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Abstract In the article we consider the fractional maximal operator M,, 0 < a < @ on
any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces
M, (G), where @ is the homogeneous dimension of G. We find the conditions on the pair
(¢1, p2) which ensures the boundedness of the operator M, from one generalized Morrey
space Mp ,, (G) to another My ,,(G), 1 <p < g < o0, 1/p—1/¢ = a/Q, and from the
space Mi,,, (G) to the weak space WM, (G), 1 < ¢ < 00, 1 —1/q¢ = a/Q. Also find

conditions on the ¢ which ensure the Adams type boundedness of the M, from M 1 (G) to
P, P

M 1(G)forl <p< q<ooandfrom M; ,(G)toWM 1(G)forl < ¢q < oco. Inthe case
q,p 9 q,p9
b€ BMO(G) and 1 < p < ¢ < o0, find the sufficient conditions on the pair (¢1, ¢2) which

ensures the boundedness of the kth-order commutator operator My o,k from M, ,, (G) to
My, 0, (G) with 1/p—1/q = a/Q. Also find the sufficient conditions on the ¢ which ensures
the boundedness of the operator My o x from M %(G) to M %(G) for 1 <p < q<oo.
In all the cases the conditions for the boundedneés of M, are éiven it terms of supremal-
type inequalities on (1, p2) and ¢, which do not assume any assumption on monotonicity
of (¢1,92) and ¢ in r. As applications we consider the Schrodinger operator —Ag + V
on G, where the nonnegative potential V' belongs to the reverse Holder class Boo(G). The
My, o, — My, estimates for the operators VY (—Ag 4+ V) ™? and V'Vg(—Ag + V)7 are
obtained.
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1 Introduction

Carnot groups appear in quantum physics and many parts of mathematics, including
Fourier analysis, several complex variables, geometry and topology. Analysis on the groups
is also motivated by their role as the simplest and the most important model in the general
theory of vector fields satisfying Hormander’s condition. The simplest examples of the Carnot
groups are Euclidean space R™, Heisenberg group H,, and (Heisenberg)-type groups introduced
by Kaplan [14]. Carnot groups form a natural habitat for extensions of many of the objects
studied in Euclidean space and find applications in the study of strongly pseudoconvex domains
in complex analysis, semiclassical analysis of quantum mechanics, control theory, probability
theory of degenerate diffusion processes and others.

In the present paper we will prove the boundedness of the fractional maximal operator and
their commutators on the Carnot group in generalized Morrey spaces.

For € G and r > 0, we denote by B(x,r) the open ball centered at x of radius r, and by
nB(gc, r) denote its complement. Let |B(z,r)| be the Haar measure of the ball B(z,r). Given a
function f which is integrable on any ball B(z,r) C G, the fractional maximal function M, f,
0 <a< @ of fis defined by

Maf(@) = sup Bz, 8 [ jf)
>0 B(x,r)

The fractional maximal function M, f coincides for a = 0 with the Hardy-Littlewood
maximal function M f = My f (see [7, 25]). The operator M, play important role in real and
harmonic analysis (see, for example, [6, 7, 25]).

For a positive integer k and a function b, the kth-order commutator My o j of the fractional
maximal operator with b (see [19]) is defined by

My F)@) = sup B )| [ ) = o)A w)ld.
r>0 B(z,r)

In this work, we prove the boundedness of the fractional maximal operator My, 0 < a < @
from one generalized Morrey space M, (G) to My ,,(G), 1 <p<g<oo,1/p—1/qg=a/Q,
and from M, o, (G) to the weak space WM, ,,(G), 1 < ¢ < 00, 1-1/q = o/Q. We also prove the
Adams type boundedness of the operator M, from Mp#;% (G) to qu% (G)forl<p<g<oo
and from M, ,(G) to WM%O% (G) for1 < g < oco. Inthecaseb € BMO(G) and 1 < p < g < 00,
we find the sufficient conditions on the pair (¢1, ¢2) which ensures the boundedness of the kth-
order commutator operator Mj o i from M, ,, (G) to Mg ,,(G) with 1/p—1/¢ = a/Q. We also
find the sufficient conditions on the ¢ which ensures the boundedness of the operator Mp o 1
from M %(G) to M %(G) for 1 < p < ¢ < oo. In all the cases the conditions for the
bounde(fflgss are givenqﬁ terms of supremal-type inequalities on (¢1,p2) and ¢, which do not
assume any assumption on monotonicity of (1, p2) and ¢ in r.

Let L = —Ag +V be a Schrédinger operator on G, where Ag is the sub-Laplacian and the
nonnegative potential V belongs to the reverse Holder class B (G). As applications we establish
the boundedness of the operators V7(—=Ag + V)™ and V'Vg(—Ag + V)? on generalized
Morrey spaces.

