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Certain Image Formulae and Fractional
Kinetic Equations Involving Extended
Hypergeometric Functions

Krunal B. Kachhia, Praveen Agarwal and Jyotindra C. Prajapati

Abstract In this chapter, our aim is to establish certain new image formulae of
generalized hypergeometric functions by using the operators of fractional calculus.
Some new image formulae are obtained by applying specific integral transforms
on resulting image formulae. We also acquired generalization of fractional kinetic
equations involving extended hypergeometric functions.

Keywords Generalized Gauss hypergeometric function · Fractional derivative
operators · Integral transforms ·Fractional kinetic equation ·Mittag–Leffler function

2010 AMS Math. Subject Classification 26A33 · 33B15 · 33C15 · 33C20 ·
33C99 · 44A10 · 33E20

1 Introduction

Fractional calculus is one of the generalizations of classical calculus, and it has been
used successfully in various fields of science and technology. Many applications of
fractional calculus can be found in other diverse fields, etc. (See [15, 17, 19–22,
35]).

Integral transforms and fractional integral formulae involving well-known special
functions are interesting in themselves and play significant roles in their diverse
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2 K.B. Kachhia et al.

applications. Certain new integral transforms and fractional integral formulae for the
generalized hypergeometric type function which has recently been introduced by
various authors [29–31].

Fractional kinetic equations gained remarkable significance due to their applica-
tions in astrophysics and mathematical physics. The extension and generalization of
fractional kinetic equations involving many fractional operators were found [5, 18,
25, 32, 36, 38, 41, 42].

1.1 Extended Hypergeometric Function

Luo et al. [24] introduced the following extended generalized hypergeometric func-
tion p F (δ,ξ;κ,μ)

q and obtained its various properties: The extended generalized hyper-
geometric function p F (δ,ξ;κ,μ)

q is defined by

p F (δ,ξ;κ,μ)
q

[
a1, . . . , ap

b1, . . . , bq
; z;ω

]
:=

∞∑
n=0

�(n/p, q)
zn

n! (1)

(min{�(δ), �(ξ), �(ω)} > 0, min {�(κ), �(μ)} ≥ 0) ,

whose coefficient �(n/p, q) is determined by

�(n/p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1)n

q∏
j=1

B(δ,ξ;κ,μ)
ω (a j+1+n,b j −a j+1)

B(a j+1,b j −a j+1)

(p = q + 1; �(b j ) > �(a j+1) > 0; |z| < 1),
q∏

j=1

B(δ,ξ;κ,μ)
ω (a j +n,b j −a j )

B(a j ,b j −a j )

(p = q; �(b j ) > �(a j ) > 0; z ∈ C),
r∏

i=1

1
(bi )n

p∏
j=1

B(δ,ξ;κ,μ)
ω (a j +n,br+ j −a j )

B(a j ,br + j−a j )

(r = q − p, p < q; �(br+ j ) > �(a j ) > 0; z ∈ C).

Here, the generalized beta function B(δ,ξ;κ,μ)
ω (x, y) is defined by Luo et al. [24]

B(δ,ξ;κ,μ)
ω (x, y) :=

1∫
0

t x−1(1 − t)y−1
1F1

(
δ; ξ;− γ

t k(1 − t)μ

)
dt (2)

(min{�(ω), �(κ)} ≥ 0, min{�(x), �(y), �(δ),�(ξ), �(k), �(μ)} > 0)

and the beta function B(δ, ξ) may be recalled as follows (Srivastava and Choi [9]):
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B(δ, ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ 1

0
tα−1(1 − t)β−1 dt (�(δ) > 0; �(ξ) > 0)

�(δ) �(ξ)

�(δ + ξ)
(δ, ξ ∈ C \ Z−

0 ).

(3)

The special case of the function (1), when ω = 0 is seen to reduce to the general-
ized hypergeometric function p Fq with p numerator and q denominator parameters,
is defined by Rainville [6] and Srivastava and Choi [9]

p Fq

[
a1, . . . , ap;
b1, . . . , bq; z

]
==

∞∑
n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

zn

n! ,

where in terms of the gamma function �(z) (Srivastava and Choi [9]) whose Euler’s
integral is given by

�(z) =
∞∫
0

e−t t z−1 dt (�(z) > 0),

the widely used Pochhammer symbol (λ)ν (λ, ν ∈ C) is defined, in general, by
Srivastava and Manocha [8], Srivastava and Choi [9]

(λ)ν := �(λ + ν)

�(λ)

(
λ ∈ C \ Z−

0

)

=
{
1 (ν = 0; λ ∈ C \ {0})
λ(λ + 1) . . . (λ + n − 1) (ν = n ∈ N; λ ∈ C).

The special case of the function (2) when γ = 0 would reduce immediately to the
familiar classical beta function B(x, y) (Srivastava and Choi [9]).

It is also noted that for p = 2 and q = 1 the definitions in (1) would reduce
immediately to the extended hypergeometric type function defined as follows (Luo
et al. [24]):

2F (δ,ξ;κ,μ)

1

[
a, b

c
; z;ω

]
:=

∞∑
n=0

(a)n
B(δ,ξ;κ,μ)

ω (b + n, c − b)

B(b, c − b)

zn

n! (4)

(R(ω) > 0, R(κ) ≥ 0, μ ≥ 0; min{R(δ),R(ξ)} > 0; R(c) > R(b) > 0, |z| < 1).

The various properties of extended hypergeometric functions are studied by some
authors in [11, 23, 28].

The present investigation requires the concept of Hadamard product which can
be used to decompose a newly emerged function into two known functions.
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Let

f (z) :=
∞∑

n=0

anzn and g (z) :=
∞∑

n=0

bnzn

be two power series whose radii of convergence are given by R f and Rg, respectively.
Then, their Hadamard product (Pohlen [40]) is the power series defined by

( f ∗ g) (z) :=
∞∑

n=0

anbnzn.

The radius of convergence R of the Hadamard product series ( f ∗ g) (z) satisfies
R f · Rg ≤ R. If, in particular, one of the power series defines an entire function, then
the Hadamard product series defines an entire function, too.

Consider the function p F (δ,ξ;κ,μ)
r+p [z;ω] one of whose Hadamard products can, for

example, be given as follows:

p F (δ,ξ;κ,μ)
r+p

[
x1, . . . , x p

y1, . . . , yr+p
; z;ω

]

= 1Fr

[
1;

y1, . . . , yr ; z

]
∗ p F (δ,ξ;κ,μ)

p

[
x1, . . . , x p

yr+1, . . . , yr+p
; z;ω

]
(|z| < ∞) ,

where 1Fr is a special case of the generalized hypergeometric functions p Fq

(Srivastava and Choi [9]).

1.2 Fractional Calculus

Appell hypergeometric function F3 in two variables (see Appell andKampé de Fériet
[33] and Srivastava and Karlsson [12]) is defined by

F3(α,α′,β,β′; γ; x; y) =
∞∑

m,n=0

(α)m(α′)n(β)m(β′)n

(γ)m+n

xm

m!
yn

n! (max{|x |, |y|} < 1).

(5)
Let α,α′,β,β′, γ ∈ C, C being the set of complex numbers and x > 0. Then for
R(γ) > 0, the generalized fractional integral operators involving the Appell hyper-
geometric function F3 as a kernel are defined as follows (Saigo and Maeda [27]):

(Iα,α′,β,β′,γ
0,x f )(x) = x−α

�(γ)

x∫
0

(x − t)γ−1t−α′
F3

(
α,α′, β,β′; γ; 1 − t

x
, 1 − x

t

)
f (t) dt

(6)
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and

(Iα,α′,β,β′,γ
x,∞ f )(x) = x−α′

�(γ)

∞∫
x

(t − x)γ−1t−αF3

(
α, α′, β,β′; γ; 1 − x

t
, 1 − t

x

)
f (t) dt

(7)

Then, the generalized fractional derivative operators of a function f (x) are defined
as follows (Saigo and Maeda [27]);

(Dα,α′,β,β′,γ
0+ f )(x) = (I −α′,−α,−β′,−β,−γ

0,x f )(x) =
(

d

dx

)k

(I −α′,−α,−β′+k,−β,−γ+k
0,x f )(x) (8)

and

(Dα,α′,β,β′,γ
0− f )(x) = (I −α′,−α,−β′,−β,−γ

x,∞ f )(x) =
(

− d

dx

)k

(I −α′,−α,−β′+k,−β,−γ+k
x,∞ f )(x),

(9)
(R(γ) > 0; k = [R(γ)] + 1).
The Appell function (5) in (8) and (9) satisfies a system of two partial differential

equations of the second order and reduces to the Gauss hypergeometric function 2F1

as follows (see Appell and Kampé de Fériet [33] and Srivastava and Karlsson [12]):

F3(α, γ − α,β, γ − β; γ; x; y) = 2F1(α,β; γ; x + y − xy)

Further, it is easy to see that

F3(α, 0,β,β′; γ; x; y) = 2F1(α,β; γ; x) (10)

and
F3(0,α

′,β,β′; γ; x; y) = 2F1(α
′,β′; γ; y)

In view of the reduction formula (10), the general operators (6) and (7) reduce to
Saigo operators

(I α,β,γ
0,x f )(x) = x−α−β

�(α)

x∫
0

(x − t)α−1
2F1

(
α + β,−γ;α; 1 − t

x

)
f (t) dt

and

(I α,β,γ
x,∞ f )(x) = 1

�(α)

∞∫
x

(x − t)α−1t−α−β
2F1

(
α + β,−γ;α; 1 − x

t

)
f (t) dt,
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Then, the left-sided Saigo fractional derivative operator can be defined as Saigo [26]
and Srivastava and Saigo [10]

(Dα,β,γ
0+ f )(x) = (I −α,−β,α+γ

0,x f ) =
(

d

dx

)n

{(I −α+γ,−β−γ,α+γ−n
0,x f )(x)} (11)

and

(Dα,β,γ
0− f )(x) = (I −α,−β,α+γ

x,∞ f ) =
(

− d

dx

)n

{(I −α+γ,−β−γ,α+γ−n
x,∞ f )(x)}, (12)

(R(α) ≥ 0; n = [R(α)] + 1). If we take α = 0, then (8) and (9) reduce to Saigo
fractional derivative operators defined by (11) and (12), respectively.

If we set β = −α, then operators (11) and (12) reduce to Riemann–Liouville
fractional derivative operator and Weyl fractional derivative operator as follows
(Kilbas et al. [1])

(Dα,−α,γ
0+ f )(x) = (RL Dα

0+ f )(x) =
(

d

dx

)n
⎧⎨
⎩

1

�(n − α)

x∫
0

f (t)

(x − t)α−n+1
dt

⎫⎬
⎭
(13)

and

(Dα,−α,γ
0− f )(x) = (W Dα

0− f )(x) =
(

− d

dx

)n
⎧⎨
⎩

1

�(n − α)

∞∫
x

f (t)

(t − x)α−n+1
dt

⎫⎬
⎭ ,

(14)
(x > 0; n = [R(α)] + 1;R(α) ≥ 0). Again, if β = 0, (11) and (12) reduce to left-
sided Erdélyi–Kober fractional differential operator and right-sided Erdélyi–Kober
fractional differential operator and are defined below (Kilbas et al. [1])

(Dα,0,γ
0+ f )(x) = (E K Dα,γ

0+ f )(x) = xγ

(
d

dx

)n
⎧⎨
⎩

1

�(n − α)

x∫
0

tα+γ f (t)

(x − t)α−n+1
dt

⎫⎬
⎭
(15)

and

(Dα,0,γ
0− f )(x) = (E K Dα,γ

0− f )(x) = xα+γ

(
− d

dx

)n
⎧⎨
⎩

1

�(n − α)

∞∫
x

t−γ f (t)

(t − x)α−n+1 dt

⎫⎬
⎭ , (16)

(x > 0; n = [R(α)] + 1;R(α) ≥ 0).
The generalized integration for a power function is given by Saigo and Maeda

[27], Saxena and Saigo [37]:
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(I α,α′,β,β′,γ
0,x tρ−1)(x) = �(ρ)�(ρ + γ − α − α′ − β)�(ρ + β′ − α′)

�(ρ + β′)�(ρ + γ − α − α′)�(ρ + γ − α′ − β)
xρ−α−α′+γ−1, (17)

where R(γ) > 0,R(ρ) > max{0,R(α + α′ + β − γ),R(α′ − β′)} and

(I α,α′,β,β′,γ
x,∞ tρ−1)(x) = �(1 − ρ − γ + α + α′)�(1 − ρ + α + β′ − γ)�(1 − ρ − β)

�(1 − ρ)�(1 − ρ + α + α′ + β′ − γ)�(1 − ρ + α − β)
xρ−α−α′+γ−1

(18)
where R(γ) > 0,R(ρ) < 1 + min{R(−β),R(α + α′ − γ),R(α + β′ − γ)}.

1.3 Certain Basic Tools

The beta transforms of f (z) are defined as Sneddon [16]

B{ f (z) : a, b} =
1∫

0

za−1(1 − z)b−1 f (z) dz (19)

The pathway type transforms (Pν-transforms) of a function f (z) of a real variable z
denoted by Pν[ f (z); s] are a function F(s) of complex variable s, valid under certain
conditions on f (z) along with the condition ν > 1, and are defined by Kumar [4]

Pν[ f (z); s] = F(s) =
∞∫
0

[1 + (ν − 1)s]− z
ν−1 f (z) dz. (20)

For ρ ∈ C,R(ρ) > 0 and ν > 1, the Pν-transform of power function is given by
Kumar [4]

Pν[zρ−1; s] =
{

ν − 1

ln[1 + (ν − 1)s]
}ρ

�(ρ) (21)

Furthermore, upon letting ν → 1 in (20), the Pν-transform is reduced to classical
Laplace transform of a function f (z) (Sneddon [16]) is given by

L{ f (z) : s} =
∞∫
0

e−sz f (z) dz. (22)

Agarwal et al. [34] obtained solution of fractional volterra integral equation and
nonhomogeneous time fractional heat equation using integral transform of pathway
type.

The Whittaker function (Mathai et al. [2, p. 55]) is defined by
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Wλ,m(z) =
∑

m,−m

�(−2m)

�( 12 − λ − m)
Mλ,m(z)

where the summation symbol indicates that the expression following it, a similar
expression with m replaced by −m, is to be added and

Mλ,m(z) = zm+ 1
2 e− z

2 1F1

(
1

2
− λ + m; 2m + 1; z

)
.

We shall use the following formula (Mathai et al. [2])

∞∫
0

tρ−1e− t
2 Wλ,m(t) dz = �(ρ + m + 1

2 )�(ρ − m + 1
2 )

�(ρ − λ + 1
2 )

(23)

Two-parameter Mittag–Leffler function (Wiman [3]) is defined as

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, (24)

(α,β ∈ C;R(α) > 0,R(β) > 0).

1.4 Fractional Kinetic Equations

If an arbitrary reaction is characterized by a time dependent N = N (t), then it is
possible to calculate the rate of change of d N

dt by mathematical equation

d N

dt
= −d + p,

where d is the destruction rate and p is the production rate of N .
Haubold andMathai [7] established a functional differential equation between the

rate of change of reaction, the destruction rate and the production rate as follows:

d N

dt
= −d(Nt ) + p(Nt ), (25)

where N = N (t) is the rate of reaction, d(N (t)) is the rate of destruction, p(Nt ) is the
rate of production, and Nt denotes the function defined by Nt (t∗) = N (t) − t∗, t∗ >

0.
A special case of (25), when spatial fluctuations or homogeneities in the quantity

N (t) are neglected, is given by the following differential equation (Haubold and
Mathai [7] and Kourganoff [43]):
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d Ni

dt
= −ci Ni (t), (26)

where initial condition Nt (t = 0) = N0 is the number of density of species i at time
t = 0, ci > 0. Solution of standard kinetic equation (26) is given by Kourganoff [43]
as

Ni (t) = N0e−ci t .

If we decline the index i and integrate standard kinetic equation (26), we have

N (t) − N0 = −c0 0Dt
−1N (t),

where 0Dt
−1 is standard integral operator.

Haubold and Mathai [7] obtained the fractional generalization of the standard
kinetic equation (26) as

N (t) − N0 = −cν
0 0Dt

−ν N (t), (27)

where 0Dt
−ν is Riemann–Liouville fractional integral operator defined as Samko

et al. [39]

0Dt
−ν f (t) = 1

�(ν)

t∫
0

(t − u)ν−1 f (u) du, t > 0,R(ν) > 0.

The Laplace transform (22) of the Riemann–Liouville fractional integral operator is
given by [14]

L{0Dt
−p f (t); s} = s−p L{ f (t); s}. (28)

Solution of Eq. (27) is given by Haubold and Mathai [7]

N (t) = N0

∞∑
k=0

(−1)k

�(νk + 1)
(c0t)νk .

2 Image Formulae Associated with Fractional Derivative
Operators

In this section, we establish certain fractional derivative formulae for the extended
generalized hypergeometric function (4).
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2.1 Saigo–Maeda Fractional Derivative Operators

Theorem 2.1 Let x > 0, the parameters α,α′,β,β′, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) > max{0,R(γ − α − α′ − β′),R(β − α)}.

Then, the following formula holds:

(
Dα,α′,β,β′,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; zt;ω

])
(x) =

xρ+α+α′−γ−1 �(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; zx;ω

]
∗ 3F3

[
ρ, ρ − β + α, ρ − γ + α + α′ + β′

ρ − β, ρ − γ + α + β′, ρ − γ + α + α′; zx

]

(29)

Proof Applying (4) and using (8), we obtain

(
I −α′,−α,−β′,−β,−γ
0,x tρ−1

2F (δ,ξ;κ,μ)
1

[
a, b

c
; zt;ω

])
(x) =

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

zk

k!
(

I −α′,−α,−β′,−β,−γ
0,x tρ+k−1

)
(x)

Now using (17), we get

(
Dα,α′,β,β′,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; zt;ω

])
(x) =

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

zk xρ+k+α+α′−γ−1

k!

× �(ρ + k)�(ρ + k − β + α)�(ρ + k − γ + α + α′ + β′)
�(ρ + k − β)�(ρ + k − γ + α + β′)�(ρ + k − γ + α + α′)

Hence,

(
Dα,α′,β,β′,γ
0+ tρ−1

2F (δ,ξ;κ,μ)
1

[
a, b

c
; zt;ω

])
(x) =

xρ+α+α′−γ−1 �(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

(zx)k

k!

which, in view of Hadamard product series and (4), gives the right-hand side of (29).
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Theorem 2.2 Let x > 0, the parameters α,α′,β,β′, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) < 1 + min{0,R(β′),R(γ − α − α′),R(γ − α′ − β)}.
Then, the following formula holds:

(
Dα,α′,β,β′,γ
0− tρ−1

2F(δ,ξ;κ,μ)
1

[
a, b

c
; z

t
;ω

])
(x)

= xρ+α+α′−γ+1 �(1 − ρ + γ − α − α′)�(1 − ρ − α′ − β + γ)�(1 − ρ + β′)
�(1 − ρ)�(1 − ρ − α − α′ − β + γ)�(1 − ρ − α′ + β′)

× 2F(δ,ξ;κ,μ)
1

[
a, b

c
; z

x
; ω

]
∗ 3F3

[
1 − ρ + γ − α − α′, 1 − ρ − α′ − β + γ, 1 − ρ + β′
1 − ρ, 1 − ρ − α − α′ − β + γ, 1 − ρ − α′ + β′ ; z

x

]
(30)

Proof Using (4) and using (9), we obtain

(
I −α′,−α,−β′,−β,−γ

x,∞ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; z

t
;ω

])
(x) =

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

zk

k!
(

I −α′,−α,−β′,−β,−γ
x,∞ tρ−k−1

)
(x)

Using (18), we get

(
Dα,α′,β,β′,γ
0+ tρ−1

2F (δ,ξ;κ,μ)
1

[
a, b

c
; z

t
;ω

])
(x) = xρ+α+α′−γ−1

× �(1 − ρ + γ − α − α′)�(1 − ρ − α′ − β + γ)�(1 − ρ + β′)
�(1 − ρ)�(1 − ρ − α − α′ − β + γ)�(1 − ρ − α′ + β′)

×
∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(1 − ρ + γ − α − α′)k(1 − ρ − α′ − β + γ)k(1 − ρ + β′)k

(1 − ρ)k(1 − ρ − α − α′ − β + γ)k(1 − ρ − α′ + β′)k

( z
x )k

k!

which, in view of Hadamard product series and (4), gives the right-hand side of (30).

The following theorems are due to Srivastava et al. in [13] for p = 2 and q = 1.

2.2 Saigo Fractional Derivative Operators

Theorem 2.3 Let x > 0, the parameters α,β, γ, ρ, δ, ξ,ω ∈ C,R(ω) > 0,R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) > −min{0,α + β + γ}.

Then, the following Saigo fractional derivative formula holds:
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(
Dα,β,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x) = xρ+β−1 �(ρ)�(ρ + α + β + γ)

�(ρ + β)�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; xz;ω

]
∗ 2F2

[
ρ, ρ + α + β + γ

ρ + β, ρ + γ
; xz

]

(31)

Theorem 2.4 Let x > 0, the parameters α,β, γ, ρ, δ, ξ,ω ∈ C,R(ω) > 0,R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−β − γ),R(α + γ)}.

Then, the following Saigo fractional derivative formula holds:

(
Dα,β,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; z

t
;ω

])
(x)= xρ+β−1�(1 − ρ − β)�(1 − ρ + α + γ)

�(1 − ρ)�(1 − ρ − β + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; z

x
;ω

]
∗ 2F2

[
1 − ρ − β, 1 − ρ + α + γ
1 − ρ, 1 − ρ − β + γ

; z

x

]

Further, replacing β by −α in Theorems 2.3 and 2.4 and making use of relations
(13) and (14) gives Riemann–Liouville fractional derivative formula of generalized
Gauss hypergeometric function given in (4) given by the following corollaries (Sri-
vastava et al. [13]).

2.3 Riemaan–Liouville Fractional Derivative Operator

Corollary 2.5 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0,min{R(δ),R(ξ)} > 0,R(c) > R(b) > 0,R(α) ≥ 0, andR(ρ) > 0. Then,
the following Riemann–Liouville fractional derivative formula holds:

(
RL Dα

0+tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; zt;ω

])
(x) = xρ−α−1 �(ρ)

�(ρ − α)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; zx;ω

]
∗ 1F1

[
ρ

ρ − α
; zx

] (32)

2.4 Weyl Fractional Derivative Operator

Corollary 2.6 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) < 1 + min{R(α)}.
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Then, the following Weyl fractional derivative formula holds:

(
W Dα

0−tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; z

t
;ω

])
(x) = xρ−α−1 �(1 − ρ + α)

�(1 − ρ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; z

x
;ω

]
∗ 1F1

[
1 − ρ + α
1 − ρ

; z

x

] (33)

Upon setting β = 0 in Theorems 2.3 and 2.4, we can deduce the following corol-
laries (Srivastava et al. [13]).

2.5 Erdélyi–Kober Fractional Derivative Operators

Corollary 2.7 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) > −min{0,R(γ)}.

Then, the following Erdélyi–Kober fractional derivative formula holds:

(
E K Dα,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; zt;ω

])
(x) = xρ−1 �(ρ + α + γ)

�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; zx;ω

]
∗ 1F1

[
ρ + α + γ

ρ + γ
; zx

] (34)

Corollary 2.8 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−γ),R(α + γ)}.

Then, the following Erdélyi–Kober fractional derivative formula holds:

(
E K Dα,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; z

t
;ω

])
(x) = xρ−1�(1 − ρ + α + γ)

�(1 − ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; z

x
;ω

]
∗ 1F1

[
1 − ρ + α + γ
1 − ρ + γ

; z

x

] (35)
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3 Image Formulae Associated with Integral Transforms

In this section, we prove certain theorems, which exhibit the connection between
beta transforms, pathway transforms, Laplace transforms, and Whittaker transforms
with the results obtained in previous section.

3.1 Beta Transforms

Theorem 3.1 Let x > 0, the parameters α,α′,β,β′, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) > max{0,R(γ − α − α′ − β′),R(β − α)}.

Then, the following beta transform (19) formula holds:

B

{(
Dα,α′,β,β′,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; t z;ω

])
(x) : l, m

}
=

xρ+α+α′−γ−1 B(l, m)�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; x;ω

]
∗ 3F3

[
ρ, ρ − β + α, ρ − γ + α + α′ + β′

ρ − β, ρ − γ + α + β′, ρ − γ + α + α′; x

]

(36)

Proof Let L be the left-hand side of (36) and applying (19) to (36). We get

L =
1∫

0

zl−1(1 − z)m−1
{(

Dα,α′,β,β′,γ
0+ tρ−1

2F(δ,ξ;κ,μ)
1

[
l + m, b

c
; t z; ω

])
(x) : l, m

}
dz

Use of (29) gives

L =
1∫

0

zl−1(1 − z)m−1 xρ+α+α′−γ−1�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
∞∑

k=0

(l + m)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

(xz)k

k! dz

By changing the order of integration and summation which may be verified under
the conditions, and using the classical beta function (3), we obtain
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L = B(l, m)
xρ+α+α′−γ−1�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)

�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
∞∑

k=0

(l)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

xk

k! dz

which, in view of (4), is seen to lead to the right-hand side of (36).

Theorem 3.2 Let x > 0, the parameters α,α′,β,β′, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) < 1 + min{0,R(β′),R(γ − α − α′),R(γ − α′ − β)}.
Then, the following beta transform (19) formula holds:

B

{(
Dα,α′,β,β′,γ
0− tρ−1

2F (δ,ξ;κ,μ)
1

[
l + m, b

c
; z

t
; ω

])
(x) : l, m

}
=

xρ+α+α′−γ+1 B(l, m)�(1 − ρ + γ − α − α′)�(1 − ρ − α′ − β + γ)�(1 − ρ + β′)
�(1 − ρ)�(1 − ρ − α − α′ − β + γ)�(1 − ρ − α′ + β′)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; 1

x
; ω

]
∗ 3F3

[
1 − ρ + γ − α − α′, 1 − ρ − α′ − β + γ, 1 − ρ + β′
1 − ρ, 1 − ρ − α − α′ + β + γ, 1 − ρ − α′ + β′ ; 1

x

]

Theorem 3.3 Let x > 0, the parameters α,β, γ, ρ, δ, ξ,ω ∈ C,R(ω) > 0,R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) > −min{0,α + β + γ}.

Then, the following beta transform formula holds:

B

{(
Dα,β,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; t z;ω

])
(x)

}

= xρ+β−1B(l, m)
�(ρ)�(ρ + α + β + γ)

�(ρ + β)�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; xz;ω

]
∗ 2F2

[
ρ, ρ + α + β + γ

ρ + β, ρ + γ
; xz

]

Theorem 3.4 Let x > 0, the parameters α,β, γ, ρ, δ, ξ,ω ∈ C,R(ω) > 0,R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−β − γ),R(α + γ)}

Then, the following beta transform formula holds:
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B

{(
Dα,β,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; t

z
;ω

])
(x)

}

= B(l, m)xρ+β−1 �(1 − ρ − β)�(1 − ρ + α + γ)

�(1 − ρ)�(1 − ρ − β + γ)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; z

x
;ω

]
∗ 2F2

[
1 − ρ − β, 1 − ρ + α + γ
1 − ρ, 1 − ρ − β + γ

; z

x

]

Corollary 3.5 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0,min{R(δ),R(ξ)} > 0,R(c) > R(b) > 0,R(α) ≥ 0, andR(ρ) > 0. Then,
the following beta transform fractional derivative formula holds:

B

{(
RL Dα

0+tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; zt;ω

])
(x)

}
= xρ−α−1B(l, m)

�(ρ)

�(ρ − α)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; zx;ω

]
∗ 1F1

[
ρ

ρ − α
; zx

]

Corollary 3.6 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) < 1 + min{R(α)}.

Then, the following beta transform formula holds:

B

{(
W Dα

0−tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; z

t
;ω

])
(x)

}
=xρ−α−1B(l, m)

�(1 − ρ + α)

�(1 − ρ)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; z

x
;ω

]
∗ 1F1

[
1 − ρ + α
1 − ρ

; z

x

]

Corollary 3.7 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(α) ≥ 0 and R(ρ) > −min{0,R(γ)}.

Then, the following beta transform formula holds:

B

{(
E K Dα,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; zt;ω

])
(x)

}
= xρ−1B(l, m)

�(ρ + α + γ)

�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; zx;ω

]
∗ 1F1

[
ρ + α + γ

ρ + γ
; zx

]

Corollary 3.8 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that
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R(α) ≥ 0 and R(ρ) < 1 + min{R(−γ),R(α + γ)}.

Then, the following beta transform formula holds:

B

{(
E K Dα,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
l + m, b

c
; z

t
;ω

])
(x)

}

= xρ−1B(l, m)
�(1 − ρ + α + γ)

�(1 − ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
l, b

c
; z

x
;ω

]
∗ 1F1

[
1 − ρ + α + γ
1 − ρ + γ

; z

x

]

3.2 Pathway Transforms

Theorem 3.9 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(ρ) > max{0,R(γ − α − α′ − β′),R(β − α)}.
Then, the following pathway transform (20) formula holds:

Pν

[
zl−1

(
Dα,α′,β,β′,γ
0+ tρ−1

2F(δ,ξ;κ,μ)
1

[
a b

c
; t z; ω

])
(x); s

]
=

1

[ξ(ν; s)]l
xρ+α+α′−γ−1�(l)�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)

�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

× 2F(δ,ξ;κ,μ)
1

[
a, b

c
; x

ξ(ν; s)
; ω

]
∗ 4F3

[
l, ρ, ρ − β + α, ρ − γ + α + α′ + β′

ρ − β, ρ − γ + α + β′, ρ − γ + α + α′;
x

ξ(ν; s)

]

(37)

where ξ(ν; s) = ln[1+(ν−1)s]
ν−1

Proof Let L be the left-hand side of (37). Using definition of the Pν-transform (20)
and (17), we obtain

L = xρ+α+α′−γ−1�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
{ ∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

xk

k!
∞∫
0

[1 + (ν − 1)s]− z
ν−1 zl+k−1dz

⎫⎬
⎭

Here, making use of the result (21), we obtain
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L =
{

ν − 1

ln[1 + (ν − 1)s]
}l xρ+α+α′−γ−1�(l)�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)

�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(l)k(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

(
x(ν−1)

ln[1+(ν−1)s]
)k

k! dz

which, upon using Hadamard product series and (4), leads to the right-hand side of
(37).

Theorem 3.10 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0, R(κ) ≥
0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such that

R(ρ) < 1 + min{0,R(−β),R(α + α′ − γ),R(α + β′ − γ)}.
Then, the following pathway transform (20) formula holds:

Pν

[
zl−1

(
Dα,α′,β,β′,γ
0− tρ−1

2F(δ,ξ;κ,μ)
1

[
a b

c
; z

t
;ω

])
(x); s

]
=

1

[ξ(ν; s)]l
xρ+α+α′−γ+1�(l)�(1 − ρ + γ − α − α′)�(1 − ρ − α′ − β + γ)�(1 − ρ + β′)

�(1 − ρ)�(1 − ρ − α − α′ − β + γ)�(1 − ρ − α′ + β′)

× 2F(δ,ξ;κ,μ)
1

[
a, b

c
; 1

x ξ(ν; s)
; ω

]
∗ 4F3

[
l, 1 − ρ + γ − α − α′, 1 − ρ − α′ − β + γ, 1 − ρ + β′

1 − ρ, 1 − ρ − α − α′ − β + γ, 1 − ρ − α′ + β′ ; 1

x ξ(ν; s)

]

Theorem 3.11 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) > −min{0,α + β + γ}.

Then, the following pathway transform formula holds:

Pν

[
zl−1

(
Dα,β,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]
=

1

[ξ(ν; s)]l

xρ+β−1�(l)�(ρ)�(ρ + α + β + γ)

�(ρ + β)�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; x

ξ(ν; s)
;ω

]
∗ 3F2

[
l, ρ, ρ + α + β + γ

ρ + β, ρ + γ
; x

ξ(ν; s)

]

Theorem 3.12 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−β − γ),R(α + γ)}

Then, the following pathway transform formula holds:
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Pν

[
zl−1

(
Dα,β,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t

z
;ω

])
(x); s

]
=

1

[ξ(ν; s)]l
xρ+β−1 �(l)�(1 − ρ − β)�(1 − ρ + α + γ)

�(1 − ρ)�(1 − ρ − β + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; 1

x ξ(ν; s)
;ω

]
∗ 3F2

[
l, 1 − ρ − β, 1 − ρ + α + γ

1 − ρ, 1 − ρ − β + γ
; 1

x ξ(ν; s)

]

Corollary 3.13 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0,min{R(δ),R(ξ)} > 0,R(c) > R(b)>0,R(α)≥0, andR(ρ) > 0.
Then, the following pathway transform formula holds:

Pν

[
zl−1

(
RL Dα

0+tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]
=

1

[ξ(ν; s)]l

xρ−α−1�(l)�(ρ)

�(ρ − α)
× 2F (δ,ξ;κ,μ)

1

[
a, b

c
; x

ξ(ν; s)
;ω

]
∗ 2F1

[
l, ρ

ρ − α
; x

ξ(ν; s)

]

Corollary 3.14 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(α)}.

Then, the following pathway transform formula holds:

Pν

[
zl−1

(
W Dα

0−tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t

z
;ω

])
(x); s

]

= 1

[ξ(ν; s)]l
xρ−α−1 �(l)�(1 − ρ + α)

�(1 − ρ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; 1

x ξ(ν; s)
;ω

]
∗ 2F1

[
l, 1 − ρ + α

1 − ρ
; 1

x ξ(ν; s)

]

Corollary 3.15 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) > −min{0,R(γ)}.

Then, the following pathway transform formula holds:

Pν

[
zl−1

(
E K Dα,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]

= 1

[ξ(ν; s)]l

xρ−1�(l)�(ρ + α + γ)

�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; x

ξ(ν; s)
;ω

]
∗ 2F1

[
l, ρ + α + γ

ρ + γ
; x

ξ(ν; s)

]
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Corollary 3.16 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−γ),R(α + γ)}.

Then, the following pathway transform formula holds:

Pν

[
zl−1

(
E K Dα,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]

= 1

[ξ(ν; s)]l
xρ−1 �(l)�(1 − ρ + α + γ)

�(1 − ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; 1

x ξ(ν; s)
;ω

]
∗ 2F1

[
l, 1 − ρ + α + γ

1 − ρ + γ
; 1

x ξ(ν; s)

]

It is interesting to observe that for taking ν → 1 in the Pν-transform defined by
(20) reduces to thewell-knownLaplace transform (22). In fact, we have an interesting
Laplace transform asserted by the following corollaries.

3.3 Laplace Transforms

Corollary 3.17 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) > max{0,R(γ − α − α′ − β′),R(β − α)}.

Then, the following Laplace transform formula holds:

L

[
zl−1

(
Dα,α′,β,β′,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a b

c
; t z;ω

])
(x); s

]
=

xρ+α+α′−γ−1

sl

�(l)�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; x

s
;ω

]
∗ 4F3

[
l, ρ, ρ − β + α, ρ − γ + α + α′ + β′

ρ − β, ρ − γ + α + β′, ρ − γ + α + α′;
x

s

]

Corollary 3.18 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) < 1 + min{0,R(−β),R(α + α′ − γ),R(α + β′ − γ)}.
Then, the following Laplace transform formula holds:
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L

[
zl−1

(
Dα,α′,β,β′,γ
0− tρ−1

2F(δ,ξ;κ,μ)
1

[
a b

c
; z

t
; ω

])
(x); s

]
=

xρ+α+α′−γ+1

sl

�(l)�(1 − ρ + γ − α − α′)�(1 − ρ − α′ − β + γ)�(1 − ρ + β′)
�(1 − ρ)�(1 − ρ − α − α′ − β + γ)�(1 − ρ − α′ + β′)

× 2F(δ,ξ;κ,μ)
1

[
a, b

c
; 1

xs
; ω

]
∗ 4F3

[
l, 1 − ρ + γ − α − α′, 1 − ρ − α′ − β + γ, 1 − ρ + β′

1 − ρ, 1 − ρ − α − α′ − β + γ, 1 − ρ − α′ + β′ ; 1

xs

]

Corollary 3.19 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) > −min{0,α + β + γ}.

Then, the following Laplace transform formula holds:

L

[
zl−1

(
Dα,β,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]

= xρ+β−1

sl

�(l)�(ρ)�(ρ + α + β + γ)

�(ρ + β)�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; x

s
;ω

]
∗ 3F2

[
l, ρ, ρ + α + β + γ

ρ + β, ρ + γ
; x

s

]

Corollary 3.20 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−β − γ),R(α + γ)}

Then, the following Laplace transform formula holds:

L

[
zl−1

(
Dα,β,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t

z
;ω

])
(x); s

]
=

xρ+β−1

sl

�(l)�(1 − ρ − β)�(1 − ρ + α + γ)

�(1 − ρ)�(1 − ρ − β + γ)

× 2F (δ,ξ;κ,μ)
1

[
a, b

c
; 1

xs
;ω

]
∗ 3F2

[
l, 1 − ρ − β, 1 − ρ + α + γ

1 − ρ, 1 − ρ − β + γ
; 1

xs

]

Corollary 3.21 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0,min{R(δ),R(ξ)} > 0,R(c) > R(b) > 0,R(α) ≥ 0, andR(ρ) >

0. Then, the following Laplace transform formula holds:

L

[
zl−1

(
RL Dα

0+tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]
=

xρ−α−1

sl

�(l)�(ρ)

�(ρ − α)
× 2F (δ,ξ;κ,μ)

1

[
a, b

c
; x

s
;ω

]
∗ 2F1

[
l, ρ

ρ − α
; x

s

]
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Corollary 3.22 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(α)}.

Then, the following Laplace transform formula holds:

L

[
zl−1

(
W Dα

0−tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t

z
;ω

])
(x); s

]
=

xρ−α−1

sl

�(l)�(1 − ρ + α)

�(1 − ρ)
× 2F (δ,ξ;κ,μ)

1

[
a, b

c
; 1

xs
;ω

]
∗ 2F1

[
l, 1 − ρ + α

1 − ρ
; 1

xs

]

Corollary 3.23 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) > −min{0,R(γ)}.

Then, the following Laplace transform formula holds:

L

[
zl−1

(
E K Dα,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a, b

c
; t z;ω

])
(x); s

]
=

xρ−1

sl

�(l)�(ρ + α + γ)

�(ρ + γ)
× 2F (δ,ξ;κ,μ)

1

[
a, b

c
; x

s
;ω

]
∗ 2F1

[
l, ρ + α + γ

ρ + γ
; x

s

]

Corollary 3.24 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−γ),R(α + γ)}.
Then, the following Laplace transform formula holds:

L

[
zl−1

(
E K Dα,γ

0− tρ−1
2F(δ,ξ;κ,μ)

1

[
a, b

c
; t

z
; ω

])
(x); s

]
=

xρ−1

sl

�(l)�(1 − ρ + α + γ)

�(1 − ρ + γ)
× 2F(δ,ξ;κ,μ)

1

[
a, b

c
; 1

xs
;ω

]
∗ 2F1

[
l, 1 − ρ + α + γ

1 − ρ + γ
; 1

xs

]

3.4 Whittekar Transforms

Theorem 3.25 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(ρ) > max{0,R(γ − α − α′ − β′),R(β − α)}.
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Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
Dα,α′,β,β′,γ
0+ tρ−1

2F (δ,ξ;κ,μ)
1

[
a b

c
; εzt;ω

])
(x)

}
dz

= xρ+α+α′−γ−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; εx

η
; ω

]
∗ 5F4

[
σ + m + 1

2 ,σ − m + 1
2 , ρ, ρ − β + α, ρ − γ + α + α′ + β′

σ − λ + 1
2 , ρ − β, ρ − γ + α + β′, ρ − γ + α + α′ ; εx

η

]

(38)

Proof For convenience, let the left-hand side of (38) be denoted by L. Applying
(29)–(38) and changing the order of integration and summation, we get

L = xρ+α+α′−γ−1 �(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
{ ∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

(εx)k

k!
∞∫
0

zk+σ−1e− ηz
2 Wλ,m(ηz) dz

⎫⎬
⎭

substituting ηz = ν, we get

L = xρ+α+α′−γ−1 �(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
{ ∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k(ρ − β + α)k(ρ − γ + α + α′ + β′)k

(ρ − β)k(ρ − γ + α + β′)k(ρ − γ + α + α′)k

(εx)k

ησ+kk!
∞∫
0

νk+σ−1e− ν
2 Wλ,m(ν) dν

⎫⎬
⎭

use of (23) gives

L = xρ+α+α′−γ−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(ρ)�(ρ − β + α)�(ρ − γ + α + α′ + β′)
�(ρ − β)�(ρ − γ + α + β′)�(ρ − γ + α + α′)

×
⎧⎨
⎩

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B (b, c − b)

(ρ)k (ρ − β + α)k (ρ − γ + α + α′ + β′)k

(ρ − β)k (ρ − γ + α + β′)k (ρ − γ + α + α′)k

(εx)k

ηkk!
(σ + m + 1

2 )k (σ − m + 1
2 )k

(σ − λ + 1
2 )k

}

In view of (4), we arrive at the desired result (38).

Theorem 3.26 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
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that
R(ρ) < 1 + min{0,R(−β),R(α + α′ − γ),R(α + β′ − γ)}.

Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
Dα,α′,β,β′,γ
0− tρ−1

2F (δ,ξ;κ,μ)
1

[
a b

c
; εz

t
;ω

])
(x)

}
dz

= xρ+α+α′−γ+1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(1 − ρ + γ − α − α′)�(1 − ρ − α′ − β + γ)�(1 − ρ + β′)
�(1 − ρ)�(1 − ρ − α − α′ + β + γ)�(1 − ρ − α′ + β′)

×
{
2F (δ,ξ;κ,μ)

1

[
a b

c
; ε

xη
;ω

]
∗

5F4

[
σ + m + 1

2 , σ − m + 1
2 , 1 − ρ + γ − α − α′, 1 − ρ − α′ − β + γ, 1 − ρ + β′

σ − λ + 1
2 , 1 − ρ, 1 − ρ − α − α′ + β + γ, 1 − ρ − α′ + β′ ; ε

xη

]}

Theorem 3.27 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) > −min{0,α + β + γ}.

Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
Dα,β,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a b

c
; εzt;ω

])
(x)

}
dz

= xρ+β−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(ρ)�(ρ + α + β + γ)

�(ρ + β)�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; εx

η
;ω

]
∗ 4F3

[
σ + m + 1

2 ,σ − m + 1
2 , ρ, ρ + α + β + γ

σ − λ + 1
2 , ρ + β, ρ + γ

; εx

η

]

Theorem 3.28 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−β − γ),R(α + γ)}.
Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
Dα,β,γ
0− tρ−1

2F (δ,ξ;κ,μ)
1

[
a b

c
; εz

t
; ω

])
(x)

}
dz

= xρ+β−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(1 − ρ − β)�(1 − ρ + α + γ)

�(1 − ρ)�(1 − ρ − β + γ)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; ε

xη
; ω

]
∗ 4F3

[
σ + m + 1

2 , σ − m + 1
2 , 1 − ρ − β, 1 − ρ + α + γ

σ − λ + 1
2 , 1 − ρ, 1 − ρ − β + γ

; ε

xη

]
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Corollary 3.29 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0,min{R(δ),R(ξ)} > 0,R(c) > R(b) > 0,R(α) ≥ 0, andR(ρ) >

0. Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
RL Dα

0+tρ−1
2F (δ,ξ;κ,μ)

1

[
a b

c
; εzt;ω

])
(x)

}
dz

= xρ−α−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(ρ)

�(ρ − α)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; εx

η
;ω

]
∗ 3F2

[
σ + m + 1

2 ,σ − m + 1
2 , ρ

σ − λ + 1
2 , ρ − α

; εx

η

]

Corollary 3.30 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(α)}.

Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
W Dα

0−tρ−1
2F (δ,ξ;κ,μ)

1

[
a b

c
; εz

t
;ω

])
(x)

}
dz

= xρ−α−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(1 − ρ + α)

�(1 − ρ)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; ε

xη
;ω

]
∗ 3F2

[
σ + m + 1

2 ,σ − m + 1
2 , 1 − ρ + α

σ − λ + 1
2 , 1 − ρ

; ε

xη

]

Corollary 3.31 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) > −min{0,R(γ)}.

Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
E K Dα,γ

0+ tρ−1
2F (δ,ξ;κ,μ)

1

[
a b

c
; εzt;ω

])
(x)

}
dz

= xρ−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(ρ + α + γ)

�(ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; εx

η
;ω

]
∗ 3F2

[
σ + m + 1

2 ,σ − m + 1
2 , ρ + α + γ

σ − λ + 1
2 , ρ + γ

; εx

η

]
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Corollary 3.32 Let x > 0, the parameters α, γ, ρ, δ, ξ,ω ∈ C, R(ω) > 0,
R(κ) ≥ 0,μ ≥ 0, min{R(δ),R(ξ)} > 0, R(c) > R(b) > 0, and R(ρ) > 0 be such
that

R(α) ≥ 0 and R(ρ) < 1 + min{R(−γ),R(α + γ)}.

Then, the following formula holds:

∞∫
0

zσ−1e− ηz
2 Wλ,m(ηz)

{(
E K Dα,γ

0− tρ−1
2F (δ,ξ;κ,μ)

1

[
a b

c
; εz

t
;ω

])
(x)

}
dz

= xρ−1

ησ

�(σ + m + 1
2 )�(σ − m + 1

2 )

�(σ − λ + 1
2 )

�(1 − ρ + α + γ)

�(1 − ρ + γ)

× 2F (δ,ξ;κ,μ)
1

[
a b

c
; ε

xη
;ω

]
∗ 3F2

[
σ + m + 1

2 ,σ − m + 1
2 , 1 − ρ + α + γ

σ − λ + 1
2 , 1 − ρ + γ

; ε

xη

]

4 Fractional Kinetic Equations Involving Extended
Hypergeometric Function

In this section, generalized fractional kinetic equation involving extended hyperge-
ometric function is established as Theorems.

Theorem 4.1 If d > 0, p > 0,R(ω) > 0, R(κ) ≥ 0,μ ≥ 0; min{R(δ),R(ξ)} >

0; R(c) > R(b) > 0, | d p

s p | < 1, then the solution of equation

N (t) − N0 2F (δ,ξ;κ,μ)
1

[
a b

c
; t;ω

]
= −d p

0Dt
−p N (t) (39)

is given by

N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)
t k E p,k+1(−d pt p)

where Eα,β(x) is the generalized Mittag–Leffler function given by (24).

