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We consider the Riesz potential operator Iα, on the Heisenberg group Hn in generalized

Morrey spaces Mp,ϕ(Hn) and find conditions for the boundedness of Iα as an operator

from Mp,ϕ1(Hn) to Mp,ϕ2(Hn), 1 < p < ∞, and from M1,ϕ1(Hn) to a weak Morrey

space WM1,ϕ2(Hn). The boundedness conditions are formulated it terms of Zygmund

type integral inequalities. Based on the properties of the fundamental solution of the

sub-Laplacian on Hn, we prove two Sobolev–Stein embedding theorems for generalized

Morrey and Besov–Morrey spaces. Bibliography: 40 titles.

1 Introduction

The Heisenberg group appears in quantum physics and many fields of mathematics, including

Fourier analysis, functions of several complex variables, geometry, and topology.

In this paper, we establish the boundedness of the Riesz potential on the Heisenberg group

in generalized Morrey spaces. We start with some basic results concerning the Heisenberg

group and refer the interested reader to [1]–[3] and the references therein for more details. The

(2n + 1)-dimensional Heisenberg group Hn is the Lie group with underlying manifold R
2n × R

and multiplication

(x, t)(y, s) =
(
x+ y, t+ s+ 2

n∑
j=1

(xn+jyj − xjyn+j)
)
.
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The inverse element of g = (x, t) is g−1 = (−x,−t) and the identity is denoted by e = (0, 0).

The Heisenberg group is a connected, simply connected nilpotent Lie group. We define one-

parameter dilations on Hn for r > 0 by the formula

δr(x, t) = (rx, r2t).

These dilations are group automorphisms and the Jacobian determinant is rQ, where Q = 2n+2

is the homogeneous dimension of Hn. The homogeneous norm on Hn is given by the formula

|g| = |(x, t)| = (|x|2 + |t|)1/2.
This norm satisfies the triangle inequality and leads to the left-invariant distance d(g, h) =

|g−1h|. Using this norm, we define the Heisenberg ball

B(g, r) = {h ∈ Hn : |g−1h| < r}

with center g = (x, t) and radius r and denote by
�
B(g, r) = Hn \ B(g, r) its complement. The

volume of the ball B(g, r) is Cnr
Q, where Cn is the volume of the unit ball B1:

Cn = |B(e, 1)| = 2πn+1/2Γ
(
n
2

)

(n+ 1)Γ(n)Γ
(
n+1
2

) .

Using the coordinates g = (x, t) of points in Hn, we can write the left-invariant vector fields

X1, . . . , X2n, X2n+1 on Hn equal to
∂

∂x1
, . . . ,

∂

∂x2n
,
∂

∂t
at the origin as follows:

Xj =
∂

∂xj
+ 2xn+j

∂

∂t
, Xn+j =

∂

∂xn+j
− 2xj

∂

∂t
, j = 1, . . . , n,

X2n+1 =
∂

∂t
.

These 2n+1 vector fields form a basis for the Lie algebra of Hn with the commutation relations

[Xj , Xn+j ] = −4X2n+1, j = 1, . . . , n,

whereas the other commutators vanish. The sub-Laplacian ΔHn is defined by the formula

ΔHn = −
2n∑
j=1

X2
j

and the gradient ∇Hn is defined as

∇Hn = (X1, . . . , X2n).

It is known that the sub-Laplacian operator (hypoelliptic by the Hörmander theorem [4]) plays

the same fundamental role on the group Hn as the Laplacian on R
n.

Let f be a given integrable function on a ball B(g, r) ⊂ Hn. The fractional maximal function

Mαf , 0 � α < Q, of f is defined by the formula

Mαf(g) = sup
r>0

|B(g, r)|−1+α/Q

∫

B(g,r)

|f(h)|dh.
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In the case α = 0, the fractional maximal function Mαf coincides with the Hardy–Littlewood

maximal function Mf ≡ M0f (cf. [1, 3]) and is closely related to the fractional integral

Iαf(g) =

∫

Hn

|h−1g|α−Qf(h)dh, 0 < α < Q.

The operators Mα and Iα play important role in real and harmonic analysis [1, 3, 5].

The classical Riesz potential Iα is defined on R
n by the formula

Iαf = (−Δ)−α/2f, 0 < α < n,

where Δ is the Laplacian operator. It is known, that

Iαf(x) = γ(α)−1

∫

Rn

|x− y|α−nf(y)dy ≡ Iαf(x),

where γ(α) = πn/22αΓ(α/2)/Γ(n/2 − α/2). The Riesz potential on the Heisenberg group is

defined in terms of the sub-Laplacian L = ΔHn .

Definition 1.1. For 0 < α < Q the Riesz potential Iα is defined on the Schwartz space

S(Hn) by the formula

Iαf(g) = L −α
2 f(g) ≡

∞∫

0

e−rL f(g)rα/2−1dr,

where

e−rL f(g) =
1

Γ
(
α
2

)
∫

Hn

Kr(h, g)f(h)dh

is the semigroups of the operator L .

In [6], relations between the Riesz potential and the heat kernel on the Heisenberg group are

studied. The following assertion [6, Theorem 1] yields an expression for Iα, which allows us to

discuss the boundedness of the Riesz potential.