By A < B we mean that A < C'B with some positive constant C' independent of appro-
priate quantities. If A < B and B < A, we write A ~ B and say that A and B are equivalent.
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2 Notations

We begin with some preliminaries concerning stratified Lie groups (or so-called Carnot
groups). We refer the reader to the books [7] and [28] for analysis on stratified groups.
Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that there is a

direct sum vector space decomposition
G=V1®---dVy, (2.1)

so that each element of V}, 2 < j < 'm, is a linear combination of (j — 1)th order commutator of
elements of V;. Equivalently, (2.1) is a stratification provided [V;, V;] = V;4; whenever i+j < m
and [V;,V;] = 0 otherwise. Let X = Xy,---, X, be a basis for V; and X;;, 1 <1i < k;, for V;
consisting of commutators of length j. We set X;; = X;,i=1,---,n and k; = n, and we call
X1 a commutator of length 1.

If G is the simply connected Lie group associated with G, then the exponential mapping is
a global diffeomorphism from G to G. Thus, for each g € G, thereis z = (x;;) € RV, 1 < i < kj,

m

1<j<m,N=3kj;, such that g = exp (D> x;; X;;). A homogeneous norm function | - | on

=1
G is defined by |g| = (3 |xij|2m!/j)l/(2m!), and Q = Y jk; is said to be the homogeneous
j=1

dimension of G, since d(J,z) = r%dz for r > 0. The dilation 6, on G is defined by

0r(g) = exp (Z rjxinij) if g=-exp (Z xinij) .

The convolution operation on G is defined by

f*lww):=/Lf(wy‘1ﬁwy)dy::/Lf(yﬂwy‘lw)d%

where y~! is the inverse of y and xy~! denotes the group multiplication of = by y~!. It is

known that for any left invariant vector field X on G, X (f « h) = f * (Xh).

Since G is nilpotent, the exponential map is diffeomorphism from G onto G which takes
Lebesgue measure on G to a biinvariant Haar measure dx on G. The group identity of G will
be referred to as the origin and denoted by e.

A homogenous norm on G is a continuous function z — p(z) from G to [0, c0), which is
C*> on G\{0} and satisfies p(z~!) = p(z), p(6:x) = tp(x) for all x € G, t > 0; p(e) = 0 (the
group identity). Moreover, there exists a constant ¢y > 1 such that p(xy) < ¢o (p(z) + p(y)) for
all z, y € G.

We call a curve v : [a,b] — G a horizontal curve connecting two points z,y € G if y(a) = =,
~v(b) = y and ~/(¢t) € V; for all ¢. Then the Carnot-Caratheodory distance between x and y is
defined as

b
desl,y) =int [ /(07 ()t

"
where the infimum is taken over all horizontal curves v connecting x and y. It is known that
any two points x, y on G can be joined by a horizontal curve of finite length and then d.. is
a left invariant metric on G. We can define the metric ball centered at z and with radius r

associated with this metric by

Bee(z,7) ={y € G : dee(z,y) < T}



1332 ACTA MATHEMATICA SCIENTIA Vol.33 Ser.B

We must notice that this metric d.. is equivalent to the pseudo-metric p(z,y) = |z~ 1y

defined by the homogeneous norm | - | in the following sense (see [7]):

Clp(z,y) < dee(z,9) < Cp(z,y).

We denote the metric ball associated with p as D(z,r) = {y € G : p(x,y) < r}. An important
feature of both of these distance functions is that these distances and thus the associated metric

balls are left invariant, namely,
dcc(zwa Zy) = dcc(x7 y)7 Bcc(xa T) = chc(eu ’f‘)

and
p(zx, zy) = p(x,y), D(xz,r) =xzDle,r).
From now on, we will always use the metric d.. and drop the subscript from d... Similarly, we
will use B(x,r) to denote Be.(z, 7).
With this norm, we define the G - ball centered at = with radius r by D(z,r) = {y € G :
p(y~tz) < r}, and we denote by D, = D(e,r) ={y € G : p(y) < r} the open ball centered at
e, the identity element of G, with radius 7.

One easily recognizes that there exist ¢; = ¢1(G), and ¢z = c2(G) such that
|B(I)T)|:Cl TQ) |D(x7T)|:CQ TQv Ier r>0.

The most basic partial differential operator in a Carnot group is the sub- Laplacian asso-

n
ciated with X is the second-order partial differential operator on G given by £ = > X2.
i=1
In the study of local properties of solutions to of partial differential equations, together
with weighted Lebesgue spaces, Morrey spaces Ly, »(G) play an important role, see [8]. They
were introduced by Morrey in 1938 [20]. The Morrey space in a Carnot group is defined as

follows: for 1 <p < o0, 0 <A< Q, afunction f € L, \(G) if f € LLOC(HH) and

_2A
1Az, = p T 1 flL, (B < o0

(it A =0, then L,o(G) = Ly(G); if A = Q, then L, o(G) = Lo(G); if A <0 or A > @, then
L, »(G) = O, where O is the set of all functions equivalent to 0 on G.)

