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Abstract. In this paper we study the boundedness for a large class of sublinear
operators T generated by Calderón-Zygmund operators on generalized weighted Morrey
spaces Mp,φ(w) with the weight function w(x) belonging to Muckenhoupt’s class Ap. We
find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the
operator T from one generalized weighted Morrey space Mp,φ1(w) to another Mp,φ2(w)
for p > 1 and from M1,φ1(w) to the weak space WM1,φ2(w). In all cases the conditions
for the boundedness are given in terms of Zygmund-type integral inequalities on (φ1, φ2),
which do not assume any assumption on monotonicity of φ1, φ2 in r. Conditions of these
theorems are satisfied by many important operators in analysis, in particular pseudo-
differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-
Riesz operator.
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1. Introduction

Let Rn be the n−dimensional Euclidean space of points x = (x1, ..., xn)
with norm |x| = (

∑n
i=1 x

2
i )

1/2. For x ∈ Rn and r > 0, let B(x, r) be the

open ball centered at x of radius r and
{
B(x, r) denote its complement and

|B(x, r)| is the Lebesgue measure of the ball B(x, r).
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under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1.
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The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
t>0

|B(x, t)|−1

∫
B(x,t)

|f(y)|dy

for all f ∈ Lloc1 (Rn). Let K be a Calderón-Zygmund singular integral ope-
rator, briefly a Calderón-Zygmund operator, i.e., a linear operator bounded
from L2(Rn) to L2(Rn) taking all infinitely continuously differentiable func-
tions f with compact support to the functions f ∈ Lloc

1 (Rn) represented by

Kf(x) =

∫
Rn

k(x, y)f(y) dy, x /∈ suppf.

Here k(x, y) is a continuous function away from the diagonal which pro-
vides the standard estimates: there exist c1 > 0 and 0 < ε ≤ 1 such that
|k(x, y)| ≤ c1|x− y|−n, for all x, y ∈ Rn, x ̸= y, and

|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≤ c1

(
|x− x′|
|x− y|

)ε
|x− y|−n

whenever 2|x − x′| ≤ |x − y|. It is well known that maximal operator and
Calderón-Zygmund operator play an important role in harmonic analysis
(see [11, 24, 34, 35, 37]).

The classical Morrey space was originally introduced by Morrey in [28]
to study the local behavior of solutions to second order elliptic partial diffe-
rential equations. For the properties and applications of classical Morrey
spaces, we refer the readers to [28, 30].

We denote byMp,λ ≡Mp,λ(Rn) the Morrey space, the space of all classes
of functions f ∈ Lloc

p (Rn) with finite norm

∥f∥Mp,λ
= sup

x∈Rn, r>0
r
−λ

p ∥f∥Lp(B(x,r)),

where 1 ≤ p <∞ and 0 ≤ λ ≤ n.
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn). If λ < 0 or λ > n, then

Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
We also denote by WMp,λ ≡ WMp,λ(Rn) the weak Morrey space of all

functions f ∈WLloc
p (Rn) for which

∥f∥WMp,λ
= sup

x∈Rn, r>0
r
−λ

p ∥f∥WLp(B(x,r)) <∞,
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where WLp(B(x, r)) denotes the weak Lp-space of measurable functions f
for which

∥f∥WLp(B(x,r)) ≡ ∥fχ
B(x,r)

∥WLp(Rn) = sup
t>0

t |{y ∈ B(x, r) : |f(y)| > t}|1/p

= sup
0<t≤|B(x,r)|

t1/p
(
fχ

B(x,r)

)∗
(t) <∞.

Here g∗ denotes the non-increasing rearrangement of a function g.
Chiarenza and Frasca [7] studied the boundedness of the maximal

operator M in Morrey spaces. Their results can be summarized as follows:

Theorem 1.1. Let 1 ≤ p < ∞ and 0 ≤ λ < n. Then for p > 1 the
maximal operator M is bounded on Mp,λ, and for p = 1 M is bounded from
M1,λ to WM1,λ.

Fazio and Ragusa [10] studied the boundedness of the Calderón-Zyg-
mund operators in Morrey spaces, and their results imply the following
statement for Calderón-Zygmund operators K.

Theorem 1.2. Let 1 ≤ p < ∞, 0 < λ < n. Then for 1 < p < ∞
Calderón-Zygmund operator K is bounded on Mp,λ, and for p = 1 K is
bounded from M1,λ to WM1,λ.