Theorem A. Let qs(g) be the heat kernel on Hn. If 0 � α < Q, then for f ∈ S(Hn)

Iαf(g) =
1

Γ(α/2)

∞∫

0

sα/2−1qs(·)ds ∗ f(g).

The Riesz potential Iα satisfies the estimate [6, Theorem 2]

|Iαf(g)| � Iαf(g), (1.1)

which provides a suitable estimate for the Riesz potential on the Heisenberg group.

In this paper, we establish the boundedness of the Riesz potential Iα, 0 < α < Q, from

Mp,ϕ1(Hn) to Mq,ϕ2(Hn), 1 < p < q < ∞, 1/p − 1/q = α/Q, and from M1,ϕ1(Hn) to the weak

space WMq,ϕ2(Hn), 1 < q < ∞, 1 − 1/q = α/Q. We also find conditions on ϕ for the Adams

type boundedness of Iα from Mp,ϕ1/p to Mq,ϕ1/q in the case 1 < p < q < ∞ and from M1,ϕ to
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WMq,ϕ1/q in the case 1 < q < ∞. In all the cases, the boundedness conditions are expressed in

terms of Zygmund type integral inequalities for (ϕ1, ϕ2) and ϕ, without any assumption about

the monotonicity of (ϕ1, ϕ2) and ϕ in r.

As an application of the properties of the fundamental solution of sub-Laplacian L on Hn,

we prove (Theorem 6.1) the following generalized Morrey version of Sobolev inequality on Hn:

for every u ∈ C∞
0 (Hn)

‖u‖Mq,ϕ2
� C‖∇L u‖Mp,ϕ1

,

where 1 < p < q < ∞, 1/p − 1/q = 1/Q, and (ϕ1, ϕ2) satisfy the condition (5.6). In Theorem

6.3, we establish the boundedness of the operator Iα from BMs
pθ,ϕ1

(Hn) to BMs
qθ,ϕ2

(Hn), where

1 < p < q < ∞, 1/p− 1/q = α/Q, 1 � θ � ∞, 0 < s < 1, and (ϕ1, ϕ2) satisfy (5.6).

For another application, we prove (Theorem 6.5) the following Sobolev–Stein embedding

inequality in the generalized Besov–Morrey space on Hn: for every u ∈ C∞
0 (Hn)

‖u‖BMs
qθ,ϕ2

� C‖∇L u‖BMs
pθ,ϕ1

,

where, 1 < p < q < ∞, 1/p− 1/q = 1/Q, 1 � θ � ∞, 0 < s < 1, and (ϕ1, ϕ2) satisfy (5.6).

We write A � B if A � CB, where C is a positive constant C independent of appropriate

quantities. If A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2 Notation

The Morrey spaces Lp,λ(R
n), together with the weighted spaces Lp,w(R

n), play an important

role in the theory of partial differential equations. The Morrey spaces were introduced by

Morrey [7] in connection with certain problems in elliptic partial differential equations and

Calculus of Variations. Later, the Morrey spaces were applied to the study of the Navier-

Stokes equations [8, 9], the Schrödinger equations [10]–[12], elliptic problems with discontinuous

coefficients [13, 14], and the potential theory [15, 16]. More information about the Morrey spaces

can be found in [17].

Definition 2.1. Suppose that 1 � p < ∞, 0 � λ � Q, and [t]1 = min{1, t}. The generalized

Morrey space Mp,ϕ(Hn) is the set of locally integrable functions f(g), u ∈ Hn with the finite

norm

‖f‖Lp,λ
= sup

g∈Hn, τ>0

(
τ−λ

∫

B(g,τ)

|f(h)|pdh
)1/p

.

If λ = 0, then Lp,0(Hn) = Lp(Hn); if λ = Q, then Lp,Q(Hn) = L∞(Hn); if λ < 0 or λ > Q,

then Lp,λ(Hn) = Θ, where Θ is the set of all functions equivalent to 0 on Hn.

Definition 2.2 (cf. [18]). Suppose that 1 � p < ∞ and 0 � λ � Q. The weak Morrey space

WLp,λ(Hn) is the set of locally integrable functions f(g), u ∈ Hn with the finite norm

‖f‖WLp,λ
= sup

r>0
r sup
g∈Hn, τ>0

(
τ−λ |{h ∈ B(g, τ) : |f(h)| > r}| )1/p.

We note that WLp(Hn) = WLp,0(Hn), Lp,λ(Hn) ⊂ WLp,λ(Hn), and ‖f‖WLp,λ
� ‖f‖Lp,λ

.
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By the classical Hardy–Littlewood–Sobolev result, Iα is bounded from Lp(Hn) to Lq(Hn) if

and only if α = Q (1/p− 1/q) in the case 1 < p < q < ∞ and Iα is bounded from L1(Hn) to

WLq(Hn) if and only if α = Q(1− 1/q) in the case p = 1 < q < ∞.

Spanne [19] and Adams [15] proved the boundedness of Iα on R
n in the Morrey spaces

Lp,λ(R
n). This result was reproved by Chiarenza and Frasca [20]. Using the more general

results of Guliyev [21] (cf., also [18, 22, 23]), it is possible to prove the following generalization

of the results of [15, 19, 20] to the case of the Heisenberg group (cf., also [24]).