We also denote by WL, »(G) the weak Morrey space of all functions f € WLLOC(HH) for
which

_2
Ifllwe,, = suwp 72 [fllwe,Ber) < oo,

zel, r>

where WL, (B(z,r)) denotes the weak L,-space of measurable functions f for which

1/p

I fllwe,B@r) = SI;PBTHy € B(x,r): |f(y)] > 7}
Note that
WLy(G) =WLpo(G), Lpa(G) CWLpa(G) and || fllyp , <Ifl.,, -

Everywhere in the sequel the functions ¢(x,r), ¢1(z,7) and @a(z,r) used in the body of

the paper, are non-negative measurable function on G x (0, 00).
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We find it convenient to define the generalized Morrey spaces in the form as follows.
Definition 2.1 Let 1 < p < co. The generalized Morrey space M, ,(G) is defined as the
space of all functions f € LLOC(G) having the following finite norm

_ _1
1fllas,, = sup oz, r) " |B@,r)| "% | fll, B
zeG,r>0

A=Q
3

According to this definition, we recover the space Ly, »(G) under the choice p(z,r) =7

Lp,/\(G) = Mp,sa(G) A-Q -
o(z,r)y=r P
In [9, 10, 21] and [22] there were obtained sufficient conditions on weights 1 and @9 for the
boundedness of the maximal operator M and the singular integral operators T" from M, ., (G)
to M,

.o (G). In [21, 22] the following condition was imposed on ¢(z,7):

clo(z,r) <ox,7) < colz,r), (2.2)
whenever r < 7 < 2r, where ¢(> 1) does not depend on t,r and z € G, jointly with the

condition: o d
/ o(x, T)p—T < Co(z,r)P (2.3)
, T

for the maximal or singular operators and the condition
& dr
/ TPo(x, 7P — < Cr*Po(z,r)P (2.4)
T
K

for potential and fractional maximal operators, where C'(> 0) does not depend on r and x € G.

In [22] the following statements was proved.

Theorem 2.1 Let 1 < p < 00,0 < @ < %, % = % — % and ¢(x,7) satisfy conditions
(2.2) and (2.4). Then for p > 1 the operator M, is bounded from M, ,(G) to My ,(G) and for
p =1 M, is bounded from M; ,(G) to WM, ,(G).

The following statement, containing results obtained in [22] was proved in [9] (see also

[10-12)).

Theorem 2.2 Let 1 <p<oo,0<a< %, % = % - % and (@1, p2) satisfy the condition
o dr
/ rpi(z,r)— < Ca(z,7), (2.5)

where C' does not depend on x and 7. Then the operator M, is bounded from M, ., (G) to
Mgy ., (G) for p > 1 and from M ,, (G) to WM, ,,(G) for p = 1.

9,92

3 Boundedness of the Fractional Maximal Operator in the Spaces
M, (G)

3.1 Spanne Type Result
We denote by Lo (0, 00) the space of all functions ¢(t), ¢ > 0 with finite norm

1911 e . (0.00) = €58 supv(t)g(t)
t>0
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and L (0,00) = Leo,1(0,00). Let (0, 00) be the set of all Lebesgue-measurable functions on
(0,00) and 9T (0, 00) its subset consisting of all nonnegative functions on (0, 00). We denote
by 91(0, 0o;7) the cone of all functions in 9% (0, co) which are non-decreasing on (0, 00) and

A= {gﬁ €MT(0,00;7) : tE%1+¢(t) = O}.

Let u be a continuous and non-negative function on (0,00). We define the supremal operator
S, on g € M(0,00) by
(Sug)(®) = lluglr(t.ec)> t€ (0,00).

The following theorem was proved in [4].

Theorem 3.1 Let vy, v2 be non-negative measurable functions satisfying 0 < [|v1(| 1 (¢,00)
< oo for any t > 0 and let u be a continuous non-negative function on (0, co).

Then the operator S, is bounded from Lo 4, (0,00) t0 Lo 4, (0,00) on the cone A if and
only if

Hvzgu (Ilvll\;;(_m)) < 0. (3.1)

Sufficient conditions on ¢ for the boundedness of M and M, in generalized Morrey spaces
M, (G) were obtained in [2, 4, 11-13, 22].

The following lemma is true.

HLOO(O,OO)

Lemma 3.1 Letl1 <p<oo,0< a< %,%:%—%. Then for p > 1 and any ball
B = B(x,r) in G the inequality
@ —Q+a
IMafllo, By S Nl (B@2r) +77 sup 7 N Fll Ly (B (3.2)
holds for all f € L*(G).
Moreover for p = 1 the inequality
Q — «
Mafllwr,Br) S IfllLiB@a2ry) +77 sup N fllLy (B, (3.3)

holds for all f € L°¢(G).
Proof Letl <p < ¢ < oo and %—% = % For arbitrary ball B = B(z,r) let f = fi1+ fa,
where fl = fX2B and f2 = fXG(QB)a

[MafllL, By < [IMafillL,s) + IMafellL,s)-

By the continuity of the operator My : L,(G) — Lq(G) (see, for example, [7]) we have

Maofillo, 8y S I fllz,@B)-

Let y be an arbitrary point from B. If B(y,7) N B(2B) # (), then 7 > r. Indeed, if z €
B(y,7)N “2B), then 7 > |y~12| > [~z — |z~ ty| > 2r — 7 = 1.

