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Let Mq o and Iq o be the fractional maximal and integral operators with rough kernels,
where 0 < a < n. We study the continuity properties of Mq o and Iq o on the generalized

local Morrey spaces LM{mO}. We prove that the commutators of these operators with
local Campanato functions are bounded. Bibliography: 34 titles.

1 Introduction

For x € R™ and r > 0 we denote by B(x,r) the open ball centered at x with radius r and by
|B(z,7)| the Lebesgue measure of B(x,r). Let Q € L*(S"~!) be homogeneous of degree zero on
R", where S™~! denotes the unit sphere in R” (n > 2) equipped with the normalized Lebesgue
measure do and s > 1. For any 0 < a < n the fractional integral operator with rough kernel

I « is defined by

and the related fractional mazimal operator with rough kernel Mgq . is defined by

Ma,o f(x) = sup |B(z, )|~ *n / 2z =yl | f(y)ldy.

t>0
B(x,t)

If « = 0, then Mo = Mgq is the Hardy-Littlewood maximal operator with rough kernel. If
2 =1, it is obvious that I , is the Riesz potential I, and Mg, is the maximal operator M,.

Theorem A. Suppose that 2 € Ly(S" 1), 1 < s < oo, is homogeneous of degree zero,
O<a<n,l1<p<n/a,andl/q=1/p—a/n. If & <p orq<s, then the operators Mg o and
Ig « are bounded from L,(R™) to Ly(R™) for p > 1. If ¢ < s, then the operators Mq o and I o
are bounded from Li(R™) to W Ly(R"™) forp=1.
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Let b be a locally integrable function on R™. For 0 < a < n we define the commutators
generated by fractional maximal and integral operators with rough kernels and b as follows:

Mapa(£)(@) = sup B0 5 [ @) bW — )ldy,

t>0
B(z,t)

b, Tl f(z) = b(@) o i (x) — T () / ) = b))y

Theorem B. Suppose that Q € Ly(S™1), 1 < s < oo, is homogeneous of degree zero,
O<a<n,l1<p<n/a, 1/g=1/p—a/n, and b € BMO(R"™). If s < p or q < s, then the
operators Mqp o and [b, Io o) are bounded from L,(R™) to Ly(R™).

The classical Morrey spaces M, ) were first introduced by Morrey in [1] to study the local
behavior of solutions to second order elliptic partial differential equations. For the boundedness
of the Hardy—Littlewood maximal operator, the fractional integral operator, and the Calderdn-
Zygmund singular integral operator on these spaces, we refer the readers to [2]-[4]. Properties
and applications of classical Morrey spaces can be found in [5]—[8] (cf. also the references therein).

In this paper, we establish the boundedness of the operators I, from generalized local
Morrey spaces LM;ffl} to LMq{fPOQ}, where 1 < p < g < o0, 1/p —1/q = a/n, and from the
space LMffool} to the weak space WLM;fOOQ}, 1<qg<oo,1—-1/¢g = a/n. In the case b €
CBMO,,, we find sufficient conditions on the pair (¢1,¢2) that ensure the boundedness of the
commutator operators [b, Ig o] from LMéifp]; to LMq{fOOZ}, where 1 < p < oo, 1/p=1/p1 + 1/pa,
1/g=1/p—a/n, 1/ =1/p1 —a/n.

We write A < B if A < OB, where C is a positive constant independent of appropriate
quantities. If A 5 B and B < A, we write A = B and say that A and B are equivalent.

2 (Generalized Local Morrey Spaces

It is convenient to define a generalized Morrey space as follows.

Definition 2.1. Let ¢(z,r) be a positive measurable function on R" x (0,00), and let
1 < p < 00. The space of all functions f € L}DOC(]R") with finite quasinorm

sSup QO(.T T) ! ’B(CE 7,)| e HfHLp B(z,r))
z€R",r>0

1 fllas,,, =

is called the generalized Morrey space and is denoted by M), , = M, ,(R"™). The weak generalized
Morrey space WM, , = WM, ,(R") is introduced as the space of all functions f € WL;OC(R”)
such that

