, ) = (/B ||f(y)||iw(y)dy>

(z,r)
Furthermore, by W ME¥(l3) we denote the vector-valued weak generalized weighted

Morrey space of all functions f € WL‘Z}IOC(ZQ) for which

— [ R
HfHWMff,""(lg) = sup ¢(z,7) 1w(B(x,r)) P ”f”WLg(B(z,r),lz) < 0,
zeR™ r>0

where W LY, (B(z,r),la) denotes the weak LY,-space of measurable functions f for which

B =

HJF”WL@; Ba,r),ls) = [K3" e llwirp 1) =supt (/ . w(y)dy>
(Blentz) plen IWE2) =0\ S weB@n: 17wy >t
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Remark 2. (1) Ifw = 1, then MV¥(ly) = MP¥(ly) is the vector-valued generalized
Morrey space.

(2) If p(x,r) = w(B($,r))%, then M?(lo) = LE"(l2) is the vector-valued weighted
Morrey space.

(3) If p(z,r) = U(B(az,r))%w(B(x,r))_%, then ME¥(ly) = LEw(l2) is the vector-
valued two weighted Morrey space.

(4) If w=1 and p(x,r) = P with 0 < A < n, then ME?(ly) = LP(ly) is the
vector-valued Morrey space and W ME? (1) = W LPA(ly) is the vector-valued weak Morrey
space.

5) If p(z,r) = w(B(a:,r))_%, then ME¥(lo) = LE,(l3) is the vector-valued weighted
Lebesgue space.

3. Preliminaries and some lemmas

By a weight function, briefly weight, we mean a locally integrable function on R"™ which
takes values in (0, co) almost everywhere. For a weight w and a measurable set E, we define
w(E) = [pw(z)dz, and denote the Lebesgue measure of E by |E| and the characteristic
function of E by x,. Given a weight w, we say that w satisfies the doubling condition if
there exists a constant D > 0 such that for any ball B, we have w(2B) < Dw(B). When
w satisfies this condition, we write briefly w € As.

If w is a weight function, we denote by L%, (ls) = LI, (R™,l3) the vector-valued weighted
Lebesgue space defined by finiteness of the norm

1
— — P
s = ([ 1@l i) <o if 1<p<oc

and by || fl 2 1) = ess sup £ (@) iy w(z) if p = oo,
TER™
We recall that a weight function w is in the Muckenhoupt’s class A, [32], 1 < p < oo,
if

[wla, = = suplwla, 5

cap by ) iy o) <=

where the sup is taken with respect to all the balls B and % + 1% = 1. Note that, for all
balls B by Hoélder’s inequality

1 - 1 _
[w]A/f(B) - ‘B’ 1”w”L/llzB) ”w l/p”Lp’(B) > 1.

For p = 1, the class A; is defined by the condition Mw(z) < Cw(z) with [w]a, =
Muw(z)
w(x)

sup

sup ; and for p =00 Ao = Uj<peno Ap and [w]a,, = 1S111)1<foo[w],4p.



Higher Order Commutators of Vector-Valued Intrinsic Square Functions 71

Lemma 1. ([16]) (1) Ifw € A, for some 1 < p < oo, then w € Ay. Moreover, for all
A>1
w(AB) < X"P[w] 4, w(B).

(2) If w € Ax, then w € Ag. Moreover, for all A > 1
w(AB) < 2V [w] 4. w(B).

(3) Ifw € Ay for some 1 < p < oo, then there exist C > 0 and 6 > 0 such that for
any ball B and a measurable set S C B,

% gc(%f

We are going to use the following result on the boundedness of the Hardy operator

(Ho)(t) =1 [ ar)dutr). 0< t <o,

where p is a non-negative Borel measure on (0, 00).

Theorem 5. ([4]) The inequality

ess supw(t)Hg(t) < cess supwv(t)g(t)
t>0 t>0

holds for all functions g non-negative and non-increasing on (0,00) if and only if
w(t) / b du(r)
0

ess sup v(s)
0<s<r

A :=sup
t>0

< oo,

and c~ A.