Theorem A. Suppose that 0 < α < Q, 0 � λ < Q− α, and 1 � p < (Q− λ)/α.

1. If 1 < p < (Q− λ)/α, then the condition 1/p−1/q = α/(n− λ) is necessary and sufficient

for the boundedness of the operator Iα from Lp,λ(Hn) to Lq,λ(Hn).

2. If p = 1, then the condition 1 − 1/q = α/(Q− λ) is necessary and sufficient for the

boundedness of the operator Iα from L1,λ(Hn) to WLq,λ(Hn).

If α = Q/p − Q/q, then λ = 0 and Theorem A reduces to the aforementioned Hardy–

Littlewood–Sobolev result.

We recall that for 0 < α < Q

Mαf(g) � vα/Q−1
n Iα(|f |)(g). (2.1)

Hence Theorem A implies the boundedness of the fractional maximal operator Mα, where vn =

|B(e, 1)| is the volume of the unit ball in Hn.

3 Generalized Morrey Spaces

Throughout the paper, ϕ(g, r), ϕ1(g, r), and ϕ2(g, r) are nonnegative measurable functions

on Hn × (0,∞). It is convenient to define generalized Morrey spaces as follows.

Definition 3.1. Let 1 � p < ∞. The generalized Morrey space Mp,ϕ(Hn) is the set of all

functions f ∈ Lloc
p (Hn) equipped with the norm

‖f‖Mp,ϕ = sup
u∈Hn,r>0

r−Q/p

ϕ(g, r)
‖f‖Lp(B(g,r)).

According to this definition, we recover the space Lp,λ(Hn) under the choice ϕ(g, r) = r
λ−Q

p :

Lp,λ(Hn) = Mp,ϕ(Hn)
∣∣
ϕ(g,r)=r

λ−Q
p

.

Sufficient conditions on weights ϕ1 and ϕ2 for the boundedness of a singular operator T from

Mp,ϕ1(Hn) to Mp,ϕ2(Hn) were obtained in [21, 22, 25]. In [25], the following conditions were

imposed:

c−1ϕ(g, r) � ϕ(g, τ) � c ϕ(g, r), r � τ � 2r, (3.1)

on ϕ(g, r), where c (� 1) is independent of t, r, and u ∈ Hn,

∞∫

r

ϕ(g, τ)p
dτ

τ
� C ϕ(g, r)p (3.2)
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on the maximal or singular operator, and

∞∫

r

ταpϕ(g, τ)p
dτ

τ
� C rαpϕ(g, r)p (3.3)

on the potential and fractional maximal operators, where C(> 0) is independent of r and g ∈ Hn.

The following assertion was proved in [25].

Theorem 3.1. Suppose that 1 � p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, and ϕ(g, τ)

satisfies the conditions (3.1) and (3.3). Then the operator Iα is bounded from Mp,ϕ(Hn) to

Mq,ϕ(Hn) for p > 1 and from M1,ϕ(Hn) to WMq,ϕ(Hn) for p = 1.

The following assertion, containing the results of [25], was proved in [21] (cf. also [18, 22,

23, 27, 28, 29]).

Theorem 3.2. Suppose that 1 � p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, and (ϕ1, ϕ2)

satisfy the condition
∞∫

r

ταϕ1(g, r)
dτ

τ
� C ϕ2(g, r), (3.4)

where C is independent of g and r. Then the operator Iα is bounded from Mp,ϕ1(Hn) to

Mq,ϕ2(Hn) for p > 1 and from M1,ϕ1(Hn) to WMq,ϕ2(Hn) for p = 1.

4 Maximal Operator in Mp,ϕ(Hn)

We denote by L∞,v(0,∞) the space of all functions g(t), t > 0, with the finite norm

‖g‖L∞,v(0,∞) = ess sup
t>0

v(t)g(t)

and set L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue measurable functions

on (0,∞), and let M+(0,∞) be its subset consisting of all nonnegative functions on (0,∞). We

denote by M+(0,∞;↑) the cone of all functions in M+(0,∞) that are nondecreasing on (0,∞)

and set

A =
{
ϕ ∈ M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous nonnegative function on (0,∞). We define the supremal operator Su on

g ∈ M(0,∞) by the formula

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [26].

Theorem 4.1. Let v1, v2 be nonnegative measurable functions such that

0 < ‖v1‖L∞(t,∞) < ∞ for any t > 0,

and let u be a continuous nonnegative function on (0,∞). Then the operator Su is bounded from

L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if
∥∥v2Su

(‖v1‖−1
L∞(·,∞)

)∥∥
L∞(0,∞)

< ∞. (4.1)
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Sufficient conditions on ϕ for the boundedness of M and Mα in generalized Morrey spaces

Mp,ϕ(Hn) were obtained in [21, 25, 27, 28].