Proof Applying Laplace transform (22) on (39), we have

L{N (t); s} = N0 L

{
2F (δ,ξ;κ,μ)

1

[
a b

c
; t;ω

]
; s

}
− d p L{0Nt

−p f (t); s}

use of (28) gives
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L{N (t); s} = N0

⎛
⎝

∞∫
0

e−st
∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

tk

k! dt

⎞
⎠ − d ps−p L{N (t); s}

therefore,

(1 + d ps−p)L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

1

k!
∞∫
0

e−st t k dt

this gives,

L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

1

sk+1

1

1 + d ps−p

After simplification of above equation, we get

L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

{ ∞∑
r=0

(−1)r d pr s−(pr+k+1)

}
(40)

Taking inverse Laplace transform of (40) and using L−1{s−p; t} = t p−1

�(p)
, we obtain

N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)
L−1

{ ∞∑
r=0

(−1)r d pr s−(pr+k+1)

}

= N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

{ ∞∑
r=0

(−1)r d pr t pr+k

�(pr + k + 1)

}

= N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)
t k

{ ∞∑
r=0

(−dt)pr

�(pr + k + 1)

}

hence,

N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)
t k E p,k+1(−d pt p)

Theorem 4.2 If d > 0, p > 0,R(ω) > 0, R(κ) ≥ 0,μ ≥ 0; min{R(δ),R(ξ)} >

0; R(c) > R(b) > 0, | d p

s p | < 1, then the solution of equation

N (t) − N0 2F (δ,ξ;κ,μ)
1

[
a b

c
; d pt p;ω

]
= −d p

0Dt
−p N (t) (41)

is given by
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N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

(d pt p)k

k! �(pk + 1)E p,pk+1(−d pt p)

(42)

Proof Applying Laplace transform (22) on (41), we have

L{N (t); s} = N0 L

{
2F (δ,ξ;κ,μ)

1

[
a b

c
; d pt p;ω

]
; s

}
− d p L{0Nt

−p f (t); s}

using (28), we get

L{N (t); s} = N0

⎛
⎝

∞∫
0

e−st
∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

(d pt p)k

k! dt

⎞
⎠ − d ps−p L{N (t); s}

therefore,

(1 + d ps−p)L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k!
∞∫
0

e−st t pk dt

hence,

L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k!
�(pk + 1)

s pk+1

1

1 + d ps−p

finally,

L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k! �(pk + 1)

{ ∞∑
r=0

(−1)r d pr s−(pr+pk+1)

}

(43)
Taking inverse Laplace transform of (43) and using L−1{s−p; t} = t p−1

�(p)
, we obtain

N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k! �(pk + 1)L−1

{ ∞∑
r=0

(−1)r d pr s−(pr+pk+1)

}

= N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k! �(pk + 1)

{ ∞∑
r=0

(−1)r d pr t pr+pk

�(pr + pk + 1)

}

= N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

(t pd p)k

k! �(pk + 1)

{ ∞∑
r=0

(−dt)pr

�(pr + pk + 1)

}

In view of definition of Mittag–Leffler function (24), we obtain desired
result (42).
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Theorem 4.3 If d > 0, η > 0, d 
= η, p > 0,R(ω) > 0, R(κ) ≥ 0,μ ≥ 0; min
{R(δ),R(ξ)} > 0; R(c) > R(b) > 0, | η p

s p | < 1, then the solution of equation

N (t) − N0 2F (δ,ξ;κ,μ)
1

[
a b

c
; d pt p;ω

]
= −η p

0Dt
−p N (t) (44)

is given by

N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

(d pt p)k

k! �(pk + 1)E p,pk+1(−η pt p)

(45)

Proof Applying Laplace transform (22) on (44), we have

L{N (t); s} = N0 L

{
2F (δ,ξ;κ,μ)

1

[
a b

c
; d pt p;ω

]
; s

}
− η p L{0Nt

−p f (t); s}

using (28), we obtain

L{N (t); s} = N0

⎛
⎝

∞∫
0

e−st
∞∑

k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

(d pt p)k

k! dt

⎞
⎠ − η ps−p L{N (t); s}

therefore,

(1 + η ps−p)L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k!
∞∫
0

e−st t pk dt

This leads to

L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k!
�(pk + 1)

s pk+1

1

1 + η ps−p

finally,

L{N (t); s} = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k! �(pk + 1)

{ ∞∑
r=0

(−1)r η pr s−(pr+pk+1)

}

(46)
Taking inverse Laplace transform of (46) and using L−1{s−p; t} = t p−1

�(p)
, we obtain
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N (t) = N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k! �(pk + 1)L−1

{ ∞∑
r=0

(−1)r η pr s−(pr+pk+1)

}

= N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

d pk

k! �(pk + 1)

{ ∞∑
r=0

(−1)r η pr t pr+pk

�(pr + pk + 1)

}

= N0

∞∑
k=0

(a)k
B(δ,ξ;κ,μ)

ω (b + k, c − b)

B(b, c − b)

(t pd p)k

k! �(pk + 1)

{ ∞∑
r=0

(−ηt)pr

�(pr + pk + 1)

}

In view of definition of Mittag–Leffler function (24), we obtain desired
result (45).

Remark 4.1 It is interesting to observe that for κ = μ = 1 in Theorems 2.1, 2.2, 3.1,
3.2, 3.25, 3.26 and Corollaries 3.17, 3.18, we obtain results given by Agarwal et al.
[31].
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d’Hermite (Gauthier-Villars, Paris, 1926)

34. R. Agarwal, S. Jain, R.P. Agarwal, Solution of fractional volterra integral equation and non-
homogeneous time fractional heat equation using integral transform of pathway type. Prog.
Fract. Differ. Appl. 1(3), 145–155 (2015)

35. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
36. R.K. Saxena, A.M. Mathai, H.J. Haubold, On generalized fractional kinetic equation. Phys. A

344, 657–664 (2004)
37. R.K. Saxena, M. Saigo, Generalised fractional calculus of the H-function associated with the

Appell function. J. Fract. Calc. 19, 89–104 (2001)
38. R.K. Saxena, S.L. Kalla, On the solution of certain fractional kinetic equations. Appl. Math.

Comput. 199, 504–511 (2008)
39. S.G. Samko, A. Kilbas, O. Marichev, Fractional Integral and Derivatives. Theory and Appli-

cations (Gordon and Breach Science Publishers, New York, 1990)
40. T. Pohlen, The Hadamard product and universal power series. Dissertation, Universität Trier

(2009)
41. V.B.L. Chaurasia, S.C. Pandey, On the new computable solution of the generalized fractional

kinetic equations involving the generalized function for fractional calculus and related func-
tions. Astrophys. Space Sci. 317, 213–219 (2008)



32 K.B. Kachhia et al.

42. V.B.L. Chaurasia, S.C. Pandey, Computable extensions of generalized fractional kinetic equa-
tions in astrophysics. Res. Astron. Astrophys. 10(1), 22–32 (2010)

43. V. Kourganoff, Introduction to the Physics of Stellar Interiors (D. Reidel Publishing Company,
Dordrecht, 1973)



The Compact Approximation Property
for Weighted Spaces of Holomorphic
Mappings

Manjul Gupta and Deepika Baweja

Abstract In this paper, we examine the compact approximation property for the
weighted spaces of holomorphic functions. We show that a Banach space E has
the compact approximation property if and only if the predual Gv(U ) of the space
Hv(U ) consisting of all holomorphic mappings f : U → C (complex plane) with
sup
x∈U

v(x)‖ f (x)‖ < ∞ has the compact approximation property, where v is a radial

weight defined on a balanced open subset U of E such that Hv(U ) contains all
the polynomials. We have also studied the compact approximation property for the
weighted (LB)-space V H(E) of holomorphic mappings and its predual VG(E) for
a countable decreasing family V of radial rapidly decreasing weights on E .

Keywords Weighted spaces of holomorphic mappings · Approximation property ·
Compact approximation property
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1 Introduction

The approximation property plays a vital role in the structural study of Banach
spaces and appeared for the first time in the book by Banach [4]. A systematic study
of this concept was taken up by Grothendieck [26] in the year 1955 who consid-
ered the approximation property, bounded approximation property, and the basis
property. At present, we have several variants of this property such as metric approx-
imation property, compact approximation property, strong approximation property,
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p-approximation property, and ideal approximation property, cf. [8, 20–22, 34–36,
45, 50], etc. As the identity operator on the space is approximated by linear opera-
tors having simpler representation in the study of the approximation property, there
are three standard tools for studying approximation property for spaces of holo-
morphic mappings: ε-products, linearization, and S-absolute decompositions. The
notion of ε-products for locally convex spaces X and Y written as XεY introduced
by L. Schwartz is defined as the space Le(Y ′

c; X) of all continuous linear operators
from Y ′

c to X , endowed with the topology of uniform convergence on equicontinu-
ous subsets of Y , where Y ′

c is the topological dual of Y equipped with the topology
of uniform convergence on compact subsets of Y . Using the method of ε-products,
the study of the approximation property for spaces of holomorphic mappings was
initiated by Aron and Schottenloher in their pioneer work [2] and was further car-
ried out in [14–19, 27, 29, 41, 49]. Through linearization results, one identifies a
given class of holomorphic functions defined on an open subsetU of a Banach space
E with values in a Banach space F , with the space of continuous linear mappings
from a certain Banach space G to F , i.e., a holomorphic mapping is being identi-
fied with a linear operator and so one can pursue the study of the approximation
property for spaces of holomorphic mappings by this method. The first linearization
theorem for such spaces was obtained by Mazet [38] in the year 1984. Almost six
years later, J. Mujica obtained a linearization theorem for H∞(U ; F), the space of
bounded holomorphic mappings defined on an open subset U of a Banach space E
with values in F ; indeed, the spaceH∞(U ; F) is being identified withL(G∞(U ); F)

where G∞(U ) is the predual of H∞(U ). Using this linearization theorem, Mujica
proved several results characterizing the approximation property for E in terms of the
approximation property forH∞(U ) and G∞(U ). This study has further been contin-
ued by E. Caliskan in [15–19]. The study of the approximation property for a locally
convex X having Schauder decomposition is characterized through the approxima-
tion property for the subspaces forming its Schauder decomposition; indeed, if a
sequence {Xn}n≥1 forms an S-absolute decomposition for a locally convex space X ,
then X has the approximation property if and only if each Xn has the approxima-
tion property. As the sequence of spaces of m-homogenous polynomials forms an
S-absolute decomposition for their parent space, this method has been proved to be
useful in such a study.

Weighted spaces of holomorphic functions defined on an open subset of a finite
or infinite dimensional Banach space have been studied widely in the literature by
several mathematicians. Whereas for the results in the finite dimensional case, we
attribute to the contributions of K.D. Bierstedt, J. Bonet, A. Galbis, W.H. Summers,
R.G. Meise, Rubel, and Shields [9–13, 46] etc., the infinite dimensional case was
introduced by Garcia, Maestre, and Rueda in [25] and further investigated by Beltran
[6, 7] Jorda [32], Rueda [47], etc. Though Mujica and Caliskan considered the
approximation property for spaces of bounded holomorphic mappings, we initiated
this study for weighted spaces in our work [27–29]. In the present article, we consider
the compact approximation property for such spaces.

In Sect. 3, we show that aBanach space E has the compact approximation property
if and only if the predual Gv(U ) has the compact approximation property for a radial
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weight v defined on a balanced open subsetU of E such that Hv(U ) contains all the
polynomials. Also, it has been shown that E has the compact approximation property
if and only if each weighted holomorphic mapping can be approximated by such a
map with relatively compact range.

In Sect. 4, we introduce a locally convex topology τ ′
M and prove a characterization

for the τ ′
M-denseness of weighted spaces of holomorphic mappings with relatively

compact range in Hv(U ; F).
Finally, in the last section, we study the approximation properties for the weighted

(LB)-spaces V H(E) defined corresponding to a countable decreasing family V of
radial rapidly decreasing weights and its predual VG(E); indeed, it is proved that E
has the approximation property if and only if VG(E) has the approximation property.
Also, this result holds for the compact approximation property for suitably restricted
family V of weights.

2 Preliminaries

Throughout this paper, E and F denote complex Banach spaces with closed unit
balls BE and BF , respectively. The symbols X ′ and X∗

b , respectively, stand for the
algebraic and strong topological dual of a locally convex space X . The notation X∗ is
used for X∗

b in case of a normed space X . The symbolsN,N0, andC are, respectively,
used for the set of natural numbers, N ∪ {0}, and the complex plane.

For each m ∈ N, L(mE; F) is the Banach space of all continuous m-linear
mappings from E to F endowed with the sup norm. A mapping P : E → F is
a continuous m-homogeneous polynomial if there exists a continuous m-linear
map A ∈ L(mE; F) such that P(x) = A(x, . . . , x), x ∈ E . The space of all m-
homogeneous continuous polynomials from E to F is denoted byP(mE; F)which is
a Banach space endowedwith the norm ‖P‖ = sup

‖x‖≤1
‖P(x)‖. For F = C,P(mE;C)

is written as P(mE). A continuous polynomial P is a mapping from E into F which
can be represented as a sum P = P0 + P1 + · · · + Pk with Pm ∈ P(mE; F) for
m = 0, 1, . . . , k. The vector space of all continuous polynomials from E into F
is denoted by P(E; F). A polynomial P ∈ P(mE, F) is said to be compact if it
takes bounded subsets of E to relatively compact subsets of F or equivalently if
P(BE ) is relatively compact in F . The collection of all compact m-homogenous
polynomials is denoted by Pk(

mE; F), and for m = 1, we get K(E; F), the class of
all compact linear operators from E to F .

A mapping f from E to F is said to be weakly uniformly continuous (weakly
continuous) on bounded sets if for each bounded subset B of E (for each x ∈ B) and
ε > 0 there exists φ1, φ2, . . . ,φn ∈ E∗ such that

‖ f (x) − f (y)‖ < ε
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whenever x, y ∈ B (y ∈ B) with |φi (x − y)| < δ, for each i = 1, 2, . . . , n. The
space of all polynomials which are weakly uniformly continuous (weakly continu-
ous) on bounded subsets of E is denoted by Pwu(E, F)(Pw(E, F)).

A mapping f : U → F is said to be holomorphic, if for each ξ ∈ U , there exists
a ball B(ξ, r) with center at ξ and radius r > 0, contained in U and a sequence
{P j f (ξ)}∞j=0 of polynomials with P j f (ξ) ∈ P( j E; F), j ∈ N0 such that

f (x) =
∞∑

j=0

P j f (ξ)(x − ξ) (1)

where the series converges uniformly for each x ∈ B(ξ, r). The space of all holo-
morphic mappings fromU to F is denoted byH(U ; F). For F = C, we writeH(U )

forH(U ;C).
A weight v is a continuous and strictly positive function defined on an open

subset U of a Banach space E . A weight v defined on (i) a balanced open set U is
radial if v(t x) = v(x) for all x ∈ U and t ∈ C with |t | = 1 and (ii) E is said to be
rapidly decreasing if sup

x∈E
v(x)‖x‖m < ∞ for each m ∈ N0. Let us quote from [27]

the following: The weighted space

Hv(U ; F) = { f ∈ H(U ; F) : ‖ f ‖v = sup
x∈U

v(x)‖ f (x)‖ < ∞}

of holomorphic functions is a Banach space endowedwith the norm ‖ · ‖v with closed
unit ball Bv . For F = C, we writeHv(U ) = Hv(U ;C).

Proposition 2.1 Let v be a weight defined on an open subset U of a Banach space
E. Then, for given m ∈ N, following are equivalent:

(a) P(mE, F) ⊂ Hv(U, F) for each Banach space F.
(b) P(mE) ⊂ Hv(U ).

Proposition 2.2 The topology τ‖·‖v
restricted toP(mE) coincides with the sup norm

topology.

Since the closed unit ball Bv ofHv(U ) is τ0-compact, it follows by Ng’s Theorem
cf. [44],Hv(U ) is a dual Banach space and its predual is defined as

Gv(U ) = {φ ∈ Hv(U )′ : φ|Bv is τ0-continuous }

which is endowed with the topology of uniform convergence on the set Bv .

Theorem 2.3 (Linearization Theorem) For an open subset U of a Banach space
E and a weight v on U, there exists a Banach space Gv(U ) and a mapping �v ∈
Hv(U,Gv(U )) with the following property: For each Banach space F and each
mapping f ∈ Hv(U, F), there is a unique operator T f ∈ L(Gv(U ), F) such that
T f ◦ �v = f . The correspondence� betweenHv(U, F) andL(Gv(U ), F) given by
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�( f ) = T f

is an isometric isomorphism. The space Gv(U ) is uniquely determined upto an iso-
metric isomorphism by these properties.

A simple consequence of the above linearization theorem is

Proposition 2.4 For a weight v defined on an open subset U of a Banach space E
satisfying P(E) ⊂ Hv(U ), E is topologically isomorphic to a complemented sub-
space of Gv(U ).

Let us also recall the locally convex topology τM on Hv(U, F) which is gener-
ated by the family {pα,A : α = (α j ) ∈ c+

0 , A = (A j ), A j being finite subset of U
for each j} of semi-norms defined by

pα,A( f ) = sup
j∈N

(α j inf
x∈A j

v(x) sup
y∈A j

‖ f (y)‖).

It can be easily checked that

τ0 ≤ τM ≤ τ‖.‖v
(2)

onHv(U, F). For v ≡ 1, the spaceHv(U, F) ≡ H∞(U, F) and the topology τM ≡
τγ on H∞(U, F); cf. [41].

Proposition 2.5 Let E and F be Banach spaces. For a weight v on an open subset
U of E with P(E) ⊂ Hv(U ), τM coincides with τ0 on P(mE; F) for each m ∈ N.

Proposition 2.6 Let E and F be Banach spaces. For a radial weight v on a bal-
anced open subset U of E with P(E) ⊂ Hv(U ), the space P(E; F) is τM-dense in
Hv(U ; F).

Theorem 2.7 Let E and F be Banach spaces, and v be aweight on an open subsetU
of E. Then, themapping� : (Hv(U ; F), τM) → (L(Gv(U ); F), τc) is a topological
isomorphism.

Let

Hv(U ) ⊗ F = { f ∈ Hv(U, F) : f has finite dimensional range}

and

Hc
v(U, F) = { f ∈ Hv(U, F) : v f has a relatively compact range}.

Then, we have

Proposition 2.8 Let U be an open subset of a Banach space E and v be a weight
on U. Then, for any Banach space F,
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(a) f ∈ Hv(U ) ⊗ F if and only if T f ∈ F(Gv(U ); F), and
(b) f ∈ Hc

v(U ; F) if and only if T f ∈ K(Gv(U ); F).

A locally convex space X is said to have the approximation property if for
every compact set K of X , a continuous semi-norm p on X and ε > 0, there exists
a finite rank operator T ≡ Tε,K such that sup

x∈K
p(T (x) − x) < ε and the compact

approximation property (CAP) if there is a compact linear operator T such that
sup
x∈K

p(T (x) − x) < ε.

The following is quoted from [27]

Theorem 2.9 Let E be a Banach space and v be a radial weight on a balanced
open subset U of E such that Hv(U ) contains all the polynomials. Then, E has the
approximation property if and only if Gv(U ) has the approximation property.

Similar to the characterization of AP given by Grothedieck [26] and also given in
[37], we have the following result from [16]

Theorem 2.10 For a Banach space E, the following are equivalent:

(i) E has the compact approximation property.
(ii) For every Banach space F, K(E; E)

τc = L(E; E).
(iii) For every Banach space F, K(F; E)

τc = L(F; E).
(iv) For every Banach space F, K(E; F)

τc = K(E; F).

Using the definition of the CAP, one can easily prove

Proposition 2.11 Let E be a Banach space with the compact approximation prop-
erty. Then, each complemented subspace of E also has the compact approximation
property.

The space Q(mE) defined as

Q(mE) = {φ ∈ P(mE)′ : φ|Bm is τ0-continuous}

is the predual of P(mE),m ∈ N, cf. [48]. It is a Banach space equipped with the
topology of uniform convergence on Bm , the unit ball of P(mE). Connecting the
CAP for a Banach space E with the CAP for Q(mE), E. Caliskan [16] proved.

Proposition 2.12 Let E be a Banach space. Then, E the compact approximation
property if and only if Q(mE) has the compact approximation property for each
m ∈ N.

Analogous to Proposition 2.2 in [42], we have.

Proposition 2.13 Let E and F be Banach spaces such that E has the compact
approximation property. Then, Pw(mE; F) is τc-dense in P(mE; F) for each m ∈ N

For the following, one may refer to [3], cf. also [1].
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Proposition 2.14 Let E and F be Banach spaces. Then, Pw(E; F) ⊂ Pk(E; F).

A sequence of subspaces {En}∞n=1 of a Banach space E is called a Schauder
decomposition of E if for each x ∈ E , there exists a unique sequence {xn} of vectors
xn ∈ En for all n, such that

x =
∞∑

n=1

xn = lim
m→∞ um(x)

where the projection maps {um}∞m=1 defined by um(x) =
m∑
j=1

x j , m ≥ 1 are con-

tinuous. Let S = {(αn)}∞n=1 : αn ∈ C, n ≥ 1 and lim sup
n→∞

|αn| 1
n ≤ 1}. A Schauder

decomposition {En}n is said to be S-absolute if (i) for each β = (β j ) ∈ S and

x =
∞∑
j=1

x j ∈ E , β · x =
∞∑
j=1

β j x j ∈ E and (ii) if p is a continuous semi-norm on

E and β ∈ S, then pβ(x) =
∞∑
j=1

|β j |pβ(x j ) defines a continuous semi-norm on E .

Following is proved in [15].

Proposition 2.15 If {En}∞n=0 is an S-absolute decomposition of the locally convex
space E, then E has the CAP if and only if each En has the CAP.

For more background and details about the theory of infinite dimensional holo-
morphy, Schauder decompositions, and the approximation properties, we refer to [5,
23, 24, 26, 37, 40, 43] and the reference given therein.

3 The Compact Approximation Property for Gv(U)

This section is devoted to the study of the compact approximation property for Hv(U )

and its predual Gv(U ).
Let us begin with

Lemma 3.1 Let v be a weight on an open subset U of a Banach space E such that
P(E) ⊂ Hv(U ). Then,

sup v(x)‖x‖m < ∞

for each m ∈ N.

Proof Letm ∈ N. For each x ∈ U , choose φx ∈ E∗ such that ‖φx‖ = 1 and φx (x) =
‖x‖. Write B = {φm

x : x ∈ U }. Then, B is a ‖.‖-bounded subset of P(mE). Hence,
by Proposition 2.2, B is ‖.‖v-bounded. Consequently,
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sup
x∈U

v(x)‖x‖m ≤ sup
x∈U

sup
y∈U

v(y)|φm
x (y)| < ∞.

�

Theorem 3.2 Let v be a radial weight on a balanced open subset U of a Banach
space E such that P(E) ⊂ Hv(U ). Then, the following assertions are equivalent:

(i) E has the compact approximation property.
(ii) Pv(E, F)

τM = Hv(U, F) for each Banach space F.
(iii) Pk(E, F)

τM = Hv(U, F) for each Banach space F.
(iv) Hc

v(U ; F)
τM = Hv(U, F), for each Banach space F.

(v) Gv(U ) has the compact approximation property.

Proof (i)⇒ (ii): Let f ∈ Hv(U ; F) and p be a τM-continuous semi-norm on
Hv(U, F). Then, there exist P ∈ P(E; F) such that p( f − P) < ε

2 by
Proposition 2.6. Write P = P0 + P1 + · · · Pm , Pj ∈ P( j E, F), 0 ≤ j ≤ m. Then,
for each j , 0 ≤ j ≤ m, there exist Q j in Pw( j E, F), such that

p(Pj − Q j ) <
ε

2m
.

by using Propositions 2.5 and 2.13. Write Q = Q0 + Q1 + · · · + Qk . Clearly, Q ∈
Pw(E, F) and p( f − Q) < ε.
(ii) ⇒(iii) follows by Proposition 2.14.
(iii) ⇒ (iv): It is enough to show that Pk(

j E; F) ⊂ Hc
v(U ; F) for each j ∈

N. Consider P ∈ Pk(
j E; F). By Lemma 3.1, sup v(x)‖x‖ j = K j < ∞. Hence,

v(U )P(U ) ⊂ K j P(BE ). consequently, v(U )P(U ) is relatively compact in F .
(iv)⇒ (v): Take F = Gv(U ) in (iv). Then, by Theorem 2.3 and the hypothesis,�v ∈
Hc

v(U ;Gv(U ))τM .Now,Hc
v(U ;Gv(U ))τM canbe identifiedwithK(Gv(U ),Gv(U ))

τc

via the map� in view of Theorem 2.7 and Proposition 2.8(b). Since T�v
◦ �v = �v ,

�(�v) = I , the identity map on Gv(U ). Thus, I ∈ K(Gv(U );Gv(U ))
τc .

(v) ⇒(i) follows by Propositions 2.4 and 2.11. �

Proposition 3.3 For a weight v defined on an open subset U of a Banach space E,
K(Gv(U ), F)

τc = L(Gv(U ); F) if and only if Hc
v(U ; F)

τM = Hv(U ; F) for each
Banach space F.

Proof Assume K(Gv(U ), F)
τc = L(Gv(U ); F). Take f ∈ Hv(U ; F). Then, by

Theorem2.3,T f ∈ L(Gv(U ); F). Byhypothesis, there exists a net (Tα) ⊂ K(Gv(U ), F)

such that Tα
τc−→ T f . Now, corresponding to each α, we have fα ∈ Hc

v(U ; F) such

that T fα = Tα by Proposition 2.8(b). Using Theorem 2.7, we get fα
τM−−→ f . Hence,

Hc
v(U ; F)

τM = Hv(U ; F).
Conversely, for T ∈ L(Gv(U ), F), there exists f ∈ Hv(U, F) such that T = T f

by Theorem 2.3. Consequently, by hypothesis, we can find a net { fα} ⊂ Hc
v(U ; F)

such that fα
τM−−→ f . Thus, (T fα) ⊂ K(Gv(U ), F) by Proposition 2.8(b) and Tα

τc−→
T f = T by Theorem 2.7. �
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WritingH∞
K (V ; E) ≡ Hc

v(V ; E) for v ≡ 1, the final result of this section charac-
terizes the compact approximation property for the space E in terms of Hc

v(V ; E),
vis-à-visH∞

K (V ; E), as follows:

Theorem 3.4 Let E be a Banach space. Then, for each Banach space F, the fol-
lowing are equivalent:

(i) E has the compact approximation property.
(ii) Hc

v(V ; E)
τM = Hv(V, E), for each open subset V of F and weight v on V .

(iii) H∞
K (V ; E)

τM = H∞(V, E), for each open subset V of F.

Proof (i)⇒(ii): Assume that E has the compact approximation property. Then,
by taking F = Gv(V ) in Theorem 2.10(iii), K(Gv(V ), E)

τc = L(Gv(V ), E). Thus,
Hc

v(V ; E)
τM = Hv(V, E) by Proposition3.2.

(iii): Follows from (ii) by taking v ≡ 1.
(iii)⇒(i): cf. Theorem 5 of [16]. �

4 The Topology τ ′
M on Hv(U; F)

Analogous to the topology τM, we introduce another locally convex topology
τ ′
M on Hv(U, F) . It is generated by the family {qα,A : α = (α j ) ∈ c+

0 , A =
(A j ), A jbeing finite subset of U for each j} of semi-norms given by

qα,A( f ) = sup
j∈N

(α j sup
x∈A j

v(x)‖ f (x)‖).

Concerning this topology, we have

Proposition 4.1 For a weight v on an open subset U of a Banach space E, we have:

(i) τ0 ≤ τM ≤ τ ′
M ≤ τ‖.‖v

on Hv(U, F).
(ii) τ ′

M|B = τ0|B for any ‖ · ‖v- bounded set B.
Proof (i) Clearly, τM ≤ τ ′

M. In view of (2), it suffices to prove τ ′
M ≤ τ‖.‖v

which
follows from the inequality, qα,A( f ) ≤ ‖α‖∞‖ f ‖v .

(ii) The proof is analogous to the one given in [27]. However, for the sake of
completeness, we outline the same. Let B be a bounded set in (Hv(U, F), ‖ · ‖v).
Then, there exists a constant M > 0 such that ‖ f ‖v ≤ M , for every f ∈ B.Consider
a τ ′

M -continuous semi-norm q given by

q( f ) = sup
j∈N

(α j sup
x∈A j

v(x)‖ f (x)‖), f ∈ Hv(U, F)

where (α j ) ∈ c+
0 and (A j ) is a sequence of finite subsets ofU . Fix ε > 0 arbitrarily.

Then, there exists m0 ∈ N such that
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α j <
ε

2M
, ∀ j > m0.

Write K = ⋃
j≤m0

A j . Then, K is a compact subset of U . Note that

sup
j≤m0

(α j sup
x∈A j

v(x)‖( f − g)(x)‖) ≤ L ‖α‖∞ pK ( f − g)

where L = sup
x∈K

v(x). Thus,

p( f − g) < ε whenever pK ( f − g) < δ

for f, g ∈ B, where δ = ε
2L‖α‖∞ . This completes the proof. �

For f ∈ Hv(U ; F), let us define Sn f (x) = ∑n
k=0

1
m! d̂

m f (0)(x) and Cn f (x) =
1

n+1

∑n
k=0 Sk f (x). Then, ‖Cn( f )(x)‖v ≤ ‖ f ‖v for each f ∈ Hv(U ; F) and n ∈ N,

cf. [27].
As a consequence of the above proposition, we derive the following result similar

to Proposition 2.6

Proposition 4.2 Let E and F be Banach spaces. For a radial weight v on a bal-
anced open subset U of E with P(E) ⊂ Hv(U ), the space P(E; F) is τ ′

M-dense in
Hv(U ; F).

Proof Let f ∈ Hv(U, F). Then, the set {Cn( f ) : n ∈ N0} is a ‖ · ‖v-bounded in
Hv(U, F). As Cn f → f in (H(U, F), τ0), the result follows by Proposition 4.1
(ii). �

Using the above proposition, we prove

Theorem 4.3 Let v be a radial weight on a balanced open subset U of a Banach
space E such that P(E) ⊂ Hv(U ). Then, for each Banach space F, the following
are equivalent:

(a) v
1
i −1 IU ∈ Hc

v(U ; E)
τ ′
M for each i ∈ N, where IU : U → E is the inclusion

mapping.

(b)Hc
v(U ; F)

τ ′
M = Hv(U, F).

Proof (a)⇒ (b): Let f ∈ Hv(U, F) and q be a τ ′
M-continuous semi-norm given as

q( f ) = sup
j∈N

(α j sup
x∈A j

v(x)‖ f (x)‖)

where (α j ) ∈ c+
0 and (A j ) is a sequence of finite subsets of U . Then, by

Proposition 4.2, there exists P ∈ P(E; F) such that

q( f − P) <
ε

2
(3)
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Write P = P0 + P1 + · · · Pm , Pi ∈ P(i E, F), 0 ≤ i ≤ m. Fix i , 1 ≤ i ≤ m arbitrar-
ily. Define K = ⋃

j∈N
{(α j sup

x∈A j

v(x))
1
i y : y ∈ A j } ⋃{0}. Then, K is a compact subset

of U , cf. [27, Proposition 4.4], and there exists a δ > 0 such that

‖Pi (x) − Pi (y)‖ <
ε

2m
, for each x ∈ K , y ∈ E with ‖x − y‖ < δ (4)

Since qi ( f ) = sup
j∈N

((α j )
1
i sup
x∈A j

v(x)‖ f (x)‖) is a τ ′
M-continuous semi-norm, there

exists fi ∈ Hc
v(U ; E)

τ ′
M by (a) such that

qi (v
1
i −1 IU − fi ) = sup

j∈N
((α j )

1
i sup
x∈A j

v(x)‖v 1
i −1(x) − fi (x)‖) < δ (5)

Let gi = vi−1Pi ◦ fi . Clearly gi ∈ Hc
v(U ; F). Note that

(α j sup
x∈A j

v(x))
1
i ‖x − v1− 1

i (x) fi (x)‖ ≤ (α j )
1
i sup
x∈A j

v(x)‖v 1
i −1(x) − fi (x)‖.

Therefore, by (4) and (5), we have

q(Pi − gi ) = sup
j∈N

‖Pi ((α j sup
x∈A j

v(x))
1
i x) − Pi (α j sup

x∈A j

v(x))
1
i v1−

1
i (x) fi (x))‖ <

ε

2m
.

Write g = g0 + g1 + g2 + · · · + gm , where g0 = P0. Then, g ∈ Hc
v(U ; F) with

p( f − g) < ε, thereby proving (b).
(b)⇒(a): Since sup

x∈A j

v
1
i (x)‖x‖ < ∞ for each i ∈ N by Lemma 3.1, ‖v 1

i −1 IU‖v <

∞. Thus, (a) follows. �

Remark 4.1 (a). The above result is more general than [16, Theorem 5]; indeed,
for v ≡ 1, τM ≡ τ ′

M ≡ τγ ; (b). Since τM ≤ τ ′
M, Hc

v(U ; F)
τM′ ⊂ Hc

v(U ; F)
τM =

Hv(U, F) and so the implication (a) ⇒ (b) is true for τM also. However, it would
be interesting to know the non-constant weights for which τM ≡ τ ′

M.

5 Weighted (LB)-Spaces and Approximation Properties

Let � be a directed set and {(Xα, τα) : α ∈ �} be a family of locally convex spaces
such that for α ≤ β, Xα ⊂ Xβ , X = ⋃

α∈�

Xα and Iα,β : Xα → Xβ be the continuous

inclusion maps with Iα,β ◦ Iα = Iβ . In this chapter, we consider the inductive limit
τ as the finest Hausdorff locally convex topology for which each inclusion map
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Iα : Xα → X is continuous. We write (X, τ ) = lim−→
α∈�

(Xα, τα). If � is countable and

each Xα is a Banach space, then (X, τ ) is said to be an (LB)-space.
Let {(Yα, τα) : α ∈ �} be a family of locally convex spaces such that for each

α ≥ β, πα,β : Yα → Yβ is continuous linear map and πα,β ◦ πβ = πα, where πα are
the canonical mappings from Y = {(xα)α∈� : πα,β(xβ) = xα for each α ≤ β} to Yα.
The space Y endowed with the weakest topology on Y such that all the canonical
mappings πα are continuous is the projective limit of the above system and is written
as (Y, τ ) = lim←−

α∈�

(Yα, τα). A projective limit (Y, τ ) = lim←−
α∈�

(Yα, τα) is said to be reduced

if each πα(Y ) is dense in Yα for each α ∈ �.

Proposition 5.1 ([33]) Let (Y, τ ) = lim←−
α∈�

Yα be a reduced projective limit such that

each Yα has the approximation property. Then, Y has the approximation property.

For the theory of projective and inductive limits, we refer to [30, 31, 33].
Let us now consider inductive limit of weighted spaces of holomorphic functions.

Assume that V = {vn} is a countable decreasing family, i.e., vn+1 ≤ vn for each n,
of radial rapidly decreasing weights on E . Corresponding to V , inductive limit of
weighted spaces is defined as V H(E) = ⋃

n≥1 Hvn (E) endowed with the locally
convex inductive topology τI . Since the closed unit ball Bvn of each Hvn (E) is τ0
compact, V H(E) is complete by Mujica’s completeness theorem, namely,

Theorem 5.2 ([39]) Let (E, τ ) = lim−→
n∈N

En be an (LB)-space, and suppose that there

exists a locally convex Hausdorff topology τ̃ < τ on E such that the closed unit ball
Bn of each En is τ̃ -compact. Then,

F = {u ∈ E ′ : u|Bn is τ̃ -continuous for each n ∈ N}

endowed with the topology of uniform convergence on the sets Bn, is a Fréchet space
such that the evaluation mapping J : E → F ′ given by J (x)(u) = u(x) for each
x ∈ E and u ∈ F, is a topological isomorphism from E onto F ′

i (the inductive dual
of F) and hence E must be complete.

The predual of V H(E) defined as

VG(E) = {φ ∈ V H(E)′ : φ|Bvn is τ0-continuous for each n ∈ N }

is endowed with the topology of uniform convergence on the sets Bvn . Also,
VG(E) = lim←−

n∈N
Gvn (E) is a reduced projective limit, cf. [6]. Combining this fact

with Propositions 2.9 and 5.1, we get

Theorem 5.3 Let V = {vn} denote a countable decreasing family of radial rapidly
decreasing weights on E. Then, E has the approximation property if and only if
VG(E) has the approximation property.
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Following [6], a family V of radial rapidly decreasing weights satisfies condition
(A) if for each m ∈ N, there exist D > 0, R > 1, and n ∈ N, n ≥ m such that

‖P j f (0)‖n ≤ D

R j
‖ f ‖m

for each j ∈ N and f ∈ Hvm (U ).
For the final result of this section, we make use of the following result proved

in [28]

Theorem 5.4 If V = {vn} is a family of weights satisfying condition (A), then the
sequence of spaces {QmE)}∞m=1 forms an S-absolute decomposition for VG(E)with
respect to the topology of uniform convergence on Bvn ’s for each n.

Finally, we have

Theorem 5.5 Let V = {vn} denote a countable decreasing family of radial rapidly
decreasing weights on E satisfying condition (A). Then, E has the compact approx-
imation property if and only if VG(E) has the compact approximation property.

Proof It follows directly from Propositions 2.12, 2.15 and Theorem 5.4. �

Note 5.1 As Proposition 5.1 is not known to be true for the compact approximation
property, Theorem 5.5 cannot be derived for the family V which does not satisfy
condition (A). However, for V = {v}, the above result holds, though the singleton
family of weights does not satisfy condition (A), cf. [28, Remark 4.4].
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Bloch Mappings on Bounded Symmetric
Domains

Tatsuhiro Honda

Abstract We introduce Bloch mappings on bounded symmetric domains which
can be infinite dimensional and generalize Bonk’s distortion theorem onC to locally
biholomorphic Bloch mappings on finite dimensional bounded symmetric domains.
As an application, we give a lower bound of the Bloch constant for these locally
biholomorphic Bloch mappings. Finally, we show that there exist no isometric com-
position operators from the space H∞(BX ) of bounded and holomorphic functions
on BX into the α-Bloch space Bα(BX ) on BX.

Keywords Bloch mapping · Bounded symmetric domain · JB*-triple

1 Introduction

LetU be the unit disk inC. The Bloch theorem states that a holomorphic function f :
U → Cwith f ′(0) = 1maps adomain inUbiholomorphically onto adiskwith radius
r( f ) greater than some positive absolute constant. The ‘best possible’ constant B for
all such functions, that is,B = inf{r( f ) : f is holomorphic on U and f ′(0) = 1}, is
called the Bloch constant. The classical Bloch space B is the space of holomorphic
functions f : U → C satisfying‖ f ‖Bloch := supz∈U(1 − |z|2)| f ′(z)| < ∞ endowed
with thenorm‖ f ‖B := | f (0)| + ‖ f ‖Bloch < ∞ so that(B, ‖ · ‖B)becomes aBanach
space.

The concept of a Bloch function has been extended to various complex domains
in higher dimensions. Hahn [22] first introduced the notion of a C

n-valued Bloch
mapping on a finite dimensional bounded homogeneous domain, under the name ‘of
normal mapping of finite order.’ Timoney [52] gave several equivalent definitions for
C-valued Bloch functions on a finite dimensional bounded homogeneous domain.
Blasco et al. [5] extended to infinite dimensional Hilbert balls, where a Hilbert ball
is the open unit ball of a Hilbert space and is a rank one bounded symmetric domain.
Chu et al. [17] characterize Bloch functions on bounded symmetric domains, which

T. Honda (B)
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may be infinite dimensional, by extending several well-known equivalent conditions
for Bloch functions on the open unit disk U in C.

Bonk [6] proved the following distortion theorem:

� f ′(z) ≥
√
3 − |z|(

1 − |z|√
3

)3 for |z| ≤ 1√
3

which implies readily a result of Ahlfors [1] that the Bloch constant is greater than√
3/4. Bonk’s distortion theorem has been extended by Liu in [40, Theorem 7] to the

class Hloc(B
n,Cn) of Cn-valued locally biholomorphic mappings on the Euclidean

unit ball Bn in C
n . For the class Hloc(U

n,Cn) of locally biholomorphic mappings
on the unit polydisk U

n in C
n , the following distortion theorem has been shown by

Wang and Liu [53, Theorem 3.2].
Ohno [45] investigated the weighted composition operators from the Hardy space

H∞ to the Bloch space on the unit disk inC. Li and Stević [38, 39], Zhang and Chen
[58] studied weighted composition operators from H∞ to the α-Bloch space. Allen
and Colonna [3] characterized the bounded weighted composition operators from
H∞ to the Bloch space of a bounded homogeneous domain and derived operator
norm estimates. Colonna et al. [18] obtained sharper estimates on the operator norm
of the multiplication operators from H∞ to the Bloch space on a general bounded
symmetric domain and determined such norm precisely in the case when the symbol
of the operator fixes the origin as well as when the domain is the Euclidean ball or a
bounded symmetric domain that has the unit disk as a factor, up to a biholomorphic
transformation, and the symbol is not subjected to any restriction. They used this
norm to show that for a large class of bounded symmetric domains D, there are no
isometries among these multiplication operators.

In this chapter, we generalize the above results for Blochmappings to any bounded
symmetric domain inCn realized as the unit ballBX of ann-dimensional JB∗-triple X .
Kaup [35] showed that the bounded symmetric domains in complex Banach spaces
are exactly the open unit balls of JB*-triples which are complex Banach spaces
equipped with a Jordan triple structure. Note that a complex Banach space is a JB*-
triple if, and only if, its open unit ball is homogeneous. All four types of classical
Cartan domains are the open unit balls of JB∗-triples, and the same holds for any
finite product of these domains ([32], see also [33]). Therefore, the open unit balls of
JB*-triples can be regarded as higher-dimensional generalizations of the open unit
disk in the complex plane and a natural extension of the finite dimensional distortion
theorems should be the ones on the open unit ball BX of a finite dimensional JB*-
triple X . Recently, Hamada and Kohr [31] gave a definition of α-Bloch mappings
on BX which is a generalization of α-Bloch functions on the unit disk in C by using
the Bergman operator of the underlying JB∗-triple (Definition 3.7). When α = 1, it
is equivalent to the definition of Bloch mappings on B

n by Liu [40] (see also [24]).
By using the Jordan theory, we can generalize several results on α-Bloch functions
on the unit disk inC to α-Bloch mappings on any bounded symmetric domain inCn .
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2 Preliminaries

Let BX be the unit ball of a complex Banach space X . Let Y be a complex Banach
space. A holomorphic mapping f : BX → Y is said to be locally biholomorphic if
the Fréchet derivative Df (x) has a bounded inverse for each x ∈ BX . A holomorphic
mapping f : BX → Y is said to be biholomorphic if f (BX ) is a domain in Y , f −1

exists, and holomorphic on f (BX ). Let L(X,Y ) denote the set of continuous linear
operators from X to Y . Let IX be the identity in L(X) = L(X, X).

Extending É. Cartan’s [9] classification of finite dimensional bounded symmetric
domains, it has been shown in [35] that every bounded symmetric domain, including
the infinite dimensional ones, is biholomorphic to the open unit ball of a JB*-triple.
A JB∗-triple is a complex Banach space X equipped with a continuous Jordan triple
product

(x, y, z) ∈ X × X × X �→ {x, y, z} ∈ X

satisfying

(J1) {x, y, z} is symmetric bilinear in the outer variables, but conjugate linear in the
middle variable,

(J2) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}},
(J3) x x ∈ L(X, X) is a hermitian operator with spectrum � 0,
(J4) ‖{x, x, x}‖ = ‖x‖3
where for x, y ∈ X , the box operator x y : X → X is defined by x y(·) =
{x, y, ·} and (J2) is called the Jordan triple identity.

Example 2.1 (i) A complex Hilbert space H with inner product 〈·, ·〉 is a JB*-triple
in the triple product

{x, y, z} = 1

2
(〈x, y〉z + 〈z, y〉x).

(ii) The unit polydisk Un is the unit ball of the JB∗-triple with the triple product

{x, y, z} = (xi yi zi )1≤i≤n, x = (xi ), y = (yi ), z = (zi ) ∈ C
n .

We refer to [14, 41, 49] for relevant details of JB∗-triples and references. We
recall some of them which will be needed in later.

An element u ∈ X is called a tripotent if {u, u, u} = u. Two tripotents u and v

are said to be orthogonal if D(u, v) = 0, where D(u, v) = 2u v. Orthogonality is
a symmetric relation. A tripotent u is said to be maximal if the only tripotent which
is orthogonal to u is 0. A tripotent u is said to be minimal if it cannot be written as a
sum of two nonzero orthogonal tripotents. A frame is a maximal family of pair-wise
orthogonal, minimal tripotents. The cardinality of all frames is the same and is called
the rank r of X . A real subspace S of X is called a flat subspace of X if S is a real
triple subsystem of X :
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(x, y, z ∈ S) =⇒ {x, y, z} ∈ S

and
{x, y, z} = {y, x, z} for x, y, z ∈ S.

By [49, Proposition VI.3.2], the cardinality of the basis of all maximal flat subspaces
is the same and equal to the rank r . A subspace I of X is called a triple ideal
if {X, X, I } + {X, I, X} ⊂ I . A JB∗-triple is simple if it has no nontrivial (norm)
closed triple ideals.

Let B be the unit ball of a JB∗-triple X . Then, for each a ∈ B, the Möbius trans-
formation ga defined by

ga(x) = a + B(a, a)1/2(IX + x a)−1x, (1)

is a biholomorphic mapping of B onto itself with ga(0) = a, ga(−a) = 0, and g−a =
g−1
a .
Let dim X < ∞. A point u ∈ BX is said to be an extreme point of BX if the only

x ∈ X satisfying ‖u + λx‖ ≤ 1 for all real numbers λ with |λ| ≤ 1 is x = 0. Let E
be the set of all extreme points of BX . By the Krein-Milman theorem (see e.g., [23,
Chapter 4]), E is nonempty, since BX is a compact subset of X . A subset � of BX

is called the Bergman-Shilov boundary of BX if � is the smallest closed subset of
BX where every continuous function on BX which is holomorphic on BX attains its
maximum absolute value.

Let H 2(BX ) be the Bergman space of holomorphic functions on BX which are
square-integrable with respect to the Lebesgue measure on BX . Let k(z, w) be the
Bergman kernel of BX , that is, the reproducing kernel of the Hilbert space H 2(BX ).
The Bergman metric at x ∈ BX is defined by

hx (u, v) = ∂u∂v log k(x, x).

For x ∈ X , h0(x, x)1/2 is called the Euclidean norm on X .
Let (X, ‖ · ‖) be a JB*-triple, and let H(BX ) denote the set of holomorphic

mappings from BX into C
n . Let ‖ · ‖e denote the Euclidean norm on C

n . For
A ∈ L(X,Cn), let

‖A‖X,e = sup {‖Az‖e : ‖z‖ = 1} .

and
‖A‖e = sup{‖Az‖e : ‖z‖e = 1}.

We refer to [14, Theorem 3.2.3] for the proof of the following result which was
due to several authors [32, 37, 41].

Proposition 2.2 Let BX be the unit ball of a JB∗-triple X. Then, the Bergman-Shilov
boundary � of BX coincides with each of the following sets:

(i) the set of maximal tripotents of X;
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(ii) the set of extreme points of BX .

Further, ifdim X < ∞, then these sets also coincidewith the set of points ofmaximum
Euclidean norm in BX .

The last assertion above was due to Hamada et al. [27, Proposition 2.4].
Now, let X be a finite dimensional JB*-triple and we recall the constant c(BX )

which was defined in [28]. Let h0 be the Bergman metric on X at 0 and let

c(BX ) = 1

2
sup

x,y∈BX

|h0(x, y)|.

Let u be an arbitrary maximal tripotent in X . By Proposition 2.2, we have

c(BX ) = 1

2
h0(u, u).

Since trD(y, a) = h0(y, a) by [41, Theorem 2.10], where D(y, a) = 2{y, a, ·}, we
have

c(BX ) = 1

2
trD(u, u).

Let
X = V0(u) ⊕ V1(u) ⊕ V2(u)

be the Peirce decomposition of X , where Vj (u) is the eigenspace of D(u, u) with
the eigenvalue j for j = 0, 1, 2. Then, we have

c(BX ) = 1

2
(dim V1(u) + 2 dim V2(u)).

Since V0(u) = 0 by [49, Proposition VI.2.4 (iii)], we have

c(BX ) = 1

2
(dim X + dim V2(u)). (2)

Moreover, u can be included in amaximal flat subspace S with basis of orthogonal
tripotents u1, ldots, ur such that u = u1 + · · · + ur , where r is the rank of X . Let

X =
⊕

0≤i≤ j≤r

Vi j (u)

be the Peirce decomposition with respect to u = (u1, . . . , ur ), where

Vi j (u) = {v ∈ X : D(ul , ul)v = (δli + δl j )v, 1 ≤ l ≤ r},

for (i, j) �= (0, 0) and V00(u) = {0}. Then by [49, p.504], we have
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V1(u) =
⊕
1≤ j≤r

V0 j (u), V2(u) =
⊕

1≤i≤ j≤r

Vi j (u)

Since ei ∈ Vii (u), dim V2(u) ≥ r . Therefore, from (2), we have

c(BX ) ≥ dim X + r

2
≥ dim X + 1

2
.

