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Abstract. In the paper the authors find conditions on the pair (1, p2) which
ensure the Spanne type boundedness of the fractional maximal operator M,
and the Riesz potential operator I, from one generalized Morrey spaces Mp, ,,
to another My o,,1 < p < ¢ < 00,1/p—1/q¢ = a/n, and from M; ,, to the weak
space WM, 4,, 1 < g <oo,1—1/q=a/n. We also find conditions on ¢ which
ensure the Adams type boundedness of the My and I, from M 1 to M 1

P q
for 1 < p < q< oo and from M, to WM 1 for 1 < g < oc. Apévapplicatqigns
of those results, the boundeness of the COILZEI(‘;TlutatOFS of operators M, and I,
on generalized Morrey spaces is also obtained. In the case b € BMO(R™) and
1 < p < q < oo, we find the sufficient conditions on the pair (p1,p2) which
ensures the boundedness of the operators Mp o and [b, Io] from My ,, to Mg e,
with 1/p—1/q = a/n. We also find the sufficient conditions on ¢ which ensures

the boundedness of the operators M o and [b,I4] from M 1 to M 1 for
p,pP q,p 4
1 < p < g < 0. In all cases conditions for the boundedness are given in terms

of Zygmund-type integral inequalities on (1, p2) and ¢, which do not assume
any assumption on monotonicity of 1, p2 and ¢ in r. As applications, we get
some estimates for Marcinkiewicz operator and fractional powers of the some
analytic semigroups on generalized Morrey spaces.

Mathematics Subject Classification (2010). Primary 42B20, 42B25, 42B35.

Keywords. Fractional maximal operator; Riesz potential operator; generalized
Morrey space; commutator; BMO space.

1. Introduction

The theory of boundedness of classical operators of the real analysis, such as the
maximal operator, fractional maximal operator, Riesz potential and the singular
integral operators etc, from one weighted Lebesgue space to another one is well
studied by now. These results have good applications in the theory of partial differ-
ential equations. However, in the theory of partial differential equations, along with
weighted Lebesgue spaces, general Morrey-type spaces also play an important role.
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tion under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1 and by the
Scientific and Technological Research Council of Turkey (TUBITAK Project No: 110T695).
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For z € R™ and r > 0, we denote by B(z,r) the open ball centered at x
of radius r, and by GB(x,r) denote its complement. Let |B(z,r)| be the Lebesgue
measure of the ball B(z,r).

Let f € LI°¢(R™). The fractional maximal operator M, and the Riesz potential
1, are defined by

Mo f(2) = sup | B(z, £)| 715 / FWldy,  0<a<n,
t>0 B(z,t)

Iaf(x):/RM 0<a<n.

n |z =y’

If « =0, then M = M, is the Hardy-Littlewood maximal operator.

It is well known that fractional maximal operator, Riesz potential and Cal-
derén-Zygmund operators play an important role in harmonic analysis (see [22, 29,
30]).

In [3] (see also [17]), we prove the boundedness of the maximal operator M
and the Calderén-Zygmund operators 1" from one generalized Morrey space My, ,, to
another M, ,,, 1 < p < oo, and from M; ,, to the weak space W M, ,,. In the case
b € BMO(R™), we find the sufficient conditions on the pair (¢1,p2) which ensure
the boundedness of the operators M; and [b, T| from M, ,, to My ,,, 1 < p < oo,
where M, f(z) = M ((b(-) — b(z))f)(z) and [b, T]f(z) = b(z) T f(z) — T(bf)(x).

In this work, we prove the boundedness of the operators M, and I, o € (0,n)
from one generalized Morrey space M, ,, to another one My ,,, 1 < p < ¢ < o0,
1/p—1/q = a/n, and from M ,, to the weak space WMy ,,, 1 <g<oo,1-1/¢=
a/n. We also prove the Adams type boundedness of the operators M, and I, from

M %toM %forl<p<q<ooandfromM1,¢toWM %f0r1<q<oo.
P, q,P q,¢
In the case b € BMO(R"), 1 < p < ¢ < o0, we find the sufficient conditions on

the pair (p1,¢2) which ensures the boundedness of the commutator of operators
My o and [b, 1] from M ,, to My ,,, 1 <p < g < o0, 1/p—1/q9 = a/n, where
My,o f(x) = Mo ((b(-)=b(2)) f) () and [b, I] f (z) = b(z) Lo f(z)—Ia(bf)(x). We also
find the sufficient conditions on ¢ which ensures the boundedness of the operators

My o and [b, I,] from M 1 to M 1 for 1 < p < g < oo. Finally, as applications
; 4
we apply this result to several particular operators such as Marcinkiewicz operator

and fractional powers of the some analytic semigroups.

By A < B we mean that A < C'B with some positive constant C' independent
of appropriate quantities. If A < B and B < A, we write A ~ B and say that A
and B are equivalent.

2. Morrey spaces

The classical Morrey spaces M, » were originally introduced by Morrey in [24] to
study the local behavior of solutions to second-order elliptic partial differential
equations. For the properties and applications of classical Morrey spaces, we refer
the readers to [24, 26].

We denote by M, x = M, »(R™) the Morrey space, the space of all functions
fe LL‘“C(R”) with finite quasinorm

_2A
Hf||Mp,A = sup T p||f||Lp(B(z,r))7

eR™, r>0

where 1 <p<oocand 0 < A <n.
Note that Mpo = L,(R™) and My, = Lo(R™). If A < 0 or A > n, then
M, » = ©, where O is the set of all functions equivalent to 0 on R™.
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We also denote by WM, » = WM, x(R") the weak Morrey space of all func-
tions f € WL;DOC(R") for which

_2A
Ifllwar, = sup 2l fllwe, (B < oo
; TER™, 10

where WL, (B(z,r)) denotes the weak L,-space of measurable functions f for which
HfHWLp(B(z,r)) = |\fXB<z,T)HWL,,(Rn)
= supt{y € Blw,r): [£()] > th"".