We also need the following statement on the boundedness of the Hardy type operator

(Hyg)(t) :== %/Ot In® (e + ;) g(r)du(r), 0 <t < oo,

where p is a non-negative Borel measure on (0, 00).

Theorem 6. The inequality

ess supw(t)Hig(t) < cess supv(t)g(t)
t>0 t>0

holds for all functions g non-negative and non-increasing on (0,00) if and only if

t) [ t d
Al = supﬁ/ In® (e+ —> A < 00,
>0 t Jo r/ ess supv(s)
0<s<r

and ¢~ Aj.



72 V. S. Guliyev, M.N. Omarova

Note that, Theorem 6 can be proved analogously to Theorem 4.3 in [19].

Definition 2. BMO(R") is the Banach space modulo constants with the norm || - ||«
defined by

1ol !
L= SUp o
z€R™,r>0 |B($7T)| B(x,r)

where b € LY*°(R™) and

|b(y) - bB(x,r)|dy < o0,

1
500 = (B g "0

Lemma 2. ([33], Theorem 5, p. 236) Let w € Aso. Then the norm || - ||« is equivalent to
the norm

1
1ol = sup

w(B(z. 1)) b(y) — bB(e,r)wlw(y)dy,
-TGR”,’I‘>0 ’LU(B(:I%’I")) /;(Z,T‘)| ( ) B( ) )7 | ( )

where
1

bB(x,T’)ﬂU = W /B(:v,r) b(y)w(y)dy.

Remark 3. (1) The John-Nirenberg inequality : there are constants Cp, Cy > 0, such
that for allb € BMO(R™) and 5 >0

{z € B : |b(x) — bg| > B}| < C1|Ble=?#/Ibl- vB c R

(2) For 1 <p < oo the John-Nirenberg inequality implies that

1
1 p
18]l = sup (— [ 1) - bB\pdy) (5)
B \|B| /B
and for 1 <p < oo and w € A
1
18]l = sup (L [ 1) = Pty ) (6)

Note that, by the John-Nirenberg inequality and Lemma 1 (part 3) it follows that
w({z € B : |b(z) —bg| > B}) < Cow(B)e 2P/ Ibl-

for some 6 > 0. Hence

/ b(y) — bpPw(y)dy = p / T w({z € B ¢ b(z) — by| > )P
B

0
< pC’fw(B) / Bt o= C2B0/ bl g5 — Csw(B)|[b]7,
0

where C3 > 0 depends only on Cf , C, p, and ¢, which implies (6).
Also (5) is a particular case of (6) with w = 1.
The following lemma was proved in [22].
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Lemma 3. i) Let w € Ay and b € BMO(w). Let also 1 < p < oo, z € R", k>0 and
r1,79 > 0. Then

1 kp ’ ri )\ ok
- _ < _
<w(B(a;, 7,1)) / ’b(y) bB(x,T’z),w‘ w(y)dy) = C <1 + ‘ In - ) HbH*a

B(z,r1)

where C' > 0 is independent of f, w, x, r1, and ro.
ii) Let w € A, and b € BMO(w). Let also 1 <p < oo, x € R", k>0 and r1,r3 > 0.
Then

1
ol

1 kp' 1—p/ P T K k
— < —_—
(wl_p,(B(:E’ﬁ)) / 16(Y) = bB(a,ra).0l™ w(y) dy) <C 1+(ln TJ (Ll
B(z,r1)

where C' > 0 is independent of f, w, x, r1, and rs.

4. Proofs of main theorems

Before proving the main theorems, we need the following lemmas.

Lemma 4. [36] For j € Z4, denote

G (F)() = < /0 N /Ix_qujt(Aaf(y,t))?ffff ) -

Let 0 <a<1,1<p<ooandw € A,. Then for any j € Z, we have

1Gazs (Dllz < 2 (559) 1Gal )l

This lemma is easily derived from the following inequality which is proved in [39].

