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Let MΩ,α and IΩ,α be the fractional maximal and integral operators with rough kernels,

where 0 < α < n. We study the continuity properties of MΩ,α and IΩ,α on the generalized

local Morrey spaces LM
{x0}
p,ϕ . We prove that the commutators of these operators with

local Campanato functions are bounded. Bibliography: 34 titles.

1 Introduction

For x ∈ R
n and r > 0 we denote by B(x, r) the open ball centered at x with radius r and by

|B(x, r)| the Lebesgue measure of B(x, r). Let Ω ∈ Ls(Sn−1) be homogeneous of degree zero on

R
n, where Sn−1 denotes the unit sphere in R

n (n � 2) equipped with the normalized Lebesgue

measure dσ and s > 1. For any 0 < α < n the fractional integral operator with rough kernel

IΩ,α is defined by

IΩ,αf(x) =

∫

Rn

Ω(x− y)

|x− y|n−α
f(y)dy

and the related fractional maximal operator with rough kernel MΩ,α is defined by

MΩ,αf(x) = sup
t>0

|B(x, t)|−1+α
n

∫

B(x,t)

|Ω(x− y)| |f(y)|dy.

If α = 0, then MΩ ≡ MΩ,0 is the Hardy–Littlewood maximal operator with rough kernel. If

Ω ≡ 1, it is obvious that IΩ,α is the Riesz potential Iα and MΩ,α is the maximal operator Mα.

Theorem A. Suppose that Ω ∈ Ls(S
n−1), 1 < s � ∞, is homogeneous of degree zero,

0 < α < n, 1 � p < n/α, and 1/q = 1/p−α/n. If s′ � p or q < s, then the operators MΩ,α and

IΩ,α are bounded from Lp(R
n) to Lq(R

n) for p > 1. If q < s, then the operators MΩ,α and IΩ,α

are bounded from L1(R
n) to WLq(R

n) for p = 1.
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Let b be a locally integrable function on R
n. For 0 < α < n we define the commutators

generated by fractional maximal and integral operators with rough kernels and b as follows:

MΩ,b,α(f)(x) = sup
t>0

|B(x, t)|−1+α
n

∫

B(x,t)

|b(x)− b(y)||f(y)||Ω(x− y)|dy,

[b, IΩ,α]f(x) = b(x)IΩ,αf1(x)− IΩ,α(bf)(x) =

∫

Rn

Ω(x− y)

|x− y|n−α
[b(x)− b(y)]f(y)dy.

Theorem B. Suppose that Ω ∈ Ls(S
n−1), 1 < s � ∞, is homogeneous of degree zero,

0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n, and b ∈ BMO(Rn). If s′ � p or q < s, then the

operators MΩ,b,α and [b, IΩ,α] are bounded from Lp(R
n) to Lq(R

n).

The classical Morrey spaces Mp,λ were first introduced by Morrey in [1] to study the local

behavior of solutions to second order elliptic partial differential equations. For the boundedness

of the Hardy–Littlewood maximal operator, the fractional integral operator, and the Calderón-

Zygmund singular integral operator on these spaces, we refer the readers to [2]–[4]. Properties

and applications of classical Morrey spaces can be found in [5]–[8] (cf. also the references therein).

In this paper, we establish the boundedness of the operators IΩ,α from generalized local

Morrey spaces LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 , where 1 < p < q < ∞, 1/p − 1/q = α/n, and from the

space LM
{x0}
1,ϕ1

to the weak space WLM
{x0}
q,ϕ2 , 1 < q < ∞, 1 − 1/q = α/n. In the case b ∈

CBMOp2 , we find sufficient conditions on the pair (ϕ1, ϕ2) that ensure the boundedness of the

commutator operators [b, IΩ,α] from LM
{x0}
p1,ϕ1 to LM

{x0}
q,ϕ2 , where 1 < p < ∞, 1/p = 1/p1 + 1/p2,

1/q = 1/p− α/n, 1/q1 = 1/p1 − α/n.

We write A � B if A � CB, where C is a positive constant independent of appropriate

quantities. If A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2 Generalized Local Morrey Spaces

It is convenient to define a generalized Morrey space as follows.

Definition 2.1. Let ϕ(x, r) be a positive measurable function on R
n × (0,∞), and let

1 � p < ∞. The space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−1/p ‖f‖Lp(B(x,r))

is called the generalized Morrey space and is denoted by Mp,ϕ ≡ Mp,ϕ(R
n). The weak generalized

Morrey space WMp,ϕ ≡ WMp,ϕ(R
n) is introduced as the space of all functions f ∈ WLloc

p (Rn)

such that

‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−1/p ‖f‖WLp(B(x,r)) < ∞.

According to Definition 2.1, we recover the Morrey space Mp,λ and weak Morrey space

WMp,λ under the choice ϕ(x, r) = r(λ−n)/p:

Mp,λ = Mp,ϕ

∣∣
ϕ(x,r)=r(λ−n)/p , WMp,λ = WMp,ϕ

∣∣
ϕ(x,r)=r(λ−n)/p .
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Definition 2.2. Let ϕ(x, r) be a positive measurable function on R
n × (0,∞), and let

1 � p < ∞. The space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖LMp,ϕ = sup
r>0

ϕ(0, r)−1 |B(0, r)|−1/p ‖f‖Lp(B(0,r))

is called the generalized local Morrey space and is denoted by LMp,ϕ ≡ LMp,ϕ(R
n). The weak

generalized Morrey space WLMp,ϕ ≡ WLMp,ϕ(R
n) is introduced as the space of all functions

f ∈ WLloc
p (Rn) such that

‖f‖WLMp,ϕ = sup
r>0

ϕ(0, r)−1 |B(0, r)|−1/p ‖f‖WLp(B(0,r)) < ∞.