Ifllwas,, = sup (@) B, )| P | flwe, ) < oo
zeR™,r>0

According to Definition 2.1, we recover the Morrey space M),y and weak Morrey space
W M, » under the choice ¢(z,r) = rA=m/p:

Mpv)‘ = Mp’cp‘(p(g;//’)zr()\*n)/f)’ WMp7>‘ = WM )

(p(m’r):r(kfn)/iv .
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Definition 2.2. Let ¢(x,r) be a positive measurable function on R"™ x (0,00), and let
1 < p < 00. The space of all functions f € L;,OC (R™) with finite quasinorm

£ 120y, = sup (0, r)HBOT P e, 0.0)

is called the generalized local Morrey space and is denoted by LM, , = LM, ,(R"). The weak

generalized Morrey space W LM, , = W LM, ,(R") is introduced as the space of all functions
f € WLES(R™) such that

I flwea,,, = Sup @(0,7) 7B, )77 || fllwe, (o) <

Definition 2.3. Let ¢(z,7) be a positive measurable function on R™ x (0,00), and let
1 < p < oo. For any fixed zo € R" the generalized local Morrey space LM;TPO} = LMI}{fDO}(R”) is
the space of all functions f € L;)OC(R") with finite quasinorm

and the weak generalized Morrey space WLM,;{f[?} = WLM];{pr}(R") is the space of all functions
f € WLES(R™) such that

1y pagzor = 150+ )l Lag,, < oo

0}

According to Definition 2.3, we recover the local Morrey space LM {20} 3nd weak local Morrey

space WLM{m} under the choice p(zq,r) = rA—")/p:

LMY = Ly WLMS = WLM{ |,

(xo,r)=r(A—n)/p> (wo,r)=r(A=n)/p*

Wiener [9, 10] looked for a way to describe the behavior of a function at infinity. The
conditions he considered were related to appropriate weighted L, spaces. Beurling [11] extended
this idea and defined a pair of dual Banach spaces A, and By, where 1/¢+ 1/¢' = 1. To be
precise, A, is a Banach algebra with respect to convolution expressed as the union of certain
weighted L, space and B, is expressed as the intersection of the corresponding weighted L,
spaces. Feichtinger [12] observed that the space B, can be described by

_kn
1fllg, =sup2 @ | Xkl L, @) (2.1)
k>0

where xo is the characteristic function of the unit ball {x € R™ : |z| < 1} and xy is the
characteristic function of the annulus {x € R" : 2871 < |z| < 2%}, k = 1,2,.... By duality, the
space Ay(R™), called the Beurling algebra, can be described by

X _kn
114, = ZQ N fxelln, - (2.2)
k=0

Let B,(R") and A,(R™) be homogeneous versions of B,(R™) and A,(R") by taking k € Z in
(2.1) and (2.2) instead of k£ > 0 there. If A < 0 or A > n, then LM{xO}(R") ©, where O is the
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set of all functions equivalent to 0 on R™. Note that LM, o(R") = L,(R"), LM, ,(R") = B,(R™),
B,, = LM,, %(o pypiun> @A W By = WLMP’@\¢(07T):THH.

To study relationships between central BM O spaces and Morrey spaces, Alvarez, Guzman-
Partida, and Lakey [13] introduced A-central bounded mean oscillation spaces and central Morrey
spaces By, (R") = LMy pinpu(R™), g € [~1/p,0]. If p < —1/p or p > 0, then B, ,(R") = ©.
Note that Bp,_l/p(R”) = L,(R") and B,o(R") = B,(R"). The weak central Morrey spaces is
defined by WB,, ,(R™) = W LM, 5 p(R).

Inspired by the aforesaid, we consider the boundedness of fractional integral operators with
rough kernels on generalized local Morrey spaces and give the central bounded mean oscillation
estimates for their commutators.

3 Fractional Integral Operators with Rough Kernels in LM; 7o}

In this section, we use the following assertion about the boundedness of the weighted Hardy
operator

o0
Hg(t :/g s)ds, 0 <t < oo,
t

where w is a fixed function nonnegative and measurable on (0,00). In the case w = 1, it was
proved in [14].
Theorem 3.1. Let vy, ve, and w be positive almost everywhere and measurable functions
n (0,00). Then

esssup va(t)H, g(t) < Cesssup vy (t)g(t) (3.1)
>0 >0

for some C > 0 and all nonnegative nondecreasing g on (0,00) if and only if

o

B := esssup vy(t < 0. (3.2)

t>0 t/esssups<"r<oovl( )

Moreover, if C* is the minimal value of C in (3.1), then C* = B

Remark 3.2. In (3.1) and (3.2) it is assumed that = =0 and 0-co = 0.