On the other hand, B(y,7) N G(ZB) C B(z,27). Indeed, z € B(y,7) N B(QB), then we get
le7tz] < |y~ lz|+ |z ly| < T+ < 27
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Hence
Mo f2(y) = sup ! / | f(2)|d=
af2(y) = B N 1—a/O
7>0 [B(y, 7)['=*/9 Jp(y,rnten)
1
<297 gu —/ z)|dz
T>I: |B({E,27')|170‘/Q B(z,27) |f( )l

1
=297% sup —/ z)|dz.
T>2r |B(x’7-)|170c/Q B(z,T) |f( )|

Therefore, for all y € B we have

1

M, < 2@~ gy —/ z)|dz. 3.4
f2(y) T>£)T‘ |B(ZZT, T)|1,Q/Q Bla.r) |f( )| ( )

Thus

1
M, < Bls —/ dz ).
IS0 5 W om + 11 (s i [ 1)

T>2r

Let p = 1. It is obvious that for any ball B = B(z,r),

IMofllwe, ) < IMafillwr, ) + | Mafellwe,s)-

By the continuity of the operator My, : L1(G) — W L,(G) we have

[Mafillwe, ) S 1fllz.@2B)-

Then by (3.4) we get inequality (3.3). O
Lemma 3.2 Let 1 <p<oo,0< a< %,%:%—%. Then for p > 1 and any ball
B = B(z,r) in G, the inequality
Q _Q
[MafllL, Bar) ST sup 7 I fllz, (B (3.5)
holds for all f € LI*°(G).
Moreover for p = 1 the inequality
Q _Q
Mo fllw Ly (B ST sup 77 1Ly (B @) (3.6)
holds for all f € L°¢(G).
Proof Let1<p<oo,0§oz<%, %:%—%. Denote

1
M:—B;(su —/ zdz>,
! | | T>£)T |B(x’7—)|1—0t/Q B(z,T) |f( )|
Mz = |fllL,2B)-

Applying Hoélder’s inequality, we get

1

1 1 P
MSBE(supil(/ fz”dz) )
1 S |B] 2 B B(M)l (2)]
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On the other hand,

) 1 »
B4 up —— 2)|Pdz
1Bl <TS>5 |B(x,7')|411</B(m,r)|f( ) ) >

21815 (sup — e ) e~ M
i B, )
Since by Lemma 3.1
MofllL, By < Mi+ My,

we arrive at (3.5).
Let p = 1. Inequality (3.6) directly follows from (3.3). m|
Theorem 3.2 Let1§p<oo,0§a<%

condition

, and (p1, p2) satisfies the

=
QlL

1
’q
Q
P

_Q .
sup %77 essinfp(x,s)s
r<t<oo t<s<oo

< Cpa(m,7), (3.7)

where C' does not depend on = and r. Then for p > 1, M, is bounded from M, ,, (G) to
Mg »,(G) and for p = 1, M, is bounded from M; o, (G) to WM ,,(G).
Proof By Theorem 3.1 and Lemma 3.2 we get

_ _Q
[Mafllar,,, S sup wa(z,r) " sup7™ 7 || fllL, (Bar)
z€G,r>0 T>r
. e
< sup i) T | fll, (B
z€G,r>0
= ”f”Mp,m’
if pe (1,00) and
_ _Q
IMofllwn,,, S sup oz, r) " sup7™ 7 || fllL,(B@r)
zeG,r>0 T>T
< osup iz ) 9 fllyBan)
zeG,r>0
= ||f||M1,¢17
ifp=1. m]

In the case a = 0 and p = ¢ from Theorem 3.2 we get the following corollary, which proven
in [2] on R™.
Corollary 3.1 Let 1 <p < oo and (¢1, p2) satisfies the condition

Q Q
P P

sup t 7 essinfpq(z,s)s
r<t<oo t<s<oo

< C oz, ), (3.8)

where C' does not depend on x and r. Then for p > 1, M is bounded from M, ,, (G) to M, ,,(G)
and for p =1, M is bounded from M; o, (G) to WM, ,(G).