Definition 2.3. Let ϕ(x, r) be a positive measurable function on R
n × (0,∞), and let

1 � p < ∞. For any fixed x0 ∈ R
n the generalized local Morrey space LM

{x0}
p,ϕ ≡ LM

{x0}
p,ϕ (Rn) is

the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖
LM

{x0}
p,ϕ

= ‖f(x0 + ·)‖LMp,ϕ

and the weak generalized Morrey space WLM
{x0}
p,ϕ ≡ WLM

{x0}
p,ϕ (Rn) is the space of all functions

f ∈ WLloc
p (Rn) such that

‖f‖
WLM

{x0}
p,ϕ

= ‖f(x0 + ·)‖WLMp,ϕ < ∞.

According to Definition 2.3, we recover the local Morrey space LM
{x0}
p,λ and weak local Morrey

space WLM
{x0}
p,λ under the choice ϕ(x0, r) = r(λ−n)/p:

LM
{x0}
p,λ = LM{x0}

p,ϕ

∣∣
ϕ(x0,r)=r(λ−n)/p , WLM

{x0}
p,λ = WLM{x0}

p,ϕ

∣∣
ϕ(x0,r)=r(λ−n)/p .

Wiener [9, 10] looked for a way to describe the behavior of a function at infinity. The

conditions he considered were related to appropriate weighted Lq spaces. Beurling [11] extended

this idea and defined a pair of dual Banach spaces Aq and Bq′ , where 1/q + 1/q′ = 1. To be

precise, Aq is a Banach algebra with respect to convolution expressed as the union of certain

weighted Lq space and Bq′ is expressed as the intersection of the corresponding weighted Lq′

spaces. Feichtinger [12] observed that the space Bq can be described by

‖f‖Bq
= sup

k�0
2
− kn

q ‖fχk‖Lq(Rn), (2.1)

where χ0 is the characteristic function of the unit ball {x ∈ R
n : |x| � 1} and χk is the

characteristic function of the annulus {x ∈ R
n : 2k−1 < |x| � 2k}, k = 1, 2, . . .. By duality, the

space Aq(R
n), called the Beurling algebra, can be described by

‖f‖Aq
=

∞∑
k=0

2
− kn

q′ ‖fχk‖Lq(Rn). (2.2)

Let Ḃq(R
n) and Ȧq(R

n) be homogeneous versions of Bq(R
n) and Aq(R

n) by taking k ∈ Z in

(2.1) and (2.2) instead of k � 0 there. If λ < 0 or λ > n, then LM
{x0}
p,λ (Rn) = Θ, where Θ is the
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set of all functions equivalent to 0 on R
n. Note that LMp,0(R

n) = Lp(R
n), LMp,n(R

n) = Ḃp(R
n),

Ḃp,μ = LMp,ϕ

∣∣
ϕ(0,r)=rμn , and WḂp,μ = WLMp,ϕ

∣∣
ϕ(0,r)=rμn .

To study relationships between central BMO spaces and Morrey spaces, Alvarez, Guzman-

Partida, and Lakey [13] introduced λ-central bounded mean oscillation spaces and central Morrey

spaces Ḃp,μ(R
n) ≡ LMp,n+npμ(R

n), μ ∈ [−1/p, 0]. If μ < −1/p or μ > 0, then Ḃp,μ(R
n) = Θ.

Note that Ḃp,−1/p(R
n) = Lp(R

n) and Ḃp,0(R
n) = Ḃp(R

n). The weak central Morrey spaces is

defined by WḂp,μ(R
n) ≡ WLMp,n+npμ(R

n).

Inspired by the aforesaid, we consider the boundedness of fractional integral operators with

rough kernels on generalized local Morrey spaces and give the central bounded mean oscillation

estimates for their commutators.

3 Fractional Integral Operators with Rough Kernels in LM
{x0}
p,ϕ

In this section, we use the following assertion about the boundedness of the weighted Hardy

operator

H∗
wg(t) :=

∞∫

t

g(s)w(s)ds, 0 < t < ∞,

where w is a fixed function nonnegative and measurable on (0,∞). In the case w = 1, it was

proved in [14].

Theorem 3.1. Let v1, v2, and w be positive almost everywhere and measurable functions

on (0,∞). Then

ess sup
t>0

v2(t)H
∗
wg(t) � C ess sup

t>0
v1(t)g(t) (3.1)

for some C > 0 and all nonnegative nondecreasing g on (0,∞) if and only if

B := ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sups<τ<∞ v1(τ)
< ∞. (3.2)

Moreover, if C∗ is the minimal value of C in (3.1), then C∗ = B.