Gop(f)(x) < BEHGo(f)(2).

By the similar argument as in [3], we can get the following lemma.

Lemma 5. Let 1 <p <00, 0 < a <1 and w € A,. Then the commutator [b,G,] is
bounded from L%,(l2) to itself whenever b € BMO.

Now we are in a position to prove theorems.

Lemma 6. Let 1 <p<oo,0<a<1andwc A,.
Then, for p > 1 the inequality

1GaFlegisi S BN [ 11 (5 1) (Bl )



74 V. S. Guliyev, M.N. Omarova

holds for any ball B = B(xo,r) and for all f € Lijloc(lg).
Moreover, for p =1 the inequality

1GaFlwiaoin < wB) [ 171 (50 0) (@ BE0) 5

holds for any ball B = B(xg,r) and for all fe Li}loc(lg).

Proof The main ideas of these proofs come from [22] For arbltrary r € R, set

B = B(wo,r), 2B = B(x0,2r). We decompose f = fo+ fro, where fo( ) = f(y)ng(y),
foo( ) = f(y) — fo(y). Then,

’ —

Gafl|

LY, (B(Z‘o,?“),lz) S HGafO”LfU (B(:C(),T’)Jz) + ”Gafoo”LP( =1 + 1.

B(:C(),T’)Jz)

First, let us estimate I. By Theorem A, we can obtain that

—

I< HGaﬁ)”L{’U(lg) S Hﬁ)”L{’U(lz £l 22, 28,15)- (7)

On the other hand,

) 3 < dt
11122, 2B.12) = [BIIFll 2, 25.12) /QT {n+1

R dt
1B [ 1y (0 ) 757 (®)

1 o dt
< w(B)H w7, / 11 (e ) 7057

S w(B)

~

dt
-1/ "
/27, ”f”Lp ( ) Hw p”Lp,(B(:L‘(),t)) n+1

L1 () (@B C0,0) 5 5

Therefore from (7) and (8) we get

Q=

L A

S w(B)

TS0 [y () (0 Bl0) 7 5 ©)

S
8
=)

S

Now let us estimate II.

—n Yy—z, . N
t /y_zgt¢( ; Vfoo(2)dz|| <t /y_zgt”foo(z)ulzdz'

Since x € B(xzo,7), (y,t) € T'(x), we have |z — x| < |z —y| + |y — x| < 2t, and

1+ 6e ()l =

2

r<l|z—mxo| —|zo—2| <|x—2| < |z —y|+ |y — 2| <2t
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So, we obtain

[NIES

IN

HGafoo(x)le

2
_ = dydt
" foo(D|1dz | ——
/] m( JEscl ) e

1

2
g dydt
< foo 2 dz —
/t>r/2/|:c—y|<t </|:c—z<2t|| (2l ) $3n+1
1
a \°
S _;OZ dz | ——
S /t>r/2 </|z—w§2t‘|f (2)]l1, > prTEs

1
By Minkowski and Holder’s inequalities and |z — x| > |z — xg| — |zo — x| > §|z — o), we

have
%
. dt .
< _
1Ga foo (@), < /R </t> t2"+1> [ foo ()1, d2
< / £l / O,
|z—xzo|>2r ‘Z - LE’ |z—zo|>2r ’Z _‘T0’
- oo dt
- e / &g
/z—:co|>2r ’ |z—xo\t 1
+0o0 - dt
= |, dz——
/27" /27“<z—mo<tH ( )||2 tntl
< [Tl o) -
~ 9 la Lw(B(SC(),t)) Lp/(B(Z‘oﬂf)) tTL—l—l
o _1dt
S [ 1l (e 1) (0Bl 09) 5 - (10)
Thus,