Corollary 3.2 Let p € [1,00) and let ¢ : (0,00) — (0,00) be an decreasing function.
Assume that the mapping r — ¢(r) r» is almost increasing (there exists a positive constant ¢
such that for s < r we have p(s) 57 < cp(r) re ). Then there exists a constant C' > 0 such that

M fllm, . <Clflm,, i p>1,
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and
M fllwar, <Ol fllmy,-

3.2 Adams Type Result
The following is a result of Adams type for the fractional maximal operator (see [1]).
Theorem 3.3 Letl <p<g<oo,0<a< % and let ¢(x, 7) satisfy the condition

sup t~ 9 ess inf (x, s) s9 < Co(z,7) (3.9)
r<t<oo t<s<oo
and
1 __op
sup t%p(x,7)r < Cr=a-», (3.10)
r<T <00

Then the operator M, is bounded from M 1 1
% N
to WM 1 (G)
a1
Proof Letl <p<g<oo, 0<a< % and f € M 1(G). Write f = f1 + fa2, where
p,pP

B = B(z,r), fi = fx2p and fo = fX°(2B)'
For M, f2(y) for all y € B from (3.4) we have

where C' does not depend on « € G and r > 0.
1 (G)toM 1 (G) for p > 1 and from M; ,(G)
q

1
M, < 2@« _ d
(f2)(y) = 7—Sl>l£)r |B($,7')|170‘/Q /B(;Eﬂ—) |f(z)| z
_Q
S S;lg) T 4 HfHLp(B(m,‘r))' (311)

Then from conditions (3.10) and (3.11) we get

-}
Mo f(y) S Mf(y)+ Sup t* PNl (B

==

<r*Mf(y)+ 1 flle L sup ™¢(z,7)

p,oP T>21

SrEMf(y)+ T [ flla

Bl

©

Hence choose 1 = (11 izet/ )7 B, weh
ence choose r = (W) or every y , We nave

M f() S (MF@DE I 7

Hence the statement of the theorem follows in view of the boundedness of the maximal operator
M in M 1(G) provided by Corollary 3.1 in virtue of condition (3.9).
PP

_1 Qe
IMafllir = sup @, 7) 97 7 [MafllL,(B(er)
PREX ze€G, 7>0
< 1-2 1 _Q L
S, sup (e, m) "7 T IMEIE iy
pop TEG, 7>0
D

1-z _1 _Q a
= £l sup  p(z,7) 7 7 || MfllL,(Ber)
P

1
oP zeG, >0

1—p
=1l

P
1M £l 3
P,¥ P
Sl

P

1
;o P

Sl

)

=

5P
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if 1 <p<g<ooand

1.0
[Mofllwyv = sup @@, 7) 9t @ [[Mafllwir,(B.r)
q,¢ zcG, 7>0

Q=

1—1 1 _Q 1
S HfHMli, IGQS}UE>O<P(‘T77') aT HMfoiVLl(B(m,T))

Q=

1-1 o
1030 (s ) UM oy
’ zeG, 7>0
1-1 1
U M P,
< Wl

if 1 < q < o0. O
In the case (z,7) = r*~9, 0 < A < Q from Theorem 3.3 we get the following Adams type
result [1] for the fractional maximal operator.
Corollary 3.3 Let 0 < a < Q, 1<p< ,0< A< Q@Q—apand L —%—Q - Then
for p > 1, the operator M, is bounded from Lp_,A((G) to Ly A(G) and for p =1, M, is bounded

from L1 A (G) to WLy A(G).

4 Commutators of Fractional Maximal Operators in the Spaces

Mp,(G)

4.1 Spanne Type Result
First we introduce the definition of the space of BMO(G) (see, for example, [7, 19, 23, 26]).
Definition 4.1 Suppose that f € LY¢(G), and let

f*: sup fy_f x,r dy<007
|| || z€G,r>0 |B(‘T r)| B(z,r) | ( ) Bla, )|
where )
BED =B, )] Jp
Define

BMO(G) = {f € LY*(G) : [|f]l < oo}.

If one regards two functions whose difference is a constant as one, then space BMO(G) is
a Banach space with respect to norm || - ||..

Remark 4.1 [7,26] (1) The John-Nirenberg inequality : there are constants Cy, Co > 0,
such that for all f € BMO(G) and 5 > 0

{z € B : |f(x) - fs| > B} < C1|Ble >/ WI- vBCG.

(2) The John-Nirenberg inequality implies that

1 P
e~ s (o [ 180 Faen ) (a1)

z€G,r>0 T r)| B(z,r)

for 1 <p < 0.
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(3) Let f € BMO(G). Then there is a constant C' > 0 such that
T
‘fB(ac,r) - fB(LE,T)‘ < OHfH* log ; for 0<2r< T, (42)

where C' is independent of f, z, r and 7.
For the kth-order commutator of the fractional maximal operator Mj q .
Lemma 4.1 Let1<p<oo,0§a<%, %z%—%,bEBMO(G).
Then the inequality

_Q
1Mo, L2 3e00) S WIS TS sup tog® (e ) 7% 1711, 300,

holds for any ball B(z,r) and for all f € LIIDOC(G).
Proof Let1<p<oo,0§a<%,%:
fi = fxep and fo = fxa(zB). Hence