Assume that X is simple. Then, Vi j (u) (1 ≤ i < j ≤ r) have the same dimension
a, Vii (u) (1 ≤ i ≤ r) have the same dimension 1, and V0 j (u) (1 ≤ j ≤ r) have the
same dimension b by [49, Theorem VI.3.5]. Therefore, we have

dim V1(u) = br, dim V2(u) = r + r(r − 1)

2
a.

and thus,

c(BX ) = 1

2
rg,

where g = 2 + a(r − 1) + b is the genus of X .

3 Bloch Mappings

The concept of a Bloch mapping on a finite dimensional bounded symmetric domain
was first introduced by Hahn [22]. The following definition of Bloch mappings for
dimension free bounded symmetric domains is the same as the one given in [40, 51]
which is equivalent to Hahn’s definition in finite dimensions.

For each z0 ∈ BX , we define a family Ff (z0) of functions on BX by

Ff (z0) = { f ◦ g − ( f ◦ g)(z0) : g ∈ Aut(BX )}.

We recall that a familyF ⊂ H(U,C) is called normal if every sequence inF admits
a subsequence which converges uniformly on compact subsets of U . A classical
result states that F is normal if and only if it is uniformly bounded on compact sets
in U (cf. [2, p. 216]). The following theorem is due to [17].

Theorem 3.1 Let BX be a bounded symmetric domain realized as the open unit ball
of a JB*-triple X and let f ∈ H(BX ,C). The following conditions are equivalent:

(1) f is a Bloch function.
(2) The radii of the schlicht disks in the range of f are bounded above.
(3) f is uniformly continuous as a function from the metric space (BX , ρ) to the

metric space (C,Euclidean distance).
(4) The family Ff (z0) is bounded on BX (0, r) for 0 < r < 1 and z0 ∈ BX .
(5) ‖ f ‖B(BX ),s < ∞.
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(6) The family { f ◦ h : h ∈ H(U,BX )} consists of Bloch functions on U with uni-
formly bounded Bloch semi-norm.

(7) The family { f ◦ h − ( f ◦ h)(0) : h ∈ H(U,BX )} is normal.
Theorem 3.2 Let BX be the unit ball of a JB∗-triple X. If f is a Bloch mapping on
BX , then we have

‖Df (z)‖X,e ≤ ‖ f ‖B
1 − ‖z‖2 , z ∈ BX .

Proof Let z ∈ BX \ {0} be fixed and let gz ∈ Aut(BX ) be the M̈obius transformation
such that gz(0) = z and g−1

z = g−z .
By [14, Corollary 3.2.14] (see also [26, 37]),

‖g−z(z)‖ = 1

1 − ‖z‖2 .

Therefore, we have

‖Df (z)‖X,e ≤ ‖D( f ◦ gz)(0)‖X,e ‖Dg−z(z)‖ ‖ f ‖B
1 − ‖z‖2 .

�

Let β(K ) denote the set of Bloch mappings f with ‖ f ‖B ≤ K , where 1 ≤ K ≤
+∞.

Definition 3.3 Let BX be the unit ball of an n-dimensional JB∗-triple X . We define
the prenorm ‖ f ‖0 of f ∈ H(BX ) by

‖ f ‖0 = sup
{
(1 − ‖z‖2)c(BX )/n| det Df (z)|1/n : z ∈ BX

}
.

The following lemmas are obtained by the first author [24].

Lemma 3.4 Let BX be the unit ball of an n-dimensional JB∗-triple X.
(i) If f is a Bloch mapping on BX , then we have

‖Df (z)‖X,e ≤ ‖ f ‖B
1 − ‖z‖2 , z ∈ BX .

(ii) If f is a Bloch mapping, then we have

‖ f ‖0 ≤ sup
{| det Dg(0)|1/n : g ∈ Ff

}
< +∞.

(iii) If ‖ f ‖0 < +∞, then

| det Df (z)| ≤ ‖ f ‖n0
(1 − ‖z‖2)c(BX )

, z ∈ BX .
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(iv) If ‖ f ‖0 = 1 and det Df (0) = 1, then | det Df (z)| = 1 + o(‖z‖).
When the target is the unit disk in C, Chu et al. [17] obtained the following

Schwarz Pick Lemma (cf. [5, Theorem 4.2], [30, Theorem 4.6]).

Lemma 3.5 Let f ∈ H∞(BX ) be such that ‖ f ‖∞ ≤ 1. Then, we have

‖Df (z)‖X,e ≤ 1 − | f (z)|2
1 − ‖z‖2X

, z ∈ BX .

For x ∈ X \ {0}, we define

T (x) = {lx ∈ X∗ : lx (x) = ‖x‖, ‖lx‖ = 1}.

Then, T (x) �= ∅ in view of the Hahn-Banach theorem. Let H(U ) denote the set of
holomorphic functions on the unit disk U in C.

Lemma 3.6 Let u ∈ ∂BX be fixed and let

f (z) =
(∫ lu(z)

0
ψ(t)dt

)
u + z − lu(z)u, z ∈ BX ,

where lu ∈ T (u) and ψ ∈ H(U ). Then, f ∈ H(BX ), f (0) = 0, and det Df (z) =
ψ(lu(z)) for z ∈ BX .

The following definition is given by Hamada and Kohr [31].

Definition 3.7 Let BX be the unit ball of a finite dimensional JB∗-triple X , and let
α > 0. A mapping f ∈ H(BX ,Cn) is called an α-Bloch mapping if

‖ f ‖α + ‖ f (0)‖e < +∞,

where ‖ f ‖α denotes the α-Bloch semi-norm of f defined by

‖ f ‖α = sup
z∈BX

‖Df (z) ◦ B(z, z)α/2‖X,e.

Let Bα
X,n(BX ) be the space of α-Bloch mappings f : BX → C

n . We note that the
space Bα

X,n(BX ) is a complex Banach space with respect to the norm ‖ · ‖Bα
n
given

by
‖ f ‖Bα

n
= ‖ f ‖α + ‖ f (0)‖e, f ∈ Bα

X,n(BX ).

Remark 3.8 (i) α-Bloch mappings on BX are also β-Bloch mappings on BX for
α ≤ β.

Indeed, since

‖Df (z) ◦ B(z, z)β/2‖X,e ≤ ‖ f ‖α sup
z∈BX

‖B(z, z)(β−α)/2‖X,e ≤ ‖ f ‖α, z ∈ BX ,
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the conclusion follows.
Since 1-Bloch mappings are equivalent to Bloch mappings ([24], cf. [51]), it

follows that any Bloch mapping is also an α-Bloch mapping, for α ≥ 1.
(ii) Taking into account the Cauchy integral formula for vector-valued holomor-

phic mappings, the bounded mappings in H(BX ,Cn) are Bloch mappings, so they
are also α-Bloch mappings for α ≥ 1.

(iii) In view of Lemma 3.9 (i), it follows that α-Bloch mappings are bounded on
BX for α ∈ (0, 1).

Hamada and Kohr [31] proved the following generalization of [24, Lemma 2.8]
to the case of α-Bloch mappings.

Lemma 3.9 Let BX be the unit ball of an n-dimensional JB∗-triple X. If f ∈
H(BX ,Cn) is an α-Bloch mapping, then we have

‖Df (z)‖X,e ≤ ‖ f ‖α

(1 − ‖z‖2X )α
, z ∈ BX .

In the case that BX is the Euclidean unit ball Bn in C
n , Chen et al. [13] gave

another definition of α-Bloch mappings on B
n in Cn as following.

Definition 3.10 Let Bn be the Euclidean unit ball in C
n , and let α > 0. Let f ∈

H(Bn,Cn). We say that f is an α-Bloch mapping in the sense of Chen, Ponnusamy,
and Wang if

‖ f (0)‖e + sup
z∈Bn

(1 − ‖z‖2e)α‖Df (z)‖X,e < ∞.

Remark 3.11 (i) Let BX be the unit ball of a finite dimensional JB∗-triple X , and
let α > 0. Let f ∈ H(BX ,Cn) be an α-Bloch mapping. Then, Lemma 3.9 (i) holds.
Thus, if f is an α-Bloch mapping in the sense of Definition 3.7, then f is also an
α-Bloch mapping in the sense of Definition 3.10.

(ii) Let f = ( f1, . . . , fn) ∈ H(BX ,Cn). Then, f is an α-Bloch mapping if and
only if each f j is an α-Bloch function in the sense of Definition 3.7. Now, if α = 1,
then f j is a Bloch function on BX if and only if ‖D( f j ◦ g)(0)‖X,e is uniformly
bounded for g ∈ Aut(BX ). In particular, if BX = B

n , then f j is a Bloch function if
and only if

sup
z∈Bn

(1 − ‖z‖2e)‖Df j (z)‖e,e < +∞, j = 1, . . . , n,

in view of [61]. Consequently, ifα = 1 andBX = B
n , then f ∈ H(Bn,Cn) is a Bloch

mapping in the sense of Definition 3.7 if and only if f is a Bloch mapping in the
sense of Definition 3.10.

For x ∈ X \ {0}, we define

T (x) = {lx ∈ X∗ : lx (x) = ‖x‖X , ‖lx‖ = 1},
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where X∗ is the dual space of X . Then, T (x) �= ∅ in view of the Hahn-Banach
theorem. Let H(U) denote the set of holomorphic functions on the unit disk U in C,
that is H(U) = H(U,C).

Let f : BX → C be a holomorphic function, and let α > 0. We say that f is
an α-Bloch function on BX if f ∈ Bα

X,1(BX ). We write Bα(BX ) = Bα
X,1(BX ) and

‖ f ‖Bα = ‖ f ‖Bα
X
for f ∈ Bα(BX ). For f ∈ H(BX ,C), we set

Qα
f (z) = ‖Df (z) ◦ B(z, z)α/2‖X,e

i.e. Qα
f (z) = sup

{|Df (z) ◦ B(z, z)α/2(x)| : x ∈ X, ‖x‖X = 1
}
.

Then,
‖ f ‖α = sup{Qα

f (z) : z ∈ BX } and ‖ f ‖Bα = | f (0)| + ‖ f ‖α.

The following lemma is useful.

Lemma 3.12 Let BX be the unit ball of JB∗-triples X. Let f ∈ H(BY ,C).
(i) Qα

f (z) ≤ Q1
f (z) holds for z ∈ BX , α ≥ 1.

(ii) Qα
f (0) = Q1

f (0) holds for α ≥ 1.
(iii) Let g−a be the Möbius transformation for a ∈ BX . Then, for α ≥ 1,

Qα
f ◦g−a

(a) ≤ Qα
f (0).

Proof (i)
Qα

f (z) = ‖Df (z) ◦ B(z, z)α/2‖X,e

≤ ‖Df (z) ◦ B(z, z)
1
2 ‖X,e‖B(z, z)

α−1
2 ‖X,e

≤ ‖Df (z) ◦ B(z, z)
1
2 ‖X,e = Q1

f (z).

(ii) Since B(0, 0) = I d, we have

Qα
f (0) = ‖Df (0) ◦ B(0, 0)α/2‖X,e = ‖Df (0) ◦ B(0, 0)1/2‖X,e = Q1

f (0).

(iii)

Qα
f ◦g−a

(a) = ‖D( f ◦ g−a)(a) ◦ B(a, a)α/2‖X,e

= ‖Df (g−a(a)) ◦ Dg−a(a) ◦ B(a, a)
α
2 ‖X,e

= ‖Df (0) ◦ B(a, a)−
1
2 ◦ B(a, a)

α
2 ‖X,e

≤ ‖Df (0) ◦ B(0, 0)
α
2 ‖X,e‖B(a, a)

α−1
2 ‖

≤ Qα
f (0).

�
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Next, we recall some basic facts on some subdomains of the unit disk U .

Definition 3.13 Let � ⊂ C be a domain including the origin, and let f and g be
holomorphic functions on �. We say that f is subordinate to g if there exists a
holomorphic function v : � → � such that v(0) = 0 and f = g ◦ v.Wewrite f ≺ g
to denote this subordination relation.

Next, for a ∈ C and r > 0, let

U (a, r) = {z ∈ C : |z − a| < r}

and for r > 0, let �(1, r) be a horodisk in U , that is,

�(1, r) =
{
z ∈ U : |1 − z|2

1 − |z|2 < r

}
= U

(
1

1 + r
,

r

1 + r

)
.

Then, ∂�(1, r) is a circle internally tangent to the unit circle at 1.
In the case r > 1, Wang [55, Lemma 1] obtained the following lemma.

Lemma 3.14 Let r > 1. Assume that h ∈ H(U ), h(0) = a ∈ R and that there exists
a positive number s > 0 such that h(�(1, r)) ⊂ {w : �w < s}. Then
(i) h(z) ≺ G0(z) = b z+1

z−1 + b + a on �(1, r), where b = r(s−a)

r−1 > 0.
(ii) �h(x) ≥ G0(x) = 2bx

x−1 + a for 0 < x < 1 with equality holds for some x if and
only if h = G0.
(iii) �h(−x) ≤ G0(−x) = 2bx

x+1 + a for 0 < x ≤ r−1
r+1 with equality holds for some x

if and only if h = G0.

The following lemma was proved in Wang and Liu [53, Lemma 2.2].

Lemma 3.15 Let g be a holomorphic function on U ∪ {1}. Assume that g(U ) ⊂
U \ {0} and g(1) = 1. Then, g′(1) = α > 0 and

|g(x)| ≥ exp

{
−2α

1 − x

1 + x

}
, for all x ∈ (−1, 1).

4 Distortion Theorems

In this section, we give a distortion theorem for locally biholomorphic Bloch map-
pings on the unit ball of a finite dimensional JB∗-triple. This theorem is a generaliza-
tion of [40, Theorem 7], [55, Theorem 1], and [53, Theorem 3.2] to the unit ball of a
finite dimensional JB∗-triple. Let Hloc(BX ) denote the set of locally biholomorphic
mappings on BX .
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Theorem 4.1 Let BX be the unit ball of a finite dimensional JB∗-triple X. Let α ∈
(0, 1] and let m(α) be the unique root of the equation

e−c(BX )x (1 + x)c(BX ) = α (3)

in the interval [0,+∞). If f ∈ Hloc(BX ), ‖ f ‖0 = 1, and det Df (0) = α, then
(i)

| det Df (z)| ≥ α

(1 − ‖z‖)2c(BX )
exp

{
(1 + m(α))

−2c(BX )‖z‖
1 − ‖z‖

}
(4)

for z ∈ BX .
(ii)

| det Df (z)| ≤ α

(1 + ‖z‖)2c(BX )
exp

{
(1 + m(α))

2c(BX )‖z‖
1 + ‖z‖

}
(5)

for ‖z‖ ≤ m(α)

2+m(α)
.

Moreover, the estimates (4) and (5) are sharp.

Proof Let c = c(BX ) and let

r(t) = e−ct (1 + t)c, t ∈ [0,+∞).

Then, r(t) is decreasing on [0,+∞), r(0) = 1, and r(+∞) = 0. Therefore, there
exists a unique m(α) ∈ [0,+∞) such that

e−cm(α)(1 + m(α))c = α.

(i) Let z ∈ BX\{0} be fixed, and let s = ‖z‖. Consider the holomorphic function
| det Df (s·)| : BX → C which attains its maximum on BX at a Bergman-Shilov
boundary point u ∈ ∂BX , which is a maximal tripotent in X by Proposition 2.2.

First, we consider the case α ∈ (0, 1) in which m(α) > 0.
Let

g(ζ) = (1 − ζ)2c det Df (ζu), ζ ∈ U.

Then, g ∈ H(U ), g(ζ) �= 0 on U , and g(0) = α. Since ‖ f ‖0 = 1, by using Lemma
3.9 (iii), we have

|g(ζ)| ≤
( |1 − ζ|2
1 − |ζ|2

)c

.

Let h(ζ) = log g(ζ), where the branch of the logarithm is chosen such that h(0) =
log g(0) = logα is real. Then, we have

�h(ζ) = log |g(ζ)| ≤ c log
|1 − ζ|2
1 − |ζ|2 , ζ ∈ U.
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Therefore, we have

h(�(1, 1 + m(α))) ⊂ {w : �w < c log(1 + m(α))} .

In view of Lemma 3.14 (i), we obtain that h ≺ G0 on �(1, 1 + m(α)), where

G0(ζ) = b
ζ + 1

ζ − 1
+ b + logα,

b = 1 + m(α)

m(α)
(c log(1 + m(α)) − logα) = c(1 + m(α)).

In the last equality, we use the equality

e−cm(α)(1 + m(α))c = α.

For any x ∈ (0, 1), we obtain from Lemma 3.14 (ii) that

log |g(x)| = �h(x) ≥ c(1 + m(α))
2x

x − 1
+ logα.

This implies that

|g(x)| ≥ α exp

{
c(1 + m(α))

−2x

1 − x

}
.

If we put x = ‖z‖ in the above inequality, then we obtain the inequality (4) for
α ∈ (0, 1).

Next, we consider the case α = 1. Then m(α) = 0. Let

g(ζ) =
(
1 + ζ

2

)2c

det Df

(
1 − ζ

2
u

)
, ζ ∈ U.

Then, g is holomorphic onU ∪ {1} and g(1) = 1. Since ‖ f ‖0 = 1 and det Df (0) =
1, by using Lemma 3.9 (iii) and (iv), we have g′(1) = c and

|g(ζ)| =
∣∣∣∣1 + ζ

2

∣∣∣∣
2c ∣∣∣∣det Df

(
1 − ζ

2
u

)∣∣∣∣

≤
⎛
⎜⎝

∣∣∣∣1 − 1 − ζ

2

∣∣∣∣
2 1

1 −
∣∣∣ 1−ζ

2

∣∣∣2
⎞
⎟⎠

c

< 1

for ζ ∈ U , since
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1 − ζ

2
∈ U

(
1

2
,
1

2

)
=

{
z ∈ U : |1 − z|2

1 − |z|2 < 1

}
.

This implies that g(U ) ⊂ U \ {0}. By Lemma 3.15, we obtain that

|g(x)| ≥ exp

{
−2c

1 − x

1 + x

}

for all x ∈ (−1, 1). If we put x = 1 − 2‖z‖ in the above inequality, then we obtain
the inequality (4) for α = 1.

(ii) If α = 1, thenm(α) = 0 and the inequality (5) follows immediately from (3).
Now let α ∈ (0, 1). Let s = m(α)

2+m(α)
and as before, the holomorphic map

| det Df (s·)| on BX achieves its minimum on the set {z ∈ X : ‖z‖ ≤ s} at some
Bergman-Shilov boundary point u ∈ ∂BX . We note that −u is a maximal tripotent
in X .

As in the proof of (i), define

g(ζ) = (1 − ζ)2c det Df (−ζu) (ζ ∈ U )

and define the mappings h and G0 as in the proof of (i).
By the arguments in (i) and Lemma 3.14 (iii), we have

�h(−x) ≤ G0(−x) = 2c(1 + m(α))
x

x + 1
+ logα

for 0 < x ≤ m(α)

2+m(α)
. For ‖z‖ ≤ s, if we put x = ‖z‖ in the above inequality, then we

obtain the inequality (5).
Finally, we will show that the estimates (4) and (5) are sharp. Indeed, let u ∈ ∂BX

be arbitrarily fixed and let

F(z) =
(∫ le(z)

0
ψ(t)dt

)
e + z − le(z)e,

where lu ∈ T (u) and

ψ(ζ) = α

(1 − ζ)2c
exp

{
(1 + m(α))

−2cζ

1 − ζ

}
∈ H(U ).

Then, F ∈ H(BX ), F(0) = 0, and det DF(z) = ψ(lu(z)) by Lemma 3.6. Therefore,
det DF(0) = ψ(0) = α. For any z ∈ BX , let ζ = lu(z). Since e−cm(α)(1 + m(α))c =
α, we have
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(1 − ‖z‖2)c| det DF(z)| ≤ (1 − |lu(z)|)c|ψ(lu(z))|
=

(
1 − |ζ|2
|1 − ζ|2

)c

α

∣∣∣∣exp
(

(1 + m(α))
−2cζ

1 − ζ

)∣∣∣∣
=

(
1 − |ζ|2
|1 − ζ|2 b exp

(
1 − b�

(
1 + 2ζ

1 − ζ

)))c

= (bt exp(1 − bt))c

≤ 1,

where b = 1 + m(α) and

t = 1 − |ζ|2
|1 − ζ|2 > 0.

Note that in the last inequality, we used the inequality

xe1−x ≤ 1 for x > 0.

Therefore, ‖F‖0 ≤ 1. Also, let z = ζu. Then, ‖z‖ = |ζ|, lu(z) = ζ, and the equality
(1 − ‖z‖2)c| det DF(z)| = 1 holdswhen t = 1/b. This implies that ‖F‖0 = 1. Since
det DF(±‖z‖u) = ψ(±‖z‖) for all z ∈ BX , F attains the equalities in (4) and (5).
This completes the proof. �

Remark 4.2 (i) Let Bn be the Euclidean unit ball ofCn (that is, the Type I(1, n) JB∗-
triple). Then, c(Bn) = (n + 1)/2. Therefore, Theorem 4.1 reduces to [40, Theorem
7], [55, Theorem 1].

(ii) Let Un be the unit polydisk of Cn . The Bergman kernel of Un is as follows:

kUn (z, w) = 1

πn

n∏
j=1

1

(1 − z jw j )2
.

Then, the Bergman metric at 0 is

h0(u, v) = 2
n∑
j=1

u jv j .

Thus, c(Un) = n. Therefore, if α = 1, then Theorem 4.1 reduces to [53, Theorem
3.2].

(iii) If BX = U is the unit disk in C, then Theorem 4.1 reduces to Bonk et al. [7,
Theorem 3].
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5 Bloch Constant

In this section, we further assume that

inf{‖z‖u : z ∈ ∂BX } ≥ 1. (6)

This assumption is not so strong, because the unit polydisk satisfies this condition
and for any homogeneous unit ball BX in Cn , there exists a constant c > 0 such that
cBX satisfies the inequality (6). Under the above assumption, we give lower estimates
for the radius of the largest univalent ball in the image of f centered at f (0).

LetBn(b, r) denote the Euclidean ball with center b and radius r . For f ∈ H(BX ),
a schlicht ball Bn( f (a), r) of f centered at f (a) is that f maps an open subset G
of BX containing a biholomorphically onto this ball Bn( f (a), r).

For a point a ∈ BX , let r(a, f ) be the largest Euclidean length of a schlicht ball
of f centered at f (a).

Definition 5.1 A point z0 ∈ BX is called a critical point of f ∈ H(BX ) if det
Df (z0) = 0. f (z0) is called a critical value of f .

The following lemma is a generalization of Liu [40, Lemma 2] to the unit ball of
a finite dimensional JB∗-triple. Since the proof of [40, Lemma 2] can be applied to
our case, we omit it. Let Bn(b, r) denote the Euclidean ball with center b and radius
r .

Lemma 5.2 Let BX be the unit ball of an n-dimensional JB∗-triple X. Let f ∈
H(BX ), G be an open subset of BX , and a ∈ G. If f maps G biholomorphically
onto the schlicht ball Bn( f (a), r(a, f )), then either G and BX have a common
boundary point or there exists a critical value f (z0) on the boundary of the ball
B
n( f (a), r(a, f )) with the critical point z0 on the boundary of G.

The following lemma was proved in Hamada and Kohr [30].

Lemma 5.3 Assume that the condition (6) is satisfied. Let A ∈ L(Cn). Then, the
following inequalities hold:

‖A‖X,e ≥ | det A|1/n,

‖Aw‖e ≥ | det A|
‖A‖n−1

X,e

, w ∈ ∂BX , if ‖A‖X,e > 0. (7)

For a locally biholomorphic Bloch mapping f , we obtain the following lower
estimate for the radius of the largest ball in the image of f centered at f (0). The
following theorem is a generalization of [40, Theorem 8], [55, Theorem 2], and [53,
Theorem 3.4] to the unit ball of a finite dimensional JB∗-triple.
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Theorem 5.4 Let BX be the unit ball of an n-dimensional JB∗-triple X. Assume that
the condition (6) is satisfied. If f ∈ β(K ) ∩ Hloc(BX ), ‖ f ‖0 = 1, and det Df (0) =
α ∈ (0, 1], then

r(0, f ) ≥ K 1−nα

∫ 1

0

(1 − t2)n−1

(1 − t)2c(BX )
exp

{
(1 + m(α))

−2c(BX )t

1 − t

}
dt

≥ αK 1−n

2c(BX )(1 + m(α))

where m(α) is the unique root of the equation

e−c(BX )x (1 + x)c(BX ) = α

in the interval [0,+∞).

Proof Let c = c(BX ). By Lemma 5.2, r(0, f ) is equal to the Euclidean distance from
f (0) to a boundary point of f (BX ), since f is locally biholomorphic on BX . Hence,
there exists a line segment � of Euclidean length r(0, f ) from f (0) to a point in
∂ f (BX ). Note that r(0, f ) is the largest nonnegative number r such that there exists
a domain V ⊂ BX which is mapped biholomorphically onto B

n( f (0), r) by f . Let
γ = ( f |V )−1(�). Then, γ is a smooth curve which is not relatively compact in BX .
By (7), we have

r(0, f ) =
∫

�

‖dw‖e =
∫

γ

‖Df (z)dz‖e =
∫

γ

∥∥∥∥Df (z)
dz

‖dz‖
∥∥∥∥
e

‖dz‖

≥
∫

γ

| det Df (z)|
‖Df (z)‖n−1

X,e

‖dz‖.

From Theorem 4.1 (i) and Lemma 3.9 (i), we have

∫
γ

| det Df (z)|
‖Df (z)‖n−1

X,e

‖dz‖

≥ K 1−nα

∫
γ

(1 − ‖z‖2)n−1

(1 − ‖z‖)2c(BX )
exp

{
(1 + m(α))

−2c(BX )‖z‖
1 − ‖z‖

}
‖dz‖

≥ K 1−nα

∫
γ

(1 − ‖z‖2)n−1

(1 − ‖z‖)2c(BX )
exp

{
(1 + m(α))

−2c(BX )‖z‖
1 − ‖z‖

}
d‖z‖,

since d‖z‖ ≤ ‖dz‖ a.e. on γ by [34, Lemma 1.3]. Therefore, we have

r(0, f ) ≥ K 1−nα

∫ 1

0

(1 − t2)n−1

(1 − t)2c(BX )
exp

{
(1 + m(α))

−2c(BX )t

1 − t

}
dt.

Since c(BX ) ≥ (n + 1)/2, we also have
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r(0, f ) ≥ K 1−nα

∫ 1

0

1

(1 − t)2
exp

{
(1 + m(α))

−2c(BX )t

1 − t

}
dt

≥ αK 1−n

2c(BX )(1 + m(α))
.

This completes the proof. �

Remark 5.5 (i) Let Bn be the Euclidean unit ball ofCn (that is, the Type I(1, n) JB∗-
triple). Then, c(Bn) = (n + 1)/2. Therefore, Theorem 5.4 reduces to [40, Theorem
8], [55, Theorem 2].

(ii) LetUn be the unit polydisk ofCn . Then, c(Un) = n. Therefore, if α = 1, then
Theorem 5.4 reduces to [53, Theorem 3.4].

(iii) When n = 1 and BX = U , then Theorem 5.4 reduces to [7, Corollary 3].

6 Composition Operators

Let BX be the unit ball of an n-dimensional JB∗-triple X . Then, we obtain the fol-
lowing lemma.

Lemma 6.1 Forα ≥ 1, H∞(BX ) ⊂ Bα(BX )and the inclusionmapping i : H∞(BX )

→ Bα(BX ) is a linear operator satisfying

‖ f ‖α ≤ ‖ f ‖∞.

Proof Let f ∈ H∞(BX ). We may assume ‖ f ‖∞ = 1. Since Qα
f (z) ≤ Q1

f (z) for
z ∈ BX by Lemma 3.12, We have

‖ f ‖α ≤ ‖ f ‖1 = sup{Q1
f (z) : z ∈ BX }.

Letga be theMöbius transformation fora ∈ BX . Then,wehave f ◦ ga ∈ H∞(BX )

and ‖ f ◦ ga‖∞ ≤ 1. By Lemma 3.5, we have Q1
f (a) = ‖Df (a) ◦ B(a, a)1/2‖X,e =

‖Df (a) ◦ Dga(0)‖X,e = ‖D( f ◦ ga)(0)‖X,e ≤ 1 − | f ◦ ga(0)|2 ≤ ‖ f ‖∞. �

Let ϕ ∈ H(BX ,BX ). By Lemma 6.1, the composition operator Cϕ : H∞(BX ) →
Bα(BX ) with symbol ϕ, defined by

Cϕ( f )(z) = f ◦ ϕ(z) = f (ϕ(z)) for f ∈ H∞(BX ), z ∈ BX ,

is well defined. Allen and Colonna [3, Corollary 5.6] proved the following theorem
whenBX is a bounded homogeneous domain inCn andα = 1. Hamada [25] obtained
the following theorem when α = 1. The following theorem is a generalization to the
α-Bloch space.
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Theorem 6.2 Letϕ ∈ H(BX ,BX ),α ≥ 1. Then,Cϕ : H∞(BX ) → Bα(BX ) is bounded
and

1 ≤ ‖Cϕ‖ < 2

holds.

Proof Using the constant function 1 ∈ H∞(BX ),

1 = ‖1 ◦ ϕ‖Bα ≤ ‖Cϕ‖.

On the other hand, we set θα
ϕ(z) = sup{Qα

f ◦ϕ(z) : f ∈ H∞(BX ), ‖ f ‖∞ ≤ 1} and
θα

ϕ = sup
z∈BX

θα
ϕ(z). Since θα

ϕ(z) ≤ 1 for all z ∈ BX by Lemmas 3.12 and 6.1, we have

θα
ϕ ≤ 1.
For f ∈ H∞(BX ) with ‖ f ‖∞ ≤ 1, by the maximum principle for holomorphic

functions, | f (z)| < 1 for all z ∈ BX . Moreover,

Qα
f ◦ϕ(z) ≤ θα

ϕ(z) ≤ θα
ϕ ≤ 1.

So, we have
‖Cϕ( f )‖α = ‖ f ◦ ϕ‖α = sup

z∈BX

Qα
f ◦ϕ(z) ≤ 1.

Therefore,
‖Cϕ( f )‖Bα = ‖Cϕ( f )‖α + |Cϕ( f )(0)| < 2.

It follows from this that ‖Cϕ‖ < 2. �

Allen and Colonna [3, Theorem 6.4] proved the following theorem when BX is
the unit disk in C and α = 1. Hamada [25] obtained the following theorem when
α = 1. Using the Bloch norm introduced in Sect. 2, we can generalize to any bounded
symmetric domain.

Theorem 6.3 Let BX be the unit ball of a finite dimensional JB∗-triple X. Then,
there exist no isometric composition operators from H∞(BX ) to Bα(BX ) for α ≥ 1.

Proof Assume that Cϕ is an isometry from H∞(BX ) to Bα(BX ). Let a ∈ ∂BX be
fixed and let f (z) = la(z). Then, we have

|la(ϕ(0))| + ‖la(ϕ)‖α = ‖Cϕ( f )‖Bα = ‖ f ‖∞ = 1. (8)

Let

f+(z) = 1 + f (z)

2
, f−(z) = 1 − f (z)

2
.

Since ‖ f+‖∞ = ‖ f−‖∞ = 1, we have ‖Cϕ( f+)‖B = ‖Cϕ( f−)‖B = 1. That is,

|1 + la(ϕ(0))| + ‖la(ϕ)‖B,s = 2 = |1 − la(ϕ(0))| + ‖la(ϕ)‖B,s
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By (8), we have

|1 + la(ϕ(0))| = 1 + |la(ϕ(0))| = |1 − la(ϕ(0))|.

Therefore, la(ϕ(0)) = 0. Since a ∈ ∂BX is arbitrary, we deduce that ϕ(0) = 0.
Next, we have ‖Cϕ( f 2)‖Bα = ‖ f 2‖∞ = 1. On the other hand, by using the

Schwarz Pick Lemma (Lemma 3.5), we have

|D( f ◦ ϕ)2(b) ◦ B(b, b)
α
2 (x)|

= |2 f (ϕ(b))D( f ◦ ϕ)(b) ◦ D(gb ◦ g−b)(b) ◦ B(b, b)
α
2 (x)|

= |2 f (ϕ(b))D( f ◦ ϕ)(gb(0)) ◦ Dgb(g−b(b) ◦ Dg−b(b) ◦ B(b, b)
α
2 (x)|

= |2 f (ϕ(b))D( f ◦ ϕ ◦ gb)(0) ◦ B(b, b)−
1
2 ◦ B(b, b)

α
2 (x)|

≤ 2| f (ϕ(b))| ‖D( f ◦ ϕ ◦ gb)(0)‖X,e ‖B(b, b)
α−1
2 (x)‖

≤ 2| f (ϕ(b))|(1 − | f (ϕ(b))|2)
≤ 2 sup

x∈[0,1]
max(x − x3) = 4

3
√
3

for b ∈ BX , x ∈ X \ {0} with ‖x‖ = 1. Hence

Qα
Cϕ( f 2)(b) = sup{|D( f ◦ ϕ)2(b) ◦ B(b, b))

α
2 (x)|; x ∈ X \ {0}, ‖x‖ = 1}

≤ 4

3
√
3

< 1.

This is a contradiction. �
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Certain Class of Meromorphically
Multivalent Functions Defined
by a Differential Operator

Ghazi S. Khammash and Praveen Agarwal

Abstract In this paper, we introduce the subclasses Tp(α, δ, A, B, n) and T ∗
p

(α, δ, A, B, n) of meromorphic multivalent functions in the punctured unit disk
U ∗ = {z ∈ C : 0 < |z| < 1} by using a differential operator Dn

δ,p f (z). We obtain
coefficient estimates, distortion theorem, radius of convexity and closure theorems
for the class T ∗

p (α, δ, A, B, n). The familiar concept of neighborhoods of analytic
functions is also extended and applied to the functions considered here.

Keywords Meromorphic functions · p-valent · Neighborhoods · Integral operator
2010 Mathematics Subject Classifications 30C45

1 Introduction

Let
∑

p denote the class of functions of the form:

f (z) = 1

z p
+

∞∑

k=0

ak+pz
k+p (p ∈ N = {1, 2, 3 . . .}) , (1)

which are analytic in the punctured unit disk U ∗ = {z ∈ C : 0 < |z| < 1} = U/{0}.
Also, let �p denote the subclass of

∑
p of meromorphic multivalent functions in

U ∗, which have the power series representation as:
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f (z) = 1

z p
−

∞∑

k=0

ak+pz
k+p(ak+p ≥ 0). (2)

A function f (z) ∈ ∑
p is said to be p-valent meromorphically starlike function of

order α, if and only if

Re

{

− z f ′(z)
f (z)

}

> α (z ∈ U ∗), (3)

for some α(0 ≤ α < p). We denoted the class of all meromorophic p-valent star-
like functions of order α by

∑
p(α). Further, a function f (z) in

∑
p is said to be

meromorophic p-valent convex of order α if and only if

Re

{

−
(

1 + z f ′′(z)
f ′(z)

)}

> α (z ∈ U ∗), (4)

for some α(0 ≤ α < p). We denote the class of all meromorophic p-valent convex
functions of order α by Kp(α). The classes

∑
p(α) and Kp(α) and various other

subclasses of
∑

p have been studied rather extensively by Aouf et al. ([3, 5, 6]),
Joshi and Srivastava [9], Kulkarni et al. [10], Mogra [13], Owa et al. [14], and others.
For α = 0, we obtain the class

∑
(p) and K (p) of meromorophic p-valent starlike

and convex functions with respect to the origin.
Denote by

∑∗
p (α) and K ∗

p (α) the classes obtained by considering intersection,
respectively, of the classes

∑
p (α) and Kp (α) with �p, i.e.,

∑∗
p
(α) =

∑

p
(α) ∩ �p ; (0 ≤ α < p)

K ∗
p (α) = Kp (α) ∩ �p ; (0 ≤ α < p) (5)

The function f (z) is said to be subordinate to F (z), if there exists a functionw (z)
analytic inU withw (0) = 0 and |w (z)| < 1 (z ∈ U ), such that f (z) = F (w (z)). In
such a case,wewrite f (z) ≺ F (z). In particular, if F is univalent, then f (z) ≺ F (z)
if and only if f (0) = F (0) and f (U ) ⊂ F (U ).

For f (z) ∈ ∑
p given by (1) and g(z) ∈ ∑

p given by

g(z) = 1

z p
+

∞∑

k=0

bk+pz
k+p (p ∈ N = {1, 2, 3 . . .}) , (6)

the Hadamard product (or convolution) of f and g is denoted by ( f ∗g) (z) and
defined by

( f ∗ g) (z) = 1

z p
+

∞∑

k=0

ak+pbk+pz
k+p (7)
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The extended linear derivative operator of Ruscheweyh type, Rγ
p : ∑

p → ∑
p,

is defined by the following convolution:

Rγ
p f (z) = 1

z p(1 − z)γ+1
∗ f (z)

(
γ > −1; f ∈

∑

p

)
. (8)

In terms of binomial coefficient, (8) can be written as

Rγ
p f (z) = 1

z p
+

∞∑

k=0

(
γ + k + 2p

γ

)

ap+k z
p+k

(
γ > −1; f ∈

∑

p

)
. (9)

In particular when λ = n (n ∈ N ), it is easily observed from (8) and (9) that

Rn
p f (z) = z−p(zn+p f (z))(n)

n! (n ∈ N0 = N ∪ {0}) , (10)

so that (9) becomes

Rn
p f (z) = 1

z p
+

∞∑

k=0

(
n + k + 2p

n

)

ap+k z
p+k

(
n ∈ N0; f ∈

∑

p

)
. (11)

Thedefinition (8) of linear operator Rλ
p ismotivated essentially by familiarRuscheweyh

operator Dγ , which has been usedwidely on the space of analytic and univalent func-
tions (see, for details, Rusheweyh [16], Raina and Srivastava [15], Yang [20]).

For the function f (z) ∈ ∑
p, Aouf [4] define the following differential operator:

S0p f (z) = f (z)

S1p f (z) = 1

p
z f ′(z) + 2

z p

= 1

z p
+

∞∑

k=0

(

1 + k

p

)

ap+k z
p+k = Sp f (z). (p ∈ N ).

...

S2p f (z) = Sp(D
1
p f (z)).

Snp f (z) = Sp(S
n−1
p f (z)) (12)

= 1

p
z
(
Sn−1
p f (z)

)′ + 2

z p
(n, p ∈ N ).

It can be easily seen that
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Snp f (z) = 1
z p +

∞∑

k=0

(

1 + k

p

)n

ap+k z
p+k(n ∈ N0 = N ∪ {0} ; p ∈ N ).

(13)

With the aid of the deferential operator Snp f (z) and the Ruscheweyh derivative
Rγ

p f (z), we define the following differential operator for the function f (z) ∈ �p

Dn
δ,p f (z) = (1 − δ)Snp f (z) + δRn

p f (z), (14)

for n ∈ N and δ ≥ 0.
Let f (z) be given by (1), and then by making use of (11), (13) and (14) can be

easily written as

Dn
δ,p f (z) = 1

z p
−

∞∑

K=0

QK (n, δ, p)ap+k z
p+k, (15)

where

QK (n, δ, p) = (1 − δ)

(

1 + k

p

)n

+ δ

(
n + k + 2p

n

)

, (16)

for n ∈ N and δ ≥ 0.
With the aid of the differential operator Dn

δ,p f (z), we define the following sub-
classes of multivalent and meromorphic functions.

Definition 1 A function f (z) ∈ ∑
p defined by (1) is said to be in the class

Tp(α, δ, A, B, n) if it satisfies the following subordination condition:

1 +
(
z(Dn

δ,p f (z)
)′′

(
Dn

δ,p f (z)
)′ ≺ − p + [pB + (A − B)(P − α)]z

1 + Bz
(z ∈ U ), (17)

or, equivalently, if the following inequality holds true:

∣
∣
∣
∣
∣
∣
∣
∣

1 + (z(Dn
δ,p f (z))

′′

(Dn
δ,p f (z))

′ + p

B

(

1 + (z(Dn
δ,p f (z))

′′

(Dn
δ,p f (z))

′

)

+ [pB + (A − B)(P − α)]

∣
∣
∣
∣
∣
∣
∣
∣

< 1(z ∈ U ). (18)

Also let T ∗
p (α, δ, A, B, n) = Tp(α, δ, A, B, n) ∩ �p.

(0 ≤ α < P;−1 ≤ A < B ≤ 1; 0 < B ≤ 1; p ∈ N ; n ∈ N0; δ ≥ 0)

It may be noted for suitable choice of δ, A, B, n, p, λ, and α. The class T ∗
p

(α, δ, A, B, n) extends several classes of analytic and p-valent meromorphic
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functions such that Aouf and Shammaky [7], Srivastava et al. [18] and Uralegaddi
and Ganigi [19].

2 Basic Properties of the Class T∗
δ, p(α, A, B, n)

We first determine a necessary and sufficient condition for a function f (z) ∈ �p of
the form (2) to be in the class T ∗

p (α, δ, A, B, n).

Theorem 1 Let the function f (z) ∈ �p defined by (2), then f (z) ∈ T ∗
p (α, δ, A,

B, n) if and only if

∞∑

k=0

(k + p) QK (n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α] ak+p

≤ p(B − A)(P − α) (19)

(0 ≤ α < P; A + B ≥ 0; −1 ≤ A < B ≤ 1; 0 < B ≤ 1; p ∈ N ; n ∈ N0; λ ≥ 0; δ ≥ 0)

where QK (n, δ, p) is given by (16).

Proof Suppose that the function f (z) ∈ �p defined by (2) be in the class T ∗
p (α, δ,

A, B, n), then from (18) we have

∣
∣
∣
∣
∣
∣
∣
∣

(
z(Dn

λ,δ,p f (z)
)′′ + (1 + p)

(
Dn

λ,δ,p f (z)
)′

B

((
Dn

λ,δ,p f (z)
)′ + z(Dn

λ,δ,p f (z))
′′
)

+ [pB + (A − B)(P − α)]
(
Dn

λ,δ,p f (z)
)′

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

{

−
∞∑

k=0

(k + p) (k + 2p) QK (n, λ, δ, p)ak+pz
k+2p

}

P(B − A)(P − α) −
∞∑

K=0

(k + p) QK (n, λ, δ, p)[(k + p) B + (B − A)α + Ap]ak+pz
k+2p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

< 1(z ∈ U ). (20)

Since |Re{z}| ≤ |z| for any z, choosing z to be real and letting z → 1− through real
value, then (21) yields

∞∑

k=0

(k + p) (k + 2p) QK (n, λ, δ, p)ak+p

≤ P(B − A)(P − α) −
∞∑

K=0

(k + p) QK (n, λ, δ, p)[(k + p) B + (B − A)α + Ap]ak+p,

(21)

which leads us immediately to the coefficient inequality (19).
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Next in order to prove the converse we assume that the inequality (19) holds true,
then we observe that

∣
∣
∣
∣
∣
∣
∣
∣

(
z(Dn

δ,p f (z)
)′′ + (1 + p)

(
Dn

δ,p f (z)
)′

B

((
Dn

δ,p f (z)
)′ + z(Dn

δ,p f (z))
′′
)

+ [pB + (A − B)(P − α)]
(
Dn

δ,p f (z)
)′

∣
∣
∣
∣
∣
∣
∣
∣

=

≤

∞∑

k=0

(k + p) (k + 2p) QK (n, δ, p)ak+p

P(B − A)(P − α) −
∞∑

K=0

(k + p) QK (n, δ, p)[(k + p) B + (B − A)α + Ap]ak+p

< 1(z ∈ U ). (22)

Hence bymaximummodulus theorem, we have f (z) ∈ T ∗
p (α, δ, A, B, n). This com-

pletes the proof of Theorem.

Corollary 1 Let the function f (z) ∈ �p defined by (2), if f (z) ∈ T ∗
δ,p(α, A, B, n),

then

ak+p ≤ P(B − A)(P − α)

(k + p) QK (n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
(k ≥ 0, p ∈ N ).

(23)
The result is sharp for the function f (z) given by

f (z) = z−p − P(B − A)(P − α)

(k + p) QK (n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
zk+p

(k ≥ 0, p ∈ N ). (24)

Next we prove the following distortion and growth properties for the class T ∗
p (α, δ,

A, B, n).

Theorem 2 If a function f (z) ∈ �p defined by (2) is in the class T ∗
p (α, δ, A, B, n),

then
[

(p + m − 1)!
(p − 1)! − p!(B − A)(P − α)

(p − m)!Q0(n, δ, p) [p(A + B + 2) + (B − A)α]
r2p

]

r−p−m

≤ ∣
∣ f m(z)

∣
∣ ≤

[
(p + m − 1)!

(p − 1)! + p!(B − A)(P − α)

(p − m)!Q0(n, δ, p) [p(A + B + 2) + (B − A)α]
r2p

]

r−p−m ,

(25)

(0 < |z| = r < 1, 0 ≤ m < p),

where the result is sharp for the function f (z) given by
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f (z) = z−p − (B − A)(P − α)

Q0(n, δ, p) [p(A + B + 2) + (B − A)α]
z p(p ∈ N ), (26)

and

Q0(n, δ,p) = 1 + δ

[(
n + 2p
n

)

− 1

]

.

(0 ≤ α < P; A + B ≥ 0;−1 ≤ A < B ≤ 1; 0 < B ≤ 1; p ∈ N ; n ∈ N0; δ ≥ 0)

Proof For f (z) ∈ T ∗
p (α, δ, A, B, n), we find from Theorem1 that

pQ0(n, δ, p) [p(A + B + 2) + (B − A)α]
∞∑

k=0

ak+p

≤
∞∑

k=0

(k + p) QK (n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α] ak+p

≤ p(B − A)(P − α),

or ∞∑

k=0

ak+p ≤ (B − A)(P − α)

Q0(n, δ, p) [p(A + B + 2) + (B − A)α]
, (27)

Now by differentiating f (z) in (2) m times, we have

f m(z) = (−1)m
(p + m − 1)!

(p − 1)! z−p−m −
∞∑

k=0

(k + p)!
(k + p − m)!

∣
∣ak+p

∣
∣zk+p−m,

(m ∈ N0, P ∈ N ,m < P) (28)

Thus, for 0 ≤ |z| = r < 1,

∣
∣ f m(z)

∣
∣ =

∣
∣
∣
∣
∣
(−1)m

(p + m − 1)!
(p − 1)! z−p−m −

∞∑

k=0

(k + p)!
(k + p − m)!ak+pz

k+p−m

∣
∣
∣
∣
∣

≤ (p + m − 1)!
(p − 1)! r−p−m +

∞∑

k=0

(k + p)!
(k + p − m)!ak+pr

k+p−m

≤ (p + m − 1)!
(p − 1)! r−p−m + p!

(p − m)! r
p−m

∞∑

k=0

ak+p

≤ (p + m − 1)!
(p − 1)! r−p−m + p!

(p − m)!
(B − A)(P − α)

Q0(n, δ, p) [p(A + B + 2) + (B − A)α]
r p−m ,

similarly
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∣
∣ f m(z)

∣
∣ ≥ (p + m − 1)!

(p − 1)! r−p−m − p!
(p − m)! r

p−m
∞∑

k=0

ak+p

≥ (p + m − 1)!
(p − 1)! r−p−m − p!

(p − m)!
(B − A)(P − α)

Q0(n, δ, p) [p(A + B + 2) + (B − A)α]
r p−m .

The sharpness of each inequality in (25) satisfies the function f (z) given by (26).
Next, we determine the radii of meromorphically p-valent starlikeness and con-

vexity of order γ (0 ≤ γ < p) for functions in the class T ∗
p (α, δ, A, B, n).