Sl

o © _1dt
HGafOO”L{JU(B,lz) S w(B) / HfHLg, (B(xoﬂf),lg) (U)(B(.Z'O’t))) P ? (11)

2r

By combining (9) and (11), we have

==

_ oo _1
1Ga iz, 51) S w(B) / 171 (g y0) (0Bl 2) 7 5

Proof of Theorem 1
By Lemma 6 and Theorem 5 we have for p > 1

N oo 1
N , < -1 B(zg,t))) »
Gl S sup_ ea(ro, ) L1 () (@B 0.0))
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-1

—1 " r 1 ld

= B t —

wp  Palzo, ) /0 171 1 (1) (Bl t710) 7% 5
= s palar e 1] (w(Blao,t1)) 7 &
ToER",r>0 ’ T Jo Lﬁ,(B(xO,tfl)Jz) ) t

< ~1=1 ((B —1\\\ "3 || £
NIOES};I?T>O(’DI($0’T ) (w( (5170,7‘ ))) ‘|fHLfU(B(wo,T*1),lz)

_1 — —
= Sup (701(:1:0771)_1 ('LU(B(LUO’T))) P HfHLfU (B(Io,’r‘),lz) = H ‘|M57¢1 (lg)

zo€ER™,r>0
and for p =1
IGafllyyyroe gy S sup a(w,m) ™" N I£] (w(B(o,1))) " a
WM™ (1) ~ | o o ’ g L, (B(xo,0),12) ’ t
= sup  alwg, 1) / A (w(Blao, 7))
_:coeR”];,)r>0(p2 0 0 L%u(B(xOJfl),lz) 0> t
1 /" - _1dt
—1\—1 -1
= - B(zo,t i
:coesl;}},)r>0(p2($07r )7t /0 17123 (Be0a-1)02) (w(B(zo,t™1)))

< —1y—1 B —1\\\ L 7]
~ ;EOGS}{%LI’)T>O (101 (':UO) r ) (w( (IEO, r ))) ||fHL1 (B(.CEO 7‘71) 12)

—

_ -1
- :(:OESI}E}}‘,)T>O %’1(33077’) (U)(B(.Z'(),T))) HfHLl (B(xo r) lz) HfH 1 A1 (I2)’

Lemma 7. Let 1 <p < oo, 0 < a <1, )\>3+% and w € A,. Then, for p > 1 the
inequality
50l g 1) < @B [ 7] (w(Blzo. 1) * &
Exa I lipr (o) ~ o L (o) l2) 0; ¢

holds for any ball B = B(xo,r) and for all f € Loljloc()lg.
Moreover, for p =1 the inequality

I8Pl 1y, (5.2) S (B / M (aenyen) (w(Blao, 1) &

holds for any ball B = B(xg,r) and for all fe Ltlljloc(lg).

Proof. From the definition of g} o(f), we readily see that

o0l = ([, () (aerton) )"
<)) ) (o) ),

lo



Higher Order Commutators of Vector-Valued Intrinsic Square Functions 77

0o ni .
N ) () 25) 7,

=111+ 1V.

First, let us estimate III.

00 n\
wr<|(f7 (=) (efvn) 25)"

Now, let us estimate IV.

N o /
v < H(; [ () (Aafln) 2)"
IO [Ty (o) )

. /
/ /x y\<2ﬂt Aofly ))2fgff)l 2

a23.f?()

< ||Gaf(@)ll;,-

l2

l2

A

l2

]n)\

l2

—jnA

%
-2 A
Thus,
I8Pl g (51) < 1Cafll g (51 +Zz——uaw< Mg (s (2
7=1

By Lemma 6, we have

Al
'G\'—‘

T w

/ 17l Ban.ey (w(Bo, 1))

2r

HGaﬂng (B.2) < (w(B))

Now we proceed to estimate ||G,, 9 ( 3|]Lp (B) We divide [|G,, o5 (f)HLp (B.12) into two
parts.