Note that Theorem 1.2 was proved by Peetre [30] in the case of the
classical Calderón-Zygmund singular integral operators.

Suppose that T represents a sublinear operator, which provides that for
any f ∈ L1(Rn) with compact support and x /∈ suppf

(1.1) |Tf(x)| ≤ c0

∫
Rn

|f(y)|
|x− y|n

dy,

where c0 is independent of f and x. We point out that the condition (1.1)
was first introduced by Soria and Weiss in [32]. The condition (1.1)
is satisfied by many interesting operators in harmonic analysis, such as
the Calderón–Zygmund operator, Carleson’s maximal operator, Hardy–
Littlewood maximal operator, C. Fefferman’s singular multipliers, R. Fef-
ferman’s singular integrals, Ricci–Stein’s oscillatory singular integrals, the
Bochner–Riesz means and so on (see [25], [32] for details).

In this study, we prove the boundedness of the sublinear operator T
satisfying condition (1.1) generated by Calderón-Zygmund operator from
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one generalized weighted Morrey space Mp,φ1(w) to another Mp,φ2(w), 1 <
p < ∞, and from the space M1,φ1(w) to the weak space WM1,φ2(w). Fi-
nally, we apply this result to several particular operators such as pseudo-
differential operators, Littlewood-Paley operator, Marcinkiewicz operator
and Bochner-Riesz operator.

By A . B we mean that A ≤ CB with some positive constant C, where
C is independent of appropriate quantities. If A . B and B . A, then we
write A ≈ B and say that A and B are equivalent.

2. Weighted Morrey spaces

A weight function is a locally integrable function on Rn which takes
values in (0,∞) almost everywhere. For a weight w and a measurable set
E, we define w(E) =

∫
E w(x)dx, the Lebesgue measure of E by |E| and

the characteristic function of E by χE . Given a weight w, we say that w
satisfies the doubling condition if there exists a constant D > 0 such that
for any ball B, we have w(2B) ≤ Dw(B). We denote w ∈ ∆2, for short,
when w satisfies doubling condition.

If w is a weight function, we denote by Lp(w) ≡ Lp(Rn, w) the weighted
Lebesgue space defined by the norm

∥f∥Lp,w =

(∫
Rn

|f(x)|pw(x)dx
) 1

p

<∞, when 1 ≤ p <∞

and by ∥f∥L∞,w = ess supx∈Rn |w(x)f(x)| when p = ∞.
We recall that a weight function w is in the Muckenhoupt’s class Ap,

1 < p <∞, if

[w]Ap : = sup
B

[w]Ap(B)

= sup
B

(
1

|B|

∫
B
w(x)dx

)(
1

|B|

∫
B
w(x)1−p

′
dx

)p−1

<∞,

where the sup is taken with respect to all balls B and 1
p + 1

p′ = 1. Note
that, for all balls B by Hölder’s inequality the following holds

(2.1) [w]
1/p
Ap(B) = |B|−1∥w∥1/pL1(B) ∥w

−1/p∥Lp′ (B) ≥ 1.

For p = 1, the class A1 is defined by the condition Mw(x) ≤ Cw(x) with

[w]A1 = supx∈Rn
Mw(x)
w(x) , and for p = ∞ we define A∞ =

∪
1≤p<∞Ap.
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Lemma 2.1 ([12]). Let w ∈ Ap, 1 ≤ p <∞, then
(1) w ∈ ∆2. Moreover, for all λ > 1 we have w(λB) ≤ λnp[w]Apw(B),

and
(2) there exists C > 0 and δ > 0 such that for any ball B and a

measurable set S ⊂ B, w(S)
w(B) ≤ C

(
|S|
|B|

)δ
.

Definition 2.1 ([19]). Let 1 ≤ p < ∞, 0 < κ < 1 and w be a weight
function. We denote by Lp,κ(w) ≡ Lp,κ(Rn, w) the weighted Morrey space,
the space of all classes of locally integrable functions f with the norm
∥f∥Lp,κ(w) = supx∈Rn,r>0 w(B(x, r))

−κ
p ∥f∥Lp,w(B(x,r)) <∞.