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < ¢ < o0,

then the operator I, is bounded from L,(R™) to L,(R™) if and only if &« = n (% - %)

and for p = 1 < ¢ < oo, the operator I, is bounded from L;(R™) to WL,(R") if
and only if a =n (1 — —) S. Spanne and D.R. Adams [1] studied boundedness of

the Riesz potential in Morrey spaces. Their results can be summarized as follows.

Theorem 2.1 (Spanne, but published by Peetre [26]). Let 0 < a <n, 1 <p< X,
0 < A <n—ap. Moreover, let % — % =2 and % = %, Then for p > 1, the operator

1, is bounded from My » to My x and forp =1, I, is bounded from M x to WMy x.

Theorem22(Adams [M]). Let 0 < a<n, 1 <p < Z,0< A< n—apand

l — % = . Then for p > 1, the operator 1, is bounded from M, x to M, » and

forp =1, Ia is bounded from M x to WM, ».

Recall that, for 0 < a < n,

Mo f(z) < vi L(lf]) (@),

hence Theorems 2.1 and 2.2 also imply boundedness of the fractional maximal
operator M, where v, is the volume of the unit ball in R™.

3. Generalized Morrey spaces
We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 3.1. Let ¢(x,r) be a positive measurable function on R™ x (0,00) and
1 < p < co. We denote by M, , = M, ,(R") the generalized Morrey space, the
space of all functions f € LI°°(R™) with finite quasinorm

_1
Ifllag,., = sup (e, )7 Bz, r)| "7 | fllL, 8-
xeR™,r>0

Also by WM, , = WM, ,(R™) we denote the weak generalized Morrey space of all
functions f € WLP(R") for which

— _1
Ifllwas,, = sup (e, )" B, )| "7 (| fllwe, B < oo
zER™ r>0

According to this definition, we recover the spaces M, » and WM, » under the
A—n

choice p(z,r) =r 7 :

My = Mw’ _—
o(z,r)=r P

A—n .
o(z,r)=r P

In [15]-[18], [20], [23] and [25] there were obtained sufficient conditions on ¢
and o for the boundedness of the maximal operator M and Calderén-Zygmund
operator from M, ,, to My ,,, 1 < p < oo and of the fractional maximal operator

WMpx =WM,,
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M, and Riesz potential operator I, from M, ,, to My ,,, 1 < p < g < oo (see also
[5]-19]). In [25] the following condition was imposed on ¢(x,r):

c oz, ) < oz, t) < cp(z,r) (3.1)

whenever r < ¢t < 2r, where ¢(> 1) does not depend on ¢, r and z € R™, jointly
with the condition:

/00 o(x, t)p% < Co(z,T)P, (3.2)

for the singular integral operator 7', and the condition
e dt
/ t*Pop(x, t)p? < Cr*Py(x,r)? (3.3)

for the Riesz potential operator I,,, where C'(> 0) does not depend on r and z € R™.

4. Boundedness of the fractional maximal operator
in generalized Morrey spaces

4.1. Spanne type result

Sufficient conditions on ¢ for the boundedness of M and M, in generalized Morrey
spaces M,, ,(R™) have been obtained in [2], [4], [5], [6], [8], [17], [18], [23], [25].
The following lemma is true.

Lemma 4.1. Let 1 <p<oo,0<a< %, % = % — 2. Then for any ball B = B(x,r)
in R™ the inequality
IMafllL, B S IfllL, (B + 74 Sup Nl Ly (B ) (4.1)

holds for all f € LL‘“C(R").
Moreover, the inequality

1Moty S I lwan + 7% mp W lman (42

holds for all f € Li°¢(R™).
Proof. Let 1 < p < q < oo and % — % = 2. For arbitrary ball B = B(z,7) let
f=Ffi+ fa, where fi = fxop and f2 = fxeg,p)
IMafllL, By < [MafillLysy + [MafellL,s)-
By the continuity of the operator M, : L,(R™) — L4(R"™) we have
Mo fillo, 8y S I fllz,@B)-

Let y be an arbitrary point from B. If B(y,t) N B(2B) # @, then ¢t > r. Indeed, if
z € B(y,t)N B(2B),thent> ly—z| >z —z|—|e—y|>2r—r=r.

On the other hand, B(y,t) N B(2B) C B(z,2t). Indeed, z € B(y,t) N U(ZB),
then we get |z — z| < |y — z| + |z —y| <t + 7 < 2t.