% G- Write f = f1 + fz, where B = B(z,r),

Moo xfllL,B) < IMparfillL, ) + [ MbarfllL,B)-

From the boundedness of My x from L,(G) to Le(G) (see, for example, [3, 7, 26]) it follows
that:
1My, fill g8y < 1Mo fill g S NIl L@ = 1BIENf 1 2y 2m)-

For z € B we have
1
M « < _ b —b k d
ook f2(2) S S0 TR AT / ORI
1
=S T aG b(y) — b(2)|* dy.
o e o ") T ORI W)y

Let z be an arbitrary point from B. If B(z,7) N B(ZB) # 0, then 7 > r. Indeed, if
y € B(z,7)N D(2B), then 7 > |y~lz| > [z 2| — |27 ly| > 2r —r = 1.

On the other hand, B(z,7) N n(2B) C B(z,27). Indeed, y € B(z,7) N D(2B)7 then we get
|7y < Jy7tz| + o7 < T+ < 27

Hence

Mo (£)(E) = 0 s [ ) b))

1
<297 su —/ b(y) — b(2)[* | £ (h)|dh
S B(x, 2r)[o/@ BWT)| (y) = b(2)[" £ (h)]

1
:2Q—Ot Sup—/ by _bZ b fy dy.
r>ar | B(zg, T)[1—2/@ B(mo,r)l (y) =) [f ()

Therefore, for all z € B we have

—a 1
Mp,0,k(f2)(2) < 2@ f;lgr W /B(%T) b(y) — b(2)|k | f(y)|dy. (4.3)

Then

1
1 a q
My < / (su —/ b —b(2)|* d ) d )
” b, 7k?f2||Lq(B) ( 5 T>£)T |B(.’L‘,T)|1_O‘/Q B(mﬂ_)l (y) ()l |f(y)| Yy g
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1

o ok 1 a
: (/B (fﬁg |B(z, 7)|—2/Q /Bw) b(y) — ba| If(y)ldy) dg)

1

1 . \1

(s, )

(B 2 B 0o B(m,‘r)|() Bl"f(y)ldy | dg
=J1+ Jo.

Let us estimate Jj.

Q 1
Ji =ra sup —/ b _b k d
LSS B R Jp, ) Tl W)ldY
Q e
X reasup T Q/ |b(y)—bB|k|f(y)|dy.
T>27r B(m,r)

Applying Holder’s inequality and by (4.1), (4.2), we get

Q a—
JLSre supt Q/( )|b(y)—bB<z,T>|’“|f(y)ldy
B(z,r

T>2r

Q a—
+re sup t Q|bB(;E,7‘) - bB(m,T)|k /B( ) |f(y)|dy

T>2r
. 1,
Q Q ’ P
<% sup (— 1b(y) — bier |7 dy) T
T>2r |B(CE77—)| B(I,T) ( ’ ) P( ( s ))
Q a_Q
+ra SBS) T 7 |bBar) — bB(w,T)|k||f||Lp(B(w,T))
Q Q T\ F
S Il r® sup 7% (14 10g 2) 1 F L, (e
T>27r r

In order to estimate Jy note that

1
Jo = </ |b(2) — bB|kqdz> sup To‘fQ/ |f(y)ldy
B >2r B(z,T)

Q Q
S bl r e sup 7 || fllL, (e
T>2r

Summing up J; and Jo, for all p € (1,00) we get
Q Q T\
My Folgce) S DS sup 7% (14108 7)1z, 00,00 (44)
Finally,
Q Q T\k
1Mo,k fll 2oy S IBIE 17y comy + 01 rS sup 7 (1+Tom 7)1l 365,

Q Q T
S I0lEr sup 7% 10g" (e + 1) 1 £llL, (5
T>27r T

O

The following theorem is true.

Theorem 4.1 Let 1 < p < o0, 0 < a< %, % = % — G- b € BMO(G) and (¢1, ¢2)
satisfies the condition
o Q k t . Q
sup t* 7 log (e—|— —) ess inf 1 (z,8) s? < Ca(z, 1), (4.5)
r<t<oo T/ t<s<oco
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where C' does not depend on x and r.
Then the operator My o1 is bounded from M, ,, (G) to My ,,(G). Moreover

1M, 101,y S DI 1 £ 111, -

Proof By Theorem 3.1 and Lemma 4.1 we get

_ T _Q
| My fllng,., SIBIE sup @a(a,r)~" suplog” (e+ —)T “ 1l B
zeG,r>0 T>r T

)
Shollf sup oi(@, ) e | fll, B = Iy, -

zeG,r>0
O
In the case a = 0 and p = g from Theorem 4.1 we get the following corollary.
Corollary 4.1 Let 1 < p < 00, b € BMO(G) and (¢1, ¢2) satisfies the condition
_Q k t . Q
sup t 7 log (e + —) ess inf 1 (z,5) s? < Cpa(z, 1), (4.6)
r<t<oo r/ t<s<oco

where C' does not depend on x and r.
Then the operator M, j, is bounded from M, ,, (G) to M, ,,(G). Moreover