Proof of Theorem 3.1. Sufficiency. Assume that (3.2) holds. If F'; G are nonnegative
functions on (0,00) and F' is nondecreasing, then

esssup F(t)G(t) = esssup F(t)esssup G(s), t > 0. (3.3)
t>0 >0 s>t
y (3.3), we have

i (r)
€SS SUPg -y o0 U1(T

esssup vo(t)H) g(t) = esssup vo(t /gsws ds
t>0 ( ) v ( ) t>0 ( ) f ( ) ( )esssups<7'<oo Ul(T)

oo
< esssup va(t / esssup g(t) esssupvi(7)
£>0 esssups<7<oo v1( ) >0 t<r <00

t
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o0

= esssup va(t / esssup g(t)v1(t) < B esssup g(t)vi(t).
>0 / oss SUPS<T<Qo v1( ) >0 £>0

Necessity. Assume that the inequality (3.1) holds. The function

1
g(t) = , t>0,
€SS SUP; 7 o0 V1(T)

is nonnegative and nondecreasing on (0, c0). Thus,

o0

<C.

v1(t
B = esssup va(t < Cesssup 1)

>0 t/eSSSUPs<T<oovl() >0 €SSSUDP; oo V1(T)

Hence C* = B. O

In [15], the following assertion was proved by using the fractional integral operator with
rough kernel I . It contains the result of [16, 17].

Theorem 3.3. Suppose that Q € Ly(S" 1), 1 < s < oo, is homogeneous of degree zero.
Suppose that 0 < a <n, 1 <s' <p<n/a,1/g=1/p—a/n, and p(x,r) satisfies the conditions

¢ lo(a,r) < pla,t) < cp(z,r) (3.4)

if r <t < 2r, where ¢ (> 1) is independent of t, r, x € R™ and

[e o]

dt
/tapcp(x,t)p? < Cr®Pp(z,r)P, (3.5)

T

where C' is independent of x and r. Then the operators Mq o and I o are bounded from M, ,
to My,,.

The following assertion, containing the results of [16, 17], was proved in [18, 19] (cf. also [14]
and [20]-[24]).

Theorem 3.4. Suppose that 0 < « < n, 1 < p < n/a, 1/¢g = 1/p — a/n, and (p1,¥2)

satisfies the condition
oo

/ﬁ*wmﬁﬁgc@mﬁ, (3.6)

r

where C' is independent of r. Then the operators M, and I, are bounded from LM, ,, to LM, .,
for p > 1 and from LM, to WLM,,, forp=1.

Lemma 3.5. Suppose that zg € R™ and Q € Ly(S" 1), 1 < s < oo, is homogeneous of
degree zero. Suppose that 0 < o <n, 1 < p<n/a, and 1/g=1/p—a/n. Ifp>1 and s
or q < s, then

o0

||Iﬂ,ozf||Lq(B(ro,r)) S Tq/ 7771“f||Lp B(zo,t) dt
2r
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for any ball B(xg,r) and all f € L;QOC(]R{"). Moreover, if p=1< q < s, then

o0

o0 fllwLy(Bor)) ST /tq1||fHL1(B(x0,t))dt (3.7)
2r

for any ball B(xg,r) and all f € LY°(R™).