Theorem 3 If a function f (z) ∈ �p defined by (2) is in the class T ∗
p (α, δ, A, B, n),

then

(i) f (z) is meromorphically p-valent starlike of order γ (0 ≤ γ < p) in |z| < r1,
where

r1 = infk≥0

{

QK (n, δ, p)
(k + p) (p − γ ) [(k + p) (B + 1) + p(A + 1) + (B − A)α]

p(k + p + γ )(B − A)(P − α)

} 1
k+2p

,

(29)
(ii) f (z) is meromorphically p-valent convex of order γ (0 ≤ γ < p) in |z| < r2,
where

r2 = infk≥0

{

QK (n, δ, p)
(p − γ ) [(k + p) (B + 1) + p(A + 1) + (B − A)α]

(k + p + γ )(B − A)(P − α)

} 1
k+2p

.

(0 ≤ α < P; A + B ≥ 0; −1 ≤ A < B ≤ 1; 0 < B ≤ 1; p ∈ N ; n ∈ N0; δ ≥ 0).
(30)

The result is sharp.

Proof (i) from (2), we easily get

∣
∣
∣
∣
∣

z f ′(z)
f (z) + p

z f ′(z)
f (z) − p + 2γ

∣
∣
∣
∣
∣
≤

∞∑

k=0

(k + 2p) ak+p |z|k+2p

2(γ + p) −
∞∑

k=0

(k + 2γ )ak+p |z|k+2p

.

Thus, we have the desired inequity:

∣
∣
∣
∣
∣

z f ′(z)
f (z) + p

z f ′(z)
f (z) − p + 2γ

∣
∣
∣
∣
∣
≤ 1 (0 ≤ γ < p, p ∈ N ), (31)

if ∞∑

k=0

(k + p + γ )

(p − γ )
ak+p |z|k+2p ≤ 1. (32)
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Hence, by Theorem1, (32) will be true if

(k + p + γ )

(p − γ )
|z|k+2p ≤ (k + p) QK (n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]

p(B − A)(P − α)

(k ≥ 0,p ∈ N ). (33)

The inequality (33) leads us immediately to |z| < r1, where r1 is given by (29).
(ii) In order to prove the second assertion of the theorem, we find from (2) that

∣
∣
∣
∣
∣

1 + z f ′′(z)
f ′(z) + p

1 + z f ′′(z)
f ′(z) − p + 2γ

∣
∣
∣
∣
∣
≤

∞∑

k=0

(k + p)(k + 2p)ak+p |z|k+2p

2p(p − γ ) −
∞∑

k=0

(k + 2γ )ak+p |z|k+2p

.

Thus, we have the desired inequity:

∣
∣
∣
∣
∣

1 + z f ′′(z)
f ′(z) + p

1 + z f ′′(z)
f ′(z) − p + 2γ

∣
∣
∣
∣
∣
≤ 1 (0 ≤ γ < p, p ∈ N ), (34)

If ∞∑

k=0

(k + p) (k + p + γ )

p(p − γ )
ak+p |z|k+2p ≤ 1. (35)

Hence, by Theorem1, (35) will be true if

(k + p) (k + p + γ )

p(p − γ )
|z|k+2p ≤ (k + p) QK (n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]

p(B − A)(P − α)

(k ≥ 0, p ∈ N ), (36)

The inequality (36) leads us immediately to |z| < r2, where r2 is given by (30). Each
of these results is sharp for the function f (z) given by (26).

Next, we prove closure theorems for the class T ∗
p (α, δ, A, B, n).

Theorem 4 Let

f−1 = 1

z p
(37)

and

f p+k(z) = 1

z p
− p(B − A)(P − α)

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
z p+k

(k ≥ 0; p ∈ N ; n ∈ N0). (38)
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Then f (z) in the class T ∗
p (α, δ, A, B, n) if and only if it can expressed in the form

f (z) =
∞∑

k=−1

μp+k fP+K (z), (39)

where

μp+k ≥ 0 and
∞∑

k=−1

μp+k = 1.

Proof Let f (z) =
∞∑

k=−1

μp+k fP+K (z), where μp+k ≥ 0 and
∞∑

k=−1

μp+k = 1.

Then

f (z) =
∞∑

k=−1

μp+k fP+K (z),

f (z) = 1

z p
−

∞∑

k=0

μp+k
p(B − A)(P − α)

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
z p+k .

Then

∞∑

k=0

μp+k
p(B − A)(P − α)

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]

× (p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]

p(B − A)(P − α)

=
∞∑

k=0

μp+k = 1 − μp−1 ≤ 1,

which shows that f (z) ∈ T ∗
δ,p(α, A, B, n).

Conversely, let f (z) ∈ T ∗
δ,p(α, A, B, n), then

ak+p ≤ p(B − A)(P − α)

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
.

Set

μp+k = p(B − A)(P − α)

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
ak+p,

and

μp−1 = 1 −
∞∑

k=0

μp+k .
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It follows that f (z) =
∞∑

k=−1

μp+k fP+K (z). This completes the proof of Theorem.

Theorem 5 The class T ∗
p (α, δ, A, B, n) is closed under convex linear combinations.

Proof Let each of the functions

f j (z) = 1

z p
−

∞∑

k=0

ak+p, j z
p+k(ak+p, j ≥ 0; j = 1, 2) (40)

be in the class T ∗
p (α, δ, A, B, n). It sufficient to show that the function h(z) defined

by
h(z) = (1 − t) f1(z) + t f2(z) ∈ T ∗

p (α, δ, A, B, n)(0 ≤ t ≤ 1), (41)

is also in the class T ∗
p (α, δ, A, B, n), since

h(z) = 1

z p
−

∞∑

k=0

[
(1 − t)ak+p,1 + tak+p,2

]
zk+p (0 ≤ t ≤ 1). (42)

With the aid of Theorem1, we have

∞∑

k=0

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α]
[
(1 − t)ak+p,1 + tap+k,2

]

= (1 − t)
∞∑

k=0

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α] ap+k,1

+ t
∞∑

k=0

(p + k)Qk(n, δ, p) [(k + p) (B + 1) + p(A + 1) + (B − A)α] ap+k,2

≤ (1 − t)p(B − A)(P − α) + tp(B − A)(P − α) = p(B − A)(P − α),

which shows that h(z)) ∈ T ∗
p (α, δ, A, B, n).

3 Neighborhoods and Partial Sums for the Class
T∗
p (α, δ, A, B, n)

Following the earlier work (based upon the familiar concept of neighborhoods of
analytic function) by Goodman [8] and Rusheweyh [17] and (more recently) by
Altinatas et al. ([1, 2]) and Liu and Srivastava ([11, 12]), We begin by introducing
here the δ-neighborhood of a function f (z) ∈ �p of the form (2) by means of the
definition below:
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Nδ( f ) =
⎧
⎨

⎩
g ∈ �p : g(z) = z−p −

∞∑

k=0

bk+pz
k+p (

bk+p ≥ 0
)
and

∞∑

k=0

QK (n, δ, p)
(k + p) [(B − A)α + k(1 + B) + p (1 + |A|)]

p(B − A)(P − α)

∣
∣ak+p − bk+p

∣
∣ ≤ δ

⎫
⎬

⎭
,

(43)

(0 ≤ α < P;−1 ≤ A < B ≤ 1; 0 < B ≤ 1; p ∈ N ; n ∈ N0; δ ≥ 0)

Theorem 6 Let δ > 0. If the function f (z) ∈ �p definedby (2) satisfies the following
condition:

f (z) + εz−p

1 + ε
∈ T ∗

δ,p(α, A, B, n), (44)

for any complex number ε such that |ε| < δ, then Nδ( f ) ⊂ T ∗
p (α, δ, A, B, n).

Proof We see from (18) that g(z) ∈ T ∗
p (α, δ, A, B, n) if and only if for any complex

number σ, |σ | = 1, we have

1 + (z(Dn
δ,p f (z))

′′

(Dn
δ,p f (z))

′ + p

B

(

1 + (z(Dn
δ,p f (z))

′′

(Dn
δ,p f (z))

′

)

+ [pB + (A − B)(P − α)]

= σ,

which is equivalent to

g(z)∗h(z)

z−p

= 0 (z ∈ U ), (45)

where, for convenience,

h(z) = z−p −
∞∑

k=0

ck+pz
k+p,

ck+p = (k + p) QK (n, δ, p)
[σ(B − A)α − (k + p) (1 − σ B) − p (1 − σ A)]

σ P(B − A)(P − α)
.

(46)
It follows from (46) that

∣
∣ck+p

∣
∣ ≤ (k + p) QK (n, δ, p)

[(B − A)α + k(1 + B) + p (1 + |A|)]
P(B − A)(P − α)

= (k + p) QK (n, δ, p)
[(B − A)α + k(1 + B) + p (1 + |A|)]

p(B − A)(P − α)
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If f (z) ∈ �p defined by (2) satisfies (44), then (45) yields

∣
∣
∣
∣
f (z)∗h(z)

z−p

∣
∣
∣
∣ ≥ δ. (47)

Now, we suppose that

ϕ(z) = z−p −
∞∑

k=0

dk+pz
k+p ∈ Nδ( f )

(
dk+p ≥ 0

)
. (48)

We easily seen that

∣
∣
∣
∣
[ϕ(z) − f (z)] ∗ h(z)

z−p

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∞∑

k=0

(
dk+p − ak+p

)
ck+pz

k+2p

∣
∣
∣
∣
∣

≤ |z|
∞∑

k=0

(k + p) QK (n, δ, p)
[(B − A)α + k(1 + B) + p (1 + |A|)]

p(B − A)(P − α)

∣
∣
(
dk+p − ak+p

)∣
∣ < δ.

(z ∈ U ; δ > 0)

Thus for any number σ such that |σ | = 1, we have

ϕ(z) ∗ h(z)

z−p

= 0 (z ∈ U ),

which implies that ϕ(z) ∈ T ∗
p (α, δ, A, B, n). This completes the proof of the theo-

rem.

Theorem 7 Let the function f (z) ∈ �p defined by (2) and define the partial sum
s1(z) and sm(z) as follows:

s1(z) = z−p,

and

sm(z) = z−p −
m∑

k=0

ak+pz
k+p (m = 0, 1, 2, . . .), (49)

Suppose also that

∞∑

k=0

dk+pak+p ≤ 1

(

dk+p = (k + p) QK (n, δ, p)
[(B − A)α + k(1 + B) + p (1 + |A|)]

p(B − A)(P − α)

)

,

(50)
then we have that

(i) f (z) ∈ T ∗
p (α, δ, A, B, n)

(i i)
Re

{
f (z)

sm(z)

}

> 1 − 1

dm+p+1
(m = 0, 1, 2, . . .), (51)
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and
(i i i) Re

{
sm(z)

f (z)

}

>
dm+p+1

dm+p+1 + 1
(m = 0, 1, 2, . . .), (52)

The estimation in (51) and (52) is sharp.

Proof (i) It is not difficult to see that z−p ∈ T ∗
p (α, δ, A, B, n). According to

Theorem6 and hypothesis (50), we have N1(z−p) ⊂ T ∗
p (α, δ, A, B, n), which fol-

lows that f (z) ∈ Tp(α, δ, A, B, n).
(ii) Under the hypothesis in part (ii) of the theorem, we can see from (50) that

m∑

k=0

ak+p + dm+p+1

∞∑

k=m+1

ak+p ≤
∞∑

k=0

dk+pak+p < 1. (53)

by using hypothesis (50) again.
Upon setting

g1(z) = dm+p+1

{
f (z)

sm(z)
−

(

1 − 1

dm+p+1

)}

= 1 −
dm+p+1

∞∑

k=m+1

ak+pz
k+2p

1 −
m∑

k=0

ak+pz
k+2p

,

(54)
and applying (53), we find that

∣
∣
∣
∣
g1(z) − 1

g1(z) + 1

∣
∣
∣
∣ ≤

dm+p+1

∞∑

k=m+1

ak+p

2 − 2
m∑

k=0

ak+p − dm+p+1

∞∑

k=m+1

ak+p

≤ 1 (z ∈ U, m ≥ 0),

(55)
which readily yields the assertion (51) of Theorem7. If we take

f (z) = z−p − zm+p+1

dm+p+1
, (56)

then
f (z)

sm(z)
= 1 − zm+2p−1

dm+p+1
→ 1 − 1

dm+p+1

as z → 1,

which shows that the bound in (51) is best possible.
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(iii) Similarly, if we put

g2(z) = (
1 + dm+p+1

)
(
sm(z)

f (z)
− dm+p+1

1 + dm+p+1

)

= 1 +

(
1 + dm+p+1

) ∞∑

k=m+1

ak+pz
k+2p

1 −
∞∑

k=0

ak+pz
k+2p

,

(57)
we obtain the assertion (52) of Theorem7. If we take

f (z) = z−p − zm+p+1

dm+p+1
, (58)

then
sm(z)

f (z)
= dm+p+1

dm+p+1 − zm+2p−1
→ dm+p+1

dm+p+1 − 1
as z → 1,

which shows that the bound in (52) is best possible.
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Bivariate Symmetric Discrete Orthogonal
Polynomials

Y. Guemo Tefo, Iván Area and M. Foupouagnigni

Abstract In this paper, we analyze second-order linear partial difference equations
having bivariate symmetric orthogonal polynomial solutions. We present conditions
to have admissible, potentially self-adjoint partial difference equations of hyperge-
ometric type having orthogonal polynomial solutions. For these solutions, we give
explicitly the matrix coefficients of the three-term recurrence relations they satisfy.
Finally, conditions in order to have symmetric orthogonal polynomial solutions are
presented.

1 Introduction

The theory of univariate orthogonal polynomials has been deeply developed because
of the strong relationswith other areas ofmathematics and of course because this type
of special functions appear in with several applications in physics and engineering.
Univariate orthogonal polynomials can be presented from, e.g., the differential
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equations they satisfy, giving rise to many important differential equations of math-
ematical physics. As a consequence, univariate orthogonal polynomials appear in a
natural way in the study ofwavemechanics, heat conduction, electromagnetic theory,
quantum mechanics or mathematical statistics, to cite some applications.

Moreover, the univariate symmetric orthogonal polynomials appear inmany inter-
esting applications. The well-known (univariate) Gegenbauer polynomials appear,
e.g., in the resolution of the Gibbs phenomenon [8, 9] or in tissue segmentation of
human brainMRI through preprocessing [1]. Also, as for the univariate discrete situa-
tion, the symmetricKravchukpolynomials appear in theFourier–Kravchuk transform
used in Optics [5] or in the approximation of harmonic oscillator wave functions [6].

In this context, if {pn(x)}n∈N is a sequence of univariate polynomials, the Favard
theorem [21] links the orthogonality with the three-term recurrence relation, which
in the monic form can be expressed as

xpn(x) = pn+1(x) + βn pn(x) + γn pn−1(x), γn �= 0.

In the univariate symmetric situations (both continuous and discrete), the symmetry
of the polynomials implies that βn = 0 for all n = 0, 1, 2, . . . . Moreover, in the clas-
sical case [16], it is possible to provide explicit expressions for the coefficients βn

and γn that appear in the above three-term recurrence relation satisfied by {pn(x)}n∈N

from the coefficients in the second-order differential equation satisfied by the poly-
nomials.

This idea of expressing the coefficients of the three-term recurrence relation
in terms of the coefficients of the second-order differential equation satisfied by
the polynomials has been extended to the bivariate continuous, discrete and their
q-analogues cases [2–4, 18, 19], where now the coefficients of the three-term recur-
rence relations satisfied by bivariate orthogonal polynomials have been explicitly
given in terms of the coefficients of the partial differential, difference or q-difference
equation satisfied by the bivariate polynomials. In doing so, graded lexicographi-
cal order and the matrix vector representation have been used, first introduced by
Kowalski [10, 11] and afterward considered by Xu [22, 23].

In the bivariate continuous case, the following partial differential equation was
considered by Lyskova [13–15]

(a1x
2 + b1x + c1)

∂2

∂x2
u(x, y) + (a2y

2 + b2y + c2)
∂2

∂x2
u(x, y)

+ 2(a3xy + b3x + c3y + d3)
∂2

∂x∂y
u(x, y)

+ (e1x + f1)
∂

∂x
u(x, y) + (e2y + f2)

∂

∂y
u(x, y) + λu(x, y) = 0,

where ai , bi , ci , di , ei , fi and λ are real numbers, which has the property that the
partial derivatives of any solution also satisfy an equation of the same type (Lyskova
class or hypergeometric equation). The above partial differential equation has been
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discretized in [2, 18, 24] by introducing uniquely two partial difference operators

for the crossed second-order partial derivative
∂2

∂x∂y
giving rise to

σ11(x, y)Δ1∇1u(x, y) + σ12(x, y)Δ1∇2u(x, y) + σ21(x, y)Δ2∇1u(x, y)

+ σ22(x, y)Δ2∇2u(x, y) + τ1(x, y)Δ1u(x, y) + τ2(x, y)Δ2u(x, y) + λu(x, y) = 0 ,

(1)

where σi j and τi are polynomials of at most total degree two and one, respectively.
In [24], the equation has been analyzed under the hypothesis of being admissible
and potentially self-adjoint. Moreover, in [2, 18] the hypergeometric condition has
been added, giving rise to Rodrigues formula for the bivariate orthogonal polynomial
solutions.

In this paper, we consider the following second-order linear partial difference
equation

σ11(x)Δ1∇1u(x) + σ22(x)Δ2∇2u(x) + σ12a(x)Δ1∇2u(x)

+ σ12b(x)Δ2∇1u(x) + σ12c(x)∇1∇2u(x) + σ12d(x)Δ1Δ2u(x)

+ τ1(x)Δ1u(x) + τ2(x)Δ2u(x) + λu(x) = 0, (2)

where σi i , i = 1, 2 and σ12k , k = a, b, c, d, are polynomials of at most total degree
two, and τi are polynomials of total degree one, λ is the spectral parameter, and we
have used (x) = (x, y).

The paper is organized as follows. First, we obtain conditions in order that (2) be
an equation of hypergeometric type. Conditions for (2) being an admissible equation
are obtained in Sect. 3. Moreover, in Sect. 4 conditions for (2) being admissible
and potentially self-adjoint are derived. In these conditions, in Sect. 5 we obtain
explicit expressions for thematrix coefficients appearing in the three-term recurrence
relations satisfied by the orthogonal polynomial solutions of (2). Finally, in Sect. 6
conditions in order to have symmetric orthogonal polynomial solutions are presented.

2 The Hypergeometric Class of the Linear Second-Order
Partial Difference Equation

An important class of differential and difference equation has been analyzed, e.g., in
[17]. A differential equation is said to be of hypergeometric class if all the derivatives
of a solution of the equation are solution of an equation of the same type. In the
bivariate case, this concept has been first analyzed by Lyskova [13–15].

Definition 1 We say that Eq. (2) is of hypergeometric type if all the difference deriv-
atives u(r,s)(x) = Δr

1Δ
s
2u(x) of any solution u(x) of the Eq. (2) are solution of an

equation of the same type.
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Let us consider the second-order linear partial difference equation (2) where the
polynomial coefficients are given by

σ11(x) = a11x
2 + b11y

2 + c11xy + d11x + e11y + f11,

σ22(x) = a22x
2 + b22y

2 + c22xy + d22x + e22y + f22,

σ12a(x) = a12ax
2 + b12a y

2 + c12axy + d12ax + e12a y + f12a,

σ12b(x) = a12bx
2 + b12b y

2 + c12bxy + d12bx + e12b y + f12b,

σ12c(x) = a12cx
2 + b12c y

2 + c12cxy + d12cx + e12c y + f12c,

σ12d(x) = a12d x
2 + b12d y

2 + c12d xy + d12d x + e12d y + f12d ,

τ1(x) = τ11x + τ12y + τ13,

τ2(x) = τ21x + τ22y + τ23.

Note that Eq. (2) reduces to the Eq. (1) considered in [2, 18, 24] in the particular case
σ12c = σ12d = 0.

Next, we obtain conditions for (2) to be of hypergeometric type. Let us apply the
Δ1 operator to (2) and denote Δ1u(x) = u(1,0)(x). If we analyze each summand, we
have

Δ1 [λu(x)] = λu(1,0)(x) (3)

Δ1 [τ2(x)Δ2u(x)] = τ2(x)Δ2u
(1,0)(x) + Δ1τ2(x)Δ2u(x + 1, y) (4)

Δ1 [τ1(x)Δ1u(x)] = Δ1τ1(x)u(1,0)(x) + τ1(x + 1, y)Δ1u
(1,0)(x) (5)

Δ1 [σ11(x)Δ1∇1u(x)] = σ11(x)Δ1∇1u
(1,0)(x) + Δ1σ11(x)Δ1u

(1,0)(x) (6)

Δ1 [σ22(x)Δ2∇2u(x)] = σ22(x)Δ2∇2u
(1,0)(x) + Δ1σ22(x)Δ2∇2u(x + 1, y) (7)

Δ1 [σ12a(x)Δ1∇2u(x)] = Δ1σ12a(x)∇2u
(1,0)(x) + σ12a(x + 1, y)Δ1∇2u

(1,0)(x)

(8)

= Δ1σ12a(x)Δ2u
(1,0)(x) − Δ1σ12a(x)Δ2∇2u

(1,0)(x) + σ12a(x + 1, y)Δ1∇2u
(1,0)(x)

Δ1 [σ12b(x)Δ2∇1u(x] = σ12b(x)Δ2∇1u
(1,0)(x) + Δ1σ12b(x)Δ2u

(1,0)(x) (9)

Δ1 [σ12d(x)Δ1Δ2u(x)] = Δ1σ12d(x)Δ2u
(1,0)(x) + σ12d(x + 1, y)Δ1Δ2u

(1,0)(x)

(10)

Δ1 [σ12c(x)∇1∇2u(x)] = σ12c(x)∇1∇2u
(1,0)(x) + Δ1σ12c(x)∇2u

(1,0)(x) (11)

= σ12c(x)∇1∇2u
(1,0)(x) + Δ1σ12c(x)Δ2u

(1,0)(x) − Δ1σ12c(x)Δ2∇2u
(1,0)(x)

In order to u(1,0)(x) be solution of an equation of the same type, from Eq. (4) we
have that Δ1τ2(x) = 0, or equivalently τ2(x) does not depend on x . Symmetrically,
if we apply Δ2 to (2) and since u(0,1)(x) must be solution of an equation of the same
type, we obtain Δ2τ1(x) = 0, or equivalently τ1(x) does not depend on y. Using
these properties and (5), we have that τ1(x) must be a polynomial of degree 1 in x
and τ2(x) must be a polynomial of degree 1 in y in order to have an equation with
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constant eigenvalue.Moreover, from (6) we have thatΔ1σ11(x)must be a polynomial
of first degree in x , so it does not contain term in xy. Symmetrically, Δ2σ22(x) must
be a polynomial of first degree in y, so it does not contain term in xy. From (7),
Δ1σ22 = 0 and symmetrically Δ2σ11 = 0 which imply that σ11 does not depend on
y and σ22 does not depend on x , respectively. If we collect the terms multiplying
Δ2u(1,0)(x), we obtain thatΔ1(τ2(x) + σ12a(x) + σ12b(x) + σ12c(x) + σ12d(x))must
be a polynomial of degree 1 in y, or equivalently Δ2

1(σ12a(x) + σ12b(x) + σ12c(x) +
σ12d(x)) = 0. Symmetrically,Δ2

2(σ12a(x) + σ12b(x) + σ12c(x) + σ12d(x)) = 0. If we
collect the terms in Δ2∇2u(1,0)(x), we observe that σ22(x) − Δ1(σ12a(x) + σ12c(x))

must not depend on x which implies thatΔ2
1(σ12a(x) + σ12c(x)) = 0. Symmetrically,

Δ2
2(σ12b(x) + σ12c(x)) = 0.

Lemma 1 Equation (2) belongs to the hypergeometric class if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11(x) = a11x2 + d11x + f11,

σ22(x) = b22y2 + e22y + f22,

σ12a(x) = a12ax2 + b12a y2 + c12axy + d12ax + e12a y + f12a,

σ12b(x) = a12bx2 + b12b y2 + c12bxy + d12bx + e12b y + f12b,

σ12c(x) = −a12ax2 − b12b y2 + c12cxy + d12cx + e12c y + f12c,

σ12d(x) = −a12bx2 − b12a y2 + c12d xy + d12d x + e12d y + f12d ,

τ1(x) = τ11x + τ13,

τ2(x) = τ22y + τ23.

(12)

Theorem 1 Let us assume that (2) is of hypergeometric type. If u(x) is solution of
(2), then uα(x) = Δr

1Δ
s
2u(x) is a solution of the following equation belonging to the

hypergeometric class:

σ
(r,s)
11 (x)Δ1∇1uα(x) + σ

(r,s)
22 (x)Δ2∇2uα(x) + σ

(r,s)
12a (x)Δ1∇2uα(x)

+ σ
(r,s)
12b (x)Δ2∇1uα(x) + σ

(r,s)
12c (x)∇1∇2uα(x) + σ

(r,s)
12d (x)Δ1Δ2uα(x)

+ τ
(r,s)
1 (x)Δ1uα(x) + τ

(r,s)
2 (x)Δ2uα(x) + μ(r,s)uα(x) = 0 (13)

where

σ
(r,s)
11 (x) = σ11 − sΔ2(σ12b + σ12c) − s(s − 1)

2
Δ2

2σ12b,

σ
(r,s)
22 (x) = σ22 − rΔ1(σ12a + σ12c) − r(r − 1)

2
Δ2

1σ12a,

σ
(r,s)
12a (x) = σ12a + rΔ1(σ12a) + r(r − 1)

2
Δ2

1σ12a,

σ
(r,s)
12b (x) = σ12b + sΔ2(σ12b) + s(s − 1)

2
Δ2

2σ12b,

σ
(r,s)
12c (x) = σ12c,
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σ
(r,s)
12d (x) = σ12d + rΔ1σ12d + sΔ2σ12d + r(r − 1)

2
Δ2

1σ12d

+ rsΔ1Δ2σ12d + s(s − 1)

2
Δ2

2σ12d ,

τ
(r,s)
1 (x) = τ1 + rΔ1(τ1 + σ11) + sΔ2(σ12a + σ12b + σ12c + σ12d) + r(r − 1)

2
Δ2

1σ11+

rsΔ1Δ2(σ12a + σ12d) + s(s − 1)

2
Δ2

2(σ12b + σ12d),

τ
(r,s)
2 (x) = τ2 + sΔ2(τ2 + σ22) + rΔ1(σ12a + σ12b + σ12c + σ12d) + s(s − 1)

2
Δ2

2σ22+

rsΔ1Δ2(σ12b + σ12d) + r(r − 1)

2
Δ2

1(σ12a + σ12d),

μ(r,s)(x) = λ + rΔ1τ1 + sΔ2τ2 + r(r − 1)

2
Δ2

1σ11 + s(s − 1)

2
Δ2

2σ22+
rsΔ1Δ2(σ12a + σ12b + σ12c + σ12d).

Proof The result can be obtained by applying repeatedly the forward difference
operators Δ1 and Δ2 to the initial Eq. (2).

3 Admissible Equations

The idea of admissibility was first introduced by Krall and Sheffer [12] in the case
of second-order linear partial differential equations.

Definition 2 The second-order linear partial difference equation (2) is said to be
admissible if there exists a sequence {λn}, (n = 0, 1, 2 . . . ) such that for λ = λn

there are precisely n + 1 linearly independent solutions in the form of polynomials
of total degree n and there are no nontrivial solutions in the set of polynomials whose
total degree is less than n.

Theorem 2 The second-order linear partial difference equation (2)with polynomial
coefficients given in (12) is admissible if and only if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ22 = τ11,

b22 = a11,

c12d = 2a11 − c12a − c12b − c12c,

λn = −n((n − 1)a11 + τ11).

Proof The proof can be done in a similar way as in the continuous case [15, 20].

As a consequence, we have that the polynomial coefficients of the second-order
partial difference equation (2) have the form
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11(x) = a11x2 + d11x + f11,

σ22(x) = a11y2 + e22y + f22,

σ12a(x) = a12ax2 + b12a y2 + c12axy + d12ax + e12a y + f12a,

σ12b(x) = a12bx2 + b12b y2 + c12bxy + d12bx + e12b y + f12b,

σ12c(x) = −a12ax2 − b12b y2 + c12cxy + d12cx + e12c y + f12c,

σ12d(x) = −a12bx2 − b12a y2 + (2a11 − c12a − c12b − c12c)xy

+ d12d x + e12d y + f12d ,

τ1(x) = τ11x + τ13,

τ2(x) = τ11y + τ23,

λn = −n((n − 1)a11 + τ11).

(14)

4 Potentially Self-adjoint Difference Operators

The operator D defined by

Du(x) = σ11(x)Δ1∇1u(x) + σ22(x)Δ2∇2u(x) + σ12a(x)Δ1∇2u(x)

+ σ12b(x)Δ2∇1u(x) + σ12c(x)∇1∇2u(x) + σ12d(x)Δ1Δ2u(x)

+ τ1(x)Δ1u(x) + τ2(x)Δ2u(x), (15)

allows us to write the second-order linear partial difference equation as

Du(x) + λu(x) = 0.

The adjoint operator D† of D is defined by

D†u = Δ1∇1(σ11u) + Δ1∇2(σ12bu) + Δ2∇1(σ12au)

+ Δ1Δ2(σ12cu) + ∇1∇2(σ12du) + Δ2∇2(σ22u) − ∇1(τ1u) − ∇2(τ2u).

Definition 3 An operator A is self-adjoint if A † = A .

Definition 4 The operatorD is potentially self-adjoint in a domain G if there exists
in this domain a positive real function ρ(x) = ρ(x, y) such that the operator ρ(x)D
is self-adjoint in the domain G.

If we multiply D defined in (15) through a positive function ρ(x) in a certain
domain G, we obtain that the operator is potentially self-adjoint provided that the
following conditions are satisfied
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(x − 1, y − 1)σ12d(x − 1, y − 1) = ρ(x, y)σ12c(x, y),

ρ(x − 1, y)σ12a(x − 1, y) = ρ(x, y − 1)σ12b(x, y − 1),

ρ(x − 1, y)�3(x − 1, y) = ρ(x, y)�1(x, y)

ρ(x, y − 1)�4(x, y − 1) = ρ(x, y)�2(x, y),

(16)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�1(x, y) = σ11(x, y) + σ12b(x, y) − σ12c(x, y),

�2(x, y) = σ22(x, y) + σ12a(x, y) − σ12c(x, y),

�3(x, y) = σ11(x, y) + σ12a(x, y) − σ12d(x, y) + τ1(x, y),

�4(x, y) = σ22(x, y) + σ12b(x, y) − σ12d(x, y) + τ2(x, y).

(17)

We shall refer to the system of Eq. (16) as Pearson type system, in analogy to what
happens in the univariate case [17].

The above relations for the function ρ can be written as

Δ1(�1(x)ρ(x)) = ∇1(ρ(x) (σ11(x) + σ12a(x) − σ12d(x) + τ1(x))),

Δ2(�2(x)ρ(x)) = ∇2(ρ(x) (σ22(x) + σ12b(x) − σ12d(x) + τ2(x))),

ρ(x, y + 1)σ12d(x, y + 1) = ρ(x + 1, y)σ12b(x + 1, y),

ρ(x, y)σ12d(x, y) = ρ(x + 1, y + 1)σ12c(x + 1, y + 1),

and for determining the unknown function ρ(x), we get the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ1 (ρ(x)σ11(x)) + Δ2 (ρ(x)σ12a(x)) + ∇2 (ρ(x)σ12d(x)) = ρ(x)τ1(x),

Δ2 (ρ(x)σ22(x)) + Δ1 (ρ(x)σ12b(x)) + ∇1 (ρ(x)σ12d(x)) = ρ(x)τ2(x),

Δ1∇2 (σ12b(x)ρ(x)) = Δ2∇1 (σ12a(x)ρ(x)) ,

Δ1Δ2 (σ12c(x)ρ(x)) = ∇1∇2 (σ12d(x)ρ(x)) .

(18)

The above system can be written in matrix form as

U

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Δ1(ρ(x))

ρ(x)

Δ2(ρ(x))

ρ(x)

∇1(ρ(x))

ρ(x)

∇2(ρ(x))

ρ(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

θ(x, y)
ξ(x, y)
ϕ(x, y)
ψ(x, y)

⎞

⎟
⎟
⎠ , (19)

where

U =

⎛

⎜
⎜
⎝

σ11(x, y) σ12a(x, y) 0 σ12d(x, y)
σ12b(x, y) σ22(x, y) σ12d(x, y) 0

σ12b(x + 1, y) −σ12a(x, y + 1) 0 0
σ12c(x + 1, y) 0 0 σ12d(x, y − 1)

⎞

⎟
⎟
⎠ ,
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the functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ(x, y) = τ1(x) − G1(x)Δ1(σ11(x)) − G2(x)Δ2(σ12a(x)) − G3(x)∇2(σ12d(x)),

ξ(x, y) = τ2(x) − G1(x)Δ1(σ12b(x)) − G2(x)Δ2(σ22(x)) − G4(x)∇1(σ12d(x)),

ϕ(x, y) = σ12a(x, y + 1) − σ12d(x + 1, y),

ψ(x, y) = σ12d(x, y − 1) − σ12c(x + 1, y),
(20)

and we have denoted
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(x) = �3(x, y)

�1(x + 1, y)
,

G2(x) = �4(x, y)

�2(x, y + 1)
,

G3(x) = �2(x, y)

�4(x, y − 1)
,

G4(x) = �1(x, y)

�3(x − 1, y)
.

(21)

5 The Three-Term Recurrence Relations

For any x = (x, y) ∈ R
2, we shall denote by xn (n ∈ N0) the column vector of the

monomials xn−k yk , whose elements are arranged in graded lexicographical order
(see [7, p. 32]):

xn = (xn−k yk) , 0 ≤ k ≤ n, n ∈ N0 . (22)

Let {Pn
n−k,k(x, y)} be a sequence of polynomials in the space �2

n of all polynomials
of total degree at most n in two variables, x = (x, y), with real coefficients. These
polynomials can be expressed as finite sums of terms of the form axn−k yk , where
a ∈ R.

Let Pn denote the (column) polynomial vector

Pn = (Pn
n,0(x, y), P

n
n−1,1(x, y), . . . , P

n
1,n−1(x, y), P

n
0,n(x, y))

T. (23)

In these conditions, each polynomial vector Pn can be written in terms of the basis
(22) as:

Pn = Gn,nxn + Gn,n−1xn−1 + · · · + Gn,0 x0, (24)

where Gn, j are matrices of size (n + 1) × ( j + 1) and Gn,n is a nonsingular square
matrix of size (n + 1) × (n + 1).
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Definition 5 A polynomial vector Pn is said to be monic if its leading matrix coef-
ficient Gn,n is the identity matrix (of size (n + 1) × (n + 1)); i.e.:

Pn = xn + Gn,n−1xn−1 + Gn,n−2xn−2 + · · · + Gn,0 x0 . (25)

For a monic polynomial Pn , each of its polynomial entries Pn
n−k,k(x, y) can be writ-

ten as

Pn
n−k,k(x, y) = xn−k yk + terms of lower total degree . (26)

In what follows we shall consider monic polynomials denoted by Pn .
The following theorem [7] provides conditions for {Pn}n≥0 be an orthogonal poly-

nomial sequence.

Theorem 3 Let L be a positive definite moment linear functional acting on the
space �2

n of all polynomials of total degree at most n in two variables, and {Pn}n≥0

be an orthogonal family with respect to L . Then, for n ≥ 0, there exist unique
matrices An, j of size (n + 1) × (n + 2), Bn, j of size (n + 1) × (n + 1), and Cn, j of
size (n + 1) × n, such that

x jPn = An, jPn+1 + Bn, jPn + Cn, jPn−1, j = 1, 2, (27)

with the initial conditions P−1 = 0 and P0 = 1, where we have used the notations
x1 = x and x2 = y.

Next, we shall obtain explicit expressions for the matrices An, j , Bn, j and Cn, j

appearing in the three-term recurrence relations (27), in terms of the polynomial
coefficients of (2). These matrices allow us to compute the monic orthogonal poly-
nomial solutions of (2), in case they exist.

In doing so, we shall repeatedly use the matrices Ln, j of size (n + 1) × (n + 2)

Ln,1 =

⎛

⎜
⎜
⎜
⎝

1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · · · · 1 0

⎞

⎟
⎟
⎟
⎠

and Ln,2 =

⎛

⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...

0 · · · · · · · · · 1

⎞

⎟
⎟
⎟
⎠

. (28)

It is easy to check the following important properties

⎧
⎪⎨

⎪⎩

x xn = Ln,1xn+1, y xn = Ln,2xn+1,

x2 xn = Ln,1Ln+1,1xn+2, y2 xn = Ln,2Ln+1,2xn+2,

Ln,2Ln+1,1 = Ln,1Ln+1,2.

(29)
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Moreover for j = 1, 2,

Ln, j L
T
n, j = In+1, (30)

where In+1 denotes the identity matrix of size n + 1.
In order to obtain explicit expressions for the matrices An, j , Bn, j andCn, j appear-

ing in the three-term recurrence relations (27), in terms of the polynomial coefficients
of (2) we shall need the action of the forward and backward difference operators Δ

and ∇ on xn given by

Δ jxn =
n∑

k=1

E
k
n, j xn−k, ∇ jxn =

n∑

k=1

(−1)k+1
E
k
n, j xn−k,

where if we denote the entries of the matrices Er
n, j = (erp,q, j ) of size (n + 1) × (n −

r + 1), we have that

erp,q,1(n) =

⎧
⎪⎪⎨

⎪⎪⎩

(
n − p

r

)

, p = q,

0, p �= q,

erp,q,2(n) =

⎧
⎪⎪⎨

⎪⎪⎩

(
p

r

)

, p = q + r,

0, p �= q + r.

If we substitute the expansion (25) in (2), by equating the coefficients in xn , xn−1,
and xn−2 we obtain the following explicit expressions for the matrices Gn,n−1 and
Gn,n−2 in (25):

Gn,n−1 = SnF
−1
n−1(λn), (31)

Gn,n−2 = (Tn + Gn,n−1Sn−1)F
−1
n−2(λn) (32)

where

Fn(λl) = (λn − λl)In+1.

The matrix Sn of size (n + 1) × n is given in terms of the polynomial coefficients
of the Eq. (2) as

Sn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1,1 s1,2 0 · · · · · · 0

s2,1 s2,2 s2,3
. . .

...

s3,1 s3,2
. . .

. . .
. . .

...

0 s4,2
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . sn−1,n
...

. . .
. . .

. . . sn,n

0 · · · · · · 0 sn+1,n−1 sn+1,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n ≥ 1), (33)
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where

si,i+1 = (
(1 − i)(b12b + b12c) + e11

)
u(n − i + 2), i = 1, . . . , n − 1,

si,i = (n − i + 1)
(
(n − i)

(
d11 + τ11

2
+ (i − 1)(a11 − c12b − c12c)

)

+ (i − 1)(e12a + e12b + e12c + e12d)

+τ13 − (b12a + b12c)u(i)
)

, i = 1, . . . , n,

si+1,i = i(n − i)(d12a + d12b + d12c + d12d)

+ u(i + 1)
(
e22 + τ11

2
+ (n − i)(a11 − c12a − c12c)

)

− iu(n − i + 1)(a12b + a12c) + iτ23, i = 1, . . . , n,

si+2,i =
(
d22 − (n − i − 1)(a12a + a12c)

)
u(i + 2), i = 1, . . . , n − 1,

where u(n) = n(n − 3) + 2.
Moreover, the matrix Tn of size (n + 1) × (n − 1) is given in terms of the poly-

nomial coefficients of the Eq. (2) as

Tn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t1,1 0 · · · · · · 0

t2,1 t2,2
. . .

...

t3,1 t3,2
. . .

. . .
...

0 t4,2
. . .

. . . 0
...

. . .
. . .

. . . tn−1,n−1
...

. . .
. . . tn,n−1

0 · · · · · · 0 tn+1,n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n ≥ 2), (34)

where, for 1 ≤ i ≤ n − 1,

ti,i = − 1

12

(
(i − n − 1)(i − n)

(
a11(i − n + 1)(3i + n − 6)

+ 2(3(i − 1)(−e12a + e12b + e12c − e12d

+ (i − 2)(b12a + b12b)) − 6 f11 + τ11(i − n + 1) − 3τ13)
))

,

ti+1,i = − 1

2
i(i − n)

(
(i − n + 1)

(
(i − 1)(c12a + c12b − a11) − d12a + d12b + d12c

− d12d
) + (1 − i)(e12a − e12b + e12c − e12d) + 2( f12a + f12b + f12c + f12d)

)
,

ti+2,i = 1

12
i
(
(i2 − 1)

(
a11(−3i + 4n − 6) + 2τ11

)

+ 6(i + 1)
(
(d12a − d12b + d12c − d12d

− (i − n + 2)(a12a + a12b))(i − n + 1) + 2 f22 + τ23
))

.
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As in the case analyzed in [2], we have the following result providing the explicit
expressions of the matrices appearing in the three-term recurrence relations satisfied
by the monic polynomials:

Theorem 4 The explicit expressions of the matrices An, j , Bn, j and Cn, j ( j = 1, 2)
appearing in (27) in terms of the values of the leading coefficients Gn,n−1 and Gn,n−2,
explicitly given in (31) and (32), respectively, are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

An, j = Ln, j , n ≥ 0,

B0, j = −L0, j G1,0, Bn, j = Gn,n−1Ln−1, j − Ln, j Gn+1,n, n ≥ 1,

C1, j = −(L1, j G2,0 + B1, j G1,0),

Cn, j = Gn,n−2Ln−2, j − Ln, j Gn+1,n−1 − Bn, j Gn,n−1, n ≥ 2 ,

(35)

where the matrices Ln, j have been introduced in (28).

Since [7],

rank(Ln, j ) = n + 1 = rank(Cn+1, j ), j = 1, 2, n ≥ 0, (36)

the columns of the joint matrices

Ln = (
LT
n,1 , LT

n,2

)T
and Cn = (

CT
n,1 ,CT

n,2

)T
,

of size (2n + 2) × (n + 2) and (2n + 2) × n, respectively, are linearly independent,
which implies that

rank(Ln) = n + 2, rank(Cn) = n. (37)

Therefore, thematrix Ln has full rank. As a consequence, there exists a uniquematrix
D†

n of size (n + 2) × (2n + 2),

D†
n = (

Dn,1|Dn,2
) = (

LT
n Ln

)−1
LT
n , (38)

such that

D†
n Ln = In+2.

where In+2 denotes the identity matrix of size n + 2.
If we now consider the left inverse D†

n of the joint matrix Ln

D†
n =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0
1/2 © 1/2 ©

. . .
. . .

© 1/2 © 1/2
0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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it is possible to give a recursive formula for the monic orthogonal polynomials

Pn+1 = D†
n

[(
x
y

)

⊗ In+1 − Bn

]

Pn − D†
nCnPn−1, n ≥ 0, (39)

with the initial conditions P−1 = 0, P0 = 1, where⊗ denotes the Kronecker product
and

Bn = (
BT
n,1 , BT

n,2

)T
, Cn = (

CT
n,1 ,CT

n,2

)T
, (40)

are matrices of size (2n + 2) × (n + 1) and (2n + 2) × n, respectively. We have
therefore obtained another presentation of [7, (3.2.10)]. This idea has already been
presented in [18].

6 Bivariate Symmetric Orthogonal Polynomials

In this section, we give conditions for an admissible second-order partial difference
equation of hypergeometric type to have symmetric orthogonal polynomial solutions.

Definition 6 A polynomial Pn
n−k,k(x, y) of degree n is said to be symmetric if

Pn
n−k,k(−x,−y) = (−1)n Pn

n−k,k(x, y).

As a consequence of this definition, the coefficients of all the monomials of
Pn
n−k,k(x, y) of degree n − (2� + 1), � = 0, 1, . . . , 	 n−1

2 
 are zero, where 	·
 denotes
the floor function.

Theorem 5 Let us assume that (2) is admissible and of hypergeometric type. The
Eq. (2) has a symmetric sequence of polynomial solutions if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ13 = τ23 = 0,

d12a + d12b + d12c + d12d = 0,

e12a + e12b + e12c + e12d = 0,

c12c = a11 − c12a,

d12b = −d12a,

a12b = a12a,

c12b = c12a,

b12b = b12a,

d11 = e22 = −τ11

2
.

(41)

Proof Suppose that the admissible second-order difference equation (2) has a sym-
metric sequence of polynomials solutions. Let us consider the monic symmetric
sequence of polynomials solutions written in vector form as in (25).
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Ifwe substitute each vector polynomialsPn (n = 0, 1, 2, 3) in (2)with coefficients
(14), by equating the coefficients in xn−1 to zero, we obtain (41).

For the converse, let Pn =
n∑

i=0

Gn,ixi be a polynomial vector as in (24). We have

Δr∇tPn =
n∑

i=2

i−2∑

k=0

k∑

l=0

(−1)i−kGn,iE
i−k−1
i,t E

k+1−l
k+1,r xl

which is a polynomial of degree n − 2. Then, for 0 ≤ p ≤ n − 2 the coefficient of
xp in Δr∇tPn is

n∑

i=p+2

i−2∑

k=p

(−1)i−kGn,iE
i−k−1
i,t E

k+1−p
k+1,r .

For 1 ≤ p ≤ n − 1, the coefficient of xp in x jΔr∇tPn is

n∑

i=p+1

i−2∑

k=p−1

(−1)i−kGn,iE
i−k−1
i,t E

k+2−p
k+1,r L p−1, j .

For 2 ≤ p ≤ n, the coefficient of xp in x j1x j2Δr∇tPn is

n∑

i=p

i−2∑

k=p−2

(−1)i−kGn,iE
i−k−1
i,t E

k+3−p
k+1,r L p−2, j2L p−1, j1 .

We also have

∇1∇2Pn =
n∑

i=2

i−2∑

k=0

k∑

l=0

(−1)i−lGn,iE
i−k−1
i,2 E

k+1−l
k+1,1 xl ,

Δ1Δ2Pn =
n∑

i=2

i−2∑

k=0

k∑

l=0

Gn,iE
i−k−1
i,2 E

k+1−l
k+1,1 xl ,

Δ1Pn =
n∑

i=1

i−1∑

k=0

Gn,iE
i−k
i,1 xk,

Δ2Pn =
n∑

i=1

i−1∑

k=0

Gn,iE
i−k
i,2 xk .

As a consequence, if we substitute Pn in (2) with coefficients (14) and conditions
(41), the coefficients of xp are
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=2

i−2∑

k=0

Gn,i A
1
i,k,0 + λnGn,0, p = 0,

n∑

i=3

i−2∑

k=1

Gn,i A
1
i,k,1 +

n∑

i=2

i−2∑

k=0

Gn,i A
2
i,k,1 +

n∑

i=1

Gn,i A
3
i,1 + λnGn,1, p = 1,

n∑

i=p+2

i−2∑

k=p

Gn,i A
1
i,k,p +

n∑

i=p+1

i−2∑

k=p−1

Gn,i A
2
i,k,p +

n∑

i=p

Gn,i A
3
i,p

+
n∑

i=p

i−2∑

k=p−2

Gn,i A
4
i,k,p + λnGn,p, 2 ≤ p ≤ n − 2,

Gn,n A
2
n,n−2,n−1 +

n∑

i=n−1

Gn,i A
3
i,n−1 +

n∑

i=n−1

i−2∑

k=n−3

Gn,i A
4
i,k,n−1

+ λnGn,n−1, p = n − 1,

Gn,n A
3
n,n + Gn,n A

4
n,n−2,n + λnGn,n, p = n.

where the matrices Ak
i, j and Ak

n,m,r can be computed recursively. Hence, we can write
the coefficient of xp as

Gn,p Bp,p + Gn,p+1Bp,p+1 +
n∑

i=p+2

Gn,i Bp,i . (42)

Notice the difference between these matrices and those appearing in the three-term
recurrence relation. Especially for the case 2 ≤ p ≤ n − 2, we have

Bp,p = A3
p,p + A4

p,p−2,p + λp Ip+1,

Bp,p+1 = A2
p−1,p−1,p + A3

p+1,p + A4
p+1,p−2,p + A4

p+1,p−1,p,

Bp,i =
i−2∑

k=p

A1
i,k,p +

i−2∑

k=p−1

A2
i,k,p + A3

i,p +
i−2∑

k=p−2

A4
i,k,p.