1M1 flIagy, oy S WONE N F N0 -

4.2 Adams Type Result
The following is a result of Adams type.

Theorem 4.2 Let 1 <p<g<oo,0<a< %, b € BMO(G) and let ¢(z,r) satisfy the

conditions
t
sup t~9 log"? (e + —) ess inf p(z, s) s¢ < Cp(x,7) (4.7
r<t<oo r/ t<s<oo
and
k t\ o 1 _ap
sup log (e—i— —) % (z, )7 < Cr~ o>, (4.8)
r<T<00 r

where C' does not depend on « € G and r > 0.
Then My ok is bounded from M 1 (G) to M 1 (G).

PP a9
Proof Letl <p<g<oo, 0<ac< % and f € M %(G). For arbitrary = € G, set
Pyp
B = B(x,r) for the ball centered at = and of radius r. Write f = f1 + fo with fi = fx2p and

f2 = fXG(2B)'
For z € B we have

Myanfa(z) < supre@ / 1b(y) — b(2)* folw)ldy
>0 B(z,7)

~ sup 7°°C / 1b(y) — b(2)|* folw)ldy.
B(z,T)

T>2r

Analogously Section 4.1, for all p € (1,00) and z € B we get

a-9Q T\*
Mp,arf2(2) S sup 7977 (1 + log ;) 1Nz, (B (4.9)

T>2r
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Then from conditions (4.8) and (4.9) we get
a k a-2 T\*
Moo f(2) 7 My f(2) + bl sup 77 (1410 7)1 lz,c5e.r)

T\ * 1
<1 My f(2)+ [bl15 £l o sup (1+1og 2) 7 p(a,7) ¥

p,oP T>T

_ ap
S Mygof (2) + IBl1Z =777 (| fllar (4.10)
p,pP
ol I fllar y  a=p
Hence choose r = (Wé)”’p) * for every z € B, we have

Qs

Moar ) < 10005 02 11

B

P

Hence the statement of the theorem follows in view of the boundedness of the commutator of

maximal operator My, in M 1 (G) provided by Corollary 4.1 in virtue of condition (4.7).
ppP

_1 _Q
sup  p(x,7) 91" @ |[Mpa i fllL,(Br)

1
q z€G, r>0

1 Mb,a.k.fl| a2
q

e

E(1—-2 1-2 1 _Q e
S IIbII*( ")HfHMql sup>0<p(x,r) i [MykfIlL ()
, T

ppP TE

P

kl1—2 1-2 1 _Q a
O s ( sup gl r)br p||Mb,kf||Lp<B<x,r>>)
PP zeG, r>0
kl1—2 1-2 2
e T T VAN A
PP PP

S NBIE 1 fllae
P,

S10

¢

O

In the case (z,7) = r*~9, 0 < A < Q from Theorem 4.2 we get the following Adams type
result for the commutator of fractional maximal operator.

Corollary 4.2 Let 0 < a < Q,1<p< 2, 0< X< Q- ap, %—% = %and

o ?

b € BMO(G). Then, the operator M 4,k is bounded from Ly z(G) to Ly (G).

5 The Generalized Morrey Estimates for the Operators V7( — Ag +
V)P and V'V (— Ag+ V)P

In this section we consider the Schrédinger operator —Ag + V on G, where the nonnegative
potential V' belongs to the reverse Holder class Boo(G). The generalized Morrey M, ,(G)
estimates for the operators VY (—=Ag + V)™ and V'V (—Ag + V)~ are obtained.

The investigation of Schrédinger operators on the Euclidean space R™ with nonnegative
potentials which belong to the reverse Hélder class has attracted attention of a number of
authors (cf. [5, 24, 29]). Shen [24] studied the Schrodinger operator —A + V| assuming the
nonnegative potential V' belongs to the reverse Holder class B,(R™) for ¢ > n/2 and he proved
the L, boundedness of the operators (—A+ V)", V2(—A+ V)~ V(-A+ V)~2 and V(—A +
V)~ Kurata and Sugano generalized Shens results to uniformly elliptic operators in [15].
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Sugano [27] also extended some results of Shen to the operator VY(-=A+V)# 0<y <3< 1
and V'V(-A+V)# 0<y<3<B<1and -~ > 3. Later, Li [16], Liu [17] and Lu [18]
investigated the Schrodinger operators in a more general setting.

The main purpose of this section is investigate the generalized Morrey My, ,,-Mg,,, bound-

edness of the operators

T, =V(-Ac+ V)P, 0<y<p<U,
1
Ty = VVg(—=Ag + V)P, 0<y<o<B<1, B-

N | =

Note that the operators V(—Ag 4+ V)~ and V2Vg(—Ag + V)~ ! in [16] are the special case of
Ty and T5, respectively.