Hence
1
Mafoly) =sup o | 1£(2)dz
>0 [By, )=/ [0
1
< 2"7% sup —/ |f(2)|dz
i>r |B(z,2t)|t—o/n B(z,2t)

1
t>2r |B(x, t)|1—e/n B(z,t) e
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Therefore, for all y € B we have

1
M, <2"% su 7/ z)|dz. 4.3
fQ(y) t>21::‘ |B(Z‘,t)|1_a/n Bla.t) |f( )| ( )

Thus

1
M, < +|BJ7 | su 7/ 2)|dz ] .
H f”Lq(B) HfHLp(QB) | | <t>2pr |B(Z‘,t)|1_a/n B(a.t) |f( )|

Let p = 1. It is obvious that for any ball B = B(x, )
[Maofllwr,s) < IMafillwe,s) + [Mafellwe,s)-
By the continuity of the operator M, : L1(R™) — WL, (R™) we have
IMofillweys) S Il @)
Then by (4.3) we get the inequality (4.2). O

Lemma 4.2. Let 1 <p<oo,0<a< %, % = % — 2. Then for any ball B = B(x,r)
in R™, the inequality
IMafllz,z) ST Sup Tl LB (4.4)
holds for all f € Ly*°(R™).
Moreover, the inequality

Mofllwe,(B) S ra :;1213 ts I fllzy(B,)) (4.5)
holds for all f € LI°°(R™).
Proof. Let 1<p <oo0,0<a <2 & =_—% Denote

My :=|B|} o G
L= q SUp ~—=——+7———— z Z1,
' e>2r B, )]0 [

Mz =|fllr,eB)-
Applying Holder’s inequality, we get

1

1 P
My SB[ sup —— / |f(2)Pdz
t>2r |B(x,t)|1 \/B(,t)

On the other hand,

1 1 b
BlF | sup — 1 / (=) Pz
o B, o)+ s

2 Bl <sup

—— | Ifllz,2B) = M.
t>2r|3(x,t)|%> (25)

Since by Lemma 4.1
Mofll,B) < M1+ My,

we arrive at (4.4).

Let p = 1. The inequality (4.5) directly follows from (4.2). O
Theorem 4.3. Let 1 < p < o0, 0 < < 7, % = % — 2, and (p1,p2) satisfies the
condition

sup t* Spl(xv t) < C@Q(xv T)v (46)

r<t<oo
where C' does not depend on x and r. Then for p > 1, M, is bounded from My ,,
to My, and for p=1, M, is bounded from My o, to WMy 4,.

q,$2
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Proof. By Lemma 4.2 we get

IMofllag, ., S sup  @aa, )" (Supt‘zlflmB(r,t)))
z€eR™ r>0 t>r

< sup  po(w,r) ! suptr T g (a,) (@1(%7“)71 t_%”f”Lp(B(z,t))>
zER™,r>0 t>r

Sl ., @) zeﬂsglnll:’w P2z, m)7" iggfa o1(, 1)

Sl )
if pe (1,00) and

IMofllway ., S sup @a(a, )" (SuPt_%|f|L1(B(r,t))>
zeR™ r>0 t>r

5 ||f||M1,<p1(]R”) zeﬂs¥31::’>0¢2(x,r)_l stggta @1(337”

S Fllas ., e
if p=1. O
In the case @ = 0 and p = ¢ from Theorem 4.3 we get the following corollary,
which was proved in [3].
Corollary 4.1. Let 1 < p < oo and let (p1,p2) satisfy the condition
sup 1 (x,t) < Cpa(x,7), (4.7)

r<t<oo
where C' does not depend on x and r. Then for p > 1, M is bounded from M, ,, to
My, o, and for p =1, M is bounded from M ,, to WM o,.

4.2. Adams type result
The following is a result of Adams type for the fractional maximal operator.

Theorem 4.4. Let 1 <p <q<oo, 0 <a <% and let p(x,t) satisfy the condition

sup p(x,t) < Co(z,7), (4.8)
r<t<oo
and 1 ap
sup t%p(z,t)r < Cr-ar, (4.9)
r<t<oo

where C' does not depend on x € R™ and r > 0.
Then the operator M, is bounded from M to M
Py

1 1 for p > 1 and from
P a1
Ml#, to WM .
@

Q=

Proof. Let1<p<q<oo,0<a<%andf€M
P

B = B({E,T), fl = fX?B and f2 = fXG(QB)'
For M, fo(z) and for all y € B from (4.3) we have

1
M, <o gup — 2)|dz
(f2)(®) sup e [ NE

. Write f = f1 + f2, where

1
PP

Ssup t 7 || £l 1, (Beat)- (4.10)
t>2r
Then from conditions (4.9) and (4.10) we get
Mo f(x) S Mf(x) + sup | fl LBy

o o L
ST Mf(@) + (1 fllar, sup t¥o(z,t)?
p,P t>2r

SrOMf(z) + 1757 || fllw
P

1
o P

< ok?
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a—p
J v 1
” H D,p /P

Consequently choosing r = (W) " for every x € R™, we have

2 1-2

(Mo f(x)] S (Mf(@)a [|fllar

p,pP

Hence the statement of the theorem follows in view of the boundedness of the

maximal operator M in M 1 provided by Corollary 4.1 in virtue of condition (4.8).
P

_1 _n
[Mofllae = sup @z, t)" at” o [[MafllL, (Bt
a,¢p 1 zeR™, t>0

1—-2 1 _n o
S HfHM ! 1 sup @(x,t) at <1||Mf||zp(B(r7t))
p.op TER™ >0
P

_1 _n a
( sup  p(z,t)"rt p|Mf|Lp(B(w,t))>
zER™, t>0

Q3

1—
= Iflla
p,pP

1—2

= lfllars
P

P
S Al
D@

ifl<p<g<ooand

P
1M £ 3

=
=

®

)

S

_1 _n
Mofllwn o = sup @z, t)” 9t ¢ ||[Mafllwr,(Bat)
q,p 9 z€R™, t>0

A

1-1 1 _n 1
||f||M1,q¢, weﬂigpbo p(a,t) it ||Mf||5VL1(B(w,t))

so(a:,t>-1t—"||Mf||WL1<B<w,t>>)

1—1
g’ ( sup
171, (s

>0

1—1 1
1 1an?, M f 1y,
S s,

if 1 <q < oo. ]

In the case p(x,t) = t}", 0 < A < n from Theorem 4.4 we get the following
Adams type result for the fractional maximal operator.