Proof. Suppose that 0 <« <n, 1 < s <p <n/a, and 1/qg = 1/p — a/n. We denote by
B = B(xg,r) the ball centered at xy with radius r. Representing f as

f=h+fe Al =fxs®), L) =X w, >0 (3.8)

we have
o0 fllz,B) < HaafillL,s) + [HoafollL,m)-
Since f1 € Ly(R™), Inofi € Lg(R™), and I 4 is bounded from L,(R™) to Ly(R™), it follows that

Ho.afill,B) < HaafillL,er) < Cllfill, @y = CllfliL,eB),

where the constant C' > 0 is independent of f.
It is clear that x € B and y € C(2B) imply

: | <le—yl <) |
—|lro—y| < |z -yl < <|xo — Y|
51%0 —Y YIsglto—y

We get
o Qz —
o fo(z)] < 279, / Lf ()€ n,ay”dy
|0 — Yl
‘2B)
By the Fubini theorem,
F@II [
/ \Io—yln S | F W12z — y)] Wdy
“(2B) C2B) [zo—y|
dt
/ / y)| [z ’dytnﬂ p N/ / Y|z —y )’dym
2r 2r<|zo—y|<t 2r B(zo,t)

Applying the Holder inequality, we get

f@)]|Q2(z —y I 1 dt
/ L )|_;yna)dyi/llfHLp(B(mo,t)) 192(- = Y) | .o (Blzo) | B(@o, )| Yp=5
2r

|$0 thrlfa
“2B)

q

T dt
S [ 15100 557 (3.9)
2r
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Moreover, for all p € [1,00)

Moafalliym S v / 11y (B ) (3.10)
Thus,
< n dt
Mo fllL,) S L, @) + 79 ||f”Lp(B(xo,t))F
2r
On the other hand,
o0

1y ~ 73Sl e / < / 11205000 55

q

Thus,

Mooflo,m < v / T IO,MH

For 1 < g < s the Fubini theorem and Minkowski inequality yield

o0

oo fellz,(B) < (/)/ / [F ()l - )Idytnff a

B 3r B(ao.t)

)1/q

[e.9]

dt
<[ [ 1N =l v
5r B(xo,t)
n_mn 7 dt
Sreos |F () —y)"LS(B)dZ/WTa
2r B(l'(h)
;i / 15 st ) S / 151000 .11

For p=1 < ¢ < s < oo from the weak (1, ¢) boundedness of I, and (3.11) it follows that

oo fillwr,B) < Hoafillwr,eey S il @

n dt
= 1 f ey S 7 / s o0 £ (3.12)

Then from (3.10) and (3.12) we get the inequality (3.7). O

Theorem 3.6. Suppose that g € R™ and Q € Ly(S™ '), 1 < s < oo, is homogeneous of

degree zero. Suppose that 0 < a <n, 1 <p<n/a,1/g=1/p—a/n, and s’ <p orq<s. If
(p1,p2) satisfies the condition
% essinf gol(xo,T)T%
/ L7 o) dt < C pa(zg, 1), (3.13)
ta

T
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where C' is independent of r, then the operators Mq o and Iq . are bounded from LM;@I} to
LM(;{TOOQ} for p > 1 and from LM{IO} to WLM(J{TOOQ} for p = 1. Moreover, for p > 1

||MQ7af”LM;fPOQ} 5 HIQ’afHLMq{fPO; 5 HfHLM;if;?l}

and forp=1

HMQ:afHWLM;pr; 5 HIQ’afHWLM;zOQ} S.z ”fHLMl{fpol}

Proof. By Lemma 3.5 and Theorem 3.1 with va(r) = pa(x0,7) 7L, v1(r) = wl(xo,r)*lr_%,
and w(r) =r <, we have
o fll Lafrg) S Sllp ©a(xo, T / 1 f1 2, (B0t Db
< - =
~ igg @1(330’7‘) T p HfHLp(B(.To,T)) ||fHLMng01}
forp>1andforp=1
Mo flly gt S Sup oo / -
S SUP901(550, P) Tz Baory) = N1y 00 O
r>0 Leq

Corollary 3.7. Suppose that € Ly(S" 1), 1 < s < oo, is homogeneous of degree zero.
Suppose that 0 < a« < n, 1 < p < nja, 1/g=1/p—a/n, and s < p or q < s. If (p1,¢2)
satisfies the condition

Pessinf oy (x,7)7P b
/t<T<oo dt t < C(,OQ(?L‘,’I“),

tatl
J

where C' is independent of x and r, then the operators Mo o and Iq . are bounded from M, ,,
to My, for p>1 and from M ,, to WM, for p=1. Moreover, for p > 1

1Moo f My S Haaflntgp, S 11 fllagq,

and forp=1

1Mo .0 fllw, S oo fllwntye, S I Fla g, -

Corollary 3.8. Suppose that 1 < p < 00, 0 < a < n/p, 1/q = 1/p — a/n, and (¢1,p2)
satisfies the condition (3.13). Then the operators M, and I, are bounded from LM,;{faol} to
LMq{"prQ} for p > 1 and from M{EO} to WLMq{fDOQ} for p=1.