Lemma 4.1. Let 1 � p < ∞. Then for p > 1 and any ball B = B(g, r)

‖Mf‖Lp(B(g,r)) � ‖f‖Lp(B(g,2r)) + rQ/p sup
τ>2r

τ−Q‖f‖L1(B(g,τ)) (4.2)

for all f ∈ Lloc
p (Hn). Moreover, for p = 1

‖Mf‖WL1(B(g,r)) � ‖f‖L1(B(g,2r)) + rQ sup
τ>2r

τ−Q‖f‖L1(B(g,τ)) (4.3)

for all f ∈ Lloc
1 (Hn).

Proof. Let 1 < p < ∞. For an arbitrary ball B = B(g, r) we set f = f1 + f2, where

f1 = fχ2B and f2 = fχ �(2B)
. Then

‖Mf‖Lp(B) � ‖Mf1‖Lp(B) + ‖Mf2‖Lp(B).

By the continuity of the operator M : Lp(Hn) → Lp(Hn) (cf., for example, [1]), we have

‖Mf1‖Lp(B) � ‖f‖Lp(2B).

Let h be an arbitrary point in B. If B(h, τ) ∩ �
(2B) = ∅, then τ > r. Indeed, if w ∈

B(h, τ) ∩ �
(2B), then τ > |h−1w| � |g−1w| − |g−1h| > 2r − r = r. On the other hand,

B(h, τ)∩ �
(2B) ⊂ B(g, 2τ). Indeed, for w ∈ B(h, τ)∩ �

(2B) we have |g−1w| � |h−1w|+ |g−1h| <
τ + r < 2τ . Hence

Mf2(h) = sup
τ>0

1

|B(h, τ)|
∫

B(h,τ)∩ �(2B)

|f(w)|dw � 2Q sup
τ>r

1

|B(g, 2τ)|
∫

B(g,2τ)

|f(w)|dw

= 2Q sup
τ>2r

1

|B(g, τ)|
∫

B(g,τ)

|f(w)|dw.

Therefore, for all h ∈ B

Mf2(h) � 2Q sup
τ>2r

1

|B(g, τ)|
∫

B(g,τ)

|f(w)|dw. (4.4)

Thus,

‖Mf‖Lp(B) � ‖f‖Lp(2B) + |B|1/p
(

sup
τ>2r

1

|B(g, τ)|
∫

B(g,τ)

|f(w)|dw
)
.

Let p = 1. It is obvious that for any ball B = B(g, r)

‖Mf‖WL1(B) � ‖Mf1‖WL1(B) + ‖Mf2‖WL1(B).

By the continuity of the operator M : L1(Hn) → WL1(Hn),

‖Mf1‖WL1(B) � ‖f‖L1(2B).

By (4.4), we get the inequality (4.3).
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Lemma 4.2. Let 1 � p < ∞. Then for p > 1 and any ball B = B(g, r) in Hn

‖Mf‖Lp(B(g,r)) � rQ/p sup
τ>2r

τ−Q/p‖f‖Lp(B(g,τ)) (4.5)

for all f ∈ Lloc
p (Hn). Moreover, for p = 1

‖Mf‖WL1(B(g,r)) � rQ sup
τ>2r

τ−Q‖f‖L1(B(g,τ)) (4.6)

for all f ∈ Lloc
1 (Hn).

Proof. Let 1 < p < ∞. Denote

M1 := |B|1/p
(

sup
τ>2r

1

|B(g, τ)|
∫

B(g,τ)

|f(w)|dw
)
,

M2 := ‖f‖Lp(2B).

Applying the Hölder inequality, we get

M1 � |B|1/p
(

sup
τ>2r

1

|B(g, τ)| 1p

( ∫

B(g,τ)

|f(w)|pdw
) 1

p
)
.

On the other hand,

|B| 1p
(

sup
τ>2r

1

|B(g, τ)| 1p

( ∫

B(g,τ)

|f(w)|pdw
) 1

p
)

� |B| 1p
(

sup
τ>2r

1

|B(g, τ)| 1p

)
‖f‖Lp(2B) ≈ M2.

Since ‖Mf‖Lp(B) � M1 + M2 in view of Lemma 4.1, we obtain (4.5).

Let p = 1. The inequality (4.6) directly follows from (4.3).

Theorem 4.2. Suppose that 1 � p < ∞ and (ϕ1, ϕ2) satisfy the condition

sup
r<t<∞

t−Q/p ess inf
t<s<∞ ϕ1(g, s) s

Q/p � C ϕ2(g, r), (4.7)

where C is independent of g and r. If p > 1, then M is bounded as an operator from Mp,ϕ1(Hn)

to Mp,ϕ2(Hn). If p = 1, then M is bounded as an operator from M1,ϕ1(Hn) to WM1,ϕ2(Hn).