Corollary 4.2. Let0<a<n,1<p<z, 0<A<n-—ap and%—%zﬁ. Then
for p > 1, the operator M, is bounded from My, to My x and for p =1, M, is

bounded from My x to W Mg .

5. Riesz potential operator in the spaces M, ,

5.1. Spanne type result
In [25] the following statements was proved by Riesz potential operator I,.

Theorem 5.5. Let 1 < p < o0, 0 < a < 3, % = %— % and p(x,r) satisfy the

conditions (3.1) and (3.3). Then the operator I, is bounded from M, , to My .

The following statements, containing results obtained in [23], [25] were proved
in [15, 17] (see also [5]-[9], [16, 18]).

Theorem 5.6. Let 1 < p < oo, 0 < a< %, % =
condition

11—) — 2 and let (¢1,p2) satisfy the

o d
/ 7‘%1(%7“)% < Cpa(x,t), (5.1)
t

where C' does not depend on x and t. Then the operators M, and I, are bounded
from M, ,, to My, for p>1 and from My ,, to WMy ,,.
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5.2. Adams type result
The following is a result of Adams type.

Theorem 5.7. Let1 <p<oo,0<a< %, q > p and let (x,t) satisfy the conditions
(4.8) and
e dt a
/ £ w(x,t)%7 < Crar, (5.2)
where C' does not depend on x € R™ and r > 0.
Then the operator I, is bounded from M
P,

Ml#, to WM .
q,p

to M

1 for p > 1 and from
q,p 9

S

)

Q=

Proof. Let1<p<oo,0<a<%,q>pandf€M . Write f = f1 + f2, where
Pyp
B = B(z,r), fi = fx2p and fo» = fX“(zB)'

For I, f2(x) we have

|hh@ﬂgﬁ

1
P

|z —y[*7"|f (y)|dy
B(x,2r)

< / F()ldy / 1 gy
B(x,2r) |z—y|

< / ( / If(y)ldy> e gy
2r 2r<|z—y|<t

5/ 7 U Fll ey (Bl dt. (5.3)

Then from condition (5.2) and inequality (5.3) we get
Taf @) S 7 Mf@)+ [ 5 o

° 1dt
<1 MI@) + Il [ et}

e Mf(a)+r o || fllu
P,

S

®

. 1Al o\ S
Hence choosing r = (W) for every x € R™, we have

s

D 1-—

Lo f (@) S (Mf(x)a [flla*
P, P

Consequently the statement of the theorem follows in view of the boundedness of the

maximal operator M in M 1 provided by Corollary 4.1 in virtue of condition (4.8).
Pyp

_1 _n
MHoafllar 1+ = sup @z, t) 5t 9| LafllL,(B)
a4, 9 xzER™, t>0

1-2 _1,_n 2

S HfHM ! 1 sup  p(x,t) 9t a ||Mf||zp(3($,t))
ppP TE not>0

P

1—2 1 _n q
— I ( sup ol t) Ht p|Mf|L,,<B<z,t>>)
p,pP x€R™, t>0
1_» »
AT M
P PP

N

Pye
Ifllar o>
Pye

=
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if 1 <p<g<ooand

_1 _n
Hofllwa 1 = sup @z, t)" at™ < | Lo fllwr, (Bt
a4, z€R™, t>0

Q=

1-1 1 _n 1
S ||f||M1q¢, meﬂigpbo(p(%t) it e ||Mf||5VL1(B(m,t))

so(a:,t>-1t—"||Mf||WL1<B<w,t>>)

1—1
g’ ( sup
171, (s

>0

1—1 1
1 1as?, M F 1y,
S s,

if 1 <q< oo 0

In the case ¢(z,t) = t*" 0 < X\ < n from Theorem 5.7 we get Adams
Theorem 2.2.

6. Commutators of fractional maximal operators in the spaces M, ,

6.1. Spanne type result

The theory of commutator was originally studied by Coifman, Rochberg and Weiss

in [12]. Since then, many authors have been interested in studying this theory. When

l<p<oo,0<a<?and % = % — 2, Chanillo [10] proved that the commutator

operator [b, I,]f is bounded from L,(R™) to L,(R™) whenever b € BMO(R™).
First we introduce the definition of the space of BMO(R™).

Definition 6.2. Suppose that f € L°°(R"™), and let

1

flle= sup ——= T(W) = [Bz,m)ldy < 00,

|| || IER”J’>O|B($7T)| B(aj"r)| ( ) B( )|
where

1
IBer) = 77 f(y)dy.
0 7B, )] e

Define

BMO(R") = {f € LY°(R") : || f]l. < oo}.

If one regards two functions whose difference is a constant as one, then space
BMO(R™) is a Banach space with respect to norm || - || .

Remark 6.1.

(1) The John-Nirenberg inequality: there are constants Cy, Co > 0, such that for
all f € BMO(R™) and 5 >0

{z e B : |f(z)— fg| > B} < C1|Ble~CP/Ifll- vB c R".
(2) The John-Nirenberg inequality implies that

Ifl =~ sup <% Fy) - fB<$,T>|pdy> (6.1)

zeR™,r>0 |B({L‘, T)| B(z,r)

for 1 <p < 0.
(3) Let f € BMO(R™). Then there is a constant C' > 0 such that

t
|fB(,E7T) — fB(I,t)| <O f]l«In . for 0 < 2r < t, (6.2)

where C is independent of f, z, r and t¢.
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For the sublinear commutator of the fractional maximal operator

Mia(f)(a) = sup | Bt [ Jb(a) = bl w)ldy

B(z,t)
in [13] the following statement was proved, containing the result in [23, 25].