Therefore, (42) can be written as

(
BT
p,p BT

p,p+1 BT
p,p+2 · · · BT

p,n

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

GT
n,p

GT
n,p+1

GT
n,p+2
...

GT
n,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By equating the coefficients of 1, x, x2, . . . , xn in this order in the equation
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DPn + λnPn = 0,

we find the linear homogeneous system of equations

ΩnG = θ,

where θ is the zero matrix of size
(n+2

2

) × (n + 1),

Ωn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

BT
0,0 BT

0,1 BT
0,2 · · · BT

0,n

0 BT
1,1 BT

1,2 · · · BT
1,n

...
. . .

...

... BT
n−1,n−1 BT

n−1,n

0 · · · · · · 0 BT
n,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

GT
n,0

GT
n,1

...

...

GT
n,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now BT
n,n is the zero matrix, so it is always possible to choose a nonsingular matrix

Gn,n satisfying last n + 1 equations. Bn−1,n is the zero matrix, and Bn−1,n−1 is diag-
onal matrix with the entries λn − λn−1 in the main diagonal. We then obtain that
Gn,n−1 is the zero matrix. By doing so we find that the matrices Gn,n−(2 j+1) in (24),
j = 0, 1, . . . , 	 n−1

2 
 are identically zero and the proof is complete.

As a consequence, we have that the polynomial coefficients of the admissible second-
order linear partial difference equation of hypergeometric type (2) have the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11(x) = a11x2 − τ11
2 x + f11,

σ22(x) = a11y2 − τ11
2 y + f22,

σ12a(x) = c12axy + d12ax + e12a y + f12a,

σ12b(x) = c12axy − d12ax + e12b y + f12b,

σ12c(x) = (a11 − c12a)xy + d12cx + e12c y + f12c,

σ12d(x) = (a11 − c12a)xy + d12d x + e12d y + f12d ,

τ1(x) = τ11x,

τ2(x) = τ11y,

λn = −n((n − 1)a11 + τ11),

(43)
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where

e12a = 1

12
(−a11 + 12 f12c − 2 (3 ( f11 + f22) + τ11)) − 1

2
c12a + d12a + f12a,

e12b = 1

12
(6 (−2 (d12a + f12a + f12c) + c12a + f11 + f22) + a11 + 2τ11) ,

d12c = 1

6
(−6d12a + 2a11 + 6 f22 + τ11) ,

e12c = 1

4
(−2c12a + a11 + 2 f11 − 2 f22) + d12a + f12a + f12c,

d12d = d12a − a11
3

− f22 − 1

6
τ11,

e12d = 1

4
(−2 (2 (d12a + f12a + f12c) − c12a + f11 − f22) − a11) .

Moreover, under these assumptions we have that the matrices Sn defined in (33)
are identically zero, which implies that the matrices Gn,n−1 defined in (31) are also
identically zero. Therefore, the matrices Bn, j explicitly given in (35) of the three-
term recurrence relations (27) satisfied by Pn are also zero, giving the symmetry
condition. Furthermore, in this symmetric situation, the coefficients of the matrices
Tn defined in (34) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti,i = − 1
12 (i − n − 1)(i − n) (a11(i − n + 2)(3i + n − 5) + 12(i − 2) f11

+ 2τ11(2i − n)) ,

ti+1,i = 1
6 i(i − n) (6 (2 ((i − 2) ( f12a + f12c) + (2i − n)d12a)

− (i − 1)(i − n + 2)c12a) + a11(i(3i − 3n − 1) + 5n − 6)

+ 6 f22(n − 2i) + τ11(n − 2i)) ,

ti+2,i = − 1
12 i(i + 1) ((i − 2)a11(3i − 4n + 5) − 12 f22(i − n + 2) + 2τ11(n − 2i)) .
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New and Extended Applications
of the Natural and Sumudu Transforms:
Fractional Diffusion and Stokes Fluid
Flow Realms

Fethi Bin Muhammed Belgacem, Rathinavel Silambarasan,
Hammouch Zakia and Toufik Mekkaoui

Abstract The Natural transform is used to solve fractional differential equations for
various values of fractional degrees α, and various boundary conditions. Fractional
diffusion problems solutions are analyzed, followed by Stokes–Ekman boundary
thickness problem. Furthermore, the Sumudu transform is applied for fluid flow
problems, such as Stokes, Rayleigh, and Blasius, toward obtaining their solutions
and corresponding boundary layer thickness.

Keywords Natural transform · Sumudu transform · Fractional diffusion · Fluid
dynamics
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1 Introduction

To obtain the solutions for engineering problems such as inmagneto-hydro-dynamics
or fluid dynamics whether through ordinary, partial or fractional differential equa-
tions, integral transform methods are often sought to the rescue. The advent is that
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they convert the differential problems to simplifiable algebraic problems in a possibly
new domain with proxy units, the solution of which are then often inverted back to
yield the sought solution. Fourier and Laplace transforms are the traditional integral
transform icons in this regard [24, 45]. Based on the type of kernel used, various
integral transforms and problem-solving techniques have risen to include Hankel,
Mellin, Hilbert Jacobi, Gegenbauer, Radon, Wavelet and Curvelet transforms, and
Z [43]. For instance, orthogonal polynomial kernels led to Legendre, Laguerre, and
Hermite transforms [43].

For the function f (t) defined in the set A = { f (t)|∃M, τ1, τ2 > 0, | f (t)| <

Me
|t |
τ j , if t ∈ (−1) j × [0,∞)}, Natural transform is given by,

N[ f (t)] = R(s, u) =
∫ ∞

0
e−st f (ut)dt = 1

u

∫ ∞

0
e− st

u f (t)dt

= 1

s

∫ ∞

0
e−t f

(
ut

s

)
dt ; Re(s) > 0, u ∈ (−τ1, τ2).

(1)

In (1), when u ≡ 1 gives Laplace transform and s ≡ 1 gives Sumudu transform,
hence second and third integral equations define the respective Natural-Laplace dual
(NLD) and Natural-Sumudu dual (NSD).

The above mentioned Natural transform combines the features of Laplace and
Sumudu transforms and hence converges to both transforms upon variable substi-
tutions in kernel. In this work, some Natural transform properties are reviewed and
applied to fractional order diffusion equation in semi-infinite medium for its solu-
tion, and then for different values of α, the solution is analyzed. Followed by same,
Natural transform is applied for Stokes–Ekman problem to obtain its layer thick-
ness. Table comprising all new Natural transforms for certain functions is given. In
the second half of this work, Sumudu transform applied for Stokes, Rayleigh, and
Blasius problems to obtain their solutions and hence their layer thickness.

2 Natural Transform Properties

Properties and table of elementary functions and N transform are given with solu-
tions of fluid flow over a plane wall is solved by the Natural transform (N-transform)
in [1]. Assuming both initial and boundary conditions were null, Maxwell’s simul-
taneous equations were solved by Natural transform in [2]. Extensive properties
including multiple shifting, dual nature to Laplace and Sumudu transforms, and all
other required properties of Natural transform with list of tables were studied in
[3]. A more generalized Laplace, Sumudu, and Natural transforms definitions are
given in [3], (Eqs (1.4-5), and (2.12-13) in [3]). Natural and its inverse transforms
were derived from Fourier integral in [3]. Bromwich contour integral and Heavi-
side’s expansions theorems for the inverse Natural transform were derived in [3]
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(Theorems 5.3 and 5.4, [3]). The same reference contains multiple shifting results
related to products and divisions which were derived in terms of s as well as u in [3].

Transverse electromagnetic planar waves propagating in lossy medium (TEMP)
are solved for electric field using Natural transform [4]. Maxwells equations were
extended for n dimensions and studied using Natural transform in [5]. The relations
of integral transforms and J0(2

√
vt) are studied in [6]. Fractional ODEs solved using

Natural transform in [7]. Natural transform in distribution spaceD′
and its dual space

D is studied in [8]. Natural transform in distribution space and Boehmians is studied
in [9]. Integral equations solved using Natural transform in [10]. Decomposition
method with Natural transform employeed for solving Schrödinger equations in
[11]. In [12] Q-theory of Natural transform discussed. Natural transform of basic
functions calculated by Adomain decomposition method (ADM) in [13]. Laplace,
Fourier, Sumudu, andMellin transformswere back tracked fromNatural transform in
[14]. In [15], fractional PDEs are solved byNatural transform. Fluid PDEs are solved
by Natural transform in [16]. Natural transform and the Homotopy Perturbation
method (HPM) were hybridly joined to solve fractional PDEs in [17]. Fractional
Natural transform, properties, and applications were studied in [18]. Some more
applications of Natural transforms in solving PDEs were given in [19, 20].

Theorem 2.1 If f (t + NT ) = − f (t), then

N[ f (t)] = − 1

u(1 + e− sT
u )

∫ T

0
e− st

u f (t)dt. (2)

Proof The proof is straightforward, rewriting the second integral of (1) in the interval
[0, T ] and [T,∞) so that [0,∞) = [0, T ] ∪ [T,∞) and applying f (t + NT ) =
− f (t), simplifying gives (2). �

Theorem 2.2

N

[{
0 ; t < b

a

f (at − b) ; t > b
a , a, b > 0

]
= 1

a
e− sb

au R
( s

a
, u

)
. (3)

Proof Applying second integral of (1) to the left-hand side of (3) and after simpli-
fying completes the result. �

3 Natural Transform Applications to Fractional
Order Diffusion Equation in Semi-Infinite Medium
and Stokes–Ekman Layer Problem

Example 3.1 (Fractional diffusion problem) The fractional order diffusion equation
in semi infinite medium z > 0, where initial temperature is zero in the wholemedium
and temperature at the boundary is X0 f (t) given in [42]. The problem is described
by the following equations.
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∂αx(z, t)

∂tα
= κ

∂2x(z, t)

∂z2
; z ∈ (0,∞) , t > 0. (4)

The initial and boundary conditions are, respectively, given by,

x(z, 0) = 0 ; z > 0. (5)

x(0, t) = X0 f (t) ; t > 0 and x(z, t) = 0 as z → ∞. (6)

LettingN[x(z, t)] = R(z, s, u) andN[ f (t)] = R(s, u),Natural transformof (4) after
initial condition (5) and boundary condition (6) is given by,

d2R(z, s, u)

dz2
−

(
sα

κuα

)
R(z, s, u) = 0 , z > 0. (7)

and
R(0, s, u) = X0R(s, u) ; R(z, s, u) → 0 as z → ∞. (8)

Now the solution of (7) along with (8) is given by,

R(z, s, u) = X0R(s, u) exp

(
−z

√
sα

κuα

)
. (9)

Inverse Natural transform of (9) from the application of convolution theorem of
Natural transform [3] gives the solution of (4).

x(z, t) = X0

∫ t

0
f (t − τ )g(z, τ )dτ = X0 f (t)g(z, t). (10)

where

g(z, t) = N
−1

[
exp

(
−z

√
sα

κuα

)]
.. (11)

Now the solution x(z, t) of (4) with boundary condition f (t) = 1 in (6) for different
values of α in (4) is given in the Table1.

Next the solution x(z, t) of (4) with boundary condition f (t) = t in (6) for dif-
ferent values of α in (4) is given in the Table2.

Hence, the general solution of (4) is given by (10) and (11). Finally, for different
values of α in (11), g(z, t) is given in Table3.

Example 3.2 (Stokes–Ekman problem)When both fluid and disk rotate with uniform
angular velocity � about z− axis, unsteady boundary layer flow in a semi-infinite
body of viscous fluid bounded by an infinite horizontal disk at z = 0 is given by the
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Table 1 Solutions of (4) with boundary condition f (t) = 1 in (6) for different valus of α in (4)

S. No α in (3.1) x(z, t)

1 –2 X0 J0

(
2
√
zt

κ1/4

)

2 –1 X0

[
0F2

(
; 1
2
, 1; z

2t

4κ

)
− 2z

√
t

πκ
0F2

(
; 3
2
,
3

2
; z

2t

4κ

)]

3 1 X0 erfc

(
z

2
√

κt

)

4 2 X0 H

(
t − z√

κ

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 ; t < z√
κ

undefined ; t = z√
κ

X0 ; t > z√
κ

Table 2 Solutions of (4) with boundary condition f (t) = t in (6) for different valus of α in (4)

S. No α in (3.1) x(z, t)

1 –2 X0κ
1
4

√
t

z
J1

(
2
√
zt

κ1/4

)

2 –1 X0

[
0F2

(
; 1
2
, 2; z

2t

4κ

)
t − 4zt

3
2

3
√

πκ
0F2

(
; 3
2
,
5

2
; z

2t

4κ

)]

3 1 X0

[(
z2 + 2κt

2κ

)
erfc

(
z

2
√

κt

)
− z

√
t

πκ
e− z2

4κt

]

4 2 X0 H

(
t − z√

κ

) (
t − z√

κ

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 ; t < z√
κ

undefined ; t = z√
κ

X0

(
t − z√

κ

)
; t > z√

κ

Table 3 Solutions g(z, t) in (11) for different valus of α in (11)

S. No α in (3.8) x(z, t)

1 –2 δ(t) − 1

κ
1
4

√
2

t
J1

(
2
√
zt

κ
1
4

)

2 1
z

2
√

πκt2
e− z2

4κt

3 2 δ

(
t − z√

κ

)
=

{
unde f ined ; t = z√

κ

0 ; otherwise
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following equations [42].

∂q(z, t)

∂t
+ 2�iq(z, t) = ν

∂2q(z, t

∂z2
; z > 0 , t > 0. (12)

q(z, t) = aeiωt + be−iωt on z = 0 , t > 0/ (13)

q(z, t) = 0 ; z → ∞ , t > 0. (14)

q(z, t) = 0 ; t ≤ 0 ∀ z > 0. (15)

Here, q is the complex velocity field, ω is frequency of oscillation of disk, and a and
b are complex constants [42].

Let N[q(z, t)] = R(z, s, u), Natural transform of (12) leads to,

d2R(z, s, u)

dz2
−

(
s + 2�ui

uν

)
R(z, s, u) = 0. (16)

Solution of (16) after initial and boundary conditions (8) and (7), respectively, yields,

R(z, s, u) = a

s − iωu
exp

(
−z

√
s + 2�ui

uν

)
+ b

s + iωu
exp

(
−z

√
s + 2�ui

uν

)
.

(17)

Inverse Natural transform of (17) gives the solution q(z, t) of (12).

q(z, t) =aeiωt

2

[
exp

(
−z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
− √

t (2� + ω)i

)]

+ aeiωt

2

[
exp

(
z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
+ √

t (2� + ω)i

)]

+ be−iωt

2

[
exp

(
−z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
− √

t (2� + ω)i

)]

+ be−iωt

2

[
exp

(
z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
+ √

t (2� + ω)i

)]

(18)

Upon ω = 0 in (18) gives the Ekman layer thickness of order
√

ν
2� .

For the functions in [41], table constituting list of exponential functions and their
Natural transforms is given which will be useful for future study.



New and Extended Applications … 113

4 Sumudu Transform Literature Review

Over the past decade, a new theoretical framework has been developed to model
anomalous diffusion. The new framework is based around the physics of contin-
uous time random walks and the mathematics of fractional calculus. One can ask
what would be a differential having as its exponent a fraction. Although this seems
removed from Geometry . . . it appears that one day these paradoxes will yield useful
consequences. Gottfried Leibniz Fractional Diffusion.

When s ≡ 1 in (1), Natural transform converges to Sumudu transform, namely

S[ f (t)] =
∫ ∞

0
e−t f (ut)dt = 1

u

∫ ∞

0
e− t

u f (t)dt ; u ∈ (−τ1, τ2). (19)

Sumudu transform is shown to dual of Laplace transform and used to solve produc-
tion equation [21], followed by multiple shifting, convolutions, and table of Sumudu
integral transforms given in [22]. Properties of shifting and derivative of functions,
Taylor’s theorems, Sumudu transform applications and its relations to number the-
ory and matrices given in [23]. From the Fourier integral, Sumudu transform is
derived and applied for TEMP waves in [24]. Inverse Sumudu transform is applied
and obtained the solution for Bessel’s differential equations and shown its relation
to Laplace transform through Bessel function in [25]. In [26, 27, 29, 31, 32, 34]
Sumudu transform applications used for fractional differential equations. In [28]
Laplace transform defined for trigonometric functions and then new infinite series of
trigonometric functions alongwith tables, examples discussed. Fractional Schnaken-
berg solved numerically in [30]. Fractional order systems in electrical circuits were
studied in [33]. Boundary problems of double diffusiveness are studied in [35].
Sumudu transform applied for continuous everywhere and nowhere differentiable
functions for smoothening the fracture in [36]. Sumudu computation in series for-
mat was derived through symbolic C++ pseudocode, using the Sumudu definition
without any additional decomposition schemes, in [37]. From the bimodular elliptic
functions, Sumudu transform of tan(x) and sec(x) is derived as continued fractions in
[38]. In [39] different Sumudu transform definition, its properties for trigonometric
functions including table of new infinite series expansions of trigonometric functions
were studied. Magnetic field solution of TEMP waves, numerical results and Maple
graphical study were given in [40].

5 Sumudu Transform Applications to Stokes,
Rayleigh and Blasius Problems

Example 5.1 (Stokes problem) Flow in unsteady boundary layer induced in semi-
infinite viscous fluid is bounded by an infinite horizontal disk at z = 0 due to oscil-
lations of disk in its own plane with given frequency ω. Corresponding PDE is given



114 F.B.M. Belgacem et al.

by [42],
∂x(z, t)

∂t
= ν

∂x(z, t)

∂z2
; z > 0 , t > 0. (20)

Initial conditions are
x(z, t) = 0 ; z → ∞ , t > 0. (21)

x(z, 0) = 0 ; t ≤ 0 , ∀z > 0. (22)

and the boundary condition is

x(z, t) = X0e
iωt ; z = 0 , t > 0. (23)

Here, x(z, t) is velocity of fluid and ν kinematic viscosity of fluid.
LetS[x(z, t)] = G(z, u). Sumudu transform of (20) and after initial and boundary

conditions yields,

G(z, u) = X0

1 − iωu
exp

(
−z

√
1

uν

)
. (24)

Sumudu inverting (24) gives velocity in unsteady boundary layer.

x(z, t) = X0eiωt

2

[
e−z

√
iω
ν erfc

(
z

2
√

νt
− √

iωt

)
+ ez

√
iω
ν erfc

(
z

2
√

νt
+ √

iωt

)]
.

(25)

From which the thickness of Stokes boundary layer is
√

ν
ω
.

Example 5.2 (Rayleigh problem) When the frequency ω = 0 in Stokes problem,
motion is generated from rest with constant velocity X0 in fluid [42]. Therefore,
from (24).

G(z, u) = X0 exp

(
−z

√
1

uν

)
. (26)

Sumudu inverting (26) gives the velocity x(z, t).

x(z, t) = X0 erfc

(
z

2
√

νt

)
. (27)

Thickness of Rayleigh boundary layer is
√

νt .

Example 5.3 (Blasius problem) Unsteady boundary layer flow in semi-infinite body
of viscous fluid is enclosed by infinite horizontal disk at z = 0 [42].
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When the boundary condition is t in Stokes problem Example 5.1 leads to the Bla-
sius problem. Therefore, Sumudu transformed (20)–(23) with x(z, t) = X0t yields,

G(z, u) = X0u exp

(
−z

√
1

uν

)
. (28)

Inverse Sumudu transform of (28) using Maple gives the velocity profile of Blasius
problem.

x(z, t) = X0

2

[(
z2 + 2νv

ν

)
erfc

(
z

2
√

νt

)
− 2z

√
t

πν
e− z2

4νt

]
. (29)

6 Conclusion

With respect to fractional diffusion problem, following observations were found.
When the boundary condition is constant.

• For α = −2, velocity profile x(z, t) is in terms of Bessel’s function.
• For α = −1, velocity profile x(z, t) is in terms of hypergeometric function.
• For α = 1, velocity profile x(z, t) is in terms of complementary error function
[42].

• For α = 2, velocity profile x(z, t) is in terms of Heaviside’s function.
• When the boundary condition is t , velocity profiles for different α are given in
Table2.

• For α > −2 and α > 2, velocity profile x(z, t) does not exists.
• Therefore, for constant and t boundary conditions, velocity x(z, t) is defined for

α ∈ [−2, 2].
Sumudu reciprocity property of [24] is shown in the realm of Stokes fluid flow

problem and its descendent variations, and obtained solutions and layer thickness
are in exact concordance with results in the literature [42].

For future studies, we relegate the still open problems regarding finding the veloc-
ity x(z, t) when α takes fractional values in the interval [−2, 2]. Lists of Natural
transforms of elementary functions given in Table4 will be useful for further study.
Moreover, we declare that we remain open to our readers comments, communica-
tions, and suggestions.
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Table 4 Natural transform of elementary functions

S. No f (t) N[ f (t)]
1 e−αt 1

s + αu

2 te−αt u

(s + αu)2

3 tv−1e−αt uv−1�(v)

(s + αu)v

4 e−αt − e−βt

t

1

u
log

(
s + βu

s + αu

)

5 (1 − e−αt )2

t2

(
s + 2αu

u2

)
log

(
s + 2αu

u

)

+ s

u2
log

( s

u

)
− 2

(
s + αu

u2

)

× log

(
s + αu

u

)

6
!
t

− (t + 2)(1 − e−t )

2t2

(
2s + u

2u2

)
log

(
s + u

s

)
− 1

u

7
1

1 − e−t

1

2u
ψ

(
s + u

2u

)
− 1

2u
ψ

( s

2u

)

8
(
1 − e− t

α

)v−1 α

u
B

(αs

u
, v

)

9
tn(

1 − e− t
α

) (−α)n+1

u
ψ(n)

(αs

u

)

10
tv−1(

1 − e− t
α

) αv�(v)

u
ζ

(
v,

αs

u

)

11
1

t (1 − e−t )
− 1

t2
− 1

2t

1

u

[ s
u

(
1 − log

( s

u

))
+ log�

( s

u

)]

+ 1

u

[
1

2
log

( s

2uπ

)]

12
1 − e−αt

1 − e−t

1

u

[
ψ

(
s + αu

u

)
− ψ

( s

u

)]

13
1 − e−αt

t (1 + e−t )

1

u

⎡
⎣ �

( s
2u

)
�

(
2(s+αu+u)

4u

)

�
(
2(s+u)
4u

)
�

(
2(s+αu)

4u

)
⎤
⎦

14
(1 − e−t )v−1

(1 − ze−t )μ

1

u
B

( s

u
, v

)
2F1

(
μ,

s

u
; s + uv

u
; z

)

(continued)
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Table 4 (continued)

S. No f (t) N[ f (t)]

15 (1 − e−αt )(1 − e−βt )

1 − e−t

1

u

[
ψ

(
s + αu

u

)
+ ψ

(
s + βu

u

)]

− 1

u

[
ψ

(
s + (α + β)u

u

)
− ψ

( s

u

)]

16
(1 − e−αt )(1 − e−βt )

t (1 − e−t )

1

u

⎡
⎣�

( s
u

)
�

(
s+(α+β)u

u

)

�
( s+αu

u

)
�

(
s+βu
u

)
⎤
⎦

17
(1 − e−αt )(1 − e−βt )(1 − e−γt )

t (1 − e−t )

1

u

⎡
⎣�

( s
u

)
�

(
s+(α+β)u

u

)

�
( s+αu

u

)
�

(
s+βu
u

)
⎤
⎦

× 1

u

⎡
⎣�

(
s+(β+γ)u

u

)
�

(
s+(γ+α)u

u

)

�
( s+γu

u

)
�

(
s+(α+β+γ)u

u

)
⎤
⎦

18
[α + √

1 − e−t ]−v + [α − √
1 − e−t ]−v

√
1 − e−t

2(s+u)/ue(s−uv)/uiπ�(s/u)

u�(v)

× (α2 − 1)s/2u−v/2Qv−s/u
s/u−1(α)

19

⎧⎨
⎩
0 ; 0 < t < β[
e−β

√
1−e−2t−e−t

√
1−e−2β

]v

√
1−e−2t ; t > β

√
π�(s/u)�(v + 1)e− β((s+uv)/u)

2

u2s/2u+v/2�(s/2u + v/2 + 1/2)

× P(−s/2u−v/2)
(−s/2u+v/2) (

√
1 − e−2β)

20
e(μ−1)t (1 − e−t )μ

−1/2

× [(1 − e−t ) sin(θ) − i(1 − e−t ) cos(θ)]μ−1/2

2μ−1
�(μ + 1/2)�(s/u − μ + 1) sinμ(θ)

u
√

π�(s/u + μ + 1)

× e(s/u+1/2)iθ+μ/2−1/4iπ

× [πPμ
v (cos(θ)) + 2i Qμ

v (cos(θ))]
21

{
0 ; 0 < t < β

e− t2
4α ; t > β

√
αueas

2/u2

u
Erfc

[
s
√

α

u
+ β

2α

]

22 te− t2
4α

2α

u
− 2

√
πsα3/2e

as2

u2

u2
Erfc

[
s
√

α

u

]

23 e− t2
4α√
t

√
sα

u3/2
e

αs2

2u2 K 1
4

(
αs2

2u2

)

24 tv−1e− t2
8α

�(v)2vαv/2

u
e

αs2

u2 D−v

(
2
√

αs

u

)

25 e− t
4α

√
α

u
√
s/u

K1

(√
sα√
u

)

26 √
te− t

4α

√
πu

2s3/2
(1 + √

sα/u)e−√
sα/u

(continued)
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Table 4 (continued)

S. No f (t) N[ f (t)]

27
e− t

4α√
t

√
π

u
√
s/u

e−√
sα/u

28 e− t
4α

t3/2
2
√

π

uα
e−√

sα/u

29 tv−1e− t
4α

@

u
(s/4αu)v/2Kv(

√
sα/u)

30
(e− t

4α − 1)√
t

√
π

u
√
s/u

(e
√
sα/u − 1)

31 e−2
√

αt 1

s
−

√
απu

s3/2
eαu/sErfc(

√
αu/s)

32
√
te−2

√
αt −u

√
α

s2
+

√
πs3/2

u3/2
(α + s/2u)eαu/s

× Erfc(
√

αu/s)

33
e−2

√
αt

√
t

√
π

u
√
s/u

eαu/sErfc(
√

αu/s)

34
e−2

√
αt

√
2t

1

u

√
αu/2seαu/2sK1

4
(αu/2s)

35 (2t)v−1e−2
√

αt uv−1�(2v)

sv
es/2αuD−2v(

√
2αu/s)

36 exp(−αe−t )
1

uαs/u
γ(s/u,α)

37 exp(−αet )
αs

u
F(s/u,α)

38 (1 − e−t )v−1 exp(−αe−t )

�(v)�(s/u)

u�(v + s/u)
α−v/2−s/2ueα/2

× Mv/2−s/2u,v/2+s/2u−1/2(α)

39 (1 − e−t )v−1 exp(−αet )

�(v)

u
α−1/2−s/2ueα/2

× W1/2−s/2u−v,−s/2u(α)

40
(1 − e−t )v−1

(1 − λe−t )μ
exp(−αe−t )

�(v)�(s/u)

u�(v + s/u)
�1(s/u.μ, v; λ,α)

41 (et − 1)v−1 exp(−α/et − 1)

1

u
F(s/u − v + 1)eα/aαv/2−1/2

× Wv/2−1/2−s/u,v/2(α)
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On Uncertain-Fractional Modeling:
The Future Way of Modeling Real-World
Problems

Abdon Atangana and Ilknur Koca

Abstract It has been a long time a challenge for many researchers to give a real
interpretation of derivatives with fractional order. Some researchers said, fractional
derivative is the shadow on the wall. This interpretation was wrong since the shadow
of any object does not provide the real properties of the real object, for instance a
black man has the same shadow with a white man. Using the definition and applica-
tions of a convolution, we gave new interpretation of derivative with fractional order.
We gave specific interpretation for Caputo and Caputo–Fabrizio types as the frac-
tional order changes. It was long believed that, the derivative with fractional order
portray the effect of memory, this was only proved to be true in theory of elasticity
and nowhere else. In this chapter, we introduced a new operator called uncertain
derivative capable or portraying the memory effect in almost all situation. In order to
include into mathematical formulation, the real rate of change and also the effect of
memory, we introduced a newway of modeling real-world problem called uncertain-
fractional modeling (UFM) and applied it to advection dispersion model. Numerical
simulations of the new model show that real-world observation. This method will be
the future way of modeling real-world problem efficiently.
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1 Introduction

Modeling a real-world problem requires a well knowledge within and around this
problem. There are at least three elements that are very important in the process of
modeling. The first thing is understanding and interpretation of the in order to convert
it into mathematical equation. Secondly, the derivative used to describe the rate of
change, as the change occurs in time and space. The last thing is perhaps the coef-
ficient from the physical problem introduced in the mathematical equation. For the
derivative, we have four types, the local derivative [1–3], fractional derivatives [4–9],
variable order derivatives [10–12], and uncertain derivative [13, 14]. With proof in
the literature, it was revealed that the local derivative was not suitable for modeling
some kind of problems. However, the fractional derivatives were selected as suitable
derivatives for modeling some complex problems [15–18]; nonetheless, for highly
complex problems only derivative with variable order was best candidates [19, 20].

For the coefficient, we can, for example, speak of the advection dispersion equa-
tion, where it is always assumed that the advection and dispersion coefficient are
both constants in the geological formation called aquifer [20–24], which is not the
case in practice as from one point of the aquifer to another, properties may change;
this is, for example, a wrong interpretation of the physical problem and the con-
version into mathematical equation. In many research papers in the literature, one
will observe that researchers are focused only in using fractional derivative to better
describe the rate of change; however, the coefficients used in the model are always
neglected. Since uncertain derivative is suitable in describing accurately, the physical
parameters introduced in the mathematical equation and the fractional derivative aim
to provide the effect of memory or filter, it is perhaps better to combine both while
modeling real-world problem.

The aim of this work was to propose a new way to model real-world problem.
This chapter will be structured as follows: The concept of fractional derivatives and
recent trends will be presented in Sect. 2. A novel interpretation of fractional deriv-
ative will be presented in Sect. 3, this will be followed by the new development of
uncertain derivative and it properties in Sect. 4. We will carry on with the novel
approach of modeling real-world problem, for example, advection dispersion equa-
tion in Sect. 5; the approach is called uncertain-fractional modeling (UFM). Section6
will be devoted to the analysis of existence and uniqueness of the novel advection
equation; finally, numerical simulations will be presented in Sect. 7.

2 Fractional Derivatives

In this section, we present some information about some derivative with fractional

Definition 1 ([15–18]) The Riemann–Liouville fractional derivative, according to
Riemann–Liouville, the fractional derivative of a function says f is given as
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Dα
t ( f (t)) = 1

�(n − α)

(
d

dt

)n
t∫

a

(t − x)n−α−1 f (x)dx, n − 1 < α ≤ n (1)

Definition 2 The Riemann–Liouville fractional integral, according to Riemann–
Liouville, the fractional integral that is considered as anti-fractional derivative of a
function f is

I α
t ( f (t)) = 1

�(α)

t∫
a

(t − x)α−1 f (x)dx, x > a (2)

Definition 3 Caputo fractional derivative, according to Caputo, the fractional deriv-
ative of a continuous and n-time differentiable function f is given as

C Dα
t ( f (t)) = 1

�(n − α)

t∫
a

(t − x)n−α−1

(
d

dx

)n

f (x)dx, n − 1 < α ≤ n (3)

Definition 4 The modified Riemann–Liouville fractional derivative of a function f
is given as

Dα
t ( f (t)) = 1

�(n − α)

(
d

dt

)n t∫
a

(t − x)n−α−1 [ f (x) − f (a)] dx, n − 1 < α ≤ n (4)

There are other definitions that are not mentioned below.

Definition 5 Let f ∈ H 1(a, b), b > a,α ∈ [0, 1], then the new Caputo derivative
of fractional order is defined as

Dα
t ( f (t)) = M(α)

1 − α

t∫
a

f
′
(x) exp

[
−α

t − x

1 − α

]
dx (5)

where M(α) is a normalization function such that M(0) = M(1) = 1. However, if
the function does not belong to H 1(a, b), then the derivative can be reformulated as

Dα
t ( f (t)) = αM(α)

1 − α

t∫
a

( f (t) − f (x)) exp

[
−α

t − x

1 − α

]
dx

Remark 1 The initiators witnessed that if σ = 1−α
α

∈ [0,∞), α = 1
1+σ

∈ [0, 1],
then Eq. (5) assumes the form
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Dα
t f (t) = N (σ)

σ

t∫
a

f
′
(x) exp

[
− t − x

σ

]
dx, N (0) = N (∞) = 1 (6)

In addition,

lim
τ→0

1

σ
Exp

[
− t − x

σ

]
= δ(x − t) (7)

3 New Physical Interpretation of Fractional Derivative

In the last past years, the big problem faced by researchers within the field of frac-
tional calculus is the physical meaning of derivative with fractional order. Some
fewer researchers have tried to answer this question; however,many other researchers
around science were not satisfied with their demonstration. For instance, Tavassoli
et al., suggested that we quote “We conclude that the product of fractional order
derivative with the correspondent area is constant, so the fractional derivative pro-
duces the change in the area of the triangle enclosed by the tangent line at particular
point and vertical line passing through this point and above X-axes with respect to
fractional gradient line” [25]. The question we ask here is that: how can we then use
this to portray the flow of groundwater within a geological formation? What about
in epidemiology what can we say when we are describing the spread of the disease?
Podlubny suggested that the geometry interpretation of the fractional derivative is the
shadows on the walls [26]. According to the dictionary, the shadow is, we quote “is a
region where light from a light source is obstructed by opaque object. It occupies all
of the three-dimensional volume behind an object with light in front”. The shadow
on the walls! It is a very big philosophical term, but the problems with the shadow
are the following (Fig. 1):

1. The shadow does not always represent the real shape of an object.
2. The shadow cannot tell the physical properties of an object, let us look at the

following shadows and the real persons.

From the shadow, we can say the two persons in this picture are very tall, which may
not be the case. In addition to this, we cannot say what clothes they are wearing,
neitherwe can tell their race. From theirs shadows, there aremany physical properties
cannot be identified. If the geometric interpretation of fractional derivative is really
the shadow on the wall, then it is not worth using fractional calculus to model real-
world problems, as the results will never be accurate.

Let us forget about all this speculations around the geometric interpretation of frac-
tional derivative. Let us face the reality, mathematical formulas sometime described
accurately some physical problems without any physical interpretation, maybe this
is the case of derivative with fractional order. Nevertheless, it was revealed by
some authors in the literature that the derivative with fractional order describes the
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Fig. 1 Objects and their shadows

memory effect [15–18]. Ah, this is another problem with fractional derivative! In the
theory of elasticity, Yes, this can be acceptable. Nonetheless, in groundwater studies,
the memory effect cannot be described, because with the fractional derivative, for
a farmer that observed the pollution in his borehole would not be able to use the
fractional derivative to say where the pollution is coming from. In epidemiology,
using fractional derivative, the modeler will not be able to tell when the person was
infected. This simply tells us that the derivative with fractional order will not always
portray the memory effect.

Let us look at the mathematical formulation of derivative with fractional order,
well the with Caputo derivative with fractional order we have a convolution of the
local derivative with the power function.With the Riemann–Liouville derivative with
fractional order, we have the derivative of a convolution of a given function and the
power function. With the Caputo–Fabrizio derivative with fractional order, we have
a convolution of local derivative of a given function and the function exponent. Now
what is the convolution? What are the applications of convolution?

Convolution and associated functions are found in many applications in science,
engineering, and mathematics. The applications of convolutions can be found in [27]
and are listed below from (a) to (g).

(a) In image processing

In digital image processing, convolutional filtering plays an important role in many
important algorithms in edge detection and related processes.
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In optics, an out-of-focus photograph is a convolution of the sharp image with a
lens function. The photographic term for this is bokeh.

In image processing applications such as adding blurring.

(b) In digital data processing

In analytical chemistry, Savitzky–Golay smoothing filters are used for the analysis of
spectroscopic data. They can improve signal-to-noise ratio with minimal distortion
of the spectra.

In statistics, a weighted moving average is a convolution.

(c) In acoustics

Reverberation is the convolution of the original sound with echoes from objects
surrounding the sound source.

In digital signal processing, convolution is used to map the impulse response of a
real room on a digital audio signal.

In electronic music, convolution is the imposition of a spectral or rhythmic struc-
ture on a sound. Often, this envelope or structure is taken from another sound. The
convolution of two signals is the filtering of one through the other [15].

(d) In electrical engineering

The convolution of one function (the input signal)with a second function (the impulse
response) gives the output of a linear time-invariant system (LTI). At any given
moment, the output is an accumulated effect of all the prior values of the input
function, with the most recent values typically having the most influence (expressed
as a multiplicative factor). The impulse response function provides that factor as a
function of the elapsed time since each input value occurred.

(e) In physics

Wherever there is a linear system with a “superposition principle,” a convolution
operation makes an appearance. For instance, in spectroscopy line broadening due
to the Doppler effect on its own gives a Gaussian spectral line shape and collision
broadening alone gives a Lorentzian line shape. When both effects are operative, the
line shape is a convolution of Gaussian and Lorentzian, a Voigt function.

In time-resolved fluorescence spectroscopy, the excitation signal can be treated
as a chain of delta pulses, and the measured fluorescence is a sum of exponential
decays from each delta pulse.

In computational fluid dynamics, the large eddy simulation (LES) turbulence
model uses the convolution operation to lower the range of length scales necessary
in computation thereby reducing computational cost.

(f) In probability theory

The probability distribution of the sum of two independent random variables is the
convolution of their individual distributions.

In kernel density estimation, a distribution is estimated from sample points by
convolution with a kernel, such as an isotropic Gaussian (Diggle 1995).
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(g) In radiotherapy

Treatment planning systems, most part of all modern codes of calculation, apply a
convolution-superposition algorithm.

The above applications of a convolution show that the fractional derivative as
convolution has multiple purposes, it can portray the memory as in the case of
theory of elasticity, and it can be considered as a filter, in particular the Caputo
and Caputo–Fabrizio type can be viewed as a filter of local derivative with power
and exponent functions. In the following figures, we show the different between the
Caputo–Fabrizio and Caputo filter as function of layer and fractional order. Physical
interpretation of filters are given as follows, the Caputo–Fabrizio filter will constantly
get rid of impurities from the local derivative from the first layer to the last layer no
matter the fractional order. On the other hand, the Caputo filter will only get rid of
the as the layer becomes dense.

The aim a filter is to get rid of impurities and produce only the real product, the
fractional derivative is there for in some case the real velocity.

Figures2 and 3 show that the Caputo and Fabrizio derivative is a low-pass filter
for alpha greater than half; it is a band-pass filter when alpha is half, and finally, it
is a high-pass filter when alpha is greater than half. It is important to recall that the
low-pass filter is a filter that passes signals with a frequency lower than a certain
cutoff frequency and attenuates signal with frequencies higher than cutoff frequency
[28]. The high-pass filter is the opposite of low-pass filter. The band-pass filter is the
combination of a low-pass filter and a high-pass filter.

Neverthelesswith Caputo derivative, Figs. 4 and 5 show t hat the Caputo derivative
is a high-pass filter for alpha greater than half; it is a band-pass filter when alpha

Fig. 2 Caputo–Fabrizio filter as function of space/time and alpha
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Fig. 3 Contour-plot for Caputo–Fabrizio filter

Fig. 4 Caputo filter as function of space/time and alpha

is half, and finally, it is a low-pass filter when alpha is greater than half. Therefore,
we can see that both derivatives play the same role; however, the new derivative
with fractional order does not have singularity, which is a greater advantage of this
derivative over existing derivatives.

Aswediscussed earlier, the fractional derivative cannot informus about the history
of a given pollution within the geological formation called aquifer. Or the fractional
derivative cannot allow us obtaining the function of dispersion and convection in
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Fig. 5 Contour-Plot for
Caputo filter

space and time when apply it to modified the advection-convection equation. It is
therefore important to introduce a new derivative having the ability to first represent
the nature in its real form which is nonlinearity and also be able to include the
memory effect in a given real-world problem. We will introduce in the next section
a derivative that introduces the effect of memory.

4 Uncertain Derivative

In mathematics, a dynamic scheme is a tuple (D, h, B) with D a manifold which
can be a locally Banach space or Euclidean space, B the domain for time which is
a set of nonnegative real, and h is an evolution rule t → f t the range is of course a
diffeomorphism of a manifold to itself.

Definition 6 Let D be a dynamic system with domain B (time or space), let u a
positively defined function called uncertainty function of D within the domain B,
then if h ∈ D, the uncertain derivative of a function h denoted by U u( f ) is defined
as

U u(t)(h(t)) = (1 − u(t))h(t) + u(t)h
′
(t) (8)

Remark 2 If u = 1, we recover the first derivative (Local derivative), and if u = 0,
we recover the initial function; this is conformable with the primary law of derivative.
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4.1 Properties of Uncertain Derivative

Addition:

U u(t)(ah(t) + b f (t)) = aU u(t)(h(t)) + bU u(t)( f (t)) (9)

Multiplication:

U u(t)( f g(t)) = f (t)U u(t)(g(t)) + u(t)g(t) f
′
(t) (10)

Proof :

U u(t)( f g(t)) = (1 − u(t)) f (t)g(t) + u(t) ( f (t)g(t))′

U u(t)( f g(t)) = (1 − u(t)) f (t)g(t) + u(t)[ f (t)g′(t) + g(t) f ′(t)]
U u(t)( f g(t)) = f (t)U u(t)(g(t)) + u(t)g(t) f

′
(t)

Division:

U u(t)

(
f (t)

g(t)

)
= (1 − u(t))

f (t)

g(t)
+ u(t)

(
f (t)g′(t) − g(t) f ′(t)

g2(t)

)
(11)

U u(t)(
f (t)

g(t)
) =

(
g(t)U u(t)( f (t)) − u(t) f (t)g′(t)

g2(t)

)

Lipchitz condition: Let f (t) and g(t) be two functions, then

∥∥U u(t)(g(t)) − U u(t)( f (t))
∥∥

≤ ∥∥(1 − u(t))g(t) + u(t)g′(t) − (1 − u(t)) f (t) − u(t) f ′(t)
∥∥

≤ |1 − u(t)| ‖g(t) − f (t)‖ + |u(t)| ∥∥g′(t) − f ′(t)
∥∥

≤ a ‖g(t) − f (t)‖ + b
∥∥g′(t) − f ′(t)

∥∥
≤ a ‖g(t) − f (t)‖ + bα ‖g(t) − f (t)‖
≤ H ‖g(t) − f (t)‖

This proves that the uncertain derivative possess the Lipchitz condition.

5 Fractional-Uncertain Modeling: Example Advection
Equation

The groundwater is a very important source of drinkable water; in fact, it was
revealed in many studies that 80% of fresh water is found in the geological for-
mation called aquifers. This water is in high risk of pollution and the mathematical
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equation describing themigration of pollution underground is the well-known advec-
tion dispersion equation given as

D
∂2c

∂x2
− v

∂c

∂x
− R

∂c

∂t
= 0 (12)

In the above equation, D is the dispersion coefficient, v is the advection velocity,
and R is the retardation factor. The above equation also tells us that all over a given
aquifer, the dispersion, advection, and retardation factors are the same. This is not
practically correct because the properties of souls change fromonepoint of the aquifer
to another that means the dispersion; advection and retardation factor must vary in
space and time. With the variability of the dispersion coefficient, the retardation
factor and advection, we will be able to trace the movement of the pollution from a
certain point of time to another. To achieve this, we apply the uncertain derivative in
space and time as follows:

DU u(x)
(
U u(x) (C(x, t))

) − vU u(x) (C(x, t)) − RU u(t) (C(x, t)) = 0 (13)

Replacing the derivative by its definition and simplifying, we obtain

D

{
[(1 − u(x))2 − u′(x)u(x)]C(x, t) +

{
2(1 − u(x))u(x)

+u(x)u′(x)

}
∂C(x, t)

∂x

}
(14)

+u2(x)
∂2C(x, t)

∂x2
− v

{
(1 − u(x)) C(x, t) + u(x)

∂C(x, t)

∂x

}
−

R

{
(1 − f (t)) C(x, t) + f (t)

∂C(x, t)

∂x

}

= 0

Assuming that the uncertain order respect to time is small, then we divide on both
sides with 1 − f (t), and using some asymptotic technique, the above equation can
be approximated as follows:

D

⎧⎨
⎩

[(1 − u(x) + u(t))2 − u′(x)(u(x) + f (t))]C(x, t)+{
2 (1 − u(x) + f (t)) (u(x) + f (t))

+ (u(x) + f (t)) u′(x)

}
∂C(x,t)

∂x

⎫⎬
⎭ (15)

+ (u(x) + f (t))2
∂2C(x, t)

∂x2

− v {(1 − u(x) + f (t)) C(x, t) + (u(x) + f (t))} ∂C(x, t)

∂x
− RC(x, t)

+ f (t)R
∂C(x, t)

∂t
= 0
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Rearranging the above equation, we obtain the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ D

(
(1 − u(x) + u(t))2

−u′(x)(u(x) + f (t))

)

−v (1 − u(x) + f (t))

⎤
⎥⎦C(x, t)

+

⎧⎪⎨
⎪⎩

D

(
2 (1 − u(x) + f (t)) (u(x) + f (t))

+(u(x) + f (t))u′(x)

)

−v {(u(x) + f (t))}

⎫⎪⎬
⎪⎭

∂C(x, t)

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

+D(u(x) + f (t))2
∂2C(x, t)

∂x2
− RC(x, t) + f (t)R

∂C(x, t)

∂t
= 0

And finally, we can reduce the above to

H(x, t)C(x, t) + v(x, t)
∂C(x, t)

∂x
+ D(x, t)

∂2C(x, t)

∂x2
= R(t)

∂C(x, t)

∂x
(17)

The above equation shows that the advection and dispersion are functions of time
and space, while the retardation function is a function of time. However, there is
a new force H is viewed as the proportion that allows the value of that chemical
concentration to remember its trajectory in the geological formation system and the
time where it was retarded since its departure from the point of injection [29]. It
is also possible for a given portion of pollution to remember where it was retarded
in the aquifer. In order to include into mathematical equation the filter effect in
time, meaning in order to have an accurate representation of the change in time of
concentration of pollutionwithin the geological formation, we introduce the Caputo–
Fabrizio derivative with fractional order into equation to obtain

H(x, t)C(x, t) + v(x, t)
∂C(x, t)

∂x
+ D(x, t)

∂2C(x, t)

∂x2
= R(t)C F

0 Dα
t (C(x, t))

(18)

The above equation is the result of UFM. It is clear that the above equation is more
descriptive that the fractional advection dispersion equation that was proposed by
many scholars.