Remark 3.9. Corollary 3.7 was proved in [24] in the case s = co. The condition (3.13) in
Theorem 3.6 is weaker than the condition (3.6) in Theorem 3.4 (cf. [24]).
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4 Commutators of Fractional Integral Operators with
Rough Kernels in LM"

Let T be a linear operator. For a function b we define the commutator [b, T by

[0, T]f () = b(z) T'f (x) = T(bf)(x)

for any suitable function f. If T is a Calderén- Zygmund singular integral operator, a well-known
result of Coifman, Rochberg, and Weiss [25] states that the commutator [b,T]f = bT f — T(bf)
is bounded on L,(R"), 1 < p < oo, if and only if b € BMO(R"). The commutator of Calderén—
Zygmund operators plays an important role for studying the regularity of solutions of elliptic
partial differential equations of second order (cf., for example, [5]-[7]). Chanillo [26] proved that
the commutator [b, I,|f = blnf — Io(bf) is bounded from L,(R™) to Ly(R™) (1 < p < g < oo,
1/¢=1/p—a/n) if and only if b € BMO(R").

Local Campanato spaces are defined is as follows.

Definition 4.1. Let 1 < ¢ < 0o, and let 0 < A < 1/n. A function f € L;OC(]R”) belong to

the central Campanato space CBMO(%?}(R”) if

1/q
1
Hf”CBMOifAO} SUP (W / |f(y) — fB(zo,r)|qdy> < 00,
B(zo,r)
where
fB(:ro,r) = an / f
B(zo,r)

We define

CBMOUSHR™) = {f € LI°(R™) : ||f||CBMO§iO}<oo}.

Lu and Yang [27] introduced the central BMO space CBMO,(R") = CBM Oé’%} (R™). Note

that BMO(R™) C CBMO}IO}(R”), 1 < ¢ < co. The space C’BMO;J{QCO}(R") can be regarded
as a local version of the space BMO(R") of bounded mean oscillation at the origin. However,
these spaces have quite different properties. The classical John—Nirenberg inequality shows that
functions in BMO(R™) are locally exponentially integrable. This implies that for any 1 < ¢ < oo
functions in BMO(R™) can be described by means of the condition

s (137 B/ 7(w) ~ Folidy) " < oo,

r>0

where B denotes an arbitrary ball in R™. However, the space C BM OéxO}(R”) depends on ¢. If
q1 < g2, then CBMO;;O}(R”) - C’BMO;TO}(R”). Therefore, there is no analogy of the famous
John — Nirenberg inequality of BMO(R™) for the space C BM O;QCO}(R”). One can imagine
that the behavior of CBM O[]{x(’}(R") may be quite different from that of BMO(R™).

Lemma 4.2. Suppose that b is a function in CBMO;%\O}(R”), 1<g<o0,0< A< 1/n,
and ri,r9 > 0. Then

1
1 a -
—_— — q < 1 )
< |B($0,7«1)|1+>\q / |b(y) bB(mo,T2)| dy) < C(l + ‘ In 7“2 D ||bHCBMO§’>\O}’

B(zo,m1)
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where C' > 0 is independent of b, r1, and ra.

In [15], the following assertion was proved for the commutators of fractional integral operators

with rough kernels. It contains the result of [16, 17].

Theorem 4.3. Suppose that o € R, Q € Ly(S" 1), 1 < s < 00, is homogeneous of degree
zero, and b € BMO(R™). Suppose that 0 < a« <n, 1 < s <p<n/p, 1/¢=1/p—a/n, and
o(x,r) satisfies (3.4) and (3.5). Then the operator [b,Iq o] is bounded from My, to My .