Proof. By Theorem 4.1 and Lemma 4.2,

‖Mf‖Mp,ϕ2
� sup

g∈Hn,r>0
ϕ2(g, r)

−1 sup
τ>r

τ−Q/p ‖f‖Lp(B(g,τ))

� sup
g∈Hn,r>0

ϕ1(g, r)
−1 r−Q/p ‖f‖Lp(B(g,r)) = ‖f‖Mp,ϕ1

if p ∈ (1,∞) and

‖Mf‖WM1,ϕ2
� sup

g∈Hn,r>0
ϕ2(g, r)

−1 sup
τ>r

τ−Q‖f‖L1(B(g,τ))

� sup
g∈Hn,r>0

ϕ1(g, r)
−1 r−Q ‖f‖L1(B(g,r)) = ‖f‖M1,ϕ1

if p = 1.
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Corollary 4.1. Let p ∈ [1,∞) and let ϕ : (0,∞) → (0,∞) be a decreasing function. As-

sume that the mapping r �→ ϕ(r) rQ/p is almost increasing (there exists a constant c such that

ϕ(s) sQ/p � cϕ(r) rQ/p for s < r). Then there exists a constant C > 0 such that

‖Mf‖Mp,ϕ � C‖f‖Mp,ϕ , p > 1,

‖Mf‖WM1,ϕ � C‖f‖M1,ϕ .

5 Riesz Potential Operator in Mp,ϕ(Hn)

5.1 Spanne–Guliyev type result

In this section, we use the following statement on the boundedness of the Hardy operator

(Hφ)(t) :=
1

t

t∫

0

φ(r)dr, 0 < t < ∞.

Theorem 5.1 (cf. [30]). The inequality

ess sup
t>0

w(t)Hφ(t) � c ess sup
t>0

v(t)φ(t)

holds for all nonnegative and nonincreasing φ on (0,∞) if and only if

A := sup
t>0

w(t)

t

t∫

0

dr

ess sup
0<s<r

v(s)
< ∞ and c ≈ A.

Lemma 5.1. Suppose that 1 � p < ∞, 0 < α < Q/p, 1/q = 1/p− α/Q, and f ∈ Lloc
p (Hn).

If p > 1, then

‖Iαf‖Lq(B(g,r)) � rQ/q

∞∫

r

τ−Q/q−1‖f‖Lp(B(g,τ))dτ

for any ball B(g, r) and all f ∈ Lloc
p (Hn). If p = 1, then

‖Iαf‖WLq(B(g,r)) � τQ/q

∞∫

τ

r−Q/q−1‖f‖L1(B(g,r))dr (5.1)

for any ball B(g, r) and all f ∈ Lloc
1 (Hn).

Proof. Suppose that 1 < p < ∞, 0 < α < Q/p and 1/q = 1/p− α/Q. For an arbitrary ball

B = B(g, r) we set f = f1 + f2, where f1 = fχ2B, f2 = fχ �(2B)
and 2B = B(g, 2r). Then

‖Iαf‖Lq(B) � ‖Iαf1‖Lq(B) + ‖Iαf2‖Lq(B).

By the boundedness of the operator Iα from Lp(Hn) to Lq(Hn),

‖Iαf1‖Lq(B) � ‖Iαf1‖Lq(Hn) � ‖f1‖Lp(Hn) = ‖f‖Lp(2B).
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It is clear that for g ∈ B and h ∈ �
(2B)

1

2
|h−1w| � |g−1h| � 3

2
|h−1w|.

Therefore,

|Iαf2(g)| � 2Q
∫

�(2B)

|f(h)|
|g−1h|Q−α

dh.

By the Fubini theorem,

∫

�
(2B)

|f(h)|
|g−1h|Q−α

dh ≈

∫

�
(2B)

|f(h)|
∞∫

|g−1h|

dτ

τQ+1−α
dh

≈

∞∫

2r

∫

2r�|g−1h|�τ

|f(h)|dh dτ

τQ+1−α
�

∞∫

2r

∫

B(g,τ)

|f(h)|dh dτ

τQ+1−α
.

Applying the Hölder inequality, we get

∫

�(2B)

|f(h)|
|g−1h|Q−α

dh �
∞∫

2r

‖f‖Lp(B(g,τ))
dτ

τQ/q+1
. (5.2)

Moreover, for all p ∈ [1,∞)

‖Iαf2‖Lq(B) � rQ/q

∞∫

2r

‖f‖Lp(B(g,τ))
dτ

τQ/q+1
. (5.3)

Thus,

‖Iαf‖Lq(B) � ‖f‖Lp(2B) + rQ/q

∞∫

2r

‖f‖Lp(B(g,τ))
dτ

τQ/q+1
.

On the other hand,

‖f‖Lp(2B) ≈ rQ/q‖f‖Lp(2B)

∞∫

2r

dτ

τQ/q+1
� rQ/q

∞∫

2r

‖f‖Lp(B(g,τ))
dτ

τQ/q+1
. (5.4)

Thus,

‖Iαf‖Lq(B) � rQ/q

∞∫

2r

‖f‖Lp(B(g,τ))
dτ

τQ/q+1
.

Let p = 1. From the weak (1, q) boundedness of Iα and (5.4) it follows that

‖Iαf1‖WLq(B) � ‖Iαf1‖WLq(Hn) � ‖f1‖L1(Hn)

= ‖f‖L1(2B) � rQ/q

∞∫

2r

‖f‖L1(B(g,τ))
dτ

τQ/q+1
. (5.5)

Then from (5.3) and (5.5) we get the inequality (5.1).
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Theorem 5.2. Suppose that 1 � p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, and (ϕ1, ϕ2)

satisfies the condition
∞∫

r

ess inf
τ<s<∞ϕ1(g, s)s

Q/p

τQ/q+1
dτ � C ϕ2(g, r), (5.6)

where C is independent of g and r. Then the operators Iα and Iα are bounded from Mp,ϕ1(Hn)

to Mq,ϕ2(Hn) for p > 1 and from M1,ϕ1(Hn) to WMq,ϕ2(Hn) for p = 1. Moreover,

‖Iαf‖Mq,ϕ2
� ‖Iαf‖Mq,ϕ2

� ‖f‖Mp,ϕ1
, p > 1,

‖Iαf‖WMq,ϕ2
� ‖Iαf‖WMq,ϕ2

� ‖f‖M1,ϕ1
, p = 1.