Theorem 6.8. Let 1 < p < o0, 0 <o < 2, % = %— o,be€ BMOR"), o(x,r)

satisfies the conditions (3.1) and (3.3). Then the operator My o is bounded from
M, , to My .

— 2 be BMOR"),

Lemma 6.3. Let1<p<oo,0<oz<%,%:%

Then the inequality
< n t —_n
1Mo, fllzo(Bao.ry) S 1Bl 7% sup (1+m ;) N VA PRETE)

holds for any ball B(xo,r) and for all f € L*°(R™).

n 1

Proof.Let1<p<oo,0<a<E,E:%—%.Writef:fl—i—fg,where

B = B(zo,7), f1 = fxep and fo = fX“(zB)' Hence,
[Mp.afllL, By < [MbafillL,s) + | MbafellL,s)-
From the boundedness of Mp o from L,(R™) to Ly(R™) it follows that:

My ofill, 8y < [|MbafillL, @
S bl fillz, ey = W10l 1 fll 2, 2B)-

For x € B we have

1
M, « €T 5311 7/ b — bz d
b f2(2) S S TR ST gy P8 T @ Wiy
1 /
=P T T i—a/n b(y) — b(z)| | f(y)|dy.
t>0 | B(z, t)[1=a/n B(r,t)m°(23)| () = b(@)l 11(9)]

Let x be an arbitrary point from B. If B(z,t) N {0(23)} # (b, then ¢t > r.
Indeed, if y € B(z,t) N{ B(2B)}, thent > |z —y| > |zo—y| — |xo — x| > 2r—r=r.

On the other hand, B(z,t) N {G(QB)} C B(zo,2t). Indeed, y € B(z,t) N
{G(QB)}, then we get |zo —y| < |z —y|+|zo —z| <t+7r <2t

Hence
1
Mp.a(f x:SUPi/ b(y) —b(x)| |f(y)|dy
b ( 2)( ) >0 |B(Z‘,t)|1_a/n B(a:,t)ﬂB(QB)| ( ) ( )|| ( )|
1
SZ"—&SUP—/ b(y) — b(z)| |f(y)|dy
ton |B(z0, 2t)[1-/n B(r072t)| (y) = b(@)] | (»)]
1

_ 2n—a

[ 1w - s@l 15wl
B(xo,t)

sup —————————
t>£’ | B(wo, )| —o/m
Therefore, for all x € B we have

1
My o ) <2" Y squp ——————
b, (f?)( ) t>21::‘ |B(Jjo,t)|1_a/n

/ b) - b@)| [/ (w)ldy.  (6.3)
B(zo,t)
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Then

1 T\
HMb,anHLq(B ( . <t>2r 1Bz, t)[1-/n /B(rmt) b(y) — b(z)] |f(y)|dy> d33>

1

t)

q 3
su by)—b d dx
( t>2pr |B(zo, t)|1—o/n /B(m’t)| (y) — bl f(y)] y) )

1 9\
( <t>2r | B(zo,t)[t—o/n /(wo}t) [b(z) — b |f(y)|dy> dx)
J:

2.
Let us estimate J;.

IN

_|_

+

1

Ji=r7su —/ b)) — b J
! P Blzo, )]/ B(m07t)| (y) — bl | £ (y)ldy

<t [ ) bl )l
B(xo,t)

t>2r

Applying Holder’s inequality and by (6.1), (6.2), we get

Ty <1 sup g0 / 1b(y) — e | 1/ @)ldy
B(xzo,t)

t>2r
+ 78 SUp " b (g, ) = b £ () dy
t>2r B(zo,t)
L
S sup 97y : 16(y) = bpon|Pdy | |I1]
49 SUu P - .
ST B0 1) Joteon Baon|” dy Ly(B(ao.t))

+ra 5;121’ t* e |bB(wo,r) = 0ot I F 12, (B(wo,t))

n n t
S0l sup £ (14102 ) 112, Baor0)-
t>2r r

In order to estimate J> note that

1
q
Jo = </ |b() —bBqux> sup t“*"/ |f(y)|dy
B t>2r B(zo,t)

S bl sup ta [ £l L, (B(zo.0))-
t>2r
Summing up J; and Jo, for all p € (1,00) we get

Mo oll ey < 100 sup b8 (140 2) 1 lLymgys (64)

Finally,

1900 L,y S 100 DLy com + Bl sup ¢ (1410 ) o

<l sup £ (1410 ) £l 8000 O
t>2r r

The following theorem is true.

Theorem 6.9. Let 1 < p < o0, 0 < v < 2, % = %— %, b€ BMO(R") and let
(¢1,p2) satisfy the condition
t
sup (1 +1In —) t% p1(z,t) < Cpa(x,r), (6.5)
r<t<oco T

where C' does not depend on x and r.
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Then the operator My . is bounded from M, ,, to Mg ,,. Moreover
1Mo flaty,p, S N0l [1f 11215, -

Proof. The statement of Theorem 6.9 follows by Lemma 6.3 in the same manner as
in the proof of Theorem 4.3. ]

In the case @ = 0 and p = g from Theorem 6.9 we get the following corollary.