Remark 3.2. In (3.1) and (3.2) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

Proof of Theorem 3.1. Sufficiency. Assume that (3.2) holds. If F , G are nonnegative

functions on (0,∞) and F is nondecreasing, then

ess sup
t>0

F (t)G(t) = ess sup
t>0

F (t) ess sup
s>t

G(s), t > 0. (3.3)

By (3.3), we have

ess sup
t>0

v2(t)H
∗
wg(t) = ess sup

t>0
v2(t)

∞∫

t

g(s)w(s)
ess sups<τ<∞ v1(τ)

ess sups<τ<∞ v1(τ)
ds

� ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sups<τ<∞ v1(τ)
ess sup

t>0
g(t) ess sup

t<τ<∞
v1(τ)
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= ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sups<τ<∞ v1(τ)
ess sup

t>0
g(t)v1(t) � B ess sup

t>0
g(t)v1(t).

Necessity. Assume that the inequality (3.1) holds. The function

g(t) =
1

ess supt<τ<∞ v1(τ)
, t > 0,

is nonnegative and nondecreasing on (0,∞). Thus,

B = ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sups<τ<∞ v1(τ)
� C ess sup

t>0

v1(t)

ess supt<τ<∞ v1(τ)
� C.

Hence C∗ = B.

In [15], the following assertion was proved by using the fractional integral operator with

rough kernel IΩ,α. It contains the result of [16, 17].

Theorem 3.3. Suppose that Ω ∈ Ls(S
n−1), 1 < s � ∞, is homogeneous of degree zero.

Suppose that 0 < α < n, 1 � s′ < p < n/α, 1/q = 1/p−α/n, and ϕ(x, r) satisfies the conditions

c−1ϕ(x, r) � ϕ(x, t) � c ϕ(x, r) (3.4)

if r � t � 2r, where c (� 1) is independent of t, r, x ∈ R
n and

∞∫

r

tαpϕ(x, t)p
dt

t
� C rαpϕ(x, r)p, (3.5)

where C is independent of x and r. Then the operators MΩ,α and IΩ,α are bounded from Mp,ϕ

to Mq,ϕ.

The following assertion, containing the results of [16, 17], was proved in [18, 19] (cf. also [14]

and [20]–[24]).

Theorem 3.4. Suppose that 0 < α < n, 1 � p < n/α, 1/q = 1/p − α/n, and (ϕ1, ϕ2)

satisfies the condition
∞∫

r

tα−1ϕ1(0, t)dt � C ϕ2(0, r), (3.6)

where C is independent of r. Then the operators Mα and Iα are bounded from LMp,ϕ1 to LMq,ϕ2

for p > 1 and from LM1,ϕ1 to WLMq,ϕ2 for p = 1.

Lemma 3.5. Suppose that x0 ∈ R
n and Ω ∈ Ls(S

n−1), 1 < s � ∞, is homogeneous of

degree zero. Suppose that 0 < α < n, 1 � p < n/α, and 1/q = 1/p − α/n. If p > 1 and s′ � p

or q < s, then

‖IΩ,αf‖Lq(B(x0,r)) � r
n
q

∞∫

2r

t
−n

q
−1‖f‖Lp(B(x0,t))dt
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for any ball B(x0, r) and all f ∈ Lloc
p (Rn). Moreover, if p = 1 < q < s, then

‖IΩ,αf‖WLq(B(x0,r)) � r
n
q

∞∫

2r

t
−n

q
−1‖f‖L1(B(x0,t))dt (3.7)

for any ball B(x0, r) and all f ∈ Lloc
1 (Rn).

Proof. Suppose that 0 < α < n, 1 � s′ � p < n/α, and 1/q = 1/p − α/n. We denote by

B = B(x0, r) the ball centered at x0 with radius r. Representing f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ �
(2B)

(y), r > 0, (3.8)

we have

‖IΩ,αf‖Lq(B) � ‖IΩ,αf1‖Lq(B) + ‖IΩ,αf2‖Lq(B).

Since f1 ∈ Lp(R
n), IΩ,αf1 ∈ Lq(R

n), and IΩ,α is bounded from Lp(R
n) to Lq(R

n), it follows that

‖IΩ,αf1‖Lq(B) � ‖IΩ,αf1‖Lq(Rn) � C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where the constant C > 0 is independent of f .

It is clear that x ∈ B and y ∈ �
(2B) imply

1

2
|x0 − y| � |x− y| � 3

2
|x0 − y|.

We get

|IΩ,αf2(x)| � 2n−αc1

∫

�(2B)

|f(y)||Ω(x− y)|
|x0 − y|n−α

dy.

By the Fubini theorem,

∫

�(2B)

|f(y)||Ω(x− y)|
|x0 − y|n−α

dy ≈

∫

�(2B)

|f(y)||Ω(x− y)|
∞∫

|x0−y|

dt

tn+1−α
dy

≈

∞∫

2r

∫

2r�|x0−y|�t

|f(y)||Ω(x− y)|dy dt

tn+1−α
�

∞∫

2r

∫

B(x0,t)

|f(y)||Ω(x− y)|dy dt

tn+1−α
.

Applying the Hölder inequality, we get

∫

�
(2B)

|f(y)||Ω(x− y)|
|x0 − y|n−α

dy �
∞∫

2r

‖f‖Lp(B(x0,t)) ‖Ω(· − y)‖Ls(B(x0,r)) |B(x0, t)|1−1/p− 1
s

dt

tn+1−α

�
∞∫

2r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

. (3.9)
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Moreover, for all p ∈ [1,∞)

‖IΩ,αf2‖Lq(B) � r
n
q

∞∫

2r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

. (3.10)

Thus,

‖IΩ,αf‖Lq(B) � ‖f‖Lp(2B) + r
n
q

∞∫

2r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

.