It is worth pointing out that we need to establish pointwise estimates for 77, 75 and their
adjoint operators by using the estimates of fundamental solution for the Schrodinger operator
on G in [16, 17]. And we prove the generalized Morrey estimates by using M, ,, — Mg,
boundedness of the fractional maximal operators.

Let V' > 0. We say V € Boo(G), if there exists a constant C' > 0 such that

C
IVl < 15 [ Vi)
B /3

holds for every ball B in G (see [16]).
By the functional calculus, we may write, for all 0 < 8 < 1,

(~Ac+V) 7 = l/ AP (“Ag+V + 1)

™ Jo

Let f € C§°(G). From

(—Ac+V 4+ f(z) = /G T(z,y, 0 f(y)dy,

it follows that

/Klﬂﬁy )7 f (y)dy,

where
1 o0
—/ A PT(x,y,\)dX for 0 < <1,
Ki(z,y)=q ™ Jo

I'(z,y,0) for B=1.

For the potential V' € B (G) the following two pointwise estimates for T} and Ty was
proven in [29].
Theorem B Suppose V € Boo(G) and 0 < v < 3 < 1. Then for any f € C5°(G),

T1f (@) S Maf(), |0, T1]"f(2)] S Mb,arf(2),

where o = 2(3 — ) and [b, 1% f(z) = T1((b(-) — b(x))* f
Theorem C Suppose V € By (G), 0 <~y < % <p
Then for any f € C§°(G),

| T2f (2)| € Maf(2), |0, T2)" f(x)] € Mbanrf(@),
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where a = 2(8 — ) — L and [b, T5]" f(z) = To((b(-) — b(2))* () ().
The above theorems will yield the generalized Morrey estimates for 77 and 1.
Corollary 5.1 Assume that V € Boo(G), and 0 < v < < 1. Let 1 < p < ¢ < o0,
2(8—7v) = Q(% — 1) and condition (3.7) be satisfied for o = 2(8 — 7).

P a
Then for any f € C§°(G),

17 f sty e, S W lIty ey for p>1

and
1T fllwaty ., SIFlIan,, — for p=1.

Corollary 5.2 Assume that V € By (G), b € BMO(G) and 0 < v < 3 < 1. Let
l<p<g<oo,2(6—7) = Q(% - %) and condition (4.5) be satisfied for & = 2(8 — ). Then
for any f € C§°(G)

116, 710 fll gy oy S OIE N f N0, -

Corollary 5.3 Assume that V € B(G), 0 < v < % <pf<land g—7vy > % Let
1<p<g<oo,2(f—7y)—1= Q(% - %) and condition (3.7) be satisfied for « = 2(8 —v) — 1.
Then for any f € C§°(G)

1Z2f 0,0, S W flI0tyy  for p>1

and
12 fllwnyy, S fllasy,, — for p=1.

Corollary 5.4 Assume that V € Bx(G), b € BMO(G), 0 < v < 1 < 8 <1 and
8-> % Let 1<p<qg<oo,2B—7v)—-1= Q(% — %) and condition (4.5) be satisfied for
a=2(8—+)—1. Then for any f € C5°(G)

(122 YA L/ A YA

Corollary 5.5 Assume that V € Boo(G) and 0 < v < < 1. Let 1 < p < g < o0,
2(8—7) = Q(}—lj - %) and conditions (3.9), (3.10) be satisfied for a = 2(3 — ). Then for any
fed(G)

(PEwalRY: for p>1

S Wl
D,

Bl

1
q,p9 [

and
T fllwae o S W fllar,  for p=1.

q,p 4

Corollary 5.6 Assume that V € By (G), b € BMO(G) and 0 < v < g < 1. Let
l<p<g<oo,2(0—7)= Q(% - %) and conditions (4.7), (4.8) be satisfied for a = 2(5 — 7).
Then for any f € C§°(G)

1o, T fllar o S HBIE 11l

1
q

S10

P 4

Corollary 5.7 Assume that V € B (G), 0 < v < % <pf<land -7 > % Let
1<p<qg<oo20-—7v-1-= Q(% - %) and conditions (3.9), (3.10) be satisfied for
a=2(8 —+)—1. Then for any f € C5°(G)

SNl for p>1
P,

1
q

S10

172l ax

e [
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and

1Z2fllwae y SWfllay,  for p=1.
q

1
4

Corollary 5.8 Assume that V € By (G), b € BMO(G), 0 < v < < B <1 and
B-—v>3. Letl<p<g<oo,2(B-7)-1=Q(%- %) and conditions (4.7), (4.8) be satisfied
for a = 2(8 — ) — 1. Then for any f € C§°(G)

1
P

116, 1  Fllar S IOIE ISl ar

1
q

S10

P ")
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