Corollary 6.3. Let 1 < p < oo, b€ BMO(R™) and let (¢1,p2) satisfy the condition
sup (1 +1In-— ) o1(z,t) < Cpa(z,r), (6.6)
r<t<oo

where C does not depend on x and r.
Then the operator My is bounded from My o, to M, ,,. Moreover

1My fl|az, o, < N0l 11215, -

6.2. Adams type result
The following is a result of Adams type.

Theorem 6.10. Let 1 < p < ¢ < o0, 0 <a <, b€ BMOR") and let (z,1)
satisfy the conditions

t
sup (1 +1n —)p oz, t) < Cox,r) (6.7)
r<t<oo r
and ;
sup (1 +1In —) t%p(x, t)% < Cra, (6.8)
r<t<oo r

where C' does not depend on x € R™ and r > 0.
Then My, o is bounded from M 1 to M

PP gt
Proof. Let 1l <p<qg<oo,0<a<?® > and f € MZW%. For arbitrary xy € R", set
B = B(zo,r) for the ball centered at xzy and of radius r. Write f = f1 + fo with
fr=fxep and fo = fxoqp-
For z € B we have

My o fo(2)] < supte™ / 1b(y) — b(a)] | £2(»)|dy
t>0

B(z,t)

~ sup %" / Ib(y) — b(a)| | £2(v) dy.
B(z,t)

t>2r

Applying Holder’s inequality and by (6.1), (6.2), we get

My fol)] S sup 2 / 1b(y) — e 1 @)ldy
B(zo,t)

t>2r
+ sup t*” |bB(zo )~ bB(zo,t)|/ |f(y)|dy
t>2r T(),t)
L/
< supted L 1b(y) — bageon”dy | 7]
~ Sup P - xo, xo,
[B(@o, O] S Pl W Ly(B(z0.0)

+ Sup 72 bB(ao.r) — bBwo.n) 1|2, (Bo.))

S bl sup 77 (1410 ) 11, a0
Consequently, for all p € (1,00) and « € B we get

M fo@)| [0l s0p 17 (1410 2) L, a0 (6.9)
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Then from conditions (6.8) and (6.9) we get

« a—2 3
Mo f () 5 bller™ Mof () + [0l sup 175 (1410 2) 1,500,

o t\ o 1
< bl My f () 0l 1, sup (1410 )12 (1)

P, P

S bl My f (@) + |Ibll< 7~ |1 f e (6.10)

Sl

®

£ 1l 2z

1 a—p
p,pP oq
Hence choose r = (Wk:?) for every x € B, we have

My f(@)] S 1Bl (M f(@) 5 17 -

p,p P
Hence the statement of the theorem follows in view of the boundedness of the
commutator of maximal operator M} in M 1 provided by Corollary 6.3 in virtue

P
of condition (6.7).

_1 _n
| Mo f | ar 1 — Sup o(x,r)"ar q||Mb,af||Lq(B(m,r))
0,04 x€R™, >0
1-2 _1 _mn 2
SO T, s @) i E ML
poP TER™, >0
1-z 1 _n %
= 105, (s el B R L)
pp? \TER™, >0
1-2 2
= [0l Fllar ™, IMufling
p,pP P, P
S bl fllar - 0
p,p P

In the case ¢(x,t) = t*~", 0 < A < n from Theorem 6.10 we get the following
Adams type result for the commutator of fractional maximal operator.

Corollary 6.4. Let0<a<n,1<p<%,O<x\<n—ap,%—%:naﬁand

b€ BMO(R"™). Then, the operator My o is bounded from My x to My .

7. Commutators of Riesz potential operators in the spaces M, ,

7.1. Spanne type result

In [13] the following statement was proved for the commutators of Riesz potential
operators, containing the result in [23, 25].

Theorem 7.11. Let 1 < p < o0, 0 < v < 2, % = % —2,b€ BMOR"), o(z,r)
satisfies the conditions (3.1) and (3.3). Then the operator [b,I,] is bounded from
M, , to My.

Lemma 7.4. Let1<p<oo,0<oz<%, %:
Then the inequality

1, L)1l (5 mory S 6]l /

2r

— 2 be BMO(R™).

1
P
oo ¢ T
(110 )ty Bt
holds for any ball B(xo,r) and for all f € LL‘“C(R”).

1

Proof.Let1<p<oo,0<a<%,E:%—%.Writef=f1+f2,where

B = B(xo,7), fi = fxep and fo = fX“(zB)' Hence,
10, Lol fllz, By < [0, Lol fillL, By + II[bs Lol fallL, (B)-
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From the boundedness of [b, I,] from L,(R™) to L,(R"™) it follows that:
116, Lol fill LyBy < M1bs Lol f1ll L, re)
Sl fallz, ey = 0l | fll 2, 2B)-
For x € B we have

L@ S [ ww )/ dy
~ |, %m )Idy
(2B) %0

Then

b(y) — bla)]| L i
116 Ll foll Ly (m) S (/B </<23> o e W)l ) d )
[b(y) — b N
= </B (/G(QB)WIf(y)Idy> dx)
- (L (A(QB) |:170 _y|na|f(y)|dy> d )

=Ji + Jo.
Let us estimate J;.
n b(y) —b
lerq/ le(y)ldy
%28) |70 — Yl

dt
tn—o—l—a dy

Q

/ 1b) — bl f ()]

|zo—yl

n dt
ra y) — bl f(Y)ldy——
LT /2r<z0 y\<t || ( )| trtl-a

ra 1b(y) = b1 F W)l dy 5=
~/2r /B(a:o, i
Applying Holder’s inequality and by (6.1), (6.2), we get

e dt
7 <o / / 16(y) = Do) |1 @)y =
2r B(zo,t)

n [ dt
+7ra / 1bB(20,r) — bB(fco,t)|W/ |f(y)ldy
2r B(Tfﬂvt)