On the other hand,

‖f‖Lp(2B) ≈ r
n
q ‖f‖Lp(2B)

∞∫

2r

dt

t
n
q
+1

� r
n
q

∞∫

2r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

.

Thus,

‖IΩ,αf‖Lq(B) � r
n
q

∞∫

2r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

.

For 1 < q < s the Fubini theorem and Minkowski inequality yield

‖IΩ,αf2‖Lq(B) �
(∫

B

∣∣∣
∞∫

2r

∫

B(x0,t)

|f(y)||Ω(x− y)|dy dt

tn+1−α

∣∣∣q
)1/q

�
∞∫

2r

∫

B(x0,t)

|f(y)| ‖Ω(· − y)‖Lq(B)dy
dt

tn+1−α

� r
n
q
−n

s

∞∫

2r

∫

B(x0,t)

|f(y)| ‖Ω(· − y)‖Ls(B)dy
dt

tn+1−α

� r
n
q

∞∫

2r

‖f‖L1(B(x0,t))
dt

tn+1−α
� r

n
q

∞∫

2r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

. (3.11)

For p = 1 < q < s � ∞ from the weak (1, q) boundedness of IΩ,α and (3.11) it follows that

‖IΩ,αf1‖WLq(B) � ‖IΩ,αf1‖WLq(Rn) � ‖f1‖L1(Rn)

= ‖f‖L1(2B) � r
n
q

∞∫

2r

‖f‖L1(B(x0,t))
dt

t
n
q
+1

. (3.12)

Then from (3.10) and (3.12) we get the inequality (3.7).

Theorem 3.6. Suppose that x0 ∈ R
n and Ω ∈ Ls(S

n−1), 1 < s � ∞, is homogeneous of

degree zero. Suppose that 0 < α < n, 1 � p < n/α, 1/q = 1/p − α/n, and s′ � p or q < s. If

(ϕ1, ϕ2) satisfies the condition

∞∫

r

ess inf
t<τ<∞ϕ1(x0, τ)τ

n
p

t
n
q
+1

dt � C ϕ2(x0, r), (3.13)
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where C is independent of r, then the operators MΩ,α and IΩ,α are bounded from LM
{x0}
p,ϕ1 to

LM
{x0}
q,ϕ2 for p > 1 and from LM

{x0}
1,ϕ1

to WLM
{x0}
q,ϕ2 for p = 1. Moreover, for p > 1

‖MΩ,αf‖LM{x0}
q,ϕ2

� ‖IΩ,αf‖LM{x0}
q,ϕ2

� ‖f‖
LM

{x0}
p,ϕ1

and for p = 1

‖MΩ,αf‖WLM
{x0}
q,ϕ2

� ‖IΩ,αf‖WLM
{x0}
q,ϕ2

� ‖f‖
LM

{x0}
1,ϕ1

.

Proof. By Lemma 3.5 and Theorem 3.1 with v2(r) = ϕ2(x0, r)
−1, v1(r) = ϕ1(x0, r)

−1r
−n

p ,

and w(r) = r
−n

q , we have

‖IΩ,αf‖LM{x0}
q,ϕ2

� sup
r>0

ϕ2(x0, r)
−1

∞∫

r

‖f‖Lp(B(x0,t))
dt

t
n
q
+1

� sup
r>0

ϕ1(x0, r)
−1 r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖

LM
{x0}
p,ϕ1

for p > 1 and for p = 1

‖IΩ,αf‖WLM
{x0}
q,ϕ2

� sup
r>0

ϕ2(x0, r)
−1

∞∫

r

‖f‖L1(B(x0,t))
dt

t
n
q
+1

� sup
r>0

ϕ1(x0, r)
−1 r−n ‖f‖Lp(B(x0,r)) = ‖f‖

LM
{x0}
1,ϕ1

. �

Corollary 3.7. Suppose that Ω ∈ Ls(S
n−1), 1 < s � ∞, is homogeneous of degree zero.

Suppose that 0 < α < n, 1 � p < n/α, 1/q = 1/p − α/n, and s′ � p or q < s. If (ϕ1, ϕ2)

satisfies the condition
∞∫

r

ess inf
t<τ<∞ϕ1(x, τ)τ

n
p

t
n
q
+1

dt � C ϕ2(x, r),

where C is independent of x and r, then the operators MΩ,α and IΩ,α are bounded from Mp,ϕ1

to Mq,ϕ2 for p > 1 and from M1,ϕ1 to WMq,ϕ2 for p = 1. Moreover, for p > 1

‖MΩ,αf‖Mq,ϕ2
� ‖IΩ,αf‖Mq,ϕ2

� ‖f‖Mp,ϕ1

and for p = 1

‖MΩ,αf‖WMq,ϕ2
� ‖IΩ,αf‖WMq,ϕ2

� ‖f‖M1,ϕ1
.

Corollary 3.8. Suppose that 1 � p < ∞, 0 < α < n/p, 1/q = 1/p − α/n, and (ϕ1, ϕ2)

satisfies the condition (3.13). Then the operators Mα and Iα are bounded from LM
{x0}
p,ϕ1 to

LM
{x0}
q,ϕ2 for p > 1 and from M

{x0}
1,ϕ1

to WLM
{x0}
q,ϕ2 for p = 1.