6 Numerical Analysis

In this section, we will discuss the numerical solution of the Eq. (18). To do this,
we first present the numerical approximation of the Caputo–Fabrizio derivative with
fractional order [30]. For some positive integer N, the grid sizes in time for finite
difference technique I are defined by
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k = 1

N
(19)

The grid points in the time interval [0, T ] are labeled tn = nj, n = 0, 1, 2, . . . , T N .
The value of the function f at the grid point is fi = f (ti ). A discrete approximation
to the Caputo–Fabrizio derivative with fractional order can be obtained by simple
quadrature formula as follows:

C F
0 Dα

t ( f (tn)) = M(α)

1 − α

tn∫
a

f
′
(x) exp

[
−α

tn − x

1 − α

]
dx (20)

The above equation can be modified using the first-order approximation to

C F
0 Dα

t ( f (t j )) = M(α)

1 − α

n∑
j=1

jk∫
( j−1)k

(
f j+1 − f j

�t
+ O(k)

)
exp

[
−α

t j − x

1 − α

]
dx

(21)

Before integration, we obtain the following expression:

M(α)

1 − α

n∑
j=1

(
f j+1− f j

�t

+O(�t)

) jk∫
( j−1)k

exp

[
−α

tn − x

1 − α

]
dx . (22)

C F
0 Dα

t ( f (t j )) = M(α)

α

n∑
j=1

(
f j+1 − f j

�t
+ O(�t)

)
d j,k

where

d j,k = exp

[
−α

k

1 − α
(n − j + 1)

]
− exp

[
−α

k

1 − α
(n − j)

]
(23)

We have finally that

C F
0 Dα

t ( f (tn)) = M(α)

α

n∑
j=1

(
f j+1 − f j

�t

)
d j,k + M(α)

α

n∑
j=1

d j,k O(�t)

derivative at a point tn is

C F
0 Dα

t ( f (tn)) = M(α)

α

n∑
j=1

(
f j+1 − f j

�t

)
d j,k + O

(
(�t)2

)
(24)
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Replacing the above togetherwith first and second approximations of local derivative,
we obtain

H j
i

{
C j+1

i − C j
i

2

}
− v

j
i

⎧⎨
⎩
(

C j+1
i+1 − C j+1

i−1

)
−

(
C j

i+1 − C j
i−1

)
4�x

⎫⎬
⎭ (25)

+D j
i

⎧⎨
⎩
(

C j+1
i+1 − 2C j+1

i + C j+1
i−1

)
−

(
C j

i+1 − 2C j
i + C j

i−1

)
2 (�x)2

⎫⎬
⎭

= R j M(α)

α

j∑
k=1

(
Ck+1

i − Ck
i

�t

)
d j,k

For simplicity, we let

a j
i = H j

i

2
, b j

i = v
j
i

4�x
, c j

i = D j
i

2 (�x)2
, d j

i = R j M(α)

α�t

then, Eq. (25) becomes

a j
i

(
C j+1

i − C j
i

)
− b j

i

(
C j+1

i+1 − C j+1
i−1 − C j

i+1 + C j
i−1

)
+ (26)

c j
i

((
C j+1

i+1 − 2C j+1
i + C j+1

i−1

)
+

(
C j

i+1 − 2C j
i + C j

i−1

))

= d j
i

(
C j+1

i − C j
i

)
di, j + d j

i

j−1∑
k=1

(
Ck+1

i − Ck
i

)
dk, j

Then,

(
a j

i − 2c j
i − d j

i di, j

)
C j+1

i

=
(

a j
i + 2c j

i − d j
i di, j

)
C j

i (27)

+ b j
i

(
C j+1

i+1 − C j+1
i−1 − C j

i+1 + C j
i−1

)

+ c j
i

((
C j+1

i+1 + C j+1
i−1

)
+

(
C j

i+1 + C j
i−1

))

+ d j
i

j−1∑
k=1

(
Ck+1

i − Ck
i

)
dk, j

We shall now present the stability analysis of the numerical scheme for solving the
modified model.
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6.1 Stability Analysis of the Numerical Scheme

The aim of this section is to show the efficiency of the numerical scheme via the sta-
bility analysis. To achieve this, we assume that g j

i = C j
i − y j

i where y j
i is the approx-

imate solution of the modified equation at the given point in time and space (xi ,t j ),
(i = 1, 2, . . . , N , j = 1, 2, . . . , M) , also the error for approximation is given as

g j =
[
g

j
1 , g

j
2 , . . ., g

j
N

]
. The error committed while solving the new advection equa-

tion is given as

(
a j

i − 2c j
i − d j

i di, j

)
g

j+1
i =

(
a j

i + 2c j
i − d j

i di, j

)
g

j
i (28)

+ b j
i

(
g

j+1
i+1 − g

j+1
i−1 − g

j
i+1 + g

j
i−1

)

− c j
i

((
g

j+1
i+1 + g

j+1
i−1

)
+

(
g

j
i+1 + g

j
i−1

))

+ d j
i

j−1∑
k=1

(
gk+1

i − gk
i

)
dk, j

to study the stability, we let

gm(x, t) = exp[at] exp[ikm x] (29)

In our study, the stability characteristics can be studied using just the above form for
error with no loss in generality

g j
n = exp[at] exp[ikm x], (30)

g j+1
n = exp[a (t + �t)] exp[ikm x],

g
j
n+1 = exp[at] exp[ikm (x + �x)],

g
j
n−1 = exp[at] exp[ikm (x − �x)],

g
j+1
n+1 = exp[a (t + �t)] exp[ikm (x + �x)],

g
j+1
n−1 = exp[a (t + �t)] exp[ikm (x − �x)],

g
j−1
n−1 = exp[a (t − �t)] exp[ikm (x − �x)]

where km = πm
L , m = 1, 2, . . . , M = L

�x . Now replacing the above in Eq. (28), we
obtain
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(
a j

i + 2c j
i − d j

i di, j

)
exp[a (t + �t)] exp[ikm x] (31)

=
(

a j
i − 2c j

i − d j
i di, j

)
exp[at] exp[ikm x] −

b j
i

⎛
⎜⎝

exp[a (t + �t)] exp[ikm (x + �x)]
− exp[a (t + �t)] exp[ikm (x − �x)]−

exp[at] exp[ikm (x + �x)] + exp[at] exp[ikm (x − �x)]

⎞
⎟⎠ +

+ c j
i

⎛
⎜⎝

(
exp[a (t + �t)] exp[ikm (x + �x)]

+ exp[a (t + �t)] exp[ikm (x − �x)]

)

+ (exp[at] exp[ikm (x + �x)] + exp[at] exp[ikm (x − �x)])

⎞
⎟⎠

d j
i

j−1∑
k=1

((exp[a (t + �t)] exp[ikm x] − exp[a (�t)] exp[ikm x])) dk, j

After simplification, we obtain the following

(
a j

i + 2c j
i − d j

i di, j

)
exp[a (�t)] (32)

=
(

a j
i − 2c j

i − d j
i di, j

)
−

b j
i

⎛
⎜⎝

exp[a (�t)] exp[ikm (�x)]
− exp[a (�t)] exp[ikm (−�x)]−
exp[ikm (�x)] + exp[ikm (−�x)]

⎞
⎟⎠ +

c j
i

⎛
⎜⎝

(
exp[a (�t)] exp[ikm (�x)]

+ exp[a (�t)] exp[ikm (−�x)]

)

+ (exp[ikm (�x)] + exp[ikm (−�x)])

⎞
⎟⎠

+ d j
i

j−1∑
k=1

((exp[a (�t)] − 1)) dk, j

Rearranging the above, we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
a j

i + 2c j
i − d j

i di, j

)
+ b j

i

(
exp[ikm (�x)]

− exp[ikm (−�x)]

)

−c j
i

((
exp[ikm (�x)]

+ exp[ikm (−�x)]

))
− jd j

i dk, j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
exp[a (�t)] (33)

=
(

a j
i − 2c j

i − d j
i di, j

)
+ b j

i (exp[ikm (�x)] + exp[ikm (−�x)]) +
c j

i (exp[ikm (�x)] + exp[ikm (−�x)]) − jd j
i di, j
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Then,

(
a j

i − 2c j
i − d j

i di, j

)
− b j

i (exp[ikm (�x)] + exp[ikm (−�x)]) + exp[a (�t)]

= −c j
i ((exp[ikm (�x)] + exp[ikm (−�x)])) − jd j

i di, j⎧⎨
⎩

(
a j

i + 2c j
i − d j

i di, j

)
+ b j

i (exp[ikm (�x)] − exp[ikm (−�x)])
−c j

i ((exp[ikm (�x)] + exp[ikm (−�x)])) − jd j
i dk, j

⎫⎬
⎭

(34)

Note that the condition for stability analysis is given by the following inequality

g
j+1
i

g
j
i

= exp[a (�t)]

Thus, if ∣∣∣∣∣
g

j+1
i

g
j
i

∣∣∣∣∣ ≤ 1

From Eq. (33), we have the following

∣∣∣∣∣
g

j+1
i

g
j
i

∣∣∣∣∣ = |exp[a (�t)]|

=

∣∣∣∣∣∣∣∣∣∣∣∣

(
a j

i − 2c j
i − d j

i di, j

)
− b j

i (exp[ikm (�x)] + exp[ikm (−�x)])+
+c j

i ((exp[ikm (�x)] + exp[ikm (−�x)])) − jd j
i di, j⎧⎨

⎩
(

a j
i + 2c j

i − d j
i di, j

)
+ b j

i (exp[ikm (�x)] − exp[ikm (−�x)])
−c j

i ((exp[ikm (�x)] + exp[ikm (−�x)])) − jd j
i dk, j

⎫⎬
⎭

∣∣∣∣∣∣∣∣∣∣∣∣

cos[km�x] = exp[ikm x] + exp[−ikm x]
2

, sin2[km�x] = 1 − cos[2km�x]
2

Then, the condition for stability is given as

b j
i ≤ c j

i

Thus from that above statement, we can present the following theorem.

Theorem 1 The Crank–Nicholson scheme for solving the uncertain-fractional
advection dispersion equation is stable providing that the following inequality is
satisfied

v
j
i

D j
i

≤ 2

�x



138 A. Atangana and I. Koca

7 Numerical Simulations

In this section, we present the numerical simulations of the resulted model from the
uncertain-fractional advection dispersion equation. In this simulation, wewill choose
the uncertain derivative orders to beu(x) = 2 + sin(x + π

3 ), f (t) = 1 + cos(t + π
2 ),

we consider the dispersion coefficient to be 0.96, the retardation coefficient to be 2,
and the advection coefficient to be 0.74. The numerical simulation will be done for
different values of the fractional order derivative; we will also alter the uncertain
functions to see the effectiveness of the input. The numerical results are depicted in
Figs. 6, 7, and 8.

In this simulation, we will choose the uncertain derivative orders to be u(x) =
2 + 2 sin(x + π

6 ), f (t) = 2 − cos(t + π
5 ). The numerical simulations are therefore

depicted in Figs. 9, 10, and 11.
It is clear from above Figs. 6, 7, 8, 9, 10, and 11 that both fractional derivative

and uncertain derivative play major role in simulation or prediction. One of the
big challenges faced by those researchers modeling the movement of plume via
geological formation is perhaps thefingering effect,which is actuallywhatweusually
observe in real-world problem. Many research have been developed in trying to
produce a mathematical equation that will best predict this physical occurrence;
however, no sound equation was found suitable for this task. The fingering effect is a
proof that the properties of the geological formation via which the plume is moving
are not the same. In Figs. 6, 7, and 8, we used different uncertain functions for time

Fig. 6 Simulation of plume for alpha = 0.95
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Fig. 7 Simulation of plume for alpha = 0.5

Fig. 8 Simulation of plume for alpha = 0.3
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Fig. 9 Simulation of plume for alpha = 0.95

Fig. 10 Simulation of plume for alpha = 0.5
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Fig. 11 Simulation of plume for alpha = 0.3

and space, and then, we observed a kind of fingering effect as the fractional order
changes from 0.95 to 0.3. In Fig. 8, in particular we observed that there will be some
places in the aquifer where there will be no pollution at all, this cannot be described
via neither the advection dispersionmodel nor fractional advection dispersionmodel.
In Figs. 9, 10, and 11, we changed uncertain function and observed different kinds
of fingering effects.

8 Conclusion

To have a good prediction of natural occurrence, two important aspects are required.
The first is perhaps the observations and the second one is the interpretation of the
observation as mathematical formula. The local derivative was first introduced to
portray the rate of change; latter on this derivative faced many challenges to model
real-world problems due to their complexity. The concept of derivative with frac-
tional order was later introduced and used to enhance the field of modeling. However,
these derivatives with fractional order faced lot of controversies, as their physical
interpretations were not fully understood. Some researchers said their physical inter-
pretation is the shadow on the wall. However, when looking at the shadow of an
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object, it is sometime impossible to identify the real object; therefore, their inter-
pretation was not correct. In many research papers in the literatures, it is claimed
that the fractional derivatives portray the memory effect. Now our question was, can
the fractional derivative allow the pollution to remember its path in the geological
formation? Or when a given disease affects an individual can the fractional derivative
be able to trace the history of the infection? The answer is no; therefore, a need of
an operator able to do this job is at hand. In this chapter, we have using the concept
of convolution provided a suitable interpretation of derivative with fractional order.
We provided a derivative able to describe the effect of memory and used it to model
the advection dispersion problems. We solved the new equation numerically. We
presented the stability analysis of the used scheme and some numerical simulations.
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Quadratic Reciprocity and Some
“Non-differentiable” Functions

Kalyan Chakraborty and Azizul Hoque

Abstract Riemann’s non-differentiable function and Gauss’s quadratic reciprocity
law have attracted the attention of many researchers. In [28] (Proc Int Conf–
Number Theory 1, 107–116, 2004), Murty and Pacelli gave an instructive proof
of the quadratic reciprocity via the theta transformation formula and Gerver (Amer
J Math 92, 33–55, 1970) [12] was the first to give a proof of differentiability/non-
differentiability of Riemann’s function. The aim here is to survey some of the work
done in these two directions and concentrates more onto a recent work of the first
author along with Kanemitsu and Li (Res Number Theory 1, 14, 2015) [5]. In that
work (Kanemitsu and Li, Res Number Theory 1, 14, 2015) [5], an integrated form of
the theta function was utilised and the advantage of that is that while the theta func-
tion �(τ ) is a dweller in the upper half-plane, its integrated form F(z) is a dweller
in the extended upper half-plane including the real line, thus making it possible to
consider the behaviour under the increment of the real variable, where the integration
is along the horizontal line.
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1 Introduction

In the early part of the nineteenth century, many mathematicians believed that a
continuous function has derivative in a reasonably large set. A.M. Ampére in his
paper in 1806 tried to give a theoretical justification for this based of course on the
knowledge at that time. In a presentation before the Berlin Academy on July 18,
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1872, K. Weierstrass kind of shocked the mathematical community by proving this
assertion to be false! He presented a function which was everywhere continuous but
differentiable nowhere. We will talk about this function of Weierstrass in the later
sections in some detail. This example was first published by du Bois-Reymond in
1875. Weierstrass also mentioned Riemann, who apparently had used a similar con-
struction (without proof though!) in his own lectures in 1861. However, it seems like
neither Weierstrass nor Riemann was first to get such examples. The earliest known
example is due to B. Bolzano, who in the year 1830 exhibited (published in the year
1922 after being discovered a few years earlier) a continuous nowhere differentiable
function. Around 1860, the Swiss mathematician, C. Cellérier, discovered such a
function, but unfortunately it was not published then and could be published only in
1890 after his death. To know more about the interesting history and details about
such functions, the reader is referred to the excellent Master’s thesis of J. Thim [32].

Riemann, as mentioned in the earlier paragraph, opined that the function,

f (x) =
∞∑

n=1

sin n2x

n2

is nowhere differentiable. K. Weierstrass (in 1872) tried to prove this assertion, but
could not resolve it. He could construct another example of a continuous nowhere
differentiable function ∞∑

n=0

cos(bnπx)

where 0 < a < 1 and b is a positive integer such that

ab > 1 + 3/2π.

G.H. Hardy [16] showed that Weierstrass function has no derivative at points of the
form ξπ with ξ is either irrational or rational of the form 2A/(4B + 1) or (2A +
1)/(2B + 2). Much later in 1970, J. Gerver [12] disproved Riemann’s assertion by
proving that his function is differentiable at points of the form ξπ, where ξ is of
the form (2A + 1)/(2B + 1), with derivative −1/2. Arthur, a few years later in
1972, used Poisson’s summation formula and properties of Gauss sums to deduce
Gerver’s result and thus established a link between Riemann’s function and quadratic
reciprocity (via Gauss sums). Interested reader can also look into two excellent
expositions of Riemann’s function by E. Neuenschwander [29] and that of S.L. Segal
[30] for further enhancement in knowledge regarding this problem. This problemwas
explored by many other authors and among them a few references could be [13, 14,
16, 21, 23].

In an interesting work in [5], the authors observed that Riemann’s function f (x)
is really an integrated form of the classical θ function. Then, they make the link to
quadratic reciprocity from an exposition of M.R. Murty and A. Pacelli [28], who
(following Hecke) showed that the transformation law for the theta function can be



Quadratic Reciprocity and Some “Non-differentiable” Functions 147

used to derive the law of quadratic reciprocity. The goal of [5] was to combine these
two ideas and derive both the differentiability of f (x) at certain points and the law
of quadratic reciprocity at one go.

An identity of Davenport and Chowla arose our interest in Riemann’s function.
The identity is

∞∑

n=1

λ(n)

n
ψ(nx) = − 1

π

∞∑

n=1

sin 2πn2x

n2
. (1)

The notations are standard, i.e.

λ(n) = (−1)�(n)

with �(n) denotes the total number of distinct prime factors of n. Also,

ψ(x) = − 1

π

∞∑

n=1

sin 2πnx

n

is the saw-tooth Fourier series, i.e. it is the Fourier series expansion of the “saw-tooth”
function:

f (x) =
{
1/2(π − x), if 0 < x ≤ 2π;
f (x + 2π), otherwise.

We would like to spare some discussion for this identity. On the one hand in (1),
there is the Liouville function, a prime number theoretic entity. On the other hand,
one has Riemann’s example of an interesting function. The integrated identity can
be derived from the functional equation only, but to differentiate it, one needs the
estimate for the error term for the Liouville function. This is as deep as the prime
number theorem and is known to be very difficult.

The situation is similar to Ingham’s handling [20] of the prime number theorem.
First, one applies the Abelian process (integration) and then Tauberian process (dif-
ferencing) which needs more information. A huge advantage of this process in [5]
is that while the theta function �(τ ) dwells in the upper half-plane, its integrated
form F(z) is a dweller in the extended upper half-plane which includes the real line.
This makes it possible to consider the behaviour under the increment of the real vari-
able, where the integration is along the horizontal line. The elliptic theta function
θ(s) = �(−iτ ) is a dweller in the right half-plane {σ > 0}, where the integration
is along the vertical line. In terms of Lambert series, an idea of Wintner deals with
limiting the behaviour of the Lambert series on the circle of convergence, i.e. radial
integration. Here, it corresponds to integration along an arc.

One can think of it as two apparently disjoint aspects merging on the real line as
limiting behaviours of zeta and that of theta functions. In [5], the main observation
was that the right-hand side may be viewed as the imaginary part of the integrated
theta series. It seems that the uniform convergence of the left-hand side and the
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differentiability of the right-hand side merge as the limiting behaviour of a sort of
modular function and that of the Riemann zeta function.

2 Weierstrass’s Non-differentiable Function

We begin with the following function which is due to Weierstrass:

f (x) =
∑

an cos bnπx .

In 1875, Weierstrass proved that f (x) has no differential coefficient for any value of
x with restrictions that b is an odd integer,

0 < a < 1 (2)

and

ab > 1 + 3

2
π. (3)

This result has been generalised by many mathematicians (for details, see [6, 10, 25,
26, 35]) by considering functions of more general forms

C(x) =
∑

an cos bnx (4)

and
S(x) =

∑
an sin bnx (5)

where an and bn are positive, the series
∑

an is convergent, and the sequence {bn}
increases steadily with more than a certain rapidity. In 1916, G.H. Hardy with a new
idea developed a powerful method to discuss the differentiability of Weierstrass’s
function. This method is easy to apply to find very general conditions for the non-
differentiability of the type of series (4) and (5). The known results concerning the
series (4) are, so far we are aware, as follows: K. Weierstrass gave the condition (3)
and only improvement to this is

ab > 1 + 3

2
π(1 − a). (6)

This was due to T.J. Bromwich [2]. The conditions (3) and (6) debar the existence of a
finite (or infinite) differential coefficient. For the non-existence of a finite differential
coefficient, there are alternative conditions which were independently given by U.
Dini, M. Lerch, and T.J. Bromwich. The conditions given by U. Dini are

ab ≥ 1, ab2 > 1 + 3π2 (7)
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and that are given by M. Lerch:

ab ≥ 1, ab2 > 1 + π2. (8)

Finally, T.J. Bromwich provided the following conditions for the same

ab ≥ 1, ab2 > 1 + 3

4
π2(1 − a). (9)

All these conditions though supposed that b is an odd integer. However, U. Dini [7]
showed that if the condition (3) is replaced by

ab > 1 + 3

2
π
1 − a

1 − 3a
(10)

or the condition (7) by

ab > 1, ab2 > 1 + 15π2 1 − a

5 − 21a
(11)

then the restriction “odd” on bmay be removed. It is naturally in built in the condition
(10) that a < 1

3 and in the condition (11) that a < 5
21 .

The conditions (6)–(11) look superficial though. It is hard to find any corroboration
between these conditions as to why they really correspond to any essential feature
of the problems arise in discussion of Weierstrass function. They appear merely as a
consequence of the limitations of the methods that were employed. There is in fact
only one condition which suggests itself naturally and seems truly relevant to the
situation at hand, namely:

ab ≥ 1.

The main results that were proved by G.H. Hardy [16] concerning Weierstrass func-
tion and the corresponding function defined by a series of sines and cosines are
summarised below. It is interesting to note that b has no more restriction to be an
integer in the next two results.

Theorem 2.1 (Hardy) The functions

C(x) =
∑

an cos bnπx, S(x) =
∑

an sin bnπx,

(with 0 < a < 1, b > 1) have no finite differential coefficient at any point whenever
ab ≥ 1.

Remark 2.1 The above Theorem 2.1 is not true if the word “finite” is omitted.
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Theorem 2.2 (Hardy) Let ab > 1 and so ξ = log(1/a)

log b < 1. Then, each of the func-
tions in the previous theorem satisfies

f (x + h) − f (x) = O
(|h|ξ),

for each value of x. Neither of them satisfy

f (x + h) − f (x) = o
(|h|ξ),

for any x.

Hardy proved these theorems in two steps. In the first step, he considered b an
integer, and then in the second step, he extended his proof for general case. In the
next two subsections, we give the outline of the proof of these theorems.

2.1 b Is an Integer

Let us substitute θ = πx and then the function of Weierstrass becomes a Fourier
series in θ. Following which he defines a harmonic function G(r, θ) by the real part
of the power series: ∑

anz
n =

∑
anr

neniθ.

This series is convergent when r < 1. One further supposes thatG(r, θ) is continuous
for r ≤ 1, and that

G(1, θ) = g(θ).

Let us first recall some results concerning the function G(r, θ) under the above
assumptions. We also use the familiar Landau symbol:
f (n) = o(g(n)) which means that for all c > 0 there exists some k > 0 such that
0 ≤ f (n) < cg(n) for all n ≥ k. The value of k must not depend on n, but may
depend on c. The first lemma can be proved by considering θ0 = 0.

Lemma 2.1 Let
g(θ) − g(θ0) = o(|θ − θ0|)

where 0 < α < 1 and θ → θ0. Then

δG(r, θ0)

δθ0
= o(1 − r)(1−α)

whenever r → 1.

The next lemma is a well-known result, and interested reader can find a proof of
it in [11].
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Lemma 2.2 Suppose g(θ) has a finite differential coefficient g′(θ0) for θ = θ0. Then

δG

δθ0
→ g′(θ0)

with r → 1.

The next result is a special case of a general theorem proved by J.E. Littlewood
and G.H. Hardy in [17].

Lemma 2.3 Let f (y) be a real or complex valued function of the real variable y,
possessing a pth differential coefficient f (p)(y) which is continuous in (0, y0]. Let
λ ≥ 0 and that

f (y) = o(y−λ)

whenever λ > 0 and
f (y) = A + o(1)

whenever λ = 0. Also, in either cases that

f (p)(y) = O(y−p−λ).

Then
f (q)(y) = o(y−q−λ)

for 0 < q < p.

Now by setting e−y = u, f (y) = ∑
anun and then applying

a0 + a1 + · · · + an = sn = 1 + bρ + b2ρ + · · · + bνρ

for bν ≤ n < bν+1, one can easily get:

Lemma 2.4 Let us suppose ρ > 0 and that f (y) = ∑
bnρe−bn y . Then

f (y) = O(y−ρ)

as y → 0.

The next result is also not difficult to prove.

Lemma 2.5 Let
sin bnπx → 0

as n → 0. Then, x = p
bq for some integers p and q.
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Remark 2.2 It is clear from the above lemma that sin bnπx = 0 for n ≥ q.

To state the next lemma, one needs the following notations which were introduced
byG.H.Hardy and J.E. Littlewood in [18]. The notation f = �(φ) basically signifies
the negation of f = o(φ), that is, to say as asserting the existence of a constant K
such that | f | > Kφ for some special sequence of values whose limit is that to which
the variable is supposed to tend. The sequence that one can use to prove the following
lemma is the values of y, that is, y = ρ

bm for m = 1, 2, 3, . . .

Lemma 2.6 Suppose that

f (y) =
∑

bnρe−bn y sin bnπx,

where y > 0, and that

x �= p

bq

for any integral values of p and q. Then

f (y) = �(y−ρ)

for all sufficiently large values of ρ.

We are now in a position to give outline of the proofs of Theorems 2.1 and 2.2.
We give the proof for cosine series and then we provide the outline of the same for
the sine series. We begin the proof with the following conditions:

ab > 1 (12)

and
x �= p

bq
. (13)

Let us suppose

f (x) =
∑

an cos b
nπx =

∑
an cos b

nθ = g(θ)

satisfy the condition
f (x + h) − f (x) = o(|h|ξ).

That is,
g(θ + h) − f (θ) = o(|h|ξ) (14)

with

ξ = log(1/a)

b
< 1.
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Then if
G(r, θ) =

∑
anr

bn cos bnθ =
∑

ane
−bn y cos bnπx,

we have (using Lemma 2.1),

F(y) = δG

δθ
= −

∑
(ab)ne−bn ysinbnπx

= −
∑

b(1−ξ)ne−bn ysinbnπx

= o(yξ−1)

when r → 1, y → 0.
Again using Lemma 2.4, one has,

F (p)(y) = (−1)p+1
∑

(abp+1)ne−bn y sin bnπx

= O

( ∑
b(p+1−ξ)ne−bn y

)

= O(yξ−p−1)

for all positive values of p. It follows from Lemma 2.3 that

F (q)(y) = o(yξ−q−l)

for 0 < q < p, and thus for all positive values of q. But this contradicts the assertion
of Lemma 2.6, if q is sufficiently large. Hence, the conditions (14) cannot be satisfied.
The case in which

ab = 1, ξ = 1,

may be treated in the same manner. The only difference is that one should use
Lemma 2.2 instead of Lemma 2.1, and that the final conclusion is that:
f (x) cannot possess a finite differential coefficient for any value of x which is not
of the form p

bq .
This approach though fails in the case when x = p

bq . These values of x need to be
treated differently. In this case,

cos{bnπ(x + h)} = cos(bn−q pπ + bnπh) = ± cos bnπh

forn > q. One takes negative sign if bothb and p are odd, and positive sign otherwise.
Therefore, the properties of the function in the neighbourhood of such a value of x
are the same, for the present purpose, as those of the function

f (h) =
∑

an cos bnπh
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when h → 0. Thus

f (h) − f (0) = −2
∑

an sin2
1

2
bnπh

= −2
∑

( f1 + f2).

Here,

f1 =
ν∑

0

an sin2
1

2
bnπh and f2 =

∞∑

ν+1

ansin2
1

2
bnπh.

We now choose ν in such a way that

bν |h| ≤ bν+1|h|. (15)

Then

f1 + f2 > f1 >

ν∑

0

an(bnh)2 = h2
(ab2)ν+1 − 1

ab2 − 1

> Kh2(ab2)ν > Kaν > Kb−ξν > K |h|ξ

where the K s are constants. Therefore,

f (h)) − f (0) �= o(|h|ξ).

This completes the proof when ab > 1, ξ < 1. In this case, the graph of f (h) has a
cusp (pointing upward) for h = 0, and that of Weierstrass’s function has a cusp for
x = p

bq . On the other hand, if ab = 1, ξ = 1, then it is proved that

lim h→0+
f (h) − f (0)

h
< 0,

and

limh→0−
f (h) − f (0)

h
> 0,

so that f (h) has certainly no finite differential coefficient for h = 0, nor the Weier-
strass’s function has for x = p

bq . This completes the proof of Theorems 2.1 and 2.2
in so far as they relate to the cosine series and are of a negative character. Only part
remains is to show that, when ξ < 1, Weierstrass’s function satisfies the condition

f (x + h) − f (x) = O(|h|ξ)
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for all values of x . One starts with the left-hand side:

f (x + h) − f (x) = −2
∑

an sin{bnπ(x + h)} sin 1

2
bnπh

= O

( ∑
an| sin 1

2
bnπh

)
.

Again choose ν as in (15) and then we have

f (x + h) − f (x) = O

(
|h|

ν∑

0

anbn +
∞∑

ν+1

an
)

= O(aνbν |h| + aν)

= O(aν)

= O(|h|ξ).

Hence, the condition is satisfied, and in fact, it holds uniformly in x . It is observed
that the above argument fails when ab = 1, ξ = 1. In this case though one can only
say that

f (x + h) − f (x) = O(ν|h|I + aν) = O

(
|h| log 1

|h|
)

.

It is also observed that the argument of this paragraph applies to the cosine series as
well as to the sine series. This is indeed independent of the restriction that b is an
integer.

The proof of Theorems 2.1 and 2.2 is now complete so far as the cosine series
is concerned. The corresponding proof for the sine series differs only in detail. The
subsidiary results required are the same except that Lemma 2.5 is being replaced by
the following one.

Lemma 2.7 If
cos bnπx → 0,

then b must be odd and

x = p + 1
2

bq
;

so that cos bnπx = 0 from a particular value of n onward. Also, the corresponding
changes must be made in Lemma 2.6.

If the value of x is not exceptional (i.e. one of those as is specified in Lemma
2.7), one can repeat the arguments that were used in the case when (12) and (13)
hold. Thus, it is only necessary to discuss the exceptional values, which can exist
only when b is odd. In this case, we have,
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sin{bnπ(x + h)} = sin

(
bn−q pπ + 1

2
bn−qπ + bnπh

)

= ± sin

(
1

2
bn−qπ + bnπh

)
,

for n > q, the sign has to be fixed as in the case when x = p
bq . The last function is

numerically equal to cos bnπh. It always has the same sign as cos bnπh, or always
the opposite sign, if b = 4k + 1. While whenever b is of the form 4k + 3, the corre-
sponding signs agree and differ alternatively. Therefore we are reduced this case to
discuss the function

f (h) =
∑

an cos bnπh

near h = 0, or to discuss the function

f (h) =
∑

(−a)n cos bnπh.

The need is to show that
f (h) − f (0) �= o(|h|ξ)

if ξ < 1, and that f (h) has no finite differential coefficient for h = 0, if ξ = 1.
To do this, let us consider the special sequence of values

h = 2

bν
(ν = 1, 2, 3, . . .).

Then, we have

f (h) − f (0) = −2
ν−1∑

0

(−a)n sin2
1

2
bnπh

= (−1)ν2aν−1
ν∑

1

(
−1

a

)n

sin2
π

bn
.

Now
ν∑

1

(
−1

a

)n

sin2
π

bn
→

∞∑

1

(
−1

a

)n

sin2
π

bn
= S (say).

Now as S is the sum of an alternating series of decreasing terms, it is positive. Again,
we have

aν = b−ξν =
(
1

2
h

)ξ

.

Thus
| f (h) − f (0)| > chξ,
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for some constant c and is alternately positive and negative. This completes the proof
of Theorems 2.1 and 2.2.

Now the time is to come back to Remark 2.1, that is, the question remains whether
an equally comprehensive result holds for infinite differential coefficients. The result
that includes the Remark 2.1 shows that the answer to this question is negative.

Theorem 2.3 If
ab ≥ 1 and a(b + a) < 2

then the sine series has the differential coefficient +∞ for x = 0. If b = 4k + 1 and
x = 1

2 , then the same is true of the cosine series.

It is enough to prove the first statement. The second one then follows by the
transformation x = 1

2 + y.
We have,

f (h) − f (0)

h
= 1

h

∑
an sin bnπh

= 1

h

ν−1∑

0

an sin bnπh + 1

h

∞∑

ν

an sin bnπh

= f1 + f2 (say).

Here, ν has to be chosen so that

bν−1|h| ≤ 1

2
< bν |h|. (16)

We first suppose that ab > 1 and then,

f1 > 2
ν−1∑

0

(ab)n = 2
(ab)ν − 1

ab − 1
(17)

and

| f2| <
1

|h|
∞∑

ν

an = aν

(1 − a)|h| . (18)

Now it is clear that
a(b + 1) < 2, 1 − a > ab − 1

and thus
1 − a

ab − 1
= 1 + δ (19)

where δ > 0. Without loss of generality, one can assume h is so small (or ν is so
large) so that



158 K. Chakraborty and A. Hoque

(ab)ν − 1

(ab)ν
>

2 + δ

2(1 + δ)
. (20)

Then, from (16)–(20), it follows that

| f2|
f1

<
(ab)ν(ab − 1)

{(ab)ν − 1}(1 − a)
<

1

1 + 1
2 + δ

.

Thus
f1 + f2 > c1 f1 or c2(ab)

ν,

for some constants ci , i = 1, 2. Thus, we have

f (h) − f (0)

h
→ +∞ (21)

as h → 0.
Next, if ab = 1, then | f2| < k, a constant, and that

f1 > 2ν → +∞.

Hence, (21) remains true in this case too.
A number α(b) exists when b is given, and it is simply the least number such that

the condition
ab > α(b).

This debars the existence of a differential coefficient whether finite or infinite. At
present, all that one can say about α(b)is that

2

b + 1
≤ α(b) ≤ 1 + 3

2π

b + 3
2π

.

2.2 b Is Not an Integer

One needs to discuss everything those are stated in previous subsection with b is
no more an integer and thus the series are no longer Fourier series, and one can no
longer have the luxury to employ Poisson’s integral associated with G(r, θ).

The job is naturally to construct a new formula to replace the Poisson’s one.
Once it is has been achieved, further modifications of the argument are needed. This
is because of the lack of any simple result corresponding to Lemmas 2.5 and 2.7,
and the difficulty of determining precisely the exceptional values of x for which
sin bnπx → 0 or cos bnπx → 0. The beauty of the argument is that, however, it
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will be found that no fundamental change in the method is necessary. Also that the
additional analysis required is not complicated.

Let b is any number greater than 1. Also

s = σ + i t,

(usual in the theory of Dirichlet series), and that

f (s) =
∞∑

1

ane−bns = G(σ, t) + i H(σ, t), (σ ≥ 0)

with the condition that
G(0, t) = g(t).

Then, one can show that:

Lemma 2.8 Let σ > 0. Then

G(σ, t) = 1

π

∫ ∞

−∞
σg(u)

σ2 + (u − t)2
du.

First, let us set ab > 1. In this case, one uses the following ones instead of Lemma
2.1:

Lemma 2.9 If
g(t) − g(t0) = o(|t − t0|α),

where 0 < α < 1, when t → t0. Then

δG(σ, t0)

δt0
= o(σα−1),

whenever σ → 0.

Lemma 2.10
δG(σ, t0)

δσ
= o(σα−1)

under the same conditions as in the previous Lemma.

The proofs of these lemmas are very similar, and the first is similar to that of
Lemma 2.1. One can consult [16] for detail of the proofs.

We now discuss the exceptional values of t . Suppose that

g(t + h) − g(t) = o(|h|ξ).

Then, by Lemmas 2.9 and 2.10, we have
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δG

δt
= −

∑
(ab)ne−bnσ sin bnt = o(σξ−1)

and
δG

δσ
= −

∑
(ab)ne−bnσ cos bnt = o(σξ−1).

Therefore, we have

f (y) =
∑

(ab)ne−bn(σ+i t) = o(σξ−1).

One can now obtain a contradiction by employing the same argument as used earlier
when we consider (12) and (13). It is only necessary to observe that Lemma 2.3 holds
for complex as well as for real functions of a real variable. Also instead of Lemma
2.7, one has to use the following proposition.

Proposition 2.1 If

f (y) =
∑

bnρe−bn(σ+i t), (σ > 0),

then
f (y) = �(σ−ρ)

for all sufficiently large values of ρ.

There is no longer any question of exceptional values of t as |e−bni t | = 1.
Next, we treat when ab = 1. In this case instead of Lemma 2.9, one uses the

following result (which corresponds to Lemma 2.2).

Lemma 2.11 Let g(t) possesses a finite differential coefficient g′(t0) for t = t0. Then

δG(σ, t0)

δt0
→ g′(t0)

when σ → 0.

The proof of this lemma is no more difficult. One needs to keep in mind though
that it is not necessarily true that

δG(σ, t0)

δt0

tends to a limit. Thus, it is necessary to follow a slightly different argument from that
of when we treated the exceptional values of t .

Lemma 2.12 Under the same conditions as those of Lemma 2.11, we have

δ2G(σ, t0)

δt20
= o

(
1

σ

)
.
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Suppose that g(t) has a finite differential coefficient g′(t), and write

f (σ) = δG

δt
= −

∑
e−bnσ sin bnt.

Then, by Lemma 2.11, we have

f (σ) = g′(t) + o(1)

when σ → 0. But by Lemma 2.4, we have,

f ′′(σ) = −
∑

b2ne−bnσsinbnt = O

(
1

σ2

)
.

Therefore, by Lemma 2.3,

f ′(σ) =
∑

bne−bnσ sin bnt = o

(
1

σ

)
. (22)

On the other hand, by Lemma 2.12, we have

δ2G

δt2
= −

∑
bne−bnσcosbnt = o

(
1

σ

)
. (23)

Now from (22) and (23), it follows that

F(σ) =
∑

bne−bn(σ+i t) = o

(
1

σ

)
.

Also, by Lemma 2.4, we have

F (p)(σ) = (−1)p
∑

b(p+1)ne−bn(σ+i t) = o

(
1

σ p+1

)
,

for all values of p. Thus, it follows that the O can be replaced by o, and this leads to
a contradiction as before.

Finally, the following remark completes the proof.

Remark 2.3 The above argument has been stated in terms of Weierstrass’s cosine
series. The same arguments apply to the sine series, as there are now no “exceptional
values”. It was only the existence of such values which differentiated the two cases in
second subsection. The positive statement in Theorem 2.2 has already been proved,
applying to all values of b.
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3 Some More Non-differentiable Functions

In this section,wediscuss somemorenon-differentiable functionswhich are available
in [16].

3.1 A Function Which Doesn’t Satisfy a Lipschitz Condition
of Any Order

It is interesting to give an example of an absolutely convergent Fourier series whose
sum does not satisfy any condition of the following type:

f (x + h) − f (x) = O(|h|α), (α > 0)

for any value of x . An interesting example of such a function is

f (x) =
∑ cos bnπx

n2
.

It is in fact easy to prove, by the methods used in the previous section, that

f (x + h) − f (x) �= o

(
1

| log |h||
)2

.

However, a somewhat less simpler example may be found by simply combining
remarks made by G. Faber and G. Landsberg. In [10], G. Faber defined

F(x) =
∑

10−nφ(2n!x ), (24)

where

φ(x) =
{
x, f or0 ≤ x ≤ 1/2;
1 − x, f or1/2 ≤ x ≤ 1.

He showed that

F(x + h) − F(x) �= O

(
1

| log |h||
)

.

On the other hand, G. Landsberg [25] used the expansion of a function, which is in
a Fourier series equivalent to φ(x). In fact,

φ(x) = 1

4
− 2

π2

∑ cos 2νπx

ν2
(ν = 1, 3, 5, · · · ).
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If we substitute this expansion in (24), we obtain an expansion of F(x) as an
absolutely convergent Fourier series, and thus is an example of the kind we are
looking for.

3.2 A Theorem of S. Bernstein

It is natural to suggest the following theorem of S. Bernstein [1] in this connection.
This can be proved similarly as is being done in the previous section.

Theorem 3.1 If f (x) satisfies a Lipschitz condition of order α (> 2) in (0, 1), i.e.
if

| f (x + h) − f (x)| < K |h|,

where K is an absolute constant. Then, the Fourier series of f (x) is absolutely
convergent. Also, 1

2 is the least number which has this property.

Proof We assume that 2πx = θ and that

f (x) = g(θ) = 1

2
a0 +

∑
(an cos nθ + bn sin nθ).

Also, let

G(r, θ) = 1

2
a0 +

∑
rn(an cos nθ + bn sin nθ) if < 1,

and
G(1, θ) = g(θ).

Then, G(r, θ) is continuous for

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

It follows from a simple modification (i.e. O in place of o) of Lemma 2.1, that

δG

δθ
= −

∑
nrn−1(an sin nθ − bn cos nθ) = O{(1 − r)α−1},

uniformly in θ. Squaring, and integrating from θ = 0 to θ = 2π, one can obtain

∑
n2r2n(|an|2 + |bn|2) = O(1 − r)2α−1.

Hence, by putting r = 1 − (1/ν), one can obtain

ν∑

1

n2(|an|2 + |bn|2) = O(ν2−2α),
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and so, by Schwarz’s inequality,

ν∑

1

n(|an| + |bn|) = O(ν
3
2 α).

Thus, it is easy to deduce that the series

ν∑

1

nβ(|an| + |bn|)

is convergent if β < α − 1
2 .

This establishes the first part of Bernstein’s Theorem (indeed more!). The second
part is shown by the following example:

g(θ) =
∑

n−b cos(na + nθ),

where 0 < a < 1, 0 < b < 1. In this case, G(r, θ) is the real part of

F(z) = F(reiθ) =
∑

n−bein
a
zn.

This function is continuous (see [15]) for |z| ≥ 1 if

1

2
a + b > 1;

and it is not difficult to go further, and to show that g(θ) satisfies a Lipschitz condition
of order 1

2a + b − 1.
Now let α be any number less than 1

2 . Then, one can choose numbers a and b,
each less than 1 in such a way that

1

2
a + b − 1 > α.

Then, the function g(θ) satisfies a Lipschitz condition of order greater than α, but its
Fourier series is not absolutely convergent. �

4 Riemann’s Non-differentiable Function Revisited

Riemann is reported to have stated [8, 16], but never proved, that the continuous
function,

f (x) =
∞∑

n=1

sin n2x

n2
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is nowhere differentiable. In 1872, K. Weierstrass [34] tried to prove this assertion
but could not and instead constructed his own example of a continuous nowhere
differentiable function which is an cos bnπx along with the conditions (2) and (3).
J.P. Kahane [23] renewed the interest in this classical problem in connection with
lacunary series, and refers to K. Weierstrass [34].

Riemann’s assertion was partially confirmed byG.H. Hardy [16], who proved that
the above function f (x) has no finite derivative at any point ξπ, where ξ is

(i) irrational;
(ii) rational of the form 2A

4B+1 , where A and B are integers;
(iii) rational of the form 2A+1

2(2B+1) .

We provide an outline of Hardy’s method in this case. Suppose that Riemann’s
function is differentiable for certain values of x , then by Lemma 2.2,

∑
rn

2
cos n2πx = A + o(1),

where A is a constant, as r → 1. However,

∑
rn

2
cos n2πx = �{(1 − r)−

1
4 }

if x is irrational, and ∑
rn

2
cos n2πx = �{(1 − r)−

1
2 }

if x is a rational of the form 2λ+1
2μ or 2λ

4μ+1 . Therefore, Riemann’s function is certainly
not differentiable for any irrational (and some rational) values of x . It is easy, by
using Lemma 2.1, instead of Lemma 2.2, to show that Riemann’s function cannot
satisfy the condition

f (x + h) − f (x) = o(|h| 3
4 )

for any irrational values of x . In this context, Hardy [16] proved the following
theorem:

Theorem 4.1 None of the functions

fc,α(x) =
∑ cos n2πx

nα

and

fs,α(x) =
∑ sin n2πx

nα

where α < 5
2 , is differentiable for any irrational value of x.

Proof Suppose that fs,α is differentiable, and consequently, Lemma 2.12 would
imply,
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∑
n2−αrn

2
cos n2πx = A + o(1),

or
f (y) =

∑
n2−αe−n2 y cos n2πx = A + o(1).

But

f (p)(y) = (−1)p
∑

n2p+2−αe−n2 y cos n2πx

= O
( ∑

n2p+2−αe−n2 y
) = O(y−p− 3

2 + α
2 ).

Hence, by the theorem of Hardy and Littlewood [18], we have

f (q)(y) = o
(
y− q

p (p+ 3
2 − α

2

)
.

Here, 0 < q < p, and in particular

f ′(y) = o
(
y−1− 3

2p + α
2p

)
. (25)

Again, it is easy to prove that

f ′(y) = −
∑

n4−αe−ny
cos 2πx = �(y− 9

4 + α
2 ). (26)

From (25) and (26), it follows that

1 + 3

2p
− α

2p
>

9

4
− α

2
.

But this is not possible if α < 5
2 and p is sufficiently large. It is clear that the series

fc,β and fs,β with 0 < β < 1
2 are not Fourier’s series. For if the first one is a Fourier’s

series, then the sum of the integrated series fs,2+β would be a function of limited
total fluctuation, and would therefore be differentiable almost everywhere.

It is easy to prove directly that the function fs,α, where 2 < α < 5
2 , has the differ-

ential coefficient +∞ for x = 0. A similar direct method could no doubt be applied
to an everywhere dense set of rational values of x . �

In 1970, J. Gerver [12] proved that Riemann’s assertion is false, by proving the
following result.

Theorem 4.2 The derivative of the following function

f (x) =
∞∑

n=1

sin n2x

n2

exists and is equal to − 1
2 at any point (2A+1)π

2B+1 , where A and B are integers.
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In the same paper, J. Gerver [12] extended G.H. Hardy’s results [16] by proving
the following:

Theorem 4.3 The derivative of the Riemann functions does not exist at any point
(2A+1)π

2N , where N is an integer ≥ 1 and A is any integer.

One can consult [12] for detailed proof of Theorems 4.2 and 4.3.
In 1971, J. Gerver further proved some results concerning the non-differentiability

of Riemann’s function. More precisely, he proved the following:

Theorem 4.4 The function

f (x) =
∞∑

n=1

sin n2x

n2

is not differentiable at any point 2Aπ
2B+1 or π(2A+1)

2B , where A and B are integers.

This result together with Hardy’s result [16] that the function is not differentiable
at any irrational multiple of π, completely solves the problem of differentiability.

In 1972, A. Smith [31] extended the above results to the remaining cases. He
also discussed the existence of finite left-hand and right-hand derivatives at certain
rationals, and proved that these derivatives exist at all rationals if the values ±∞
were allowed. He gave completely elementary and fairly short proof of all the above
assertions. J. Gerver’s proof was extremely long, and G.H. Hardy obtained his results
indirectly. A. Smith worked with the following function

g(x) = x + 2
∞∑

n=1

sin n2πx

πn2
,

so that one can verify that g′(x) exists and is zero whenever x is of the form 2A+1
2B+1

for some integers A and B.
The following lemmas are required to obtain expansions for g(x) about a ratio-

nal point x , which using properties of Gaussian sums reveal the properties of the
derivatives.

Lemma 4.1 Let φ be a continuous function in L1(−∞,∞). Suppose that the series
for Q(α) (defined below) converges uniformly in every finite α interval, for each
fixed h > 0. Let

φ̂(y) =
∫ ∞

−∞
e−2πi xyφ(x)dx

and assume that |y|β |φ̂(y)| is bounded for some fixed β > 1. Then, for any real
constant α, as h → 0+,

Q(α) =
∞∑

k=−∞
hφ(hk + hα) = φ̂(0) + O(hβ).
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Proof The conditions on φ allow one to apply the Poisson summation formula to

∞∑

k=−∞
hφ(hk + hα)

to obtain ∞∑

k=−∞
hφ(hk + hα) =

∞∑

k=−∞
e2πikαφ̂

(
k

n

)

provided this series converges absolutely. The condition on φ̂ gives, for k �= 0,

e2πikαφ̂

(
k

n

)
= O

(
hβ

|k|β
)

which shows that the above sum, leaving out the k = 0 term, converges absolutely
and is O(hβ). Thus

∞∑

k=−∞
e2πikαφ̂

(
k

n

)
= φ̂(0) + O(hβ).

�

Lemma 4.2 Let

φ1(x) =
{

sin πx
πx , x �= 0,

1, x = 0,

φ2(x) =
{

1−cosπx
πx , x �= 0,

0, x = 0.