Lemma 4.4. Suppose that xg € R™ and Q € Ly(S™1), 1 < s < oo, is homogeneous of
degree zero. Suppose that 0 < o < n, 1 < p < n/a, b € CBMO;Z:O/\}(R”), 0 <A< 1/n,

1/p=1/p1+1/p2, 1/qg=1/p—a/n, 1/q1 =1/p1 — a/n. Then for s’ <p orq <s
o0

n Y\ na—2—1
116, I0,0] f | 2y (B(zo,r)) S |bHCBMO;;9£T‘1/(1+1H;)t 0 fllLy, (Baon)) At
2r

for any ball B(xo,r) and all f € LY(R™).

p1

Proof. Suppose that 1 < p < oo, 0 < a<n/p, 1/p=1/p1+1/p2, 1/¢=1/p— a/n, and
1/¢1 = 1/p1 — a/n. As in the proof of Lemma 3.5, we represent f in the form (3.8) and have

b, ool f(@) = (b(@) = bp) Inafi(@) = Toa ((60) = bp) f1) ()
+ (b(w) = b) In.afo() = Ina((6() = bp) f2) (@) = Ji + o+ Js + Ji.

Hence
116, In,al fllLyBy < IillLyy + 12l LyBy + 13l LyB) + 1all Ly (B)-
By the boundedness of [b, I o] from L, (R™) to Ly, (R™), it follows that

171 L8y < 1) = 0B) (b, Iaal f1 () Ly @n)

tnA
IO =55 1y et Tl fs Ol ) < bl gions 755 iy,
P2,

oo
SettnA -1-2
= Cllblloypoten) 7758 o [
2r

o0

Z4nA t I
S Wllparop v [ (11 D)1y et
2r

For J; we have

172l 2,8y < 1[0, Tl (b(-) = bB) fill L, mmy S (0() = bB) filll L, &)

o

L+£+ A —1-
SC) = bBllL,, @yl fillL,, @) S [0l oy 72 | fll, @py [t Tt
2 1 CBMO,_ 1
P2,

2r
[eS)

24nA t _1-n
S HbHCBMo;;”?j” " /(1+1n;>||f||Lpl(B(z0,t))t ar dt.
2r
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It is known that € B and y € E(QB) for Js, which implies 1|z — y| < |z — y| < 3|zo — y|.
For s’ < p the Fubini theorem and Holder inequality yield

[ Io,af2(x)] < co / Qz —y)|l——— 7(w)l

2o — y["

/ / DIf () |dy 1" dt

2r 2r<|zo—y|<t

/ [ 196 - nlif)ye

2r B(IO7

1—L1_1 _q_»n_,
§/||fHL,,1(B(xo,t)) 1€z = L. (B@oty) [Blwo, t)| 71 =t~ P dt
2r

1
< / 1z, eyt dt.
2r

Hence

1550l ,8) = 1(b(:) = bB) Io.afo() L, =m)

_1-n
<0 =08)liay [ 15, ot

n _1_n
<H(b() = bB) ||z, @ry T /’fHLpl(B(xoﬂt))t av dt

1
S el N (R [P
2r

For g1 < s the Fubini theorem and Minkowski inequality yield

1

15lzycz) < ( /1 / | 1wl —bB|m<x—y>|dwal—§+l}q>q

2r B iltot
dt
/ [ 1 @II0C) = 00— )y
2r B 550»
dt
< | F)]Ib() — bB||Lp2(B) 192(- - y)Hqu(B)dy fn—a+1
2r B(Io,t)
T d
OIS S S l
S Wll ot 7 BE [ [ R@II96 = Dy s
P2,

2r B(zo,t)
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Zan dt
 Wlopurors 7™ [ 1 esatonn e

2r
ni dt
S Wlemropeg ™ [ (1402 ) ISy o0 5
2r
For x € B the Fubini theorem and Hélder inequality yield
J(y
00 (00 = 05)2) @IS [ o)~ sl 026 — )] LDy
lz —yl
(2B)
< [ 1w - vl -l LDy
[zo — Yl
CeB)
/ / — byl |2 — )| | £ () ldy o=t
2r 2r<|zo—y|<t
dt
/ [ b0 = s lie )l 1 wldy s
2r B x()’
dt
’bB (wo,7) — OB(zo,t )| 1Q(z — y)| ’f(y)’dym
B(l‘o,t)