Remark 3.9. Corollary 3.7 was proved in [24] in the case s = ∞. The condition (3.13) in

Theorem 3.6 is weaker than the condition (3.6) in Theorem 3.4 (cf. [24]).
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4 Commutators of Fractional Integral Operators with
Rough Kernels in LM

{x0}
p,ϕ

Let T be a linear operator. For a function b we define the commutator [b, T ] by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x)

for any suitable function f . If T̃ is a Calderón-Zygmund singular integral operator, a well-known

result of Coifman, Rochberg, and Weiss [25] states that the commutator [b, T̃ ]f = b T̃ f − T̃ (bf)

is bounded on Lp(R
n), 1 < p < ∞, if and only if b ∈ BMO(Rn). The commutator of Calderón–

Zygmund operators plays an important role for studying the regularity of solutions of elliptic

partial differential equations of second order (cf., for example, [5]–[7]). Chanillo [26] proved that

the commutator [b, Iα]f = b Iαf − Iα(bf) is bounded from Lp(R
n) to Lq(R

n) (1 < p < q < ∞,

1/q = 1/p− α/n) if and only if b ∈ BMO(Rn).

Local Campanato spaces are defined is as follows.

Definition 4.1. Let 1 � q < ∞, and let 0 � λ < 1/n. A function f ∈ Lloc
q (Rn) belong to

the central Campanato space CBMO
{x0}
q,λ (Rn) if

‖f‖
CBMO

{x0}
q,λ

= sup
r>0

(
1

|B(x0, r)|1+λq

∫

B(x0,r)

|f(y)− fB(x0,r)|qdy
)1/q

< ∞,

where

fB(x0,r) =
1

|B(x0, r)|
∫

B(x0,r)

f(y)dy.

We define

CBMO
{x0}
q,λ (Rn) =

{
f ∈ Lloc

q (Rn) : ‖f‖
CBMO

{x0}
q,λ

< ∞}
.

Lu and Yang [27] introduced the central BMO space CBMOq(R
n) = CBMO

{0}
q,0 (R

n). Note

that BMO(Rn) ⊂ CBMO
{x0}
q (Rn), 1 � q < ∞. The space CBMO

{x0}
q (Rn) can be regarded

as a local version of the space BMO(Rn) of bounded mean oscillation at the origin. However,

these spaces have quite different properties. The classical John–Nirenberg inequality shows that

functions in BMO(Rn) are locally exponentially integrable. This implies that for any 1 � q < ∞
functions in BMO(Rn) can be described by means of the condition

sup
r>0

( 1

|B|
∫

B

|f(y)− fB|qdy
)1/q

< ∞,

where B denotes an arbitrary ball in R
n. However, the space CBMO

{x0}
q (Rn) depends on q. If

q1 < q2, then CBMO
{x0}
q2 (Rn) � CBMO

{x0}
q1 (Rn). Therefore, there is no analogy of the famous

John — Nirenberg inequality of BMO(Rn) for the space CBMO
{x0}
q (Rn). One can imagine

that the behavior of CBMO
{x0}
q (Rn) may be quite different from that of BMO(Rn).

Lemma 4.2. Suppose that b is a function in CBMO
{x0}
q,λ (Rn), 1 � q < ∞, 0 � λ < 1/n,

and r1, r2 > 0. Then
(

1

|B(x0, r1)|1+λq

∫

B(x0,r1)

|b(y)− bB(x0,r2)|qdy
) 1

q

� C
(
1 +

∣∣∣ ln r1
r2

∣∣∣
)
‖b‖

CBMO
{x0}
q,λ

,
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where C > 0 is independent of b, r1, and r2.

In [15], the following assertion was proved for the commutators of fractional integral operators

with rough kernels. It contains the result of [16, 17].

Theorem 4.3. Suppose that x0 ∈ R
n, Ω ∈ Ls(S

n−1), 1 < s � ∞, is homogeneous of degree

zero, and b ∈ BMO(Rn). Suppose that 0 < α < n, 1 � s′ < p < n/p, 1/q = 1/p − α/n, and

ϕ(x, r) satisfies (3.4) and (3.5). Then the operator [b, IΩ,α] is bounded from Mp,ϕ to Mq,ϕ.

Lemma 4.4. Suppose that x0 ∈ R
n and Ω ∈ Ls(S

n−1), 1 < s � ∞, is homogeneous of

degree zero. Suppose that 0 < α < n, 1 < p < n/α, b ∈ CBMO
{x0}
p2,λ

(Rn), 0 � λ < 1/n,

1/p = 1/p1 + 1/p2, 1/q = 1/p− α/n, 1/q1 = 1/p1 − α/n. Then for s′ � p or q1 < s

‖[b, IΩ,α]f‖Lq(B(x0,r)) � ‖b‖
CBMO

{x0}
p2,λ

r
n
q

∞∫

2r

(
1 + ln

t

r

)
t
nλ− n

q1
−1‖f‖Lp1 (B(x0,t))dt

for any ball B(x0, r) and all f ∈ Lloc
p1 (R

n).