1
n © / v dt
it [ (/ |b<y>—b3<m,t>|pdy> 112, (3o s
2r B(zo,t)

n [ dt
_an/ 6B (20,r) _bB(rcg,t)|||f||Lp(B(zo,t))7ﬁ+1_a

2r

n [ dt
Sllerd [ (141 ) eyt

2r

ZZ

2/\

In order to estimate J> note that
1

) Y W)
P2 (/B|b(x) bs| dx) /“(23) |9C0—y|”7ady'

By (6.1), we get
rgplot [, 0L a,
S2m) [To —y[" ™
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By Fubini’s theorem we have

°2) Ixo—yl" = jwo—yl EFITE
dt
ydy ——
/ 2r<|zo— y|<t| ( )| tnti-a

dt
Wy
/ /B(ajo t tn+1 o

Applying Holder’s inequality, we get
) [ ”
oo =y S £0,0)) TETT 7.1
/2B |zg —y|r— Y= o HfHLp(B( O,t))t?Jrl (7.1)
Thus, by (7.1)
2 % dt
R AV PR

2r

Summing up J; and Jo, for all p € (1,00) we get

o0 . dt
16, Ia] follL,(B) S S lIbllra /2r (1 +1In ;) |‘f|‘Lp(B(Io¢))t§+1' (7.2)
Finally,
L [ dt
116, Lol £l ) S 16l 1 2,2 + 1B 7 / (1)1
; L [ dt
~ ||b||*’]"‘1 ) (1+1n )HfHLp(B(Tﬂvt)) "+1 O

The following theorem is true.

Theorem 7.12. Let 1 < p <00, 0 < a < %
(¢1,p2) satisfy the condition

/Too (1 +1In-— )t"‘ o1 (z, t)% < C oz, r), (7.3)

where C' does not depend on x and r.
Then the operator [b,1,] is bounded from My ,, to My ,,. Moreover

11b: La] f1M4,, S Ol 1 f 1101, -

Proof. The statement of Theorem 7.12 follows from Lemma 7.4.

— 2, be BMO(R") and let

1
p

I, L) flint,,, =  sup wo(z,r) " 'r™ 9|0, Lol fll o, (Bl
zeR™ r>0
B B dt
Sl s o™ [ (1 )l ey s
zER™, r>0 2r

[~ dt
SIS, s )™ [ (14 D)@ T

s T T

S bl F Iy, - 0

7.2. Adams type result
The following is a result of Adams type.

Theorem 7.13. Let 1 < p < ¢ < o0, 0 <a <, be BMOR") and let (x,1)
satisfy the conditions (6.7) and

/ (1 +In ;) t%(z,t)i% < Or 5, (7.4)
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where C' does not depend on z € R™ and r > 0. Then [b, I,] is bounded from M
P
toM 1.

a9
Proof. Let 1 <p<qg<o0,0<a< % and f e M 1 For arbitrary xyp € R", set
Pyp
B = B(zo,r) for the ball centered at xy and of radius r. Write f = f1 + fo with
fr=fxep and fo = fxoqp-
For z € B we have

b, I fol2)] < /

1
PP

=2 iy

|b(y) — b(z)|
=~ —— 2| f(y)|dy.
/’(23) lzo — y[m— )l
Analogously to Section 7.1, for all p € (1,00) and = € B we get

b L)) < 0] [

2r

oo

t\ q_n_
(1) eadt (75)

Then from conditions (7.4) and (7.5) we get

(e > l a—2—
[0 L7 @] S 10l 7 M @) + [0l [ (1410 7) 75 eyt

e t dt
< ol Mo @)+ 10l Uy [ (1) (e

P, P 3

S bl My f (@) + Ibll 7~ 75 |1 f e (7.6)

T=

©
lfllar 3 a=p
Hence choose r = (Wk;’;) * for every x € B, we have
B 1-2
|6, La] £ ()| S N0« (Mo f () o 1 fllar * -
PP
Hence the statement of the theorem follows in view of the boundedness of the
commutator of maximal operator M in M 1 provided by Corollary 6.3 in virtue

Py
of condition (6.7)
_1 _n
H[bala]fHM 1= sup cp(x,r) ar qH[bala]fHLq(B(z,r))
aed  zERM, >0
1-2 _1 _n %
S WUl T, swp el ) AL o)
pop TER™, T 0
1—2 1 _n %
S G R LT ey
po?  \ZER™, >0
1-2 D
= ol 1 fllas * ) IMofllie
PP PP
S Bl fllar - 0
PP

8. Some applications

In this section, we shall apply Theorems 4.4, 7.12 and 7.13 to several particular
operators such as the Marcinkiewicz operator and fractional powers of the some
analytic semigroups.

8.1. Marcinkiewicz operator

Let S"~! = {2 € R" : |z| = 1} be the unit sphere in R" equipped with the Lebesgue
measure do. Suppose that €2 satisfies the following conditions.

< 7.1 ok?

<= 6.3 ok?

<— 4.4 ok?
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(a) Q is the homogeneous function of degree zero on R™ \ {0}, that is,
Q(pz) = Q(z), for any p > 0,2 € R™\ {0}.

(b) ©Q has mean zero on S"~!, that is,

/sn,1 Q(z')do(z") = 0.

(c) Qe Lip,(S""), 0 <~ <1, that is there exists a constant M > 0 such that,
9(/) — Q)] < M’ —y/|" for any o/,y’ € S71.