Proof. By Lemma 5.1 and Theorem 5.1, for p > 1

‖Iαf‖Mq,ϕ2
� sup

g∈Hn, r>0
ϕ2(g, r)

−1

∞∫

r

‖f‖Lp(B(g,τ))
dτ

τQ/q+1

≈ sup
g∈Hn, r>0

ϕ2(g, r)
−1

r−Q/q∫

0

‖f‖Lp(B(g,τ−q/Q))dτ

= sup
g∈Hn, r>0

ϕ2(g, r
−q/Q)−1

r∫

0

‖f‖Lp(B(g,τ−q/Q))dτ

� sup
g∈Hn, r>0

ϕ1(g, r
−q/Q)−1 rq/p ‖f‖Lp(B(g,r−q/Q)) = ‖f‖Mp,ϕ1

and for p = 1

‖Iαf‖WMq,ϕ2
� sup

g∈Hn, r>0
ϕ2(g, r)

−1

∞∫

r

‖f‖L1(B(g,τ))
dτ

τQ/q+1

≈ sup
g∈Hn, r>0

ϕ2(g, r)
−1

r−Q/q∫

0

‖f‖L1(B(g,τ−Q/q))dτ

= sup
g∈Hn, r>0

ϕ2(g, r
−q/Q)−1

r∫

0

‖f‖L1(B(g,τ−q/Q))dτ

� sup
g∈Hn, r>0

ϕ1(g, r
−q/Q)−1 rq ‖f‖L1(B(g,r−q/Q)) = ‖f‖M1,ϕ1

.

Remark 5.1. It is obvious that (3.4) implies (5.6). Indeed, if the condition (3.4) holds, then

∞∫

r

ess inf
τ<s<∞ϕ1(s)s

n/p

τn/p+1−α
dτ �

∞∫

r

ταϕ1(τ)
dτ

τ
, r ∈ (0,∞),

so the condition (5.6) holds.
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In general, (5.6) does not imply (3.4). For example, the functions

ϕ1(r) = rβ−n/p
∣∣ sin (max

{
1, π/(2r)

})∣∣, ϕ2(r) =

⎧
⎨
⎩
1, r ∈ (0, 1),

rβ−n/q, r ∈ (1,∞), 0 < β < n/(2q)

satisfy the condition (5.6). But, in the case r ∈ (0, 2), we have ess inf
r<s<∞ϕ1(s)s

n/p = 0 and

∞∫

r

ess inf
τ<s<∞ϕ1(s)s

n/p

τn/p+1−α
dτ ≈

⎧
⎨
⎩
1, r ∈ (0, 1),

rβ−n/q, r ∈ (1,∞),
� ϕ2(r), r ∈ (0,∞),

which means that these functions do not satisfy the condition (3.4). Another example is pre-

sented by the functions

ϕ1(r) =
1

χ
(1,∞)

(r)rQ/p−β
, ϕ2(r) = r−Q/q

(
1 + rβ

)
, 0 < β < Q/q

which satisfy (5.6), but do not satisfy (3.4).

5.2 Adams–Guliyev type result

The following assertion is a result of Adams–Guliyev type.

Theorem 5.3. Suppose that 1 � p < ∞, 0 < α < Q/p, and q > p. Let ϕ(g, r) satisfy the

conditions

sup
r<t<∞

t−Q ess inf
t<s<∞ ϕ(g, s) sQ � C ϕ(g, r), (5.7)

∞∫

r

τα ϕ(g, τ)1/p
dτ

τ
� Cr

− αp
q−p , (5.8)

where C is independent of g ∈ Hn and r > 0. Then the operators Iα and Iα are bounded from

Mp,ϕ1/p(Hn) to Mq,ϕ1/q(Hn) for p > 1 and from M1,ϕ(Hn) to WMq,ϕ1/q(Hn). Moreover,

‖Iαf‖M
q,ϕ1/q

� ‖Iαf‖M
q,ϕ1/q

� ‖f‖M
p,ϕ1/p

, p > 1,

‖Iαf‖WM
q,ϕ1/q

� ‖Iαf‖WM
q,ϕ1/q

� ‖f‖M1,ϕ , p = 1.