Proof. Suppose that 1 < p < ∞, 0 < α < n/p, 1/p = 1/p1 + 1/p2, 1/q = 1/p − α/n, and

1/q1 = 1/p1 − α/n. As in the proof of Lemma 3.5, we represent f in the form (3.8) and have

[b, IΩ,α]f(x) =
(
b(x)− bB

)
IΩ,αf1(x)− IΩ,α

((
b(·)− bB

)
f1

)
(x)

+
(
b(x)− bB

)
IΩ,αf2(x)− IΩ,α

((
b(·)− bB

)
f2

)
(x) ≡ J1 + J2 + J3 + J4.

Hence

‖[b, IΩ,α]f‖Lq(B) � ‖J1‖Lq(B) + ‖J2‖Lq(B) + ‖J3‖Lq(B) + ‖J4‖Lq(B).

By the boundedness of [b, IΩ,α] from Lp1(R
n) to Lq1(R

n), it follows that

‖J1‖Lq(B) � ‖(b(·)− bB
)
[b, IΩ,α]f1(·)‖Lq(Rn)

� ‖(b(·)− bB
)‖Lp2 (R

n)[b, IΩ,α]f1(·)‖Lq1 (R
n) � C‖b‖

CBMO
{x0}
p2,λ

r
n
p2

+nλ ‖f1‖Lp1 (R
n)

= C‖b‖
CBMO

{x0}
p2,λ

r
n
p2

+ n
q1

+nλ ‖f‖Lp1 (2B)

∞∫

2r

t
−1− n

q1 dt

� ‖b‖
CBMO

{x0}
p2,λ

r
n
q
+nλ

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
q1 dt.

For J2 we have

‖J2‖Lq(B) � ‖[b, IΩ,α]
(
b(·)− bB

)
f1‖Lq(Rn) � ‖(b(·)− bB)f1|‖Lp(Rn)

� ‖b(·)− bB‖Lp2 (R
n)‖f1‖Lp1 (R

n) � ‖b‖
CBMO

{x0}
p2,λ

r
n
p2

+ n
q1

+nλ ‖f‖Lp1 (2B)

∞∫

2r

t
−1− n

q1 dt

� ‖b‖
CBMO

{x0}
p2,λ

r
n
p
+nλ

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
q1 dt.
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It is known that x ∈ B and y ∈ �
(2B) for J3, which implies 1

2 |x0 − y| � |x− y| � 3
2 |x0 − y|.

For s′ � p the Fubini theorem and Hölder inequality yield

|IΩ,αf2(x)| � c0

∫

�(2B)

|Ω(x− y)| |f(y)|
|x0 − y|n−α

dy

≈
∞∫

2r

∫

2r<|x0−y|<t

|Ω(x− y)||f(y)|dy t−1−n−αdt

�
∞∫

2r

∫

B(x0,t)

|Ω(x− y)||f(y)|dy t−1−n−αdt

�
∞∫

2r

‖f‖Lp1 (B(x0,t)) ‖Ω(x− ·)‖Ls(B(x0,t)) |B(x0, t)|1−
1
p1

− 1
s t

−1− n
p1

−α
dt

�
∞∫

2r

‖f‖Lp1 (B(x0,t)) t
−1− n

q1 dt.

Hence

‖J3‖Lq(B) = ‖(b(·)− bB
)
IΩ,αf2(·)‖Lq(Rn)

� ‖(b(·)− bB
)‖Lq(Rn)

∞∫

2r

‖f‖Lp1 (B(x0,t)) t
−1− n

q1 dt

� ‖(b(·)− bB
)‖Lp2 (R

n) r
n
q1

∞∫

2r

‖f‖Lp1 (B(x0,t)) t
−1− n

q1 dt

� ‖b‖
CBMO

{x0}
p2,λ

r
n
q
+nλ

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
q1 dt.

For q1 < s the Fubini theorem and Minkowski inequality yield

‖J3‖Lq(B) �
( ∫

B

∣∣
∞∫

2r

∫

B(x0,t)

|f(y)||b(x)− bB||Ω(x− y)|dy dt

tn−α+1

∣∣q
) 1

q

�
∞∫

2r

∫

B(x0,t)

|f(y)| ‖(b(·)− bB)Ω(· − y)‖Lq(B)dy
dt

tn−α+1

�
∞∫

2r

∫

B(x0,t)

|f(y)| ‖b(·)− bB‖Lp2 (B) ‖Ω(· − y)‖Lq1 (B)dy
dt

tn−α+1

� ‖b‖
CBMO

{x0}
p2,λ

r
n
p2

+nλ |B| 1
q1

− 1
s

∞∫

2r

∫

B(x0,t)

|f(y)| ‖Ω(· − y)‖Ls(B)dy
dt

tn−α+1
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� ‖b‖
CBMO

{x0}
p2,λ

r
n
q
+nλ

∞∫

2r

‖f‖L1(B(x0,t))
dt

tn−α+1

� ‖b‖
CBMO

{x0}
p2,λ

r
n
q
+nλ

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))

dt

t
n
q1

+1
. (4.1)