Then, Lemma 4.1 with β = 2 applies to the functions ψi (x) = ψi (x2), i = 1, 2, and

∞∑

k=−∞
hψ(hk + hα) = 21/2 + O(h2), i = 1, 2.

The following lemma is straightforward.

Lemma 4.3 Assume that x = r
s and that (r, s) = 1. Let us define

G(x) =
s−1∑

t=0

eiπt
2x = C(x) + i S(x) ≡

s−1∑

t=0

cosπt2x + i
s−1∑

t=0

sin πt2x;
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then
(a) when r ≡ 0 (mod 2),

G(x) =
{

( r
2s )s

1/2 = 1, s ≡ 1 (mod 4),

i( r
2s )s

1/2 = i, s ≡ 3 (mod 4);

(b) when s ≡ 0 (mod 2),

G(x) =
{

( r
2s )

√
s
2 (1 + i), r ≡ 1 (mod 4),

( r
2s )

√
s
2 (1 − i), r ≡ 3 (mod 4);

where ( ab ) denotes the Jacobi symbol;
(c) when rs = 0 (mod 2),

|G(x)| = s1/2.

We are now in a position to discuss the derivative of g(x) at rational and at some
other points.

4.1 The Derivative at Rational Points

We begin with the following assumptions:

x = r

s
, (r, s) = 1, rs ≡ 0 (mod 2).

We have

g(x + h2) + g(x − h2) = 2x + 4
∞∑

n=1

sin πn2x

πn2
cosπn2h2

= 2g(x) − 2h2
∞∑

n=−∞
sin πn2xψ2(ph).

Let us write n = ks + t with 0 ≤ t ≤ s − 1. Note that sin π(ks + t)2x = sin πt2x ,
since rs ≡ 0 (mod 2). Then

g(x + h2) + g(x − h2) = 2g(x) − 2h2
s−1∑

t=0

∞∑

k=−∞
sin πt2xψ2(khs + ht)

= 2g(x) − 2
h

s

s−1∑

t=0

sin πt2x{21/2 + O(h2)}
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= 2g(x) − 23/2S(x)
h

s
+ O(h3).

Note that Lemma 4.2 is used in the penultimate line.
Similarly, we have

g(x + h2) − g(x − h2) = 23/2C(x)
h

s
+ O(h3).

Adding and subtracting these two equations, we obtain

g(x ± h2) = g(x) − 21/2{S(x) ∓ C(x)}h
s

+ O(h3) (27)

We now assume that rs ≡ 1 (mod 2). One can easily verify the relation

g(x) = 1 + 1

2
g(4x) − g(x + 1)

which is then used in (27) to deduce that

g(x ± h2) = g(x) − 21/2{S(4x) − S(x + 1) ∓ [C(4x) − C(x + 1)]}h
s

+ O(h3).

(28)
The properties of Jacobi symbols provide

(
2r

s

)
=

(
2r + 2s

s

)
=

(
4((r + s)/2)

s

)
=

(
(r + s)/2

s

)
,

since 4 is the square of the prime 2 and s ≡ 1 (mod 2). This immediately simplifies
(28) to

g(x ± h2) = g(x) + O(h3).

Thus, when r ≡ s ≡ 1 (mod 2), we see that g′(x) exists and is 0, since the right-hand
derivative

g′
+(x) = lim

h2→∞
g(x + h2) − g(x)

h2

and the left-hand derivative

g′
−(x) = lim

h2→∞
g(x) − g(x − h2)

h2

both exist and are 0. In this case, it follows that the symmetric derivative

g′
0(x) = lim

h2→∞
g(x + h2) − g(x − h2)

2h2
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also exists and is 0.When rs ≡ 0 (mod 2), the relation (27) shows that g′(x) is finite
if and only if G(x) = 0. However, by Lemma 4.3, G(x) is not 0. Hence, g′(x) is not
finite when rs even. One can easily verify that g+(x) when r ≡ 1 (mod 4), g′−(x)
when r ≡ 3 (mod 4), and g0(x) when s ≡ 3 (mod 4) are all 0, but in other cases,
these derivatives are infinite.

4.2 Derivatives at Other Points

At negative rationals, the results of the preceding section carry over, since g is an
odd function.

We now assume that x is irrational, which without loss generality we take to be
positive. Let {qk} be a strictly increasing sequence of positive integers, and let pk
be the least integer such that xk = 2pk

4qk+1 > x . Then, xk − x < 2
4qk+1 and xk → x as

k → ∞. From (27) and condition (a) of Lemma 4.3, we have

∣∣∣∣
g(x) − g(xk)

x − xk

∣∣∣∣ =
{
1

2
(4qk + 1)(xk − x)

}−1/2

+ O((xk − x)1/2).

Therefore,

lim
k→∞ inf

∣∣∣∣
g(x) − g(xk)

x − xk

∣∣∣∣ ≥ 1.

Let yk = xk + 1
4qk+1 = 2pk+1

4qk+1 . Then, yk → x as k → ∞ and

lim
k→∞

g(x) − g(yk)

x − yk
= 0.

From these two equations, we obtain Hardy’s result that g does not have a finite or
infinite derivative at the irrational point x .

In 1981, S. Itatsu [21] gave a short proof of the differentiability as well as a finer
estimate of the function

f (x) =
∞∑

n=1

sin n2x

n2

at points of rational multiple of π. Namely, he proved the following result.

Theorem 4.5 The function

F(x) =
∞∑

n=1

ein
2πx

in2π

have the following behaviour near x = q
p , where p is a positive integer and q is an

integer such that q
p is an irreducible fraction,
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F(x + h) − F(x) = R(p, q)p−1/2e
iπ
4 sgn h |h|1/2sgn h − h

2
+ O(|h|1/2)

as h → 0 where sgn h = h
|h| if h �= 0, sgn h = 0 if h = 0, and R(p, q) is a constant

defined by

R(p, q) =

⎧
⎪⎨

⎪⎩

(
q
p )e

−πi
4 (p−1), if p is odd and q even,

(
p

|q| )e
πi
4 q , if p is even and q odd,

0, if p and q are odd,

with the Jacobi’s symbol ( p
q ).

5 Quadratic Reciprocity and Riemann’s Function

Here, we discuss the recent work of Chakraborty et al. [5] who gave a combined
proof of both, that is, the quadratic reciprocity law and the differentiability/non-
differentiability of Riemann’s function.

Let p be a natural number and z = h + iε ∈ H tending to 0. We denote the upper
half-plane by H. Also, let for z ∈ H ∪ R,

F(z) =
∞∑

n=1

eπin2z

πin2
= 1

2

∞∑

n=−∞
n �=0

eπin2z

πin2
.

Let us denote by S(b, a) the quadratic Gauss sum defined by

S(b, a) =
b−1∑

j=0

e2πi j
2 a
b

for a natural number b. One extends the definition for nonzero integral values b by,

S(b, a) = S(|b|, sgn(b)a).

We note that S(|b|,−a) = S(|b|, a) and S(ka, kb) = S(a, b).
We begin with the following result:

Theorem 5.1 For any integers p > 0, q, we have

F

(
2q

p
+ z

)
− F

(
2q

p
+ iε

)
= S(p, q)

e−πi/4

p

√
z − 1

2
h + O(z2) (29)

where for a nonzero integer p, the coefficient is to be understood as S(|p|, sgn(p)q).
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Proof Let b be an arbitrary real number. One can obtain by using Euler–Maclaurin
summation formula as in Lemma 4 in [28] (the resulting integral can be evaluated as
in [24] (pp. 20–22)):

∞∑

n=−∞
e(b+pn)2iz = 2

√
π

p
e−πi/4√z + O(z) (30)

where the branch of
√
z is chosen so that it is positive for z > 0.

We integrate this along the line segment parallel to the real axis, say over [z′, z]
with z − z′ = h. Now after separating the case (b, n) = (0, 0), the integrated form
of (30) becomes,

h +
∞∑

n=−∞
(n,b)�=(0,0)

e(b+pn)2iz

i(b + pn)2
−

∞∑

n=−∞
(n,b)�=(0,0)

e(b+pn)2i(h′+iε)

i(b + pn)2

= 2
√

π

p
e−πi/4√z + O(z2). (31)

This can be rewritten as

T (z) − T (iε) = 2
√

π

p
e−πi/4√z − h(1 + o(1)) + O(z2). (32)

Here

T (z) = T (z, b) =
∞∑

n=−∞
(n,b)�=(0,0)

e(b+pn)2iz

i(b + pn)2
.

Then, by the decomposition into residue classes,

F

(
2q

p
+ z

)
= 1

2

∞∑

n=−∞
n �=0

e
πin2

(
2q
p +z

)

πin2

= 1

2

p−1∑

b=0

e2πib
2 q
p

∑

n≡b (mod q)
(n,b)�=(0,0)

eπin2z

πin2

= 1

2

p−1∑

b=0

e2πib
2 q
p
1

π
T (πz, b).

Now using (32),
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F

(
2q

p
+ z

)
= 1

2

p−1∑

b=0

e2πib
2 q
p
1

π

(
2
√

π

p
e−πi/4√πz − 1

2
h + T (iε, b)

)
+ O(z2)

= 1

2
S(p, q)

(
2
√

π

p
e−πi/4√z − z

)
+ 1

2π

p−1∑

b=0

e−2πib2 q
p T (iε, b) + O(z2)

= S(p, q)

(
1

p
e−πi/4√z − 1

2
h

)
+ F

(
2q

p
+ iε

)
+ O(z2).

�

In (31), the variable can be 2q
p + z and 2q

p + z′, and then instead of h, we would

have z − z′. This will be used in deriving (Theorem 5.3).
The relation (29) in this form is essentially Theorem 1 of S. Itatsu [21], and

from here, non-differentiability of Riemann’s function can be deduced. Indeed, let
z = h + iε and let ε → 0+, in which we have to pay attention to the sign sgn h of h.
Then

F

(
2q

p
+ h

)
− F

(
2q

p

)
= S(p, q)

e−πi/4 sgn h

p

√|h| − 1

2
h + O(h2). (33)

Hence, differentiability follows only in the case S(p, q) = 0 with differential
coefficient − 1

2 . This will be done in the next section appealing to Corollary 1. At
the same time, this is an elaboration of [28, (47)] (on the right-hand side of which
the factor

√
π is to be deleted). Arguing as in [28] using the theta transformation

formula, we may deduce the Landsberg–Schaar identity, from which the quadratic
reciprocity may be deduced.

Remark 5.1 We would like to make a few comments on the work of J.J. Duister-
maat [9]. In [9, p. 4, ��. 1–2], J.J. Duistermaat says that “this self-similarity formula
was just an integrated version of the well-known transformation formula (35)”. By
this, [9, Theorem 4.2] is meant. The Eq. (3.4) (was already proved by Cauchy [4, pp.
157–159]) [9] for r = q

p becomes

μγ(x) = e
π
4m p− 1

2 (x − r)−
1
2

= e
π
4 p−1S(2p, q)(x − r)−

1
2 .

Incorporating this in [9, (4.1)], we see that it refers to the case S(2p, q) of our
Theorem 5.1. Hence, by Corollary 1, differentiability of Riemann’s function can be
read off.

Further on [9, p. 9, � 7 from below], the relation (47) in [28] is stated in the form

�

(
2q

2p
+ iε

)
∼ 1

p
√

ε
S(2p, q), ε → 0 + .
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Thus, we could say that [9] also gives material to deduce the reciprocity law. In [9,
Theorem 3.4], Duistermaat states that

�(z) =
⎧
⎨

⎩
�(γz) e

πi
4 p

(−q
p

)
p− 1

2 (z − r)−
1
2 p odd

�(γz) e
πi
4 (q+1)

(
p

|q|
)
p− 1

2 (z − r)−
1
2 q odd

(34)

From (34), the reciprocity law follows. However, it is used in its proof, and thus
unfortunately, this does not lead to the proof of reciprocity law.

5.1 Reciprocity Law

The well-known law of quadratic reciprocity has had numerous proofs. Gauss, who
first discovered the law, gave several proofs in his book, Disquitiones Arithmeticae.
We recall the statement of the law of quadratic reciprocity. For a given pair of distinct
primes p and q, one can define the Legendre symbol

( p
q

)
to be +1 if the quadratic

congruence x2 ≡ p (mod q) has a solution; the symbol to be −1 if the quadratic
congruence has no solution.

Theorem 5.2 (Quadratic Reciprocity Law)

(
p

q

) (
q

p

)
= (−1)

p−1
2 .

q−1
2 .

This theorem is remarkable in many ways, the most notable being the relationship
between the solvability of the congruence x2 ≡ q (mod p) to that of the congruence
x2 ≡ p (mod q). Let us denote for z ∈ H,

�(z) =
∞∑

n=−∞
eπin2z = 1 + 2

∞∑

n=1

eπin2z

and then the classical theta function for Re z > 0 is

θ(z) = �(i z) =
∞∑

n=−∞
e−πn2z .

At this point, we note down the theta transformation formula:

�(z) = e
πi
4 z− 1

2 �

(
−1

z

)
. (35)

We now prove the reciprocity law.
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Theorem 5.3 Let p ∈ N and (0 �=)q ∈ Z. Then

S(p, q) = e
π
4 sgn(q)i

(
p

2|q|
)1/2

S(4|q|,− sgn(q)p).

Proof Let us first note that F(z) is essentially the integral of �(z):

∫ z

0
θ(−i z) dz =

∫ z

0
�(z) dz

= z + 2

( ∞∑

n=1

eπin2z

πin2
−

∞∑

n=1

eπin2z

πin2

)

= z + 2(F(z) − F(0)). (36)

In particular, for z = x + u + iε ∈ C (with ε > 0) and u ∈ (0, h), the above relation
(36) becomes

∫ x+h

x
θ(ε − iu) du =

∫ x+h+iε

x+iε
�(z) dz

= h + 2(F(x + h + iε) − F(x + iε)). (37)

The theta transformation formula (35) with y > 0 gives

θ(y − iu) = e
π
4 i

1√
u + iy

θ

(
i

u + iy

)

= e
π
4 i

1√
u + iy

∞∑

n=−∞
e

iπn2

u+iy .

We now make the following change of variable:

i

u + iε
= i

x + v + iε
= τ + 1

x
i

i.e.

τ = ε − iv

x(x + v + iε)
∼ ε − iv

x2
.

Now with this change, the integral in (37) becomes

∫ x+h

x
θ(ε − iu) du = −ieπ/4

∫ i
x+iε − i

x

i
x+h+iε − i

x

1
(
τ + 1

x i
) 3

2

θ

(
τ + 1

x
i

)
dτ . (38)



Quadratic Reciprocity and Some “Non-differentiable” Functions 177

The following relation is useful (which is in fact equivalent to (37)) in applying
integration by parts:

∫
θ

(
τ + i

x

)
du = τ − 2i F

(
−1

x
+ iτ

)
+ C.

Using this, we may evaluate (38) and it becomes

∫ i
x+iε − i

x

i
x+h+iε − i

x

1
(
τ + 1

x i
) 3

2

θ

(
τ + 1

x
i

)
dτ

=
[
(τ + i

x
)
3/2 (

τ − 2i F

(
−1

x
+ iτ

))] i
x+h+iε − i

x

i
x+iε − i

x

=
(
x + h + iε

i

)3/2 (
i

x + h + iε
− i

x
− 2i F

(
− 1

x + h + iε

))

−
(
x + iε

i

)3/2 (
i

x + iε
− i

x
− 2i F

(
− 1

x + iε

))
+ O(h). (39)

At this point, we note that

−1

x + h + iε
= −1

x
+ 1

x2
(z(1 + o(1))). (40)

Using (40), the main term in (39) is

− 2e
π
4 i

(
(x + h + iε)3/2F

(
− 1

x + h + iε

)
− (x + iε)3/2F

(
− 1

x + iε

))

= 2e
π
4 i (x + iε)3/2

(
F

(
−1

x
+ 1

x2
z′
)

− F

(
−1

x
+ 1

x2
ε′
))

+ O(h), (41)

where we have used

z′ = z(1 + o(1)) and ε′ = ε(1 + o(1)).

Now, we specify x = 2q
p and apply Theorem 5.1. Under this specification, (41) takes

the shape

= 2e
π
4 i

(
2q

p
+ iε

)3/2
(
F

(
−2p

4q
+

(
p

2q

)2

z′
)

− F

(
−2p

4q
+

(
p

2q

)2

ε′
))

+ O(h)

= 2e
π
4 i

(
2q

p
+ iε

)3/2

S(4q,−p)e− π
4 i

1

4|q|
∣∣ p

2q

∣∣√z′ + O(h)
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=
(

p

2|q|
)1/2 1

p
S(4|q|,− sgn(q)p)

√
z′ + O(h).

Now on letting ε → 0, we get the desired result. �

As a corollary, we note that:

Corollary 1 Let x = q
p be of the form 2A+1

2B+1 , i.e. p, q both being odd. Then

R(2A + 1, 2B + 1) = S(2p, q) = 0 (42)

where R is the coefficient in the forthcoming Eq. (43).

Proof

S(2p, q) = e
π
4 i

(
p

2|q|
)1/2

S(4|q|, 2 sgn(q)p)

= e
π
2 i

(
p

2|q|
)1/2( 4|q|

2|2p|
)1/2

S(4 · 2p, 2 sgn(q)|q|)

= e
π
2 i

p

|q|
√
sgn(q)S(2p, sgn(q)|q|).

We now conclude (42) by simply noting that sgn(q)|q| = q. �

Remark 5.2 The relation in Theorem 5.3 leads to the so-called Landsberg–Schaar
identity (see [28, (5)]) if we take p and q to be co-prime positive integers. This is

1√
p

p−1∑

j=0

e2πi j
2 q
p = e

π
4 i√
2q

2q−1∑

j=0

e2πi j
2 p
2q .

The following result will be required to complete the proof of the differentiability
of Riemann’s function.

Lemma 5.1 For a natural number p,

S(p, q) = ε(p)

(
q

p

)√
p

where
(
q
p

)
indicates the Jacobi symbol and

ε(p) =
{
1 p ≡ 1 mod 4

i p ≡ 3 mod 4
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We are now ready to state a seemingly more general version of Theorem 5.1. This
implies differentiability of Riemann’s function at the rational point 2A+1

2B+1 on putting

z = h + iε and ε → +0. We note that similar result is also obtained in [9, Theorem
4.2].

Corollary 2

F

(
q

p
+ z

)
− F

(
q

p
+ iε

)
= R(p, q)

e−πi/4

p

√
z − 1

2
h + O(z2),

where

R(p, 2q) = S(p, q) = ε(p)

(
q

p

) √
p,

R(2p, q) = S(4p, q) = e
π
4 i

√
2p

(−p

q

)

R(2B + 1, 2A + 1) = 0. (43)

Proof Only the case R(2p, q) needs to be considered (by Corollary 1). Now by
Theorem 5.3, we have,

R(2p, q) = S(4p, q) = e
π
4 i

(
4p

2|q|
)1/2

S(4|q|,−4 sgn(q)p)

= e
π
4 i

(
2p

|q|
)1/2

S(|q|,− sgn(q)p)

= e
π
4 i

(
2p

|q|
)1/2√|q|ε(|q|)

(− sgn(q)p

|q|
)

= e
π
4 i

√
2p

(−p

q

)
.

�

Remark 5.3 We make a historical remark on Riemann’s function. [3] contains an
almost complete list of references up to 1986. One addition is a correction to [31]
in 1983. After this, the review of [14] contains an almost complete list after [3]
except for [27] (esp. 619) and [33]. Among the papers listed in the review of [14],
we mention [19] and [22] for consideration from the point of wavelets and [9] for
self-similarity.
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Abstract Fixed Point Theory is divided into the following three major areas:

• Topological Fixed Point Theory, which came from Brouwer’s fixed point
theorem in 1912;

• Metric Fixed Point Theory, which came from Banach’s fixed point theorem
in 1922;

• Discrete Fixed Point Theory, which came from Tarski’s fixed point theorem
in 1955.
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theory and its applications. In fact, since Banach’s fixed point theorem in metric
spaces, because of its simplicity, usefulness and applications, it has become a very
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1 Introduction

In 1912, Brouwer [1] proved the following fixed point theorem, which is called
Brouwer’s Fixed Point Theorem:

Theorem B. Every continuous mapping from the unit ball of Rn into itself has a
fixed point.

Since Brouwer’s fixed point theorem, some authors, Schauder [2], Tychonoff [3],
Kakutani [4] and many others have improved and generalized this theorem in several
ways. In fact, Schauder’s fixed point theorem is an extension of Brouwer’s fixed point
theorem to topological vector spaces and, also, there are several entirely different
ways to prove Brouwer’s fixed point theorem by some authors.

In 1955, Tarski [5] proved the following fixed point theorem, which is called
Tarski’s Fixed Point Theorem:

Theorem T. If F is a monotone function on a nonempty complete lattice, then the
set of fixed points of F forms a nonempty complete lattice.

Note that the least fixed point of the mapping f is the least element x such
that f (x) = x or, equivalently, such that f (x) ≤ x and the greatest fixed point is
the greatest element x such that f (x) = x or, equivalently, such that f (x) ≤ x .
Consequently, from Theorem T, f has the greatest fixed point u and the least fixed
point u and, moreover, for all x ∈ L , x ≤ f (x) implies x ≤ u, whereas f (x) ≤ x
implies u ≤ x .

Example T1.Let a, b ∈ Rwith a ≤ b, where≤ is the usual order of real numbers.
Since the closed interval [a, b] is a complete lattice, every monotone increasing
mapping f : [a, b] → [a, b] has the greatest fixed point and the least fixed point.
Here the mapping f need not be continuous.

Since Tarski’s fixed point theorem, many authors, for example, Hayashi [6],
Heikkila [7], Schröder [8], Jachymski et al. [9], Uhl [10], Ok [11] and many others,
have improved and generalized this theorem in several ways. Recently, Theorem T
has many applications in theoretical computer science and others.

Especially, in [12], Davis proved the converse of Theorem T, that is, if every
order preserving function f : L → L has a fixed point, then L is a complete lattice.
Also, Theorem T can be used for a simple proof of the Cantor-Bernstein-Schroeder
theorem (see Example 3 in Uhl [10]) in set theory, that is, if there exist injective
functions f : A → B and g : B → A between the sets A and B, then there exists a
bijective function h : A → B.

Note that, since famous Brouwer’s and Tarski’s fixed point theorems have been
studied by many authors, in this chapter, we don’t mention any more about these two
theorems.
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Now, we introduce recent results on metric fixed point theory and its applications
as follows:

[A] Picard’s Convergence Theorem

In 1890, Picard [13] proved the following theorem to show the existence of solu-
tions for nonlinear equations.

Theorem P. Let T : [a, b] → R be a continuous function and T : (a, b) → R be
differentiable. If there exists L < 1 such that

|T ′(x)| ≤ L (PC)

for all x ∈ (a, b), then the sequence {xn} in (a, b) defined by

xn+1 = T xn (P)

for all n ≥ 0 converges to a solution of the equation T x = x .

The iterative sequence {xn} defined by (P) is called the Picard iterative sequence.

[B] Banach’s Fixed Point Theorem

In 1922, Banach [14] proved a theorem, which is well known as “Banach’s fixed
point theorem” to establish the existence of solutions for integral equations.

Theorem B. Let (E, d) be a complete metric space and T : E → E be a con-
tractive mapping (that is, there exists L ∈ [0, 1) such that

d(T x, T y) ≤ Ld(x, y) (BC)

for all x, y ∈ E). Then, we have the following:

(1) T has a unique fixed point z ∈ E ;
(2) Furthermore, for each x0 ∈ E , the sequence {xn} defined by

xn+1 = T xn

for each n ≥ 0 converges to the fixed point z of T , that is, T z = z.

Note that the following conditions are equivalent:

(1) In Picard’s theorem, there exists a number L < 1 such that

|T ′(x)| ≤ L (PC)

for all x ∈ (a, b).
(2) In Banach’s fixed point theorem, there exists L ∈ [0, 1) such that

d(T x, T y) ≤ Ld(x, y) (BC)

for all x, y ∈ E (that is, T is a contractive mapping).
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Further, since Banach’s fixed point theorem, because of its simplicity, usefulness,
and applications, it has become a very popular tool in solving the existence problems
in many branches of mathematical analysis. Recently, many authors have improved,
extended, and generalized Banach’s fixed point theorem in the following ways.

First, how to generalize Banach’s contraction? Second, how to extend Banach’s
fixed point theorem in metric spaces to the large class of various spaces? Third,
how to extend Banach’s fixed point theorem for single-valued mappings to multi-
valued mappings? Fourth, how to show the existence of common fixed points for two
nonlinear mappings? Fifth, how to improve Banach’s fixed point theorem in several
ways? Sixth, how to generalize the Picard iterative sequence? Seventh, how to apply
Banach’s fixed point theorem to applied mathematics and others? Eighth, dose the
converse of Banach’s fixed point theorem hold? Ninth, we introduce a conjecture
of Banach’s fixed point theorem, which is called Generalized Banach’s Fixed Point
Theorem; Tenth, we introduce some relations between best proximity point theorems
and Banach’s fixed point theorem in metric spaces; Finally, eleventh, we introduce
some better nonlinear mappings than Banach’s contraction.

2 Generalizations of Contractive Mappings

Recently, many authors have introduced many kinds of contractive mappings (or
Banach’s contraction) in metric spaces and generalized metric spaces as follows:

(1) In 1969, Meir–Keeler’s contraction [15]: For any ε > 0, there exists δ > 0
such that

ε ≤ d(x, y) < ε + δ =⇒ d(T x, T y) < ε (MK)

Note that if T satisfies Meir–Keeler’s contraction (MK), then T is Banach’s
contraction, that is,

d(T x, T y) < d(x, y)

for all x, y ∈ X with x �= y. For more details, see Park and Rhoades [16, 17].
(2) In 1976, Caristi’s contraction [18]:

d(x, T x) ≤ φ(x) − φ(T x), (CC)

where φ : X → [0,∞) is a lower semi-continuous function.
Note that every Banach’s contraction T satisfies Caristi’s contraction if, for some

L ∈ [0, 1),
φ(x) = d(x, T x)

1 − L
.

(3) Banach’s contraction (BC) can be expressed as follows:

d(T x, T y) ≤ d(x, y) − qd(x, y),



Survey on Metric Fixed Point Theory and Applications 187

where L = 1 − q with q ∈ [0, 1). Thus, we can define a new contraction T , which
is called a weakly contraction, as follows:

d(T x, T y) ≤ d(x, y) − φ(d(x, y)), (WC1)

where φ : [0,∞) → [0,∞) is a continuous and nondecreasing function with
φ(0) = 0, φ(t) > 0 for all t ∈ (0,∞) and limt→0 φ(t) = ∞.

Note that, in (WC1), if φ(t) = (1 − L)t , then we can get Banach’s contraction
(BC).

Also, Banach’s contraction (BC) can be expressed as follows:

d(T x, T y) ≤ (1 + q)d(x, y) − (1 − q)d(x, y),

where L = 2q with q ∈ [0, 1
2 ). Thus, we can define a new contraction T , which is

called a (φ − ψ)-weak contraction, as follows:

d(T x, T y) ≤ φ(d(x, y)) − ψ(d(x, y)), (WC2)

whereφ : [0,∞) → [0,∞) is an upper semi-continuous and nondecreasing function
and ψ : [0,∞) → [0,∞) is a lower semi-continuous and nonincreasing function
satisfying the following conditions:

(a) φ(0) − ψ(0) = 0;
(b) φ(t), ψ(t) > 0 for all t ∈ (0,∞);
(c) φ(t) − ψ(t) < t for all t ∈ (0,∞).

Note that, in the condition (WC2), if φ(t) = t for all t ∈ [0,∞), then we have the
condition (WC1).

(4) From Banach’s contraction (BC), it follows that the mapping T is continu-
ous. Further, we use the continuity of the mapping T to prove Banach’s fixed point
theorem. Thus, it is natural to consider the following question:

Do there exist some contractive conditions which do not force the mapping T to
be continuous?

The answer for this question was positive by Kannan [19] in 1968 who proved
Kannan’s fixed point theorem for the following contractive condition, which is called
Kannan’s contraction:

TheoremK.Let (E, d) be a complete metric space and T : E → E be a mapping
such that there exists a number h ∈ (0, 1

2 ) such that

d(T x, T y) ≤ h[d(T x, x) + d(T y, y)] (KC)
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for all x, y ∈ X . Then, T has a unique fixed point in E .

Now, we give one example that a mapping T is not continuous, but the mapping
T is Kannan’s contraction:

Example K. Let X = R be a usual metric space and T : X → X be a mapping
defined by

T x =
{
0, if x ∈ (−∞, 2],
1
2 , if x ∈ (2,+∞).

Then, T is not continuous on R, but it satisfies Kannan’s contraction (KC) with
k = 1

5 .

(5) In 1972, Chatterjea [20] introduced the following contractive condition: there
exists a number h ∈ [0, 1

2 ) such that, for all x, y ∈ X ,

d(T x, T y) ≤ h[d(T x, y) + d(T y, x)]. (CHC)

Note that Banach’s contraction (BC),Kannan’s contraction (KC), andChatterjea’s
contraction (CHC) are independent (see Rhoades’ paper [21]).

(6) In 2004, Berinde [22] introduced the following contractive condition: There
exist h ∈ [0, 1) and L ≥ 0 such that, for all x, y ∈ X ,

d(T x, T y) ≤ hd(x, y) + Ld(y, T x) (VBC)

(7) In 1971, Reich [23] introduced the following contractive condition: There
exist nonnegative numbers q, r, s ∈ [0,∞) such that q + r + s < 1 and

d(T x, T y) ≤ qd(x, y) + rd(x, T x) + sd(y, T y) (RC)

for all x, y ∈ X .
(8) In 1971, Ćirić [24] introduced the following contractive condition: There exist

nonnegative numbers q, r, s, t ∈ [0,∞) such that q + r + s + 2t < 1 and

d(T x, T y)

≤ qd(x, y) + rd(x, T x) + sd(y, T y) + t[d(x, T y) + d(y, T x)] (CRC1)

for all x, y ∈ X .
(9) In 1972, Zamfirescu [25] introduced the following contractive condition:

d(T x, T y)

≤ max
{

d(x, y),
1

2
[d(x, T x) + d(y, T y)], 1

2
[d(x, T y) + d(y, T x)]

} (ZC)

for all x, y ∈ X .
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(10) In 1973, Hardy and Rogers [26] introduced the following contractive
condition: There exist nonnegative numbers a1, a2, a3, a4, a5 ∈ [0,∞) such that
a1 + a2 + a3 + a4 + a5 < 1 and

d(T x, T y)

≤ a1d(x, T x) + a2d(y, T y) + a3d(x, T y) + a4d(y, T x) + a5d(x, y)
(HRC)

for all x, y ∈ X .
(11) In 1974, Ćirić [27] introduced the following contractive condition: There

exists h ∈ [0, 1) such that

d(T x, T y)

≤ h max{d(x, T x), d(y, T y), d(x, T y), d(y, T x), d(x, y)} (CRC2)

for all x, y ∈ X .
(12)Let I be a closed interval inR and T : I → I be differentiablewith |T ′(t) < 1

for all t ∈ I . Then, by the mean value theorem, we have

|T (x) − T (y) < |x − y| (C)

for all x, y ∈ I with x �= y. Then, the following functions satisfy the condition (C):

(a) T (x) = x + 1
x on I = [1,+∞);

(b) T (x) = √
x2 + 1 on I = R;

(c) T (x) = ln(1 + ex ) on I = R.

In each case, T (x) > x and so none of these functions has a fixed point in I .
Despite such examples, in 1962, Edelstein [28] proved fixed point theorems by

using the following contraction, which is called Edelstein’s contraction or strictly
contraction:

d( f (x), f (y) < d(x, y) (EC)

for all x, y ∈ X with x �= y provided the space X is compact.

TheoremES.Let (X, d) be a compact metric space and T : X → X be a mapping
satisfying the following:

d(T x, T y) < d(x, y)

for all x, y ∈ X with x �= y. Then, T has a unique fixed point in X .

Let (X, d) be a complete metric space and T : X → X be a mapping satisfying
the following:

d(T x, T y) < d(x, y)
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for all x, y ∈ X with x �= y. Then, the mapping T has no fixed point in X as in the
following example:

Example EC. Let X = [1,∞) be the set of real numbers with the usual metric
and define a mapping T : X → X by

T x = x + 1

x

for all x ∈ X . Then, for all x, y ∈ with x �= y,

d(T x, T y) =
∣∣∣(x + 1

x

)
−

(
y + 1

y

)∣∣∣ < d(x, y).

However, T x = x + 1
x �= x , that is, T has no fixed point in X .

(13) In 1965, Prešić [29] generalized Banach’s fixed point theorem in product
spaces and proved the following theorem:

Theorem P. Let (X, d) be a complete metric space, k be a positive integer, and
T : Xk → X be a mapping satisfying the following contractive type condition:

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1))

≤ q1d(x1, x2) + q2d(x2, x3) + · · · + qkd(xk, xk+1)
(PC)

for all x1, x2, . . . , xk+1 ∈ X , where q1, q2, . . . , qk are nonnegative constants such
that q1 + q2 + · · · + qk < 1. Then, there exists a unique point x ∈ X such that
T (x, x, . . . , x) = x . Moreover, if x1, x2, . . . , xk are arbitrary points in X and, for
each n ≥ 1, xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent
and

lim
n→∞ xn = T ( lim

n→∞ xn, lim
n→∞ xn, . . . , lim

n→∞ xn).

Example PC. ([30]) Let I = [0, 1] be the unit interval with the usual Euclidean
norm and f : I 3 → I be defined by

f (x, y, z) = 2x + y + 2z

5

for all x, y, z ∈ I . Then, f satisfies the condition (PC).

Note that, from (PC), we can consider the following contractions:
(a) There exists λ ∈ (0, 1) such that

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1))

≤ λmax{d(xi , xi+1) : 1 ≤ i ≤ k} (PC1)

for all x1, x2, . . . , xk+1 ∈ X with x1 ≤ x2 ≤ · · · ≤ xk+1;
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(b) There exists φ : R+ → R+, ψ : Rk+ → R+ and λ ∈ (0, 1) such that

φ(d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)))

≤ λψ(φ(d(x1, x2)),φ(d(x2, x3)), . . . ,φ(d(xk, xk+1)))
(PC2)

for all x1, x2, . . . , xk+1 ∈ X with x1 ≤ x2 ≤ · · · ≤ xk+1, where two functions φ and
ψ satisfy some conditions.

Recently, some authors generalized Prešić’s fixed point theorem in several ways
(see [31–36]). In particular, George et al. [37], Khan and Samanipour [38], Malhotra
et al. [39] and Khan et al. [40] studied the cone metric version of Prešić’s fixed point
theorem, and H. Fukhar-Ud-Din et al. [30] studied fixed point approximations of
Prešić nonexpansive mappings in product of CAT(0) spaces.

(14) Also, in 2005, Zhu et al. [41] gave some equivalent contractive conditions in
symmetric spaces.

3 Extensions of Banach’s Fixed Point Theorem in Metric
Spaces to other Spaces

Recently, some authors have introduced some generalizations of metric spaces in
several ways and have studied fixed point theory and it applications:

Conemetric spaces, partially orderedmetric spaces, fuzzymetric spaces, complex-
valued metric spaces, probabilistic metric spaces, random normed spaces, ordered
Banach spaces, b-metric spaces, 2-metric spaces, G-metric spaces, M-metric spaces,
S-metric spaces, and other spaces

In this section, we introduce multiplicative metric spaces, partial metric spaces,
and M-metric spaces and study fixed point theory and its applications in these metric
spaces.

(I) Fixed Point Theorems in Multiplicative Metric Spaces

Let X be a nonempty set. A mapping d : X × X → R
+ is called a multiplicative

metric (see Bashirov et al. [42]) if the following conditions are satisfied: For all
x, y, z ∈ X ,

(MM1) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if and only if x = y;
(MM2) d(x, y) = d(y, x);
(MM3) d(x, y) ≤ d(x, z) · d(z, y) (: multiplicative triangle inequality).

A set X with a multiplicative metric d is called a multiplicative metric space.

Example M. Let Rn+ be the set of all n-tuples of nonnegative real numbers. Let
d : Rn+ × R

n+ → R be a mapping defined as follows:
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d(x, y) =
∣∣∣∣ x1

y1

∣∣∣∣ ·
∣∣∣∣ x2

y2

∣∣∣∣ · · ·
∣∣∣∣ xn

yn

∣∣∣∣ ,
where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R

n+ and | · | : R+ → R is defined
by

|a| =
{

a, if a ≥ 1,
1
a , if a < 1.

It is easy to see that d is a multiplicative metric on R
n+.

Remark M1. (1) It is well known that (0,+∞) is not complete according to
the usual metric d. For example, consider a sequence {xn} = { 1n }. Then, { 1n } is a
Cauchy sequence, but 0 /∈ (0,+∞) and so (0,+∞) is not complete. But we know
that (0,+∞) is complete with respect to the multiplicative metric d.

(2) The ordinary metrics and the multiplicative metrics may be different in more
general cases. In (0,+∞), the convergence in both ordinary and multiplicative met-
rics is equivalent.

(3) The multiplicative metrics were introduced to solve some differential and
integral equations.

Remark M2. (1) In 2012, Ozavsar and Cevikel [43] introduced the concept of
multiplicative contraction mappings and proved some fixed point theorems for this
type of mappings.

(2) Recently, some fixed point theorems for some contractive mappings in mul-
tiplicative metric spaces have been improved and extended in many ways by some
authors.

(3) In 2014, He et al. [44] proved some common fixed point theorems for weak
commutative mappings in multiplicative metric spaces.

A mapping T : X → X is called:

(1) themultiplicative contraction if there existsλ ∈ [0, 1) such that, for all x, y ∈ X ,

d(T x, T y) ≤ [d(x, y)]λ.

(2) multiplicative Kannan’s contraction if there exists λ ∈ [0, 1
2 ) such that, for all

x, y ∈ X ,
d(T x, T y) ≤ [d(x, T x)d(y, T y)]λ.

(3) multiplicative Chatterjea’s contraction if there exists λ ∈ [0, 1
2 ) such that, for

all x, y ∈ X ,
d(T x, T y) ≤ [d(x, T y)d(y, T x)]λ.
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Recently, Tiammee et al. [45] proved the following:

Theorem TSC. Let (X, d) be a complete multiplicative metric space. Suppose
that the mappings S, T, A, B : X → X satisfy the following conditions:

(a) S(X) ⊂ B(X) and T (X) ⊂ A(X);
(b) the pairs A, S and B, T are compatible;
(c) one of the mappings S, T, A, B is continuous;
(d) there exist a1, a2, a3, a4, a5 ∈ [0,∞) with a1 + a2 + a3 + a4 + a5 < 1 and

a1 = a2 or a3 = a4 such that, for all x, y ∈ X ,

d(Sx, T y)

≤ [d(Ax, Sx)]a1 [d(By, T y)]a2 [d(Ax, T y)]a3 [d(By, Sx)]a4 [d(Ax, By)]a5 .

(GMC)
Then, S, T, A, and B have a unique common fixed point in X .

Now, we give one example to illustrate Theorem TSC as follows:

Example TSC. Let X = [0,∞) be the usual metric space. Define a mapping
d : X × X → R

+ by d(x, y) = e|x−y| for all x, y ∈ X . Then, (X, d) is a complete
multiplicative metric space. Define four mappings S, T, A, B : X → X by

Sx = 1

64
x, T x = 1

32
x, Ax = x, Bx = 2x .

Then, we have the following:

(a) S(X) = T (X) = A(X) = B(X) = X;
(b) S, T, A, and B are all continuous mappings;
(c) the pairs S, A and T, B are compatible mappings;
(d) Let x, y ∈ X and choose a1 = 1

32 , a2 = 1
32 , a3 = 1

16 , a4 = 1
8 , a5 = 1

4 . Then,
we obtain

d(Sx, T y)

= [d(Ax, Sx)] 1
32 [d(By, T y)] 1

32 [d(Ax, T y)] 1
16 [d(By, Sx)] 1

8 [d(Ax, By)] 1
4 .

Therefore, all the conditions of Theorem TSC are satisfied. Also, we see that S(0) =
T (0) = A(0) = B(0) = 0 and so 0 is a unique commonfixed point of S, T, A, and B.

RemarkM3. From our generalized multiplicative contraction GMC, we have the
following multiplicative contractions:

(1) If we put a1 = a2 = a3 = a4 = 0 and S = T in (GMC), then we have the
multiplicative contraction, that is, for some a5 ∈ [0, 1),

d(T x, T y) ≤ [d(x, y)]a5

for all x, y ∈ X .
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(2) If we put a1 = a2, a3 = a4 = a5 = 0 and S = T in (GMC), then we have
multiplicative Kannan’s contraction, that is, for some a1 ∈ [0, 1

2 ),

d(T x, T y) ≤ [d(x, T x)d(y, T y)]a1

for all x, y ∈ X .
(3) If we put a1 = a2 = a5 = 0, a3 = a4 and S = T in (GMC), then we have

multiplicative Chatterjea’s contraction, that is, for some a3 ∈ [0, 1
2 ),

d(T x, T y) ≤ [d(y, T x)d(x, T y)]a3

for all x, y ∈ X .
(4) Also, we can get somemore kinds of multiplicative contractions from (GMC).

Remark M4. For some relations between usual metric spaces and multiplicative
metric spaces, recently, in 2016, Agarwal et al. [46] pointed out the following:

Although the multiplicative metric was announced as a new distance notion, we
note that composition of the multiplicative metric with a logarithmic function yields
a usual metric. Hence all fixed point results in the context of multiplicative metric
spaces can easily be concluded from the corresponding existing famous fixed point
results in the context of the standard metrics.

It is clear that all topological notions, for example, convergence, Cauchy sequence,
completeness, and others for multiplicative metric spaces, are the consequences of
the standard topology of metric spaces.

In 2016, Agarwal et al. [46] proved the following:

Theorem AKS1. Let X be a nonempty set and d∗ : X × X → [0,∞) be a mul-
tiplicative metric. Then, the mapping d : X × X → [0,∞) defined by

d(x, y) = ln(d∗(x, y))

is a usual metric.

Proof. From the definition of a multiplicative metric d∗, we have the following:

d(x, y) = ln(d∗(x, y))

≤ ln(d∗(x, y) · d∗(y, z))

= ln(d∗(x, y)) + ln(d∗(y, z))

= d(x, y) + d(y, z).
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This completes the proof.

In 2015, Abbas et al. [47] published the following result in multiplicative metric
spaces:

Theorem AAS. Let (X, d∗) be a complete multiplicative metric space and f :
X → X be a mapping. Suppose that

ψ(d∗( f x, f y)) ≤ ψ(M f
d∗(x, y))

ϕ(M f
d∗(x, y))

(D1)

for any x, y ∈ X , where

M f
d∗(x, y)

= max{d∗(x, y), d∗( f x, x), d∗(y, f y), [d∗( f x, y) · d∗(x, f y)] 1
2 },

(D2)

ψ : [1,∞) → [1,∞) is continuous and nondecreasing, ψ−1({1}) = {1} and ϕ :
[1,∞) → [1,∞) is lower semi-continuous and ϕ−1({1}) = {1}. Then, f has a
unique fixed point in X .

In 2009, Dorić [48] proved the following extension of Banach’s contraction prin-
ciple inmetric spaces.

TheoremD. Let (X, d) be a complete metric space and f : X → X be a mapping
such that, for all x, y ∈ X ,

ψ(d( f x, f y)) ≤ ψ(M f (x, y)) − ϕ(M f (x, y)), (E1)

where

M f (x, y)

= max
{

d(x, y), d( f x, x), d(y, f y),
1

2
[d( f x, y) + d(x, f y)]

}
,

(E2)

ψ : [0,∞) → [0,∞) is continuous and nondecreasing, ψ−1({0}) = {0} and ϕ :
[0,∞) → [0,∞) is lower semi-continuous and ϕ−1({0}) = {0}. Then, f has a
unique fixed point in X .

Theorem AKS2. Theorem AAS is a consequence of Theorem D.

Proof. By using d(x, y) = ln(d∗(x, y)), we easily see that the equation (D2)
yields (E2). Hence, the inequality (D1) implies (E1). Consequently, Theorem D
provides the existence and uniqueness of the fixed point of f .

Remark M5. (1) Some authors misuse the notion of the multiplicative calculus
since theymisunderstand the place and role of this calculus like other non-Newtonian
calculuses.
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(2) Notice that, in Newtonian calculus, the reference function is linear, whereas
the reference function for multiplicative calculus is exponential. Consequently, every
definition and also every theorem of Newtonian calculus have an analogue in multi-
plicative calculus and vice versa.

(3) Therefore, some ordinary and multiplicative fixed point theorems are applica-
ble to the same class of functions.

(II) Fixed Point Theorems in M-Metric Spaces

In 1994, Matthews [49] extended the concept of a metric to a partial metric and
obtainedmany results in partial metric spaces. Indeed, the motivation for introducing
the concept of a partial metric was to obtain appropriate mathematical models in the
theory of computation and, in particular, to give the improvement of Banach’s fixed
point theorem.

Afterward, many mathematicians have studied the existence and uniqueness of a
fixed point for nonlinear mappings satisfying various contractive conditions in the
setting of partial metric spaces.

Definition M. Let X be a nonempty set and p : X × X → R+ be a function
satisfying the following condition: For all x, y, z ∈ X ,

(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y;
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

Then, p is said to be a partial metric or a distance function on X , and a pair (X, p)
is called a partial metric space.

It is easy to see that a metric d is also a partial metric p, but the converse is not
true in general case.

Example P1. Let X = [0,∞) and p : X × X → R+ be a function defined by

p(x, y) = max{x, y}

for all x, y ∈ X . Then, p is a partial metric on X , but it is not a metric on X . Indeed,
for any x > 0, we have p(x, x) = x �= 0.

Example P2. Let X = {[a, b] : a, b ∈ R, a ≤ b} and p : X × X → R+ be a
function defined by

p([a, b], [c, d]) = max{b, d} − min{a, c}

for all [a, b], [c, d] ∈ X . Then, p is a partial metric on X , but it is not a metric on X .
Indeed, p([1, 2], [1, 2]) = 1.

Recently, in 2014, Asadi et al. [50] extended the concept of a partial metric to the
concept of an m-metric as follows:
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For a nonempty set X and a function m : X × X → R+, the following notations
are useful in the sequel:

(1) mxy := min{m(x, x),m(y, y)};
(2) Mxy := max{m(x, x),m(y, y)}.
Definition AKS. Let X be a nonempty set and m : X × X → R+ be a function

satisfying the following condition: For all x, y, z ∈ X ,

(MM1) m(x, x) = m(y, y) = m(x, y) if and only if x = y;
(MM2) mxy ≤ m(x, y);
(MM3) m(x, y) = m(y, x);
(MM4) m(x, y) − mxy ≤ [m(x, z) − mxz] + [m(z, y) − mzy].

Then, m is said to be an m-metric, and a pair (X,m) is called an M-metric space.

Also, they studied topological properties in such spaces and established some
fixed point results in M-metric spaces, which are generalizations of Banach’s and
Kannan’s fixed point theorems in the framework of partial metric spaces as follows:

Theorem ASKS1. Let (X,m) be a complete M-metric space and T : X → X be
a mapping satisfying the following condition: There exists k ∈ [0, 1) such that

m(T x, T y) ≤ km(x, y)

for all x, y ∈ X . Then, T has a unique fixed point.

Theorem ASKS2. Let (X,m) be a complete M-metric space and T : X → X be
a mapping satisfying the following condition: There exists k ∈ [0, 1

2 ) such that

m(T x, T y) ≤ k[m(x, T x) + m(y, T y)]

for all x, y ∈ X . Then, T has a unique fixed point.

Remark P1. According to the definitions of a p-metric and an m-metric,

(1) The condition (P1) in Definition M is same to the condition (MM1) in Defin-
ition AKS.