HGa72j (‘F)HL{L (B,lz) < ||G0c,2j (ﬁ)HLﬁ, (B,lg) + ||G0c,2j (fOO)HLz} (B,lz)’ (14)

—

where fo(y) = f(¥)x28(y), foo(y) = f(y) — foc(y). For the first part, by Lemma 4,

- i(3n . - (32 4o

<90y [ IF] i
SPEDUE [l (1 (0B 0 0)

?.

’tH»—A

(15)
For the second part.

|Gas (foo) (@)

SN e ),
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2
- dydt
su ES —_—
Lo <¢6011|f ¢t<y>|> e

l2

2

> g dydt
foo Z)l dz —

/0 /x—y<2jt </|Z—y|<t oo ()l t3n+l1

Since |z — 2| < |y — 2| + |z — y| < 27T, we get

|G (Foo) (@)

IN

IA

IN

3jin

275

IN

|zo—

l2 /0 /|:c—

> ? gin

fro(2) 1z | g

/ ( L W@l ) o
in - dt \?2

2% [ ( JE >H12t2n+1> -

N

2
7 dydt
foo(2)|1dz | ——
y|<29t </x—2|<2j+1t [[fo0 (2) Iz prR

Jun

2j+1

[REI

z|>2r |$ - Z|n

1 1
As |z — x| > |zg — 2| — |x — mo| > |0 — 2] — §|x0 —z| = §|:170 — z|, by Fubini’s theorem

and Holder’s inequality, we obtain

7 3n ()l
Gooi(foo)(@)|| <272 2z
H B l2 |xo—z|>2r |l‘0 - Z|n
— o

- & dt
17 / SR
|xo—z|>2r ? |zo—2z| tntt

3]n dt
Hl dz——
/2r /xo z|<t 2l

3jn

<2%

\

2

523?/
2

3jn o0
<2% |
2r

So,

3jn

HGa72j (foo)HL,U,J (3712) <272 w(B

dt
) HHf( Mz ll 21 (B2o.1) g
R _ dt
) £ Oa Nl 22, (B0 1)) 1w 1HLP/(B(xo,t))W
- 1dt
1A, (Blaot)a) (w(B(z0,t))) » <

o _1dt
|11 () (@ Blant) 5 5 (16)

S =
T =

)
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Combining (14), (15) and (16), we have
\|Ga72j(f“)||L,, (5.2) < 9i(%+0) ()3 /w\|ﬂ|LP (Blaoia) (w(B(xo,t)))‘%ﬂ, (17)
wl B2 o w(B(zo.t).l2 t
Thus,
Hgi,a(f)HLg(Bh) < HGaJFHLfU(B,lZ) +Z2_MHGQ 2 (NIl 2, (B.s)° (18)
J=

Since A > 3 + %, by (13), (17) and (18), we have the desired lemma.

Proof of Theorem 2
From inequality (19) we have

o0

« — — _jnX
X a (D lazez ) < NGafllazee o) Z 2 [|Ga2s (Pl aaze2 -

(19)

By Theorem 1, we have

‘|Gaﬂ|M§“’2(l2) S _]|M5’W1(12)- (20)

Now we proceed to estimate |G, o;( Al MP#2(,)- By change of variables and Theorem 5
we get

G2 (F)llpmez )

$0€R7L,T>0(p2(x07r)_1/7« ”f”Lp( B(zo,t) lz) (w(B(‘T07t)))

”dl>—'

at
t

2 7 1t
_ 9i(%+a) “1y-1,. 1 / [ dt
2 :coeslglﬁ,)wo pa(zo,r ) r Jo ”fHqu (B(xo,t*l),lz) (w( (o, ))) P ;

—1y-1 —1\\\ "5 || Fl
xoes};{)r>0g01(xo,7’ ) (w(B(xo,T ))) prHLfU(B(wo,Tfl)lz)

11l aze1 (1)

< 2j(37"+0¢)

= 9i (%5 +o) (21)
Since A > 3 + %, by (19), (20) and (21), we have the desired theorem.