For x ∈ B the Fubini theorem and Hölder inequality yield

|IΩ,α

((
b(·)− bB

)
f2

)
(x)| �

∫

�
(2B)

|b(y)− bB| |Ω(x− y)| |f(y)|
|x− y|n−α

dy

�
∫

�(2B)

|b(y)− bB| |Ω(x− y)| |f(y)|
|x0 − y|n−α

dy

≈
∞∫

2r

∫

2r<|x0−y|<t

|b(y)− bB| |Ω(x− y)| |f(y)|dy tα−n−1dt

�
∞∫

2r

∫

B(x0,t)

|b(y)− bB(x0,t)||Ω(x− y)| |f(y)|dy dt

tn−α+1

+

∞∫

2r

|bB(x0,r) − bB(x0,t)|
∫

B(x0,t)

|Ω(x− y)| |f(y)|dy dt

tn−α+1

�
∞∫

2r

‖(b(·)− bB(x0,t))f‖Lp(B(x0,t)) ‖Ω(· − y)‖Ls(B(x0,t)) |B(x0, t)|1−1/p− 1
s

dt

tn−α+1

+

∞∫

2r

|bB(x0,r) − bB(x0,t)|‖f‖Lp1 (B(x0,t)) ‖Ω(· − y)‖Ls(B(x0,t)) |B(x0, t)|1−
1
p1

− 1
s tα−n−1dt

�
∞∫

2r

‖b(·)− bB(x0,t)‖Lp2 (B(x0,t))‖f‖Lp1 (B(x0,t))t
−1− n

q1 dt

+ ‖b‖
CBMO

{x0}
p2,λ

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t)) t

nλ−1− n
q1 dt

� ‖b‖
CBMO

{x0}
p2,λ

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t)) t

nλ−1− n
q1 dt.

Then for J4 we have

‖J4‖Lq(B) � ‖IΩ,α

(
b(·)− bB

)
f2‖Lq(Rn)

� ‖b‖
CBMO

{x0}
p2,λ

r
n
q

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

nλ−1− n
q1 dt.
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For q1 < s the Fubini theorem and Minkowski inequality yield

‖IΩ,αf2‖Lq(B) �
( ∫

B

∣∣∣
∞∫

2r

∫

B(x0,t)

|f(y)||Ω(x− y)|dy dt

tn−a+1

∣∣q
) 1

q

�
∞∫

2r

∫

B(x0,t)

|f(y)| ‖Ω(· − y)‖Lq(B)dy
dt

tn−a+1

� |B| 1q− 1
s

∞∫

2r

∫

B(x0,t)

|f(y)| ‖Ω(· − y)‖Ls(B)dy
dt

tn−a+1

� r
n
q

∞∫

2r

‖f‖L1(B(x0,t))
dt

tn−a+1
� r

n
q

∞∫

2r

‖f‖Lp1 (B(x0,t))
dt

t
n
q1

+1
.

Then we combine the above estimates and complete the proof of the lemma.

Theorem 4.5. Suppose that x0 ∈ R
n and Ω ∈ Ls(S

n−1), 1 < s � ∞, is homogeneous

of degree zero. Suppose that 0 < α < n, 1 < p < n/α, b ∈ CBMO
{x0}
p2,λ

(Rn), 0 � λ < 1/n,

1/p = 1/p1+1/p2, 1/q = 1/p−α/n, 1/q1 = 1/p1−α/n. If for s′ � p or q1 < s the pair (ϕ1, ϕ2)

satisfies the condition

∞∫

r

(
1 + ln

t

r

) ess inf
t<τ<∞ϕ1(x0, τ)τ

n
p

t
n
q
−nλ+1

dt � C ϕ2(x0, r), (4.2)

where C is independent of r, then the operators MΩ,b,α and [b, IΩ,α] are bounded from LM
{x0}
p,ϕ1

to LM
{x0}
q,ϕ2 . Moreover

‖MΩ,b,αf‖LM{x0}
q,ϕ2

� ‖[b, IΩ,α]f‖LM{x0}
q,ϕ2

� ‖b‖
CBMO

{x0}
p2,λ

‖f‖
LM

{x0}
p,ϕ1

.

Proof. The statement of Theorem 4.5 follows from Lemma 4.4 and Theorem 3.1 in the same

manner as Theorem 3.6.

For the sublinear commutator of the fractional maximal operator Mb,α and the linear com-

mutator of the Riesz potential [b, Iα] from Theorem 4.5 we obtain the following new results.

Corollary 4.6. Suppose that 0 < α < n, 1 < p < n/α, b ∈ CBMO
{x0}
p2,λ

(Rn), 0 � λ < 1/n,

1/p = 1/p1 + 1/p2, 1/q = 1/p − α/n, 1/q1 = 1/p1 − α/n, and (ϕ1, ϕ2) satisfies the condition

(4.2). Then the operators Mb,α and [b, Iα] are bounded from LM
{x0}
p1,ϕ1 to LM

{x0}
q,ϕ2 .

5 Some Applications

In this section, we apply Theorems 3.6 and 4.5 to some particular operators such as the

Marcinkiewicz operator and fractional powers of some analytic semigroups.

5.1. Marcinkiewicz operator. Let Sn−1 = {x ∈ R
n : |x| = 1} be the unit sphere in R

n

equipped with the Lebesgue measure dσ. Suppose that x0 ∈ R
n and Ω ∈ Ls(S

n−1), 1 < s � ∞,
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is homogeneous of degree zero and satisfy the cancellation condition. In 1958, Stein [28] defined

the Marcinkiewicz integral of higher dimension μΩ as

μΩ(f)(x) =

( ∞∫

0

|FΩ,t(f)(x)|2 dt
t3

)1/2

,

where

FΩ,t(f)(x) =

∫

|x−y|�t

Ω(x− y)

|x− y|n−1
f(y)dy.