1/l dt
§/ 15() = DB o) £l (Blaot) 120 = DI (Baosy) 1 B(@o, )} /P~ promres|

R
/’bB (zo,r) — YB(=o,t) |Hf”Lp1 B(zo,t)) 192(- - ?J)HLS(B(;,;M)) |B(xo,t)| 71 st Lat

_1_n
5/ 16(-) = bB(20,0)l Ly, (B(zo.0) 1f 1Ly, (Bzoant @ dl
2r
nA—1—=2
bl aparotoy [ (11051l oy ™
- 2r
t nA—1—
S Wll ooty [ (1410517 ltyy ey £
" 2r
Then for J4 we have
1 Tallz,8) < Haa(b(-) = bB) fall £, =)
n nA—1-=2
<
S / (1410 ) Ul (™l
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For g1 < s the Fubini theorem and Minkowski inequality yield

Motz (/\/ | 1@l - v S a+1\q>

Q=

2r B l‘ot
dt
/ | 111196 = ey mdy s
2r B ;1;0,
oo
11 dt
<1 [ [ IR0 = Dl
2r B(zo,t)
n dt n dt
X / 120 s S 7 / 11yt —557-
Then we combine the above estimates and complete the proof of the lemma. O

Theorem 4.5. Suppose that xg € R™ and Q € Ly(S™ 1), 1 < s < oo, is homogeneous
of degree zero. Suppose that 0 < a < n, 1 < p < n/a, b € CBMO;E;O/\}(R”), 0< A< 1/n,
1/p=1/p1+1/p2, 1/qg=1/p—a/n, 1/q1 = 1/p1 —a/n. If for s’ < p or g1 < s the pair (1, p2)
satisfies the condition

[e.e]

¢ essinf o1(0,7)T i
/ (1 +1In ;) t<T<O;__n/\+1 dt < C pa(zg, 1), (4.2)
q

T

where C' is independent of r, then the operators Maqy o and [b,Iq o] are bounded from LMgfgjl}
to LM(}{,Q;OQ}. Moreover

”MQ’b’afHLMq{f,,OQ} 5 ||[b7 Iﬂya]fHLM;pr; S Hb”cBMO;;g} Hf”LMZ‘Eprl}

Proof. The statement of Theorem 4.5 follows from Lemma 4.4 and Theorem 3.1 in the same
manner as Theorem 3.6. O

For the sublinear commutator of the fractional maximal operator M, and the linear com-
mutator of the Riesz potential [b, I,] from Theorem 4.5 we obtain the following new results.

Corollary 4.6. Suppose that 0 < o <n, 1 <p <n/a, b€ CBMOIEZ?)\}(R”), 0< A< 1/n,
1/p=1/p1 +1/p2, 1/qg = 1/p —a/n, 1/q1 = 1/p1 — a/n, and (p1,p2) satisfies the condition
(4.2). Then the operators My, and [b, I,] are bounded from LMi;{ﬁ?P]; to LM(}{,‘ZUPOQ}.

5 Some Applications

In this section, we apply Theorems 3.6 and 4.5 to some particular operators such as the
Marcinkiewicz operator and fractional powers of some analytic semigroups.

5.1. Marcinkiewicz operator. Let S"~! = {z € R" : |x| = 1} be the unit sphere in R"
equipped with the Lebesgue measure do. Suppose that zo € R™ and € Ls(S"1), 1 < s < oo,
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is homogeneous of degree zero and satisfy the cancellation condition. In 1958, Stein [28] defined
the Marcinkiewicz integral of higher dimension uq as

o0 1/2
mmw=</mmmwﬁ>,

0

where

Fodlha) = |
lz—yl<t
Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been extensively studied
as a research topic and provides useful tools in harmonic analysis [29]-[32].
The Marcinkiewicz operator is defined by the formula (cf. [33])

00 1/2
po.a(f)(z) = </|F9,a,t(f)($>|2@) :
0

t3

where

Faod D@ = [ TRy

lz—yl<t

Note that pof = paof.
We introduce the space

0 1/2
H= {h: Ihl| = </yh(t)|2dt/t3> < oo}.
0

It is clear that po o(f)(z) = ||Fa,a(z)|. By the Minkowski inequality and the conditions on €2,
we get

00 1/2
Qz—y dt
mmmm</ﬁéﬁ%%mw</;ﬁ Iy < Cloa(f)(a).
R |lz—yl
It is known that pq o is bounded from L,(R™) to L,(R™) for p > 1 and from L (R"™) to W L4(R")
for p =1 (cf. [33]). Hence from Theorems 3.6 and 4.5 we get the following assertions.