In 1958, Stein [28] defined the Marcinkiewicz integral of higher dimension pgq as

pa(f)(x) = (/w \Fou(f)(a >|2dt) ,

where

Qz —y)

Fou(f)(@) = / e )y

lz—y|<t |Z‘ -

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been
extensively studied as a research topic and also provides useful tools in harmonic
analysis [22, 29, 30].

The Marcinkiewicz operator is defined by (see [31])

1/2

N = ([ FaaD0Pg )

where

Foal 1)@ = [ Lot T

|z—y|<t |IL‘ - y|n717a

Note that pof = paof.
The sublinear commutator of the operator pq o is defined by

b, per.al (F) ) = ( / RO >|2‘”)1/2,

where o )
r—y
Fyuo(f)(@) = / o [b(2) — b(y)]f (y)dy.
lz—y|<t |Z‘ y|
Let H be the space H = {h : ||h|| = (f;~ |h(t)|?dt/t?)/? < oo}. Then, it is

clear that pig.o(f)(%) = [|Fo,a.i(2)]-
By Minkowski inequality and the conditions on €2, we get

1/2
[z —y) *od Lf ()l
MQ,a(f)(x)S/RnWU(?JN (/ 7 ) dy<C - Wdy

=y

It is known that for b € BMO(R™) the operators pq,o and [b, ua,q| are bounded
from L,(R™) to Ly(R™) for p > 1, and bounded from L1 (R™) to WL, (R"™) (see [31]),
then from Theorems 4.4 and 7.12 we get

Corollary 8.5. Let 1 <p <o0, 0 <a <% ; = %— 2 and (p1,p2) satisfy condition

(5.1) and Q satisfies conditions (a)—(c). Then Ue,a is bounded from M, o, to Mg o,
for p>1 and from M ,, to WM, ,.

Corollary 8.6. Let 1 <p <q<o0,0<a<2, ¢ satisfy conditions (4.7), (5.2) and
Q be satisfies the conditions (a)—(c). Then uq,qo is bounded from M 1 to

for p>1 and from M, to M 1 forp=1.
@

<— 4.4 ok?
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Corollary 8.7. Let 1 <p < o0, 0 < < 7, % =

(7.3), b € BMO(R™) and Q be satisfies conditions
from M, ,, to Mgy ,,.

— 2, (p1,p2) satisfy condition
a)—(c). Then [b, pa,qa) is bounded

S

—~

Corollary 8.8. Let 1 <p<qg<oo,0<a< %, @ satisfy conditions (6.7), (7.4),

b€ BMO(R") and Q be satisfies the conditions (a)—(c). Then [b, 10 o] is bounded
fromM 1 toM 1.

PP 091
8.2. Fractional powers of the some analytic semigroups

The theorems of the previous sections can be applied to various operators which
are estimated from above by Riesz potentials. We give some examples.
Suppose that L is a linear operator on Lo which generates an analytic semi-

group e~ ‘L with the kernel p;(x,y) satisfying a Gaussian upper bound, that is,

12
o |z—yl

C1
Ipe(z,y)l < se (8.1)

for z,y € R™ and all ¢ > 0, where ¢;, c2 > 0 are independent of x, y and ¢.
For 0 < a < n, the fractional powers L~%/2 of the operator L are defined by

. 1 o dt
L) = g, O

Note that if L = —A is the Laplacian on R™, then L~?/2 is the Riesz potential
I,,. See, for example, Chapter 5 in [29].

Property (8.1) is satisfied for large classes of differential operators (see, for
example [7]). In [7] also other examples of operators which are estimates from above
by Riesz potentials are given. In these cases Theorems 5.6, 5.7, 7.12 and 7.13 are
also applicable for proving boundedness of those operators and commutators from
M, ,, to My, and from M 1 to M 1.

PP 4,91
Corollary 8.9. Let condition (8.1) be satisfied. Moreover, let 1 <p < 00,0 < a < %,

% = % — 2, (p1,2) satisfy condition (5.1). Then L=%/? is bounded from M, ,, to

My, o, forp>1 and from My, to WM, forp=1.
Proof. Since the semigroup e ** has the kernel p;(z,y) which satisfies condition
(8.1), it follows that

L= f(2)] S (| f])(2)

(see [14]). Hence by the aforementioned theorems we have

12 flnty 0y S Ml Dty oy S 1F Nty s -

Corollary 8.10. Let condition (8.1) be satisfied. Moreover, let 1 < p < q < oo,
0 < o < 2, ¢ satisfy conditions (4.7) and (5.2). Then L=/2 s bounded from
M 1toM 1 forp>1andfrom My, to WM 1 forp=1.
p,pP q,p 19 q,p9

Let b be a locally integrable function on R”, the commutator of b and L~/2
is defined as follows

[b, L= f (2) = b() L= f(2) — L= (bf) ().
In [14] extended the result of [10] from (—A) to the more general operator
L defined above. More precisely, they showed that when b € BMO(R™), then the

commutator operator [b, L~%/2] is bounded from L,(R"™) to L,(R™) for 1 < p < oo
and % = % — o Then from Theorems 7.12 and 7.13 we get

Corollary 8.11. Let condition (8.1) be satisfied. Moreover, let 1 < p < 00, 0 < av <
L % = %— 2 be BMO(R™), and (¢1,¢2) satisfy condition (7.3). Then [b, L=%/?]
is bounded from My o, to My o,.
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Corollary 8.12. Let condition (8.1) be satisfied. Moreover, let 1 < p < q < o0,
0<a<Z,beBMO(R"), and ¢ satisfy conditions (6.7) and (7.4). Then [b, L=2/?]
is bounded from M 1 to M 1.

PP a9
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