ByWLp,κ(w)≡WLp,κ(Rn, w) we denote the weak weighted Morrey space,
the space of all locally integrable functions f with the norm ∥f∥WLp,κ(w) =

supx∈Rn,r>0 w(B(x, r))
−κ

p ∥f∥WLp,w(B(x,r)) <∞.

Remark 2.1. Alternatively, we could define the weighted Morrey spaces
with cubes instead of balls. Hence we shall use these two definitions of
weighted Morrey spaces appropriate to calculation.

Remark 2.2. (1) If w ≡ 1 and κ = λ/n with 0 < λ < n, then
Lp,λ/n(1) =Mp,λ(Rn) is the classical Morrey spaces.

(2) If κ = 0, then Lp,0(w) = Lp(w) is the weighted Lebesgue spaces.

The following theorem was proved in [19].

Theorem 2.3. Let 1 ≤ p < ∞, 0 < κ < 1 and w ∈ Ap. Then the
operators M and K are bounded on Lp,κ(w) for p > 1 and from L1,κ(w) to
WL1,κ(w).

3. Generalized Morrey spaces

We find it convenient to define the generalized Morrey spaces in the form
as follows.

Definition 3.2. Let φ(x, r) be a positive measurable function on Rn×
(0,∞). We denote byMp,φ ≡Mp,φ(Rn), 1 ≤ p <∞, the generalized Morrey
space, the space of all classes of functions f ∈ Lloc

p (Rn) with finite norm

∥f∥Mp,φ = supx∈Rn,r>0 φ(x, r)
−1|B(x, r)|−

1
p ∥f∥Lp(B(x,r)). Also byWMp,φ ≡

WMp,φ(Rn) we denote the weak generalized Morrey space, the space of all
functions f ∈WLloc

p (Rn) for which

∥f∥WMp,φ = sup
x∈Rn,r>0

φ(x, r)−1 |B(x, r)|−
1
p ∥f∥WLp(B(x,r)) <∞.
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In [13]-[16], [21], [27] and [29] there were obtained sufficient conditions
on φ1 and φ2 for the boundedness of the maximal operatorM and Calderón-
Zygmund operator K from Mp,φ1 to Mp,φ2 , 1 < p <∞ (see also [2]-[5]). In
[29] the following condition was imposed on φ(x, r):

(3.1) c−1φ(x, r) ≤ φ(x, t) ≤ c φ(x, r)

whenever r ≤ t ≤ 2r, where c (≥ 1) does not depend on t, r and x ∈ Rn,
jointly with the condition:

(3.2)

∫ ∞

r
φ(x, t)p

dt

t
≤ C φ(x, r)p,

for the sublinear operator T satisfying the condition (1.1), where C (> 0)
does not depend on r and x ∈ Rn.

In [9] the following statement containing the result in [27, 29] was proved
for a sublinear operator T satisfying the condition (1.1).

Theorem 3.4. Let φ(x, r) satisfies the conditions (3.1)-(3.2). Let T be
a sublinear operator satisfying the condition (1.1), and bounded on Lp(Rn),
1 < p <∞. Then the operator T is bounded on Mp,φ.

The following statement, containing results obtained in [27], [29] was
proved in [13] (see also [14, 15]).

Theorem 3.5. Let 1 ≤ p <∞ and (φ1, φ2) satisfy the condition

(3.3)

∫ ∞

r
φ1(x, t)

dt

t
≤ C φ2(x, r),

where C does not depend on x and r. Then the maximal operator M and
Calderón-Zygmund operator K are bounded from Mp,φ1 to Mp,φ2 for p > 1
and from M1,φ1 to WM1,φ2.

The following statements, containing results Theorems 3.4 and 3.5 was
proved in [17].

Theorem 3.6. Let 1 ≤ p <∞ and (φ1, φ2) satisfy the condition

(3.4)

∫ ∞

r

ess inft<s<∞ φ1(x, s)s
n
p

t
n
p
+1

dt ≤ C φ2(x, r),
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where C does not depend on x and r. Let T be a sublinear operator satisfying
the condition (1.1) bounded on Lp(Rn) for p > 1 and bounded from L1(Rn)
toWL1(Rn). Then the operator T is bounded fromMp,φ1 toMp,φ2 for p > 1
and from M1,φ1 to WM1,φ2. Moreover, for p > 1, ∥Tf∥Mp,φ2

. ∥f∥Mp,φ1
,

and for p = 1, ∥Tf∥WM1,φ2
. ∥f∥M1,φ1

.