Corollary 5.1. Let 9 € R", and let Q € Ls(S™1), 1 < s < oo, be homogeneous of
degree zero and satisfy the cancellation condition. Suppose that 0 < a < n, 1 < p < n/a,
1/q=1/p — a/n and for s <p or q1 < s the pair (¢1,p2) satisfies the condition (3.13). Then
Haa s bounded from LMgffpol} to LM;;OQ} for p > 1 and from Ml{fpol} to WLMq{faOQ} forp=1.

Corollary 5.2. Let 9 € R", and let Q € Ls(S™1), 1 < s < oo, be homogeneous of
degree zero and satisfy the cancellation condition. Suppose that 0 < a < n, 1 < p < n/a,
be C’BMO;;E?;(R”), 0<A <L 1/p=1/p1+1/p2, 1/g=1/p—a/n, 1/q1 = 1/p1 — a/n and
for s < p orq < s the pair (¢1,p2) satisfies the condition (3.13). Then [a, ji0.q] s bounded
from LM to LMER).
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5.2. Fractional powers of the some analytic semigroups. The theorems of previous
sections can be applied to various operators which are estimated from above by Riesz potentials.
We give some examples.

Suppose that L is a linear operator on Lo that generates an analytic semigroup e~ " with
the kernel p;(z,y) satisfying the Gaussian upper bound, i.e.,

.12
Cq _CQII ty\

Ipe(2,9)] < e (5.1)

for z,y € R™ and all ¢ > 0, where ¢; and ¢y > 0 are independent of z, y, and .
For 0 < a < n, the fractional powers L~%/2 of the operator L are defined by

e}

_a 1 4 dt
L) = gy [ @

0

Note that if L = —A is the Laplacian on R™, then L~%/2 is the Riesz potential I, (cf., for
example, [30, Chapter 5]).

Theorem 5.3. Let the condition (5.1) be satisfied. Suppose that 1 < p < 00, 0 < a < n/p,
1/qg = 1/p — a/n, and the pair (@1, p2) satisfies the condition (3.13). Then L=/ is bounded
from LM]iprl} to LMq%OQ} for p > 1 and from Mi{ffl} to WLMq{fOOZ} forp=1.

Proof. Since the semigroup e~*" has kernel p;(x,y) satisfying the condition (5.1), it follows
that (cf. [34])

L7 f(@)] S La(If ) (@).

By the afOI'eIIlentiOIled tlleOfeIIlS, we ha\/e

Let b be a locally integrable function on R™. The commutator of b and L~=%/2 is defined by
(b, L=/ f () = ba) L= f(2) — L2 (bf) ().

In [34], the result of [26] was extended from (—A) to the more general operator L as above.
More precisely, it was shown in [34] that if b € BMO(R"), then the commutator operator
[b, L=%/?] is bounded from L,(R") to Ly(R") for 1 < p < ¢ < oo and 1/qg = 1/p — a/n. Then
form Theorem 4.5 we get the following assertion.

Theorem 5.4. Let the condition (5.1) be satisfied. Suppose that 0 < o <n, 1 <p < n/a,
be C’BMOIE;?A}(R”), 0<A<1/n, 1/p=1/p1+1/p2, 1/g=1/p—a/n, and 1/q1 = 1/p1 —a/n.
If (@1, 2) satisfies the condition (4.2), then [b, L=%/?] is bounded from LMéf,f)l} to LMq{zOQ}.

The property (5.1) is satisfied for large classes of differential operators (cf., for example,

[21]). Other examples of operators estimated from above by Riesz potentials can be found in
[21]. In these cases, Theorems 3.6 and 4.5 are also applicable for proving the boundedness of

those operators and commutators from LMgﬁl} to LM(}%OQ}.
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