Proof. Suppose that 1 < p < ∞, 0 < α < Q/p, q > p, and f ∈ Mp,ϕ1/p(Hn). Suppose that

f = f1 + f2, B = B(g, r), f1 = fχ2B, and f2 = fχ �(2B)
. For Iαf2(g) we have

|Iαf2(g)| �
∫

�B(g,2r)

|g−1h|α−Q|f(h)|dh �
∫

�B(g,2r)

|f(h)|dh
∞∫

|g−1h|

τα−Q−1dτ

�
∞∫

2r

( ∫

2r<|g−1h|<τ

|f(h)|dh
)
τα−Q−1dτ �

∞∫

r

τα−Q/p−1‖f‖Lp(B(g,τ))dτ. (5.9)
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Then from (5.8) and (5.9) we get

|Iαf(g)| � rαMf(g) +

∞∫

r

tα−Q/p−1‖f‖Lp(B(g,τ))dt � rαMf(g) + ‖f‖Mp,ϕ

∞∫

r

ταϕ(g, τ)1/p
dτ

τ

� rαMf(g) + r
− αp

q−p ‖f‖M
p,ϕ1/p

.

Choosing

r =

(‖f‖M
p,ϕ1/p

Mf(g)

) q−p
αq

for every g ∈ Hn, we have

|Iαf(g)| � (Mf(g))p/q ‖f‖1−p/q
M

p,ϕ1/p
.

Hence the required assertion follows from the boundedness of the maximal operator M in

Mp,ϕ1/p(Hn) provided by Theorem 4.2 in view of (5.7):

‖Iαf‖M
q,ϕ1/q

= sup
g∈Hn, τ>0

ϕ(g, τ)−1/qτ−Q/q‖Iαf‖Lq(B(g,τ))

� ‖f‖1−p/q
M

p,ϕ1/p
sup

g∈Hn, τ>0
ϕ(g, τ)−1/qτ−Q/q‖Mf‖p/qLp(B(g,τ))

= ‖f‖1−p/q
M

p,ϕ1/p

(
sup

g∈Hn, τ>0
ϕ(g, τ)−1/pτ−Q/p‖Mf‖Lp(B(g,τ))

)p/q

= ‖f‖1−p/q
M

p,ϕ1/p
‖Mf‖p/qM

p,ϕ1/p
� ‖f‖M

p,ϕ1/p
if 1 < p < q < ∞,

‖Iαf‖WM
q,ϕ1/q

= sup
g∈Hn, τ>0

ϕ(g, τ)−1/qτ−Q/q‖Iαf‖WLq(B(g,τ))

� ‖f‖1−1/q
M1,ϕ

sup
g∈Hn, τ>0

ϕ(g, τ)−1/qτ−Q/q‖Mf‖1/qWL1(B(g,τ))

= ‖f‖1−1/q
M1,ϕ

(
sup

g∈Hn, τ>0
ϕ(g, τ)−1τ−Q‖Mf‖WL1(B(g,τ))

)1/q

= ‖f‖1−1/q
M1,ϕ

‖Mf‖1/qWM1,ϕ
� ‖f‖M1,ϕ if 1 < q < ∞.

In the case ϕ(g, r) = rλ−Q, 0 < λ < Q, from Theorem 5.3 we get Theorem A.

6 Applications

It is known (cf. [31, p. 247]) that if | · | is a homogeneous norm on Hn, then there exists a

positive constant C0 such that Γ(g) = C0|x|2−Q is the fundamental solution of L .

From Theorem 5.2 it is easy to obtain an inequality extending the classical Sobolev embed-

ding theorem to the Heisenberg groups.

Theorem 6.1 (Sobolev–Stein embedding on a generalized Morrey space). Suppose that

1 < p < ∞, 1/q = 1/p− 1/Q, and (ϕ1, ϕ2) satisfy (5.6). Then for every u ∈ C∞
0 (Hn)

‖u‖Mq,ϕ2
� ‖∇L u‖Mp,ϕ1

.
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Proof. Let u ∈ C∞
0 (Hn). Using the integral representation formula for the fundamental

solution (cf. [31, p. 237]), we have

u(g) =

∫

Hn

Γ(g−1y)L u(y)dy. (6.1)

Keeping in mind that L =
2n∑
i=1

X2
i and X∗

i = −Xi and integrating by parts on the right-hand

side of (6.1), we get

u(g) =

∫

Hn

(∇LΓ)(g−1y)∇L u(y)dy. (6.2)

On the other hand, out of the origin,

∇LΓ(g) = C0∇L

(|x|2−Q
)
= (2−Q)C0 |x|1−Q∇L |x|.

Therefore, since ∇L | · | is smooth in Hn \ {0} and δλ-homogeneous of degree zero, we have

∇LΓ(g) � C|x|1−Q

with a suitable constant C > 0 depending only on L . Using this inequality in (6.2), we get

|u(g)| � C

∫

Hn

|∇L u(y)||x|1−Qdy = CI1(|∇L u|)(g). (6.3)

Then, by Theorem 5.2,

‖u‖Mq,ϕ2
� C‖I1(|∇L u|)‖Mq,ϕ2

� C‖∇L u‖Mp,ϕ1
.

The following assertion is proved in the same way as Theorem 5.3.

Theorem 6.2 (Sobolev–Stein embedding on a generalized Morrey space). Suppose that

1 < p < ∞, 1/q = 1/p − 1/Q, and ϕ satisfies the conditions (5.7) and (5.8). Then for every

u ∈ C∞
0 (Hn)

‖u‖M
q,ϕ1/q

� ‖∇L u‖M
p,ϕ1/p

.