4. Sublinear operators generated by Calderón-Zygmund op-
erators in the generalized weighted Morrey spaces Mp,φ(w)

We find it convenient to define the generalized weighted Morrey spaces
in the form as follows.

Definition 4.3. Let φ(x, r) be a positive measurable function on Rn×
(0,∞) and w be a non-negative measurable function on Rn. We denote
by Mp,φ(w) ≡ Mp,φ(Rn, w), 1 ≤ p < ∞, the generalized weighted Mor-
rey space, the space of all classes of functions f ∈ Lloc

p,w(Rn) with finite

norm ∥f∥Mp,φ(w) = supx∈Rn,r>0 φ(x, r)
−1w(B(x, r))

− 1
p ∥f∥Lp,w(B(x,r)). We

denote byWMp,φ(w) ≡WMp,φ(Rn, w) the weak generalized weighted Mor-
rey space of all functions f ∈WLloc

p,w(Rn) for which

∥f∥WMp,φ(w) = sup
x∈Rn,r>0

φ(x, r)−1w(B(x, r))
− 1

p ∥f∥WLp,w(B(x,r)) <∞.

Remark 4.3. (1) If w ≡ 1, then Mp,φ(1) = Mp,φ is the generalized
Morrey space.

(2) If φ(x, r) ≡ w(B(x, r))
κ−1
p , then Mp,φ(w) = Lp,κ(w) is the weighted

Morrey space.

(3) If w ≡ 1 and φ(x, r) = r
λ−n
p with 0 < λ < n, then Mp,φ(1) = Mp,λ

is the classical Morrey space and WMp,φ(1) = WMp,λ is the weak Morrey
space.

(4) If φ(x, r) ≡ w(B(x, r))
− 1

p , then Mp,φ(w) = Lp(w) is the weighted
Lebesgue space.

In this section we are going to use the following result on the bounded-
ness of the Hardy operator (Hg)(t) := 1

t

∫ t
0 g(r)dµ(r), 0 < t < ∞, where µ

be a non-negative Borel measure on (0,∞).

Theorem 4.7. The inequality ess supt>0w(t)Hg(t)≤c ess supt>0 v(t)g(t)
holds for all non-negative and non-increasing g on (0,∞) if and only if

A := sup
t>0

w(t)

t

∫ t

0

dµ(r)

ess sup0<s<r v(s)
<∞,
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and c ≈ A.

Note that, in the case dµ(t) = dt Theorem 4.7 was proved in [6]. In the
general case Theorem 4.7 can be proved analogously.

Lemma 4.2. Let 1 ≤ p <∞, w ∈ Ap, and let T be a sublinear operator
satisfying the condition (1.1), and bounded on Lp(w) for p > 1 and bounded
from L1(w) to WL1(w).

Then, for 1 < p <∞ the inequality

∥Tf∥Lp,w(B(x0,r)) . w(B)
1
p

∫ ∞

2r
∥f∥Lp,w(B(x0,t)) ∥w

−1/p∥Lp′ (B(x0,t))
dt

tn+1

holds for any ball B(x0, r) and for all f ∈ Lloc
p,w(Rn).

Moreover, for p = 1 the inequality

(4.1) ∥Tf∥WL1,w(B(x0,r)).w(B)

∫ ∞

2r
∥f∥L1,w(B(x0,t))∥w

−1∥L∞(B(x0,t))
dt

tn+1
,

holds for any ball B(x0, r) and for all f ∈ Lloc
1,w(Rn).

Proof. Let p ∈ (1,∞) and w ∈ Ap. For arbitrary x0 ∈ Rn, set B =
B(x0, r) for the ball centered at x0 and of radius r, 2B = B(x0, 2r). We
represent f as

(4.2) f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {
(2B)

(y), r > 0.

Then we have ∥Tf∥Lp,w(B) ≤ ∥Tf1∥Lp,w(B)+∥Tf2∥Lp,w(B). Since f1 ∈ Lp(w),
Tf1 ∈ Lp(w) and from the boundedness of T in Lp(w) it follows that
∥Tf1∥Lp,w(B) ≤ ∥Tf1∥Lp,w ≤ C∥f1∥Lp,w = C∥f∥Lp,w(2B), where the con-
stant C > 0 is independent of f .