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been extensively studied

as a research topic and provides useful tools in harmonic analysis [29]–[32].

The Marcinkiewicz operator is defined by the formula (cf. [33])

μΩ,α(f)(x) =

( ∞∫

0

|FΩ,α,t(f)(x)|2 dt
t3

)1/2

,

where

FΩ,α,t(f)(x) =

∫

|x−y|�t

Ω(x− y)

|x− y|n−1−α
f(y)dy.

Note that μΩf = μΩ,0f .

We introduce the space

H =

{
h : ‖h‖ =

( ∞∫

0

|h(t)|2dt/t3
)1/2

< ∞
}
.

It is clear that μΩ,α(f)(x) = ‖FΩ,α,t(x)‖. By the Minkowski inequality and the conditions on Ω,

we get

μΩ,α(f)(x) �
∫

Rn

|Ω(x− y)|
|x− y|n−1−α

|f(y)|
( ∞∫

|x−y|

dt

t3

)1/2

dy � CIΩ,α(f)(x).

It is known that μΩ,α is bounded from Lp(R
n) to Lq(R

n) for p > 1 and from L1(R
n) to WLq(R

n)

for p = 1 (cf. [33]). Hence from Theorems 3.6 and 4.5 we get the following assertions.

Corollary 5.1. Let x0 ∈ R
n, and let Ω ∈ Ls(S

n−1), 1 < s � ∞, be homogeneous of

degree zero and satisfy the cancellation condition. Suppose that 0 < α < n, 1 � p < n/α,

1/q = 1/p− α/n and for s′ � p or q1 < s the pair (ϕ1, ϕ2) satisfies the condition (3.13). Then

μΩ,α is bounded from LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 for p > 1 and from M

{x0}
1,ϕ1

to WLM
{x0}
q,ϕ2 for p = 1.

Corollary 5.2. Let x0 ∈ R
n, and let Ω ∈ Ls(S

n−1), 1 < s � ∞, be homogeneous of

degree zero and satisfy the cancellation condition. Suppose that 0 < α < n, 1 < p < n/α,

b ∈ CBMO
{x0}
p2,λ

(Rn), 0 � λ < 1
n , 1/p = 1/p1 + 1/p2, 1/q = 1/p − α/n, 1/q1 = 1/p1 − α/n and

for s′ � p or q1 < s the pair (ϕ1, ϕ2) satisfies the condition (3.13). Then [a, μΩ,α] is bounded

from LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 .
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5.2. Fractional powers of the some analytic semigroups. The theorems of previous

sections can be applied to various operators which are estimated from above by Riesz potentials.

We give some examples.

Suppose that L is a linear operator on L2 that generates an analytic semigroup e−tL with

the kernel pt(x, y) satisfying the Gaussian upper bound, i.e.,

|pt(x, y)| � c1

tn/2
e−c2

|x−y|2
t (5.1)

for x, y ∈ R
n and all t > 0, where c1 and c2 > 0 are independent of x, y, and t.

For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2f(x) =
1

Γ(α/2)

∞∫

0

e−tLf(x)
dt

t−α/2+1
.

Note that if L = −� is the Laplacian on R
n, then L−α/2 is the Riesz potential Iα (cf., for

example, [30, Chapter 5]).

Theorem 5.3. Let the condition (5.1) be satisfied. Suppose that 1 � p < ∞, 0 < α < n/p,

1/q = 1/p − α/n, and the pair (ϕ1, ϕ2) satisfies the condition (3.13). Then L−α/2 is bounded

from LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 for p > 1 and from M

{x0}
1,ϕ1

to WLM
{x0}
q,ϕ2 for p = 1.

Proof. Since the semigroup e−tL has kernel pt(x, y) satisfying the condition (5.1), it follows

that (cf. [34])

|L−α/2f(x)| � Iα(|f |)(x).
By the aforementioned theorems, we have

‖L−α/2f‖
M

{x0}
q,ϕ2

� ‖Iα(|f |)‖M{x0}
q,ϕ2

� ‖f‖
M

{x0}
p,ϕ1

. �

Let b be a locally integrable function on R
n. The commutator of b and L−α/2 is defined by

[b, L−α/2]f(x) = b(x)L−α/2f(x)− L−α/2(bf)(x).

In [34], the result of [26] was extended from (−Δ) to the more general operator L as above.

More precisely, it was shown in [34] that if b ∈ BMO(Rn), then the commutator operator

[b, L−α/2] is bounded from Lp(R
n) to Lq(R

n) for 1 < p < q < ∞ and 1/q = 1/p − α/n. Then

form Theorem 4.5 we get the following assertion.

Theorem 5.4. Let the condition (5.1) be satisfied. Suppose that 0 < α < n, 1 < p < n/α,

b ∈ CBMO
{x0}
p2,λ

(Rn), 0 � λ < 1/n, 1/p = 1/p1+1/p2, 1/q = 1/p−α/n, and 1/q1 = 1/p1−α/n.

If (ϕ1, ϕ2) satisfies the condition (4.2), then [b, L−α/2] is bounded from LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 .

The property (5.1) is satisfied for large classes of differential operators (cf., for example,

[21]). Other examples of operators estimated from above by Riesz potentials can be found in

[21]. In these cases, Theorems 3.6 and 4.5 are also applicable for proving the boundedness of

those operators and commutators from LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 .
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