The following theorem establishes the boundedness of Iα in the generalized Besov–Morrey

spaces on Hn

BMs
pθ,ϕ(Hn) =

{
f : ‖f‖BMs

pθ,ϕ
= ‖f‖Mp,ϕ +

( ∫

Hn

‖f(g·)− f(·)‖θMp,ϕ

|g|Q+sθ
dg
)1/θ

< ∞
}

(6.4)

where 1 � p, θ � ∞ and 0 < s < 1.

Besov spaces Bs
pθ(G) in the setting Lie groups G were studied by many authors (cf., for

example [5] and [32]–[35]), unlike Besov–Morrey spaces (however, cf., for example [36]–[38]).

Theorem 6.3. Suppose that 1 < p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, and (ϕ1, ϕ2)

satisfy the condition (5.6). If 1 � θ � ∞ and 0 < s < 1, then the operator Iα is bounded

from BMs
pθ,ϕ1

(Hn) to BMs
qθ,ϕ2

(Hn). More precisely, there is a constant C > 0 such that for all

f ∈ BMs
pθ,ϕ1

(Hn)

‖Iαf‖BMs
qθ,ϕ2

� C‖f‖BMs
pθ,ϕ1

.
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Proof. By the definition of the generalized Besov–Morrey spaces on Hn, it suffices to show

‖τhIαf − Iαf‖Mq,ϕ � C‖τyf − f‖Mp,ϕ ,

where τhf(g) = f(hg). It is easy to see that τhf commutes with Iα, i.e., τhIαf = Iα(τhf).

Hence

|τhIαf − Iαf | = |Iα(τhf)− Iαf | � Iα(|τhf − f |).
Taking the Mp,ϕ-norm on both sides of the last inequality, we obtain the desired result by using

the boundedness of Iα from Mp,ϕ(Hn) to Mq,ϕ(Hn).

Theorem 6.4. Suppose that 1 < p < ∞, 0 < α < Q/p, 1/q = 1/p − α/Q, and ϕ satisfies

the conditions (5.7) and (5.8). If 1 � θ � ∞ and 0 < s < 1, then the operator Iα is bounded

from BMs
pθ,ϕ1/p(Hn) to BMs

qθ,ϕ1/q(Hn). More precisely, there is a constant C > 0 such that for

all f ∈ BMs
pθ,ϕ1/p(Hn)

‖Iαf‖BMs

qθ,ϕ1/q
� C‖f‖BMs

pθ,ϕ1/p
.

From Theorems 6.3 and 6.4 we obtain the following Sobolev–Stein embedding inequality on

a generalized Besov–Morrey space.

Theorem 6.5 (Sobolev–Stein embedding on a generalized Besov–Morrey space). Suppose

that 1 < p < ∞, 1/q = 1/p − 1/Q, (ϕ1, ϕ2) satisfy the condition (5.6), 1 � θ � ∞, and

0 < s < 1. Then for every u ∈ C∞
0 (Hn)

‖u‖BMs
qθ,ϕ2

� ‖∇L u‖BMs
pθ,ϕ1

.

Theorem 6.6 (Sobolev–Stein embedding on a generalized Besov–Morrey space). Suppose

that 1 < p < ∞, 1/q = 1/p − 1/Q, ϕ satisfies the conditions (5.7) and (5.8), 1 � θ � ∞, and

0 < s < 1. Then for every u ∈ C∞
0 (Hn)

‖u‖BMs

qθ,ϕ1/q
� ‖∇L u‖BMs

pθ,ϕ1/p
.

The Dirichlet problem for the Kohn Laplacian on the Heisenberg group was considered in

[39, 40]. Note that our results lead to the following a priori estimate for the sub-Laplacian

equation L f = g.

Theorem 6.7. Suppose that 1 < p < q < ∞, 0 < s < 1, 1 � θ � ∞, g ∈ BMs
pθ,λ(Hn), and

L f = g. The following assertions hold.

1. If 1/q = 1/p− 2/Q and (ϕ1, ϕ2) satisfy the condition (5.6), then

‖f‖BMs
qθ,ϕ2

� ‖g‖BMs
pθ,ϕ1

.

2. If 1/q = 1/p− 1/Q and (ϕ1, ϕ2) satisfy the condition (5.6), then

‖Xif‖BMs
qθ,ϕ2

� ‖g‖BMs
pθ,ϕ1

, i = 1, 2, . . . , 2n.

Theorem 6.8. Suppose that 1 < p < q < ∞, 0 < s < 1, 1 � θ � ∞, g ∈ BMs
pθ,λ(Hn), and

L f = g. Then the following assertions hold.
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1. If 1/q = 1/p− 2/Q and ϕ satisfies the conditions (5.7) and (5.8), then

‖f‖BMs

qθ,ϕ1/q
� ‖g‖BMs

pθ,ϕ1/p
.

2. If 1/q = 1/p− 1/Q and ϕ satisfies the conditions (5.7) and (5.8), then

‖Xif‖BMs

qθ,ϕ1/q
� ‖g‖BMs

pθ,ϕ1/p
, i = 1, 2, . . . , 2n.

The proof of Theorems 6.5 and 6.7 is similar to that of Theorem 6.1.
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