It is clear that x ∈ B, y ∈ {
(2B) implies 1

2 |x0 − y| ≤ |x− y| ≤ 3
2 |x0 − y|.

We get

|Tf2(x)| ≤ 2nc0

∫
{
(2B)

|f(y)|
|x0 − y|n

dy.

By Fubini’s theorem we have∫
{(2B)

|f(y)|
|x0 − y|n

dy ≈
∫

{(2B)
|f(y)|

∫ ∞

|x0−y|

dt

tn+1
dy

≈
∫ ∞

2r

∫
2r≤|x0−y|<t

|f(y)|dy dt

tn+1

.
∫ ∞

2r

∫
B(x0,t)

|f(y)|dy dt

tn+1
.



9 BOUNDEDNESS OF SUBLINEAR OPERATORS 235

Applying Hölder’s inequality, we get∫
{
(2B)

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r
∥f∥Lp,w(B(x0,t)) ∥w

−1/p∥Lp′ (B(x0,t))
dt

tn+1
.(4.3)

Moreover, for all p ∈ [1,∞) the inequality

(4.4) ∥Tf2∥Lp,w(B) . w(B)
1
p

∫ ∞

2r
∥f∥Lp,w(B(x0,t)) ∥w

−1/p∥Lp′ (B(x0,t))
dt

tn+1

is valid. Thus

∥Tf∥Lp,w(B).∥f∥Lp,w(2B)+w(B)
1
p

∫ ∞

2r
∥f∥Lp,w(B(x0,t))∥w

−1/p∥Lp′ (B(x0,t))
dt

tn+1
.

On the other hand,

∥f∥Lp,w(2B) ≈ |B|∥f∥Lp,w(2B)

∫ ∞

2r

dt

tn+1

. |B|
∫ ∞

2r
∥f∥Lp,w(B(x0,t))

dt

tn+1
(4.5)

≤ w(B)
1
p ∥w−1/p∥Lp′ (B)

∫ ∞

2r
∥f∥Lp,w(B(x0,t))

dt

tn+1

. w(B)
1
p

∫ ∞

2r
∥f∥Lp,w(B(x0,t)) ∥w

−1/p∥Lp′ (B(x0,t))
dt

tn+1
.

Thus

∥Tf∥Lp,w(B) . w(B)
1
p

∫ ∞

2r
∥f∥Lp,w(B(x0,t)) ∥w

−1/p∥Lp′ (B(x0,t))
dt

tn+1
.

Let p = 1. From the weak (1, 1) boundedness of T and (4.5) it follows
that:

∥Tf1∥WL1,w(B) ≤ ∥Tf1∥WL1(w) . ∥f1∥L1,w = ∥f∥L1,w(2B)

. w(B)

∫ ∞

2r
∥f∥L1,w(B(x0,t)) ∥w

−1∥L∞(B(x0,t))
dt

tn+1
.

(4.6)

Then by (4.4) and (4.6) we get the inequality (4.1). �
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Theorem 4.8. Let 1 ≤ p < ∞, w ∈ Ap and (φ1, φ2) satisfy the condi-
tion

(4.7)

∫ ∞

r

ess inf
t<s<∞

φ1(x, s)w(B(x, s))
1
p

tn+1
∥w−1/p∥Lp′ (B(x,t))dt≤Cφ2(x, r),

where C does not depend on x and r. Let T be a sublinear operator satisfying
the condition (1.1), bounded on Lp(w) for p > 1 and bounded from L1(w)
to WL1(w). Then the operator T is bounded from Mp,φ1(w) to Mp,φ2(w)
for p > 1 and from M1,φ1(w) to WM1,φ2(w). Moreover, for p > 1

∥Tf∥Mp,φ2(w)
. ∥f∥Mp,φ1 (w)

,

and for p = 1
∥Tf∥WM1,φ2 (w)

. ∥f∥M1,φ1 (w)
.