Lemma 8. Let1 <p<oo,0<a<1l,weA, andbec BMO.
Then the inequality

B =

~&

T

110Gl Fllyp 5y S BN [0 (e DY 17 ) (0Bla0st)”

holds for any ball B = B(xo,r) and for all f € L5(ly).
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Proof. We decompose f: fo + foo, where fo = fxgg and foo = f— ﬁ). Then

By Lemma 5, we have

I, GalFoll  (5,,) % 1015 1y = DBIE 17T )

< i 1 1dt
SB[ 17y () (0BG 0) P T
As for the second part, we divide it into two parts:
dydt
b Gl e, = ([ [ s | [ b —bel ot - areea] T,
2dydt\ 3
< _b ,W - [e’¢) d
<[(f [z 1o bowlots = terne i)
- 2 dydt 3
+ _b , W - [e%} d 1
H / /m s | [ 06) ~maltots 2] i)
B(x).
Therefore
1. Gal*Foll (51 < 14O sz )+ 1B Ol
First, for A(x), we find that
> 2dydt\ 3
A = ) bl ([ s | [ a2 fe] 7)),

= [bo() = b5 | | Gafoo@)]|:

By Lemma 3 and from the inequality (10), we can get

1Az, 8) = </ [b(2) = bp.w|*” (HGafoo(x)le)pw(w)dwf

For B(z), since |y — z| < t, we get |z — z| < 2t. Thus, by Minkowski’s inequality,

2<[(/ [,

> 2 dydt \ 3
bpaw — b(2)|F foo(2)d
L e b et i)

l2
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S </OOO ‘ /Im—z<2t |bB7w - b(Z)|k Hfoo Hl ‘2t2”+1);

> dz

< bpw — b)) ———.

/|:co—z>2r’ " ) H ( )Hl2 |z — 2|

For B(z), using the inequality |z — 2| > %|z — 2|, we have

- dz
< — k 0
B(ﬂ?) ~ /|m0_z>2r |b(z) bB,w| Hf(Z)Hl2 |$0 . Z|n

gt
< b(2) — bpw / -
/m) Mm sol 17N, [ 5
dt
) = bp.wlk dz——.
/27’ /2r<xo z\<t B | Hf ng ztn+1

Applying Holder’s inequality and by Lemma 3, we get

1
7

1 [ / . dt
1B ze 8y S w(B)? / (/ 1b(2) = bp.w| P w(z)! de> 1 ()leuLﬁ,(B(xO,t))W
2 B(zo,t)

T

1 [ dt

< k ; 1/p

S 1ol w @ [ (11 D) oy o 1l (5 1) 757
1 [ - dt

< k . k Z -1/p

S kB [ (et DY 1l (g 1) W B0 1)

Thus,

I

2r

[e.e]

In <e+;) 171 (e 0) (Bl 1) 77 2

Proof of Theorem 3
By change of variables, we obtain

[0, Ga]kﬂ|Mﬁj’“’2 (12)

> t - dt
< k -1 In® - B t -1/p 2%
I s eatror) ™ [T (o4 D) 17l (g ) (B0 )G
< b k -1 7’711 k 1 r B 1 _1dt
St sw a0 [ (e 5) 170 (g e 11) (B0 )77 5

roER™,r>0

B =

1 [" r - _1dt
_ k —1y—1,, * k r -1 il
= sup bll} oo, r ) e~ /0 i (e 5 ) 11 g (g 11 (B0 )77 5

z€R™, r>0

< IplE —1y-1 —1\\ =% || 7]
SIIE s nteo,r ™) B0, r N Iy (5 i

—pllk -1 -2
= ol sup i) (Bl ) 1l ig s
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= 1% 1 arper -

can also show the boundedness of [b, g} |".

By using the argument similar to that of the above proofs and that of Theorem 2, we

k
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