Proof. By Lemma 4.2 and Theorem 4.7 we have for p > 1

∥Tf∥Mp,φ2 (w)

. sup
x∈Rn, r>0

φ2(x, r)
−1

∫ ∞

r
∥f∥Lp,w(B(x,t)) ∥w−1/p∥Lp′ (B(x,t))

dt

tn+1

≈ sup
x∈Rn, r>0

φ2(x, r)
−1

∫ r−n

0
∥f∥

Lp,w(B(x,t−
1
n ))

∥w−1/p∥
Lp′ (B(x,t−

1
n ))

dt

= sup
x∈Rn, r>0

φ2(x, r
− 1

n )−1 r
1

r

∫ r

0
∥f∥

Lp,w(B(x,t−
1
n ))

∥w−1/p∥
Lp′ (B(x,t−

1
n ))

dt

. sup
x∈Rn,r>0

φ1(x, r
− 1

n )−1w(B(x, r−
1
n ))

− 1
p ∥f∥

Lp,w(B(x,r−
1
n ))

= sup
x∈Rn,r>0

φ1(x, r)
−1w(B(x, r))

− 1
p ∥f∥Lp,w(B(x,r))

= ∥f∥Mp,φ1 (w)

and for p = 1

∥Tf∥WM1,φ2 (w)

. sup
x∈Rn, r>0

φ2(x, r)
−1

∫ ∞

r
∥f∥L1,w(B(x,t)) ∥w−1∥L∞(B(x,t))

dt

tn+1

≈ sup
x∈Rn, r>0

φ2(x, r)
−1

∫ r−n

0
∥f∥

L1,w(B(x,t−
1
n ))

∥w−1∥
L∞(B(x,t−

1
n ))

dt

= sup
x∈Rn, r>0

φ2(x, r
− 1

n )−1

∫ r

0
∥f∥

L1,w(B(x,t−
1
n ))

∥w−1∥
L∞(B(x,t−

1
n ))

dt
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. sup
x∈Rn,r>0

φ1(x, r
− 1

n )−1w(B(x, r−
1
n ))−1 ∥f∥

L1,w(B(x,r−
1
n ))

= ∥f∥M1,φ1(w)
.

�

Corollary 4.1. Let 1 ≤ p < ∞, w ∈ Ap and (φ1, φ2) satisfy the con-
dition (4.7). Then the operators M and K are bounded from Mp,φ1(w) to
Mp,φ2(w) for p > 1 and bounded from M1,φ1(w) to WM1,φ2(w).

Note that in the case w ≡ 1 Corollary 4.1 was proved in [1].

In the case φ1(x, r) = φ2(x, r) ≡ w(B(x, r))
κ−1
p , from Theorem 4.8 we

get the following new result.

Corollary 4.2. Let 1 ≤ p < ∞, 0 < κ < 1 and w ∈ Ap. Let also
T be a sublinear operator satisfying the condition (1.1), bounded on Lp(w)
for p > 1 and bounded from L1(w) to WL1(w). Then the operator T is
bounded on the weighted Morrey spaces Lp,κ(w) for p > 1 and from L1,κ(w)
to WL1,κ(w).

Proof. Let 1 ≤ p <∞, w ∈ Ap and 0 < κ < 1. Then the pair

(w(B(x, r))
κ−1
p , w(B(x, r))

κ−1
p ) satisfies the condition (4.7). Indeed,∫ ∞

r

ess inft<s<∞w(B(x, s))
κ
p

tn+1
∥w−1/p∥Lp′ (B(x,t)) dt

=

∫ ∞

r

w(B(x, t))
κ
p

tn+1
∥w−1/p∥Lp′ (B(x,t)) dt

≤ [w]
1/p
Ap

∫ ∞

r
w(B(x, t))

κ−1
p
dt

t

≤ C w(B(x, r))
κ−1
p ,

where the last inequality follows from Lemma 13 in [4]. Then we get the
proof. �

Note that from Corollary 4.2 we get Theorem 2.3.

5. Some applications

In this section, we will apply Theorem 4.8 to several particular opera-
tors such as the pseudo-differential operators, Littlewood-Paley operator,
Marcinkiewicz operator and Bochner-Riesz operator.



238 TURHAN KARAMAN, VAGIF S. GULIYEV and AYHAN SERBETCI 12

5.1. Pseudo-differential operators

Pseudo-differential operators are generalizations of differential operators
and singular integrals. Let m be real number, 0 ≤ δ < 1 and 0 ≤ ρ < 1.
Following [18, 36], a symbol in Smρ,δ is a smooth function σ(x, ξ) defined on
Rn×Rn such that for all multi-indices α and β the following estimate holds:∣∣∣Dα

xD
β
ξ σ(x, ξ)

∣∣∣ ≤ Cαβ(1 + |ξ|)m−ρ|β|+δ|α|,

where Cαβ > 0 is independent of x and ξ. A symbol in S−∞
ρ,δ is one which

satisfies the above estimates for each real number m.

The operator A given by

Af(x) =

∫
Rn

σ(x, ξ) e2πix·ξ f̂(ξ)dξ

is called a pseudo-differential operator with symbol σ(x, ξ) ∈ Smρ,δ, where f is

a Schwartz function and f̂ denotes the Fourier transform of f . As usual, Lmρ,δ
will denote the class of pseudo-differential operators with symbols in Smρ,δ.

Miller [26] showed the boundedness of the pseudo-differential opera-
tors of the Hörmander class L0

1,0 on weighted Lebesgue spaces whenever the
weight function belongs to Muckenhoupt’s class Ap, 1 < p < ∞. In [8] it
is shown that pseudo-differential operators in L0

1,0 are Calderón-Zygmund
operators, then from Corollary 4.1 we get the following new results.

Corollary 5.3. Let w ∈ Ap, 1 ≤ p < ∞, and (φ1, φ2) satisfy the
condition (4.7). If A is a pseudo-differential operator of the Hörmander
class L0

1,0, then the operator A is bounded from Mp,φ1(w) to Mp,φ2(w) for
p > 1 and bounded from M1,φ1(w) to WM1,φ2(w).

Corollary 5.4. Let 1 ≤ p < ∞, 0 < κ < 1 and , w ∈ Ap. If A is a
pseudo-differential operator of the Hörmander class L0

1,0, then the operator
A is bounded on Lp,κ(w) for p > 1 and from L1,κ(w) to WL1,κ(w).

5.2. Littlewood-Paley operator

The Littlewood-Paley functions play an important role in classical har-
monic analysis, for example in the study of non-tangential convergence of
Fatou type and boundedness of Riesz transforms and multipliers [33, 34,
35, 37]. The Littlewood-Paley operator (see [22, 37]) is defined as follows.
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Definition 5.4. Suppose that ψ ∈ L1(Rn) satisfies

(5.1)

∫
Rn

ψ(x)dx = 0.

Then the generalized Littlewood-Paley g function gψ is defined by

gψ(f)(x) =

(∫ ∞

0
|Ft(f)(x)|2

dt

t

)1/2

,

where Ft(f) = ψt ∗ f such that ψt(x) = t−nψ(x/t) for t > 0.

The following theorem for the Littlewood-Paley operator gψ is valid (see
[24], Theorem 5.2.2).

Theorem 5.9. Suppose that ψ ∈ L1(Rn) satisfies (5.1) and the follow-
ing properties:

|ψ(x)| ≤ C

(1 + |x|)n+1
,(5.2)

|∇ψ(x)| ≤ C

(1 + |x|)n+2
,(5.3)

where C > 0 are both independent of x. If w ∈ Ap, then gψ is bounded on
Lp(w) for all 1 < p <∞.

Let H be the space H = {h : ∥h∥ = (
∫∞
0 |h(t)|2dt/t)1/2 < ∞}, then,

for each fixed x ∈ Rn, Ft(f)(x) may be viewed as a mapping from [0,∞)
to H, and it is clear that gψ(f)(x) = ∥Ft(f)(x)∥. Indeed, by Minkowski
inequality and the conditions on ψ, we get

gψ(f)(x) ≤
∫
Rn

|f(y)|
(∫ ∞

0
|ψt(x− y)|2dt

t

)1/2

dy

≤ C

∫
Rn

|f(y)|
(∫ ∞

0

t−2n

(1 + |x− y|/t)2(n+1)

dt

t

)1/2

dy

= C

∫
Rn

|f(y)|
|x− y|n

dy.

Thus we get the following new results.
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Corollary 5.5. Let 1 < p < ∞, w ∈ Ap, (φ1, φ2) satisfy the condi-
tion (4.7) and ψ ∈ L1(Rn) satisfies (5.1)-(5.3). Then the Littlewood-Paley
operator gψ is bounded from Mp,φ1(w) to Mp,φ2(w).

Corollary 5.6. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap and ψ ∈ L1(Rn)
satisfies (5.1)-(5.3). Then the Littlewood-Paley operator gψ is bounded on
Lp,κ(w).

5.3. Marcinkiewicz operator

Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit sphere in Rn equipped with the
Lebesgue measure dσ. Suppose that Ω satisfies the following conditions.

(a) Ω is a homogeneous function of degree zero on Rn \ {0}, that is,

Ω(tx) = Ω(x), for any t > 0, x ∈ Rn \ {0}.

(b) Ω has mean zero on Sn−1, that is,∫
Sn−1

Ω(x′)dσ(x′) = 0.

(c) Ω ∈ Lipγ(S
n−1), 0 < γ ≤ 1, that is there exists a constant C > 0

such that,

|Ω(x′)− Ω(y′)| ≤ C|x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [33] defined the Marcinkiewicz integral of higher dimen-
sion µΩ as

µΩ(f)(x) =

(∫ ∞

0
|FΩ,t(f)(x)|2

dt

t3

)1/2

,

where

FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.

The continuity of Marcinkiewicz operator µΩ has been extensively studied
in [24, 34, 35, 37].

Let H be the space H = {h : ∥h∥ = (
∫∞
0 |h(t)|2dt/t3)1/2 < ∞}. Then,

it is clear that µΩ(f)(x) = ∥FΩ,t(f)(x)∥.
By Minkowski inequality and the above conditions on Ω, we get

µΩ(f)(x) ≤
∫
Rn

|Ω(x− y)|
|x− y|n−1

|f(y)|

(∫ ∞

|x−y|

dt

t3

)1/2

dy ≤ C

∫
Rn

|f(y)|
|x− y|n

dy.
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Thus, µΩ satisfies the condition (1.1). It is known that µΩ is bounded on
Lp(w) for 1 < p <∞ and w ∈ Ap (see [38]), then from Theorem 4.8 we get
the following new results.

Corollary 5.7. Let 1 < p < ∞, w ∈ Ap. Suppose that (φ1, φ2) sat-
isfy the condition (4.7) and Ω satisfies the conditions (a)–(c). Then µΩ is
bounded from Mp,φ1(w) to Mp,φ2(w).

Corollary 5.8. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap. Suppose that Ω
satisfies the conditions (a)–(c). Then µΩ is bounded on Lp,κ(w).

5.4. Bochner-Riesz operator

Let δ > (n− 1)/2, Bδ
t (f )̂(ξ) = (1− t2|ξ|2)δ+f̂(ξ) and Bδ

t (x) = t−nBδ(x/t)
for t > 0. The maximal Bochner-Riesz operator is defined by (see [23, 20])

Bδ,∗(f)(x) = sup
t>0

|Bδ
t (f)(x)|.

Let H be the space H = {h : ∥h∥ = supt>0 |h(t)| < ∞}, then it is clear
that Bδ,∗(f)(x) = ∥Bδ

t (f)(x)∥.
By the condition on Bδ

r (see [11]), we have

|Bδ
r(x− y)| ≤ Cr−n(1 + |x− y|/r)−(δ+(n+1)/2)

= C

(
r

r + |x− y|

)δ−(n−1)/2 1

(r + |x− y|)n
≤ C|x− y|−n,

and

Bδ,∗(f)(x) ≤ C

∫
Rn

|f(y)|
|x− y|n

dy.

Thus, Bδ,∗ satisfies the condition (1.1). It is known that Bδ,∗ is bounded on
Lp(w) for 1 < p < ∞ and w ∈ Ap, and bounded from L1(w) to WL1(w)
for w ∈ A1 (see [31, 39]), then from Theorem 4.8 we get the following new
results.

Corollary 5.9. Let 1 ≤ p < ∞, w ∈ Ap, (φ1, φ2) satisfy the condition
(4.7) and δ > (n− 1)/2. Then the Bochner-Riesz operator Bδ,∗ is bounded
from Mp,φ1(w) to Mp,φ2(w) for p > 1 and from M1,φ1(w) to WM1,φ2(w).

Corollary 5.10. Let 1 ≤ p <∞, 0 < κ < 1, w ∈ Ap and δ > (n−1)/2.
Then the Bochner-Riesz operator Bδ,∗ is bounded on Lp,κ(w) for p > 1 and
from L1,κ(w) to WL1,κ(w).
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Remark 5.4. Recall that, under the assumptions φ(x, r) satisfy the
conditions (3.1) and (3.2), Corollary 5.9 were proved in [23].
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