(2) The condition (P2) for p(x, x) is expressed by just p(y, y) = 0 (we may have
p(y, y) �= 0) and so the condition (P2) is replaced bymin{p(x, x), p(y, y)} ≤
p(x, y), that is, the condition (MM2).

(3) The condition (P3) is same to the condition (MM3).
(4) Also, we improve the condition (P4) to the form of (MM4).

Thus, every p-metric is anm-metric, but the converse is not true as in the following
examples.

Let (X,m) be an M-metric space. For all x, y ∈ X ,

(1) 0 ≤ Mxy + mxy = m(x, x) + m(y, y);
(2) 0 ≤ Mxy − mxy = |m(x, x) − m(y, y)|;
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(3) Mxy − mxy ≤ (Mxz − mxz) + (Mzy − mzy).

Example P3. Let X := [0,∞). Then, m(x, y) = x+y
2 on X is an m-metric.

The next examples show that ms and mw are metrics.

Example P4. Let (X,m) be an m-metric space and define two functions mw,ms :
X × X → R+ by

mw(x, y) := m(x, y) − 2mxy + Mxy

and

ms(x, y) :=
{

m(x, y) − mxy, x �= y,
0, x = y.

Then, mw and ms are metrics on X .

Let (X,m) be an M-metric space. For all x, y ∈ X ,

(1) m(x, y) − Mxy ≤ mw(x, y) ≤ m(x, y) + Mxy ;
(2) m(x, y) − mxy ≤ ms(x, y) ≤ m(x, y) + mxy ;
(3) From (1) and (2), we have

|mw(x, y) − m(x, y)| ≤ Mxy

and
|ms(x, y) − m(x, y)| ≤ mxy .

In the following example, we give an example of an m-metric which is not a
p-metric:

Example P5. Let X = {1, 2, 3} and define

m(1, 1) = 1, m(2, 2) = 9, m(3, 3) = 5,

m(1, 2) = m(2, 1) = 10, m(1, 3) = m(3, 1) = 7,

m(3, 2) = m(2, 3) = 7.

Then, m is an m-metric, but it is not a p-metric.

Example P6. Let X = [0,∞) and m : X × X → R+ be a function defined by

m(x, y) = x + y

2

for all x, y ∈ X . Then, m is an m-metric, but it is not a p-metric. Indeed, m(3, 3) =
3 > 2 = m(1, 3).

Example P7. Let X = {1, 2, 3} and m : X × X → R+ be a function defined by
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m(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, x = y = 1,
9, x = y = 2,
5, x = y = 3,
10, x, y ∈ {1, 2} and x �= y,
7, x, y ∈ {1, 3} and x �= y,
8, x, y ∈ {2, 3} and x �= y.

Then, m is an m-metric but it is not a p-metric. Indeed, m(2, 2) = 9 > 8 = m(2, 3).

Thus, we obtain the following relation:

metric =⇒ partial metric =⇒ m-metric

Next, we show the relation between the Banach contraction in an m-metric space
and the Banach contraction in a metric space (X, d).

Example P8. Let (X, d) be a metric space and φ : [0,∞) → [φ(0),∞) be a
one-to-one and nondecreasing or strictly increasing mapping with φ(0) defined such
that

φ(x + y) ≤ φ(x) + φ(y) − φ(0)

for all x, y ≥ 0. Then, m(x, y) = φ(d(x, y)) is an m-metric.

Example P9. Let (X, d) be a metric space. Then, m(x, y) = ad(x, y) + b, where
a, b > 0 is an m-metric, since we can put φ(t) = at + b.

According to Example P9 and the Banach contraction (BC), since there exists
k ∈ [0, 1) such that, for all x, y ∈ X ,

m(T x, T y) ≤ km(x, y)

it follows that if m(T x, T y) = ad(T x, T y) + b ≤ kad(x, y) + kb,

d(T x, T y) ≤ kd(x, y) + b(k − 1)

a
,

which does not imply the ordinary Banach contraction in a metric space (X, d), that
is, there exists k ∈ [0, 1) such that

d(T x, T y) ≤ kd(x, y)

for all x, y ∈ X , where T : X → X is a mapping.
Thus, this states that even if the m-metric m and the ordinary metric d have the

same topology, then the Banach contraction of the m-metric does not imply the
Banach contraction of the ordinary metric d.

Now, we give the concepts of a convergent sequence, a Cauchy sequence, and the
completeness in M-metric spaces.
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Let (X,m) be an m-metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if

lim
n→∞[m(xn, x) − mxn x ] = 0;

(2) A sequence {xn} in X is called an m-Cauchy sequence if

lim
n,m→∞[m(xn, xm) − mxn xm ], lim

n,m→∞[Mxn xm − mxn xm ]

exist (and are finite);
(3) A space X is said to be complete if everym-Cauchy sequence {xn} in X converges

to a point x ∈ X such that

lim
n→∞[m(xn, x) − mxn x ] = 0, lim

n→∞[Mxn x − mxn x ] = 0.

Example P10. Let X = [0,∞) and m : X × X → R+ be a function defined by

m(x, y) = x + y

2

for all x, y ∈ X . Then, (X,m) is a complete M-metric space since (X,mw) =
([0,∞), 3

2 | · |) is a complete metric space.

On the other hand, a basic question in the stability of functional equations is as
follows:

When is it true that a function that approximately satisfies a functional equation
must be close to an exact solution of the equation?

The stability problem of functional equations was initially studied from a question
of Ulam [51] in 1940 on the stability of group homomorphisms:

Let G1 be a group and G2 be a metric group with a metric d(·, ·). Given ε > 0,
does there exist δ > 0 such that if a function h : G1 → G2 satisfies the inequality

d(h(xy), h(x)h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with d(h(x),
H(x)) < ε for all x ∈ G1?

If the answer is affirmative, then we say that the equation of homomorphism
H(x · y) = H(x) · H(y) is stable.

In next year, Hyers [52] first gives some partial answer of Ulam’s question for
Banach spaces and then this type of stability is called the Ulam–Hyers stability.
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This opened an avenue for further study and development of analysis in this field.
Subsequently, many researchers have studied and extended the Ulam–Hyers stability
in many ways (see [53, 54]).

Also, the notion of the well-posedness and the limit shadowing property of the
fixed point problem has evoked much interest to many researchers, for example,
De Blassi and Myjak [55], Reich and Zaslavski [56], Lahiri and Das [57], and Popa
[58, 59].

Now, we show the following:
First, we define some types of the Ulam–Hyers stability, the well-posedness, and

the limit shadowing property of the fixed point problem in an M-metric space which
is a generalization of a metric space.

Second, we deal with the Ulam–Hyers stability, the well-posedness, and the limit
shadowingproperty of thefixedpoint problem forBanach’s andKannan’s contraction
mappings in M-metric spaces.

Finally, we furnish two examples to illustrate our main results in this section.

The following lemma is useful to prove the main results in this paper:

Lemma AKS1. (Asadi et al. [50]) Let (X,m) be an M-metric space. Then, we
have the following:

(1) {xn} is an m-Cauchy sequence in(X,m) if and only if it is a Cauchy sequence
in the metric space (X,mw).

(2) (X,m) is complete if and only if the metric space (X,mw) is complete. Further-
more, for a sequence {xn} in X andx ∈ X , we have

lim
n→∞mw(xn, x) = 0 ⇐⇒ lim

n→∞[m(xn, x) − mxn x ] = 0,

lim
n→∞[Mxn x − mxn x ] = 0.

Moreover, two above assertions hold for ms .

Now, we introduce the concepts of Ulam–Hyers stability, well-posedness, and the
limit shadowing property of the fixed point problem in M-metric spaces. Also, we
study theUlam–Hyers stability, thewell-posedness, and the limit shadowing property
results for the fixed point problem of Banach’s contractive mappings in M-metric
spaces. Finally, we furnish one example to illustrate the first main result.

Definition SPL. Let (X,m) be an M-metric space and T : X → X be a mapping.

(1) The fixed point problem
x = T x (FPP)

is said to be Ulam–Hyers stable if there exists c > 0 such that for any ε > 0 and
for each w∗ ∈ X which is an ε-solution of the fixed point problem (FPP), i.e., w∗
satisfies the inequality
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m(w∗, Tw∗) ≤ ε,

there exists a solution x∗ ∈ X of the problem (FPP) such that

m(x∗, w∗) ≤ cε.

(2) The fixed point problem (FPP) of T is said to be well-posed if the following
conditions hold:

(a) T has a unique fixed point x∗ in X ;
(b) For any sequence {xn} in X with lim

n→∞m(xn, T xn) = 0, we have

lim
n→∞m(xn, x∗) = 0.

(3) Thefixedpoint problem (FPP) of T is said to have the limit shadowing property
in X if, for any sequence {xn} in X with lim

n→∞m(xn, T xn) = 0, there exists

z ∈ X such that
lim

n→∞ m(T nz, xn) = 0.

Now, we give some results on Ulam–Hyers stability, well-posedness, and the limit
shadowing property of the fixed point problem in M-metric spaces (see [60]):

Theorem PSCC1. Let (X,m) be a complete M-metric space and T : X → X be
Banach’s contractive mapping satisfying the condition (FPP). Then, the following
assertions hold:

(1) The fixed point problem of T is Ulam–Hyers stable;
(2) The fixed point problem of T is well-posed;
(3) The fixed point problem of T has the limit shadowing property in X .

Now, we give one example to illustrate Theorem PSCC1.

Example PSCC1. Let X = [0,∞) and m : X × X → R+ be a function defined
by

m(x, y) = x + y

2

for all x, y ∈ X . Then, (X,m) is a complete M-metric space. Define a mapping
T : X → X by T x = x

2 for all x ∈ X . For each x, y ∈ X , we obtain

m(T x, T y) = 1

2

( x

2
+ y

2

)
= 1

2
m(x, y)

and so T is Banach’s contractive mapping.
First, we claim that the fixed point problem of T is Ulam–Hyers stable. Assume

that ε > 0 and w∗ ∈ X is an ε-solution of the fixed point problem of T , that is,

m(w∗, Tw∗) ≤ ε =⇒ 1

2

(
w∗ + w∗

2

)
≤ ε =⇒ w∗

2
≤ 2

3
ε.
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It is easy to see that x∗ = 0 is a solution of the fixed point of T and

m(x∗, w∗) = m(0, w∗) = w∗

2
≤ 2

3
ε

and so the fixed point problem of T is Ulam–Hyers stable.
Second, we prove that the fixed point problem of T is well-posed. We can see that

x∗ = 0 is a unique fixed point of T . Now, we assume that {xn} is a sequence in X
such that lim

n→∞m(xn, T xn) = 0, that is,

lim
n→∞

1

2

(
xn + xn

2

)
= 0 =⇒ lim

n→∞xn = 0.

Then, we obtain

lim
n→∞m(xn, x∗) = lim

n→∞m(xn, 0) = lim
n→∞

xn

2
= 0

and so the fixed point problem of T is well-posed.
Finally,we show that thefixedpoint problemof T has the limit shadowingproperty

in X . Suppose that {xn} is any sequence in X so that lim
n→∞m(xn, T xn) = 0. It follows

that lim
n→∞xn = 0. We can see that there is z = 0 ∈ X such that

lim
n→∞m(T nz, xn) = lim

n→∞m(0, xn) = lim
n→∞

xn

2
= 0,

which implies that the fixed point problem of T has the limit shadowing property
in X .

Next, we introduce another types of theUlam–Hyers stability, thewell-posedness,
and the limit shadowing property of the fixed point problem in M-metric spaces. By
using these concepts, we give the main result for the fixed point problem ofKannan’s
contractive mappings in M-metric spaces.

Definition PSCC. Let (X,m) be an M-metric space and T : X → X be a
mapping.

(1) The fixed point problem
x = T x (FPP)

is said to be Ulam–Hyers stable type (K ) if there exists c > 0 such that for each
ε > 0, for eachw∗ ∈ X which is an ε-solution of the fixed point equation (FPP),
i.e., w∗ satisfies the inequality

m(w∗, Tw∗) ≤ ε,

there exists a solution x∗ ∈ X of the equation (FPP) such that
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m(x∗, w∗) − cm(x∗, x∗) ≤ cε.

(2) The fixed point problem of T is said to be well-posed type (K ) if the following
conditions hold:

(a) T has a unique fixed point x∗ in X ;
(b) There exists c > 0 such that for any sequence {xn} in X such that lim

n→∞m(xn,

T xn) = 0, we have

lim
n→∞ m(xn, x∗) = cm(x∗, x∗).

(3) The fixed point problem of T is said to have the limit shadowing property
type (K ) in X if there exists c > 0 such that for any sequence {xn} in X with
lim

n→∞m(xn, T xn) = 0, there exists z ∈ X such that

lim
n→∞ m(T nz, xn) = cm(z, z).

Note that it is easy to see that the Ulam–Hyers stability of the fixed point problem
implies the Ulam–Hyers stability type (K ).

Now, we give the following result on another types of the Ulam–Hyers stability,
the well-posedness, and the limit shadowing property of the fixed point problem in
M-metric spaces:

Theorem PSCC2. Let (X,m) be a complete M-metric space and T : X → X be
Kannan’s contractive mapping satisfying the condition (FPP). Then, the following
assertions hold:

(1) The fixed point problem of T is Ulam–Hyers stable type (K );
(2) The fixed point problem of T is well-posed type (K );
(3) The fixed point problem of T has the limit shadowing property type (K ) in X .

Remark P2. In this survey, based on the fixed point results of Asadi [61], we
have studied the Ulam–Hyers stability, the well-posedness, and the limit shadowing
property for the fixed point problems of Banach’s and Kannan’s contractive map-
pings in M-metric spaces. We gave some examples to illustrate our results. However,
several fixed point results established in M-metric spaces and other spaces have been
studied by many mathematicians, for example, see Asadi’s results in [50, 61].

Therefore, the author suggests to study the Ulam–Hyers stability, well-posedness,
and limit shadowing of fixed point problems for various kinds of nonlinear mappings
in many distance spaces.
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4 Extensions of Banach’s Fixed Point Theorem
to Multi-valued Mappings

In 1969, Nadler, Jr. [62] extended Banach’s fixed point theorem for a single-valued
mapping in a complete metric space (X, d) to a multi-valued mapping in metric
spaces. Since Nadler’s theorem, many authors have improved, extended, and gener-
alized this theorem in several ways.

In particular, in 1996, Kada et al. [63] proved the following theorem (nonconvex
minimization theorem), which is very useful to prove Ekeland’s variational principle
and Caristi’s fixed point theorem which generalize Banach’s fixed point theorem for
multi-valued mappings in metric spaces.

TheoremKST. Let (X, d) be a complete metric space and f : X → (−∞,+∞)

be a proper bounded below and lower semi-continuous function. Suppose that, for
all u ∈ X with

inf
x∈X

f (x) < f (u),

there exists v ∈ X such that u �= v and

f (v) + d(u, v) ≤ f (u).

Then, there exists x0 ∈ X such that f (x0) = inf x∈X f (x).

By using Theorem KST, we can prove the following Ekeland’s variational prin-
ciple, which was proved by Ekeland [64] in 1979.

Theorem E. Let (X, d) be a complete metric space and f : X → (−∞,+∞) be
a proper bounded below and lower semi-continuous function. Then, for any ε > 0
and u ∈ X with

f (u) ≤ inf
x∈X

f (x) + ε,

there exists v ∈ X such that

(a) f (v) ≤ f (u);
(b) d(u, v) ≤ 1;
(c) f (w) > f (v) − εd(u, w) for all w ∈ X with w �= v.

By using Ekeland’s variational principle, we can prove the following:

Corollary E1. Let (X, d) be a complete metric space and f : X → (−∞,+∞)

be a proper bounded below and lower semi-continuous function. Then, for any ε > 0,
there exists v ∈ X such that

(a) f (v) ≤ inf x∈X +ε > 0,
(b) f (w) > f (v) − εd(u, w) for all w ∈ X .

By using Corollary E1, we can prove Banach’s fixed point theorem. In fact, let
f (w) = d(w, T (w)) and choose εwith 0 < ε < 1 − L . ByCorollaryE1, there exists
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v ∈ X such that
f (w) > f (v) − εd(v,w)

for all w ∈ X . Putting w = T (v), we have

d(v, T (v)) ≤ d(T (v), T (T (v))) + εd(v, T (v))

≤ Ld(v, T (v)) + εd(v, T (v))

= (L + ε)d(v, T (v)).

If v �= T (v), then we have 1 ≤ L + ε, which contradicts L + ε < 1. Therefore, we
have v = T (v), that is, v is a fixed point of T . The uniqueness of the fixed point v
follows easily.

By using TheoremKST, we can prove the following Caristi’s fixed point theorem,
which was proved by Caristi [18] in 1976:

TheoremC. Let (X, d) be a complete metric space and T : X → X be a mapping
such that

d(x, T (x)) + f (T (x)) ≤ f (x)

for all x ∈ X , where f : X → (−∞,+∞] be a proper bounded below and lower
semi-continuous function. Then, there exists z ∈ X such that T (z) = z and
f (z) < +∞.

By using Caristi’s fixed point theorem, we can prove a fixed point theorem for a
multi-valued mapping in metric spaces.

Theorem C1. Let (X, d) be a complete metric space and T be a mapping from X
into 2X , the power set of X , such that, for all x ∈ X , there exists y ∈ T (x) satisfying

f (y) + d(x, y) ≤ f (x),

where f : X → (−∞,+∞] be a proper bounded below and lower semi-continuous
function. Then, there exists z ∈ X such that z ∈ T (z) and f (z) < +∞.

Let (X, d) be a metric space and C B(X) be a family of all nonempty bounded
closed subsets of X . For all A, B ∈ C B(X), define the Hausdorff metric as follows:

H(A, B) = max{δ(A, B), δ(B, A)},

where
δ(A, B) = sup{d(x, B) : x ∈ A}

for all A, B ∈ C B(X) and

d(x, B) = inf{d(x, y) : y ∈ B}
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for all x ∈ X and B ∈ C B(X).

By using Theorem KST, we can prove the following Nadler’s fixed point theorem
for a multi-valued mapping in a complete metric space (X, d):

Theorem N. Let (X, d) be a complete metric space and T : X → C B(X) be a
L-contractive mapping, that is, there exists L ∈ (0, 1) such that

H(T x, T y) ≤ Ld(x, y)

for all x, y ∈ X . Then, there exists x0 ∈ X such that x0 ∈ T x0.

Now, we give one example to illustrate Nadler’s fixed point theorem.

Example N1. Let X = [0, 1] be a metric space with the usual metric and define
a function f : X → X by

f (x) =
{

1
2 x + 1

2 , 0 ≤ x ≤ 1
2 ,

− 1
2 x + 1, 1

2 ≤ x ≤ 1.

Define a mapping T : X → C B(X) by

T (x) = {0} ∪ { f (x)}

for all x ∈ X . Then, T is a multi-valued contraction and the fixed points of T are 0
and 2

3 .

Next, we consider to show the existence of fixed points of multi-valued nonself-
mappings in a metric space (X, d).

In 1972, Assad and Kirk [65] first gave some sufficient conditions for a multi-
valued nonself-mapping to have a fixed point.

Recall that a metric space (X, d) is called a convex metric space in the sense of
Menger if, for all x, y ∈ X with x �= y, there exists z ∈ X , z �= x and z �= y, such
that

d(x, z) + d(z, y) = d(x, y).

Further, they showed that if K is a nonempty closed subset of X , x ∈ K and
y /∈ K , then there exists a point z ∈ ∂K (∂K denotes the boundary of K ) such that

d(x, z) + d(z, y) = d(x, y).

Also, they proved the following:

Theorem AK. Let (X, d) be a complete and convex metric space, K be a closed
subset of X , and T : K → C B(X) be a multi-valued mapping such that there exists
λ ∈ (0, 1) such that

H(T x, T y) ≤ λd(x, y)
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for all x, y ∈ K . If T x ⊂ K for all x ∈ ∂K , then T has a fixed point in K .

5 Existence of Common Fixed Points for Two Nonlinear
Mappings

Let (X, d) be a metric space and S, T : X → X be two mappings.

(I) Two mappings S and T are said to be commuting on X (Jungck, [66]) if, for
all x ∈ X ,

ST x = T Sx .

Example J. Let X = R
2 be a Euclidean two-dimensional space with the usual

metric d. Define two mappings S, T : X → X

S(p) =
(
7x,

y

3
+ 4

)
, T (p) =

(
11x,

y

2
+ 3

)

for all p = (x, y) ∈ X . Then, we have

T (S(p)) =
(
77x,

y

6
+ 5

)
= S(T (p))

and so S and T are commuting on X .

In 1976, Jungck [66] proved the following theorem:

Theorem J. Let T be a continuous mapping from a complete metric space (X, d)
into itself. Then, T has a fixed point in X if and only if there exist α ∈ (0, 1) and a
mapping S : X → X such that

(a) S and T are commuting on X ;
(b) S(X) ⊂ T (X);
(c) d(S(x), S(y)) ≤ αd(T (x), T (y)) for all x, y ∈ X .

Indeed, T and S have a unique common fixed point in X if the conditions (b) and (c)
hold.

In 1982, Sessa [67] introduced the concept of weakly commuting mappings in a
metric space (X, d) as follows:

(II) Two mappings T and S are said to be weakly commuting if

d(T Sx, ST x) ≤ d(T x, Sx)
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for all x ∈ X .

Note that commuting mappings are weakly commuting, but the converse is not
true.

Example J2. Let X = [0, 1] with the usual metric d. Define two mappings S, T :
X → X by

Sx = x

2
, T x = x

2 + x

for all x, y ∈ X , respectively. Then, we have

d(ST x, T Sy) = x

4 + x
− x

4 + 2x
= x2

(4 + x)(4 + 2x)

≤ x2

4 + 2x
= x

2
− x

2 + x
= d(Sx, T x)

for all x ∈ X and so S and T are weakly commuting, but they are not commuting
because, for all x ∈ X , we have

T Sx = x

x + 4
�= x

2x + 4
= ST x .

In 1986, Jungck [68] introduced the concept of compatible mappings in a metric
space (X, d) as follows:

(III) Two mappings S, T : X → X are said to be compatible on X if

lim
n→∞ d(T Sxn, ST xn) = 0

when there is a sequence {xn} in X such that limn→∞ T xn = limn→∞ Sxn = t for
some t ∈ X .

Remark COM. (1) The weak commutativity does not imply the existence of a
sequence of points satisfying the condition of compatibility.

(2) If S and T are compatible mappings, then d(ST x, T Sx) = 0 whenever
d(Sx, T x) = 0 for some x ∈ X .

(3) Weakly commuting mappings are compatible, but the converse is not true.

Example J3. Let X = (−∞,+∞) be the set of real numbers with the usual
metric d. Define two mappings S, T : X → X by

Sx = x3, T x = 2 − x

for all x, y ∈ X , respectively. From

d(Sxn, T xn) = |xn − 1||x2
n + xn + 2| → 0 ⇐⇒ xn → 1,
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we have
lim

n→∞ d(ST xn, T Sxn) = lim
n→∞ 6|xn − 1|2 = 0

as xn → 1. Thus, S and T are compatible, but they are not weakly commuting
because, if x = 0 in X , we have

d(ST x, T Sx) = 6 > 2 = d(Ax, Bx).

In 1998, Jungck and Rhoades [69] introduced the concept of weakly compatible
mappings in a metric space (X, d) as follows:

(IV) Two mappings S and T are said to be weakly compatible if they are commut-
ing at their coincident points, that is, if Su = T u for some u ∈ X , then ST u = T Su.

Note that compatible mappings are weakly compatible, but the converse is not
true.

Example J4. Let X = (−∞,+∞) be the set of real numbers with the usual
metric d and E = [0, 1]. Define two mappings S, T : E → E by

Sx =
{
0, 0 ≤ x < 2

3 ,
4
3 − x, 2

3 ≤ x ≤ 1,

and

T x =
{

1
2 , 0 ≤ x < 2

3 ,

1 − 1
2 x, 2

3 ≤ x ≤ 1.

Then, S and T are weakly compatible on E , but they are not compatible on E .

In 1993, Jungck et al. [70] introduced the concept of compatible mappings of type
(A) in a metric space (X, d) as follows:

(V) Two mappings S, T : X → X are said to be compatible of type (A) on X if

lim
n→∞ d(T Sxn, SSxn) = 0, lim

n→∞ d(ST xn, T T xn) = 0

when there is a sequence {xn} in X such that limn→∞ T xn = limn→∞ Sxn = t for
some t ∈ X .

Remark COM1. (1) If S and T are continuous, then S and T are compatible if
and only if they are compatible of type (A).

(2) If S and T are not continuous, (1) is not true.

In 1994, Pant [71] introduced the following:
(VI) Two mappings S and T are said to be R-weakly commuting if there exists a

real number R > 0 such that

d(ST x, T Sx) ≤ Rd(Sx, T x)
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for all x ∈ X .
Note that If R = 1, then S and T are weakly commuting.

Under the assumption of R-weak commutativity, Pant [71] proved the following
common fixed point theorem:

Theorem P. Let (X, d) be a complete metric space, S and T be R-weakly com-
muting self-mappings of X satisfying the condition:

(a) d(Sx, Sy) ≤ γ(d(T x, T y)) for all x, y ∈ X , where γ : R → R is a continu-
ous function such that γ(t) < t for each t > O;

(b) S(X) ⊂ T (X);
(c) either S or T is continuous.

Then, S and T have a unique common fixed point in X.

Simple statements and elegant proofs of Theorem P reveal the fact that Theorem
P does not hold if we allow both the mappings S and T to be discontinuous on X or
the space X is not complete.

To this end, we have the following example:

Example PCK. Let X = {O, 1, 1
2 ,

1
22 , . . .} be ametric space with the usual metric

d. Define two mappings S, T : X → X by

S(0) = 1

22
, S

( 1

2n

)
= 1

2n+2
, T (0) = 1

2
, T

( 1

2n

)
= 1

2n+1

for each n ≥ 0, respectively. Clearly, (X, d) is complete and S(X) ⊂ T (X). Since
S and T are commuting on X , they are R-weakly commuting for R > 0. Define
γ(t) = 1

2 t for all t > 0. Then, S and T both are not continuous at 0. Hence, all the
conditions of Theorem P are satisfied except the continuity of either S or T , but
neither S nor T have a common fixed point in X .

Now, there arises a natural question:

“How Theorem P can be improved to the setting of noncomplete metric spaces
and without the continuity of S and T over the whole space X?”

In 1997, Pathak et al. [72] gave the partial answer. It seems that Theorem P can
be improved in two ways:

Either imposing certain restrictions on the space X or by replacing the notion of
R-weakly commutativity of mappings with certain improved notion.

Here, we chosen the second option. In this perspective, we introduced the follow-
ing definitions:

(VII) (1) Two mappings S and T are said to be R-weakly commuting of type (A f )

if there exists a real number R > 0 such that

d(ST x, T T x) ≤ Rd(Sx, T x)
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for all x ∈ X .
(2) Two mappings S and T are said to be R-weakly commuting of type (Ag) if

there exists a real number R > 0 such that

d(T Sx, SSx) ≤ Rd(Sx, T x)

for all x ∈ X .
In [72], we can find suitable examples which show that R-weakly commuting

mappings are not necessarily R-weakly commuting of type (A f ) (see an example of
Pant’s paper [71]).

Also, we proved the following:

Theorem PCK. Let (X, d) be a metric space, C be a subset of X , S, and T be
R-weakly commuting self-mappings of type (Ag) or type (A f ) of X satisfying the
following condition:

(a) d(Sx, Sy) ≤ γ(d(T x, T y)) for all x,Y inC , where γ : R+ → R
+ is a con-

tinuous function such that γ(t) < t for each t > 0;
(b) S(C) ⊂ T (C);
(c) S(C) is complete;
(d) either S or T is continuous.

Then, S and T have a unique common fixed point in X .

In [72], we can find some examples to illustrate Theorem PCK, and Theorem PCK
improves, extends, and generalizes the corresponding fixed point theorems given by
some authors.

6 Improvement of Banach’s Fixed Point Theorem

In 1922, since Banach’s fixed point theorem, most of fixed point theorems for non-
linear mappings in a metric space (X, d) proved by many authors have required the
following conditions:

(1) the completeness of the given space X ;
(2) the closedness and convexity of a subset C of X ;
(3) the continuity of one mapping or more mappings;
(4) the containments of the range of the given mappings in metric spaces.

Recently, by using the following properties, some authors have obtained some
fixed point theorems without using the conditions mentioned above.

(I) Two mappings S and T are said to satisfy the (E, A)-property (Aamri and
Moutawakil, [73]) if there exists a sequence {xn} in X such that

lim
n→∞ Sxn = lim

n→∞ T xn = t
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for some t ∈ X .
(II) Two mappings S and T are said to satisfy the common limit in the range of S

(shortly, the (C L R − S)-property) (Sintunavarat and Kumam, [74]) if there exists a
sequence {xn} in X such that

lim
n→∞ Sxn = lim

n→∞ T xn = Su

for some u ∈ X .

Now, we give one example satisfying the (C L R − S)-property as follows:

Example CLR. Let X = [0,∞) be the set of real numbers with the usual metric
d(x, y) = |x − y| for all x, y ∈ X . Define two mappings S, T : X → X by

Sx = x

2
, T x = 2x

for all x ∈ X . Consider a sequence {xn} defined by xn = 1
n for each n ≥ 1. Then, we

have
lim

n→∞ Sxn = lim
n→∞ T xn = 0 = S(0).

Therefore, S and T satisfy the (C L R − S)-property.

If two mappings S, T : X → X are noncompatible, then there exists at least one
sequence {xn} in X such that

lim
n→∞ Sxn = lim

n→∞ T xn = t

for some t ∈ X , but limn→∞ d(ST xn, T Sxn) is nonzero or nonexistent. Thus, two
noncompatible mappings S and T satisfy the (E, A)-property.

(III) Twomappings S and T are said to beoccasionally weakly compatible (shortly,
(owc)-property) (Bouhadjera, [75]) if there exists a point u ∈ X such that

Su = T u, ST u = T Su.

Now, we give one example of occasionally weakly compatible mappings as
follows:

Example OWC. Let X = [0,∞) be the set of real numbers with the usual metric
d(x, y) = |x − y| for all x, y ∈ X . Define two mappings S, T : X → X by

Sx =
{
4, 0 ≤ x < 1,

x4, 1 ≤ x < ∞,

and
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T x =
{
3, 0 ≤ x < 1,
1
x4 , 1 ≤ x < ∞.

Then, S(1) = T (1) = 1 and ST (1) = 1 = T S(1) and so the mappings S and T are
occasionally weakly compatible mappings.

7 Extensions of the Picard Iterative Sequence

[A] Recently, many authors introduced the following iterations, which are general-
izations of Picard iteration:

Let X be a normed linear space and S, T : X → X be two nonlinear mappings.
(1) The Picard iteration (Picard 1890): The sequence {xn} is defined by

xn+1 = T xn

for each n ≥ 0;
(2) The Jungck iteration (Jungck 1976): The sequence {xn} is defined by

Sxn+1 = T xn

for each n ≥ 0;
(3) The Mann iteration (Mann 1953): The sequence {xn} is defined by

xn+1 = (1 − λn)xn + λnT xn

for each n ≥ 0, where {λn} is a real sequence satisfying 0 ≤ λn < 1 for each n ≥ 0;
(4) TheKrasnoselskij iteration (Krasnoselskij 1955): The sequence {xn} is defined

by

xn+1 = T 1
2
xn = 1

2
xn + 1

2
T xn = 1

2
(xn + T xn)

for each n ≥ 0;
(5) The Schäefer iteration (Schäefer 1957): The sequence {xn} is defined by

{
x0 ∈ C,

xn+1 = (1 − λ)xn + λT xn

for each n ≥ 0, where λ ∈ (0, 1).
(6) The Halpern iteration (Halpern 1967): For any fixed u, x0 ∈ X , the sequence

{xn} is defined by
xn = λnu + (1 − λn)T xn
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for each n ≥ 0, where {λn} is a real sequence satisfying 0 ≤ λn ≤ 1 for each n ≥ 0;
(7) The Ishikawa iteration (Ishikawa 1974): The sequence {xn} is defined by

{
yn = (1 − βn)xn + βnT xn,

xn+1 = (1 − αn)xn + αnT yn

for each n ≥ 0, where {αn} and {βn} are the sequences of real numbers satisfying
0 ≤ αn, βn < 1;

(8) The Noor iteration (Noor 2000): The sequence {xn} is defined by

⎧⎪⎨
⎪⎩

zn = (1 − γn)xn + γnT xn,

yn = (1 − βn)xn + βnT zn,

xn+1 = (1 − αn)xn + αnT yn

for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn < 1;

(9) The Moudafi viscosity iteration (Moudafi 2000): The sequence {xn} is defined
by

xn = λn f (xn) + (1 − λn)T xn

for eachn ≥ 0,where f : X → X is a contractivemapping and {λn} is a real sequence
satisfying 0 ≤ λn ≤ 1 for each n ≥ 0;

(10) The Singh–Bhatnagar–Mishra iteration (Singh et al. 2005): The sequence
{xn} is defined by

Sxn+1 = (1 − λn)Sxn + λnT xn

for each n ≥ 0, where {λn} is a real sequence satisfying 0 ≤ λn < 1 for each n ≥ 0;
(11) The Ishikawa-type iteration (Agarwal et al. 2007): The sequence {xn} is

defined by {
yn = (1 − βn)xn + βnT xn,

xn+1 = (1 − αn)T xn + αnT yn

for each n ≥ 0, where {αn} and {βn} are the sequences of real numbers satisfying
0 ≤ αn, βn < 1;

(12) The Jungck–Ishikawa iteration (Olatinwo 2008): The sequence {xn} is
defined by {

Syn = (1 − βn)Sxn + βnT xn,

Sxn+1 = (1 − αn)Sxn + αnT yn

for each n ≥ 0, where {αn} and {βn} are the sequences of real numbers satisfying
0 ≤ αn, βn < 1;

(13) The Jungck–Noor iteration (Olatinwo 2008): The sequence {xn} is defined
by



216 Y.J. Cho

⎧⎪⎨
⎪⎩

Szn = (1 − γn)Sxn + γnT xn,

Syn = (1 − βn)Sxn + βnT zn,

Sxn+1 = (1 − αn)Sxn + αnT yn

for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn < 1;

(14) The Kirk–Mann iteration (Olatinwo 2009): The sequence {xn} is defined by

xn+1 =
k∑

i=1

αn,i T
i xn

for each n ≥ 0,whereαn,i ∈ [0, 1],αn,0 �= 0,
∑k

i=1 αn,i = 1, and k is a fixed number.
(15) The Kirk–Ishikawa iteration (Olatinwo 2009): The sequence {xn} is defined

by {
yn = ∑s

j=0 βn, j T j xn,

xn+1 = αn,0xn + ∑k
i=1 αn,i T i yn

for each n ≥ 0, where k, s are fixed integers with k ≥ s,αn,i ,βn, j ∈ [0, 1],αn,0 �= 0,
αn,0 �= 0 and

k∑
i=1

αn,i =
s∑

j=0

βn, j = 1;

(16) The S P-iteration (Suantai 2011): The sequence {xn} is defined by

⎧⎪⎨
⎪⎩

zn = (1 − γn)xn + γnT xn,

yn = (1 − βn)zn + βnT zn,

xn+1 = (1 − αn)xn + αnT yn

for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn < 1;

(17) The Jungck- S P-iteration (Chugh and Kumar 2011): The sequence {xn} is
defined by ⎧⎪⎨

⎪⎩
Szn = (1 − γn)Syn + γnT xn,

Syn = (1 − βn)Szn + βnT zn,

Sxn+1 = (1 − αn)Sxn + αnT yn

for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn < 1;

(18) The Jungck–Kirk–Noor iteration (Chugh and Kumar 2012): The sequence
{xn} is defined by
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⎧⎪⎨
⎪⎩

Szn = γn,0Sxn + ∑t
k=1 γn,k T k xn,

Syn = βn,0Sxn + ∑s
j=1 βn, j T j zn,

Sxn+1 = αn,0Sxn + ∑k
i=1 αn,i T i yn

for each n ≥ 0, where k, s, t are fixed integers with k ≥ s ≥ t , αn,i ,βn, j , γn,k ∈
[0, 1], αn,0 �= 0, βn,0 �= 0, γn,0 �= and

k∑
i=0

αn,i =
s∑

j=0

βn, j =
t∑

k=0

γn,k = 1;

(19) The Jungck-C R-iteration (Hussain et al. 2013): The sequence {xn} is defined
by ⎧⎪⎨

⎪⎩
Szn = (1 − γn)Sxn + γnT xn,

Syn = (1 − βn)Sxn + βnT zn,

Sxn+1 = (1 − αn)Syn + αnT yn

for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn ≤ 1;

(20) TheNoor-type iteration (I ) (Thakur et al. 2014): The sequence {xn} is defined
by ⎧⎪⎨

⎪⎩
zn = (1 − γn)xn + γnT xn,

yn = (1 − βn)zn + βnT zn,

xn+1 = (1 − αn)T yn + αnT yn

for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn < 1;

(21) The Picard S-iteration (Thakur et al. 2014): The sequence {xn} is defined by⎧⎪⎨
⎪⎩

zn = (1 − γn)xn + γnT xn,

yn = (1 − βn)T xn + βnT zn,

xn+1 = T yn

for each n ≥ 0, where {γn} and {βn} are the sequences of real numbers satisfying
0 ≤ γn, βn < 1;

(22)TheNoor-type iteration (I I ) (Abbas et al. 2014): The sequence {xn} is defined
by ⎧⎪⎨

⎪⎩
zn = (1 − γn)xn + γnT xn,

yn = (1 − βn)T xn + βnT zn,

xn+1 = (1 − αn)T yn + αnT yn
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for each n ≥ 0, where {γn}, {αn}, and {βn} are the sequences of real numbers satis-
fying 0 ≤ γn,αn, βn < 1.

Recently, many authors have proved strong and weak convergence theorems in
Hilbert spaces and Banach spaces for many kinds of nonlinear mappings.

[B] Comparing the Convergence Rates of the Iterations to a Fixed Point

Recently, some authors have compared the rates of the convergence of some kinds
of the iterations. First, we give the definitions of the convergence rates as follows:

Definition CR1. Let {an} and {bn} be two sequences of real numbers which
converge to a and b, respectively. Assume that there exists a real number l such that

lim
n→∞

|an − a|
|bn − b| = l.

(1) If l = 0, then we say that {an} converges faster to a than {bn} to b;
(2) If 0 < l < 1, then we say that {an} and {bn} have the same rate of convergence.

Definition CR2. Let {un} and {vn} be two fixed point iterations converging to the
same fixed point p (say) with error estimates:

‖un − p‖ ≤ an, ‖vn − p‖ ≤ bn

for eachn ≥ 0,where {an} and {bn} are two sequences of positive numbers converging
to 0. If {an} converges faster than {bn}, then we say that {un} converges faster than
{vn} to p.

For more details on the convergence rates of the iterations mentioned above, see
the following papers:

(1) B.E.Rhoades andZ.Xue,Comparisonof the rate of convergence amongPicard,
Mann, Ishikawa, and Noor iterations applied to quasi-contractive maps, Fixed
Point Theory Appl. 2010, 2010:169062.

(2) N. Hussain, A. Rafiq and B. Damjanović, R. Lazović, On rate of convergence
of various iterative schemes, Fixed Point Theory Appl. 2010, 2010:169062.

(3) W. Phuengrattana and S. Suantai, Strong convergence theorems and rate of
convergence of multi-step iterative methods for continuous mappings on an
arbitrary interval, Fixed Point Theory Appl. 2012, 2012:9.

(4) W.Phuengrattana andS. Suantai,On the rate of convergence ofMann, Ishikawa,
Noor and S P-iterations for continuous mappings on an arbitrary interval, J.
Comput. Appl. Math. 235(2011), 3006–3014.

(5) Y. Song and X. Liu, Convergence comparison of several iteration algorithms
for the common fixed point problems, Fixed Point Theory Appl. 2009, 2009:
824374.

(6) A. Alotaibi, V. Kumar and N. Hussain, Convergence comparison and stability
of Jungck-Kirk-type algorithms for common fixed point problems, Fixed Point
Theory Appl. 2013, 2013:173.
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(7) S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-type iterative
procedures, Internat. J. Math. Math. Sci. 19(2005), 3035–3043.

(8) M. O. Olatinwo and C. O. Imoru, Some convergence results for the Jungck-
Mann and the Jungck-Ishikawa iteration processes in the class of generalized
Zamfirescu operators, Acta Math. Univ. Comen. LXXVII(2008), 299–304.

(9) M. O. Olatinwo, A generalization of some convergence results using the
Jungck-Noor three-step iteration process in an arbitrary Banach space, Fasc.
Math. 40(2008), 37–43.

(10) M. O. Olatinwo, Some stability results for two hybrid fixed point iterative
algorithms in normed linear space, Mat. Vesnik 61(2009), 247–256.

(11) R. Chugh and V. Kumar, Stability of hybrid fixed point iterative algorithms of
Kirk-Noor type in normed linear space for self and nonself operators, Internat.
J. Contemp. Math. Sci. 7(24)(2012), 1165–1184.

(12) R. Chugh andV.Kumar, Strong convergence and stability results for Jungck-SP
iterative scheme, Internat. J. Comput. Appl. 36(12)(2011), 40–46.

(13) R. Chugh and V. Kumar, On the rate of convergence of some new modified
iterative schemes, Amer. J. Comput. Math. 3(2013), 270–290.

(14) N. Hussain, R. Chugh, V. Kumar and A. Rafiq, On the rate of convergence of
Kirk-type iterative schemes, J. Appl. Math. 2012, Article ID 526503 (2012).

(15) N. Hussain, V. Kumar and M.A. Kutbi, On the rate of convergence of Jungck-
type iterative schemes, Abstr. Appl. Anal. 2013, Article ID 132626 (2013).

(16) Y. Qing and B. E. Rhoades, Comments on the rate of convergence between
Mann and Ishikawa iterations applied to Zamfirescu operators, Fixed Point
Theory Appl. 2008, Article ID 387504 (2008).

(17) V. Berinde, Picard iteration converges faster than Mann iteration for a class of
quasi-contractive operators, Fixed Point Theory Appl. 2(2004), 97–105.

(18) V. Berinde and M. Berinde, The fastest Krasnoselskij iteration for approxi-
mating fixed points of strictly pseudo-contractive mappings, Carpath. J. Math.
21(2005), 13–20.

(19) V. Kumar, A. Latif, A. Rafiq and N. Hussain, S-iteration process for quasi-
contractive mappings, J. Inequal. Appl. 2013, 2013:206.

(20) S. S. Chang, Y. J. Cho and J. K. Kim, The equivalence between the convergence
of modified Picard, modified Mann, and modified Ishikawa iterations, Math.
Comput. Model. 37(2003), 985–991.

(21) S. S. Chang, J. K. Kim and Y. J. Cho, On the equivalence for the convergence of
Mann iteration and Ishikawa iteration with mixed errors for Lipschitz strongly
pseudo-contractive mappings, Comm. Appl. Nonlinear Anal. 12(2005), 79–88.

(22) O. Popescu, Picard iteration converges faster than Mann iteration for a class of
quasi-contractive operators, Math. Commun. 12(2007), 195–202.

(23) G.V. R. Babu,K.N.V.VVara Prasad andV.Berinde, Picard iteration converges
faster thanMann iteration for a class of quasi-contractive operators, Fixed Point
Theory Appl. 2004 2004:716359.

(24) G. V. R. Babu and K. N. V. V Vara Prasad, Mann iteration converges faster than
Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory
Appl. 2006, 2006: 49619.
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(25) S. Fathollahi, A. Ghiura, M. Postolache and S. Rezapour, A comparative study
on the convergence rate of some iteration methods involving contractive map-
pings, Fixed Point Theory Appl. 2015, 2015:234.

(26) S.Akbulut andM.Ozdemir, Picard iteration converges faster thanNoor iteration
for a class of quasi-contractive operators, Chiang Mai J. Sci. 39(2012), 688–
692.

(27) M. Abbas and T. Nazir, A new faster iteration process applied to constrained
minimization and feasibility problems, Mat. Vesnik 66(2014), 223–234.

(28) O. Olaleru, On the convergence rates of Picard, Mann, and Ishikawa itera-
tions of generalized contractive operators, Studia Univ., “Babes Bolyai”, Math.
LIV(2009), 103–114.

(29) Q. L. Dong, S. He and X. C. Liu, Rate of convergence of Mann, Ishikawa and
Noor iterations for continuous functions on an arbitrary interval, J. Inequal.
Appl. 2013, 2013:269.

(30) S. M. Soltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing
with quasi-contractive operators, Math. Commun. 10(2005), 81–88.

(31) V. Kumar, Comments on convergence rates of Mann and Ishikawa schemes for
generalized contractive operators, Internat. J.Math. Anal. 7(2013), 1317–1321.

(32) O. Celikler, Convergence analysis for a modified S P-iterative Method, Sci.
World J. 2014, Article ID 84054 (2014).

[C] Some Results on Comparisons of the Convergence Rates of the Iterations
mentioned above

(1) We know that, in general, the speed of some kinds of iterations depends on the
control conditions by numerical examples (see A. Alotaibi, V. Kumar and N.
Hussain, Fixed Point Theory Appl., 2013);

(2) Picard iteration converges faster than Mann iteration for a class of quasi-
contractive operators (see V. Brinde, Fixed Point Theory Appl. 2004);

(3) Picard iteration converges faster than Noor iteration for a class of quasi-
contractive operators (see S. Akbulut and M. Ozdemir, Chiang Mai J. Sci.,
2012);

(4) Some examples to show that Ishikawa iteration is faster thanMann iteration for
a certain class of quasi-contractive operators (see Y. Qing and B. E. Rhoades,
Fixed Point Theory Appl., 2008);

(5) The S P-iterative scheme with error terms converges faster than Ishikawa
and Noor iterative schemes for accretive type mappings (see R. Chugh and
V. Kumar, Internat. J. Comput. Math., 2013);

(6) The SP-iteration converges faster than the Mann, Ishikawa and Noor iterations
(see W. Phuengrattana and S. Suantai, J. Comput. Appl. Math., 2011);

(7) The Jungck-Kirk iteration converge faster than the corresponding Jungck iter-
ation to the common fixed point of T and S (see A. Alotaibi, V. Kumar and N.
Hussain, Fixed Point Theory Appl., 2013);

(8) We can see the convergence rates of some iterations mentioned above in the
paper by A. Alotaibi, V. Kumar and N. Hussain, Fixed Point Theory Appl.,
2013;
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(9) The Krasnoselskij iteration converges faster than theMann, Ishikawa and Noor
iterations (see B. E. Rhoades and Z. Xue, Fixed Point Theory Appl., 2010);

(10) A new faster iteration process applied to constrained minimization and feasi-
bility problems (see M. Abbas and T. Nazir, Mat. Vesnik, 2014);

(11) In some papers, we can show some Open Problems and Nice Examples on
comparisons of the convergence rates.

In particular, in the following papers, we can see very nice examples and some open
problems on comparisons of the convergence rates of some kinds of iterations:

(1) A. Alotaibi, V. Kumar and N. Hussain, Convergence comparison and stability
of Jungck-Kirk-type algorithms for common fixed point problems, Fixed Point
Theory Appl. 2013, 2013:173;

(2) W. Phuengrattana and S. Suantai, On the rate of convergence ofMann, Ishikawa,
Noor and S P-iterations for continuous mappings on an arbitrary interval,
J. Comput. Appl. Math. 235(2011), 3006–3014.

8 Applications of Banach’s Fixed Point Theorem

[A] Consider an usual equation F(x) = 0.
Let F(a) < 0, F(b) > 0, and 0 < C1 ≤ F ′(x) ≤ C2 for all x ∈ [a, b]. Define a

function f : [a, b] → [a, b] by

f (x) = x − αF(x)

for all x ∈ [a, b] andα ∈ Rwithα �= 0. Then, the equations f (x) = x and F(x) = 0
are equivalent. Since f ′(x) = 1 − αF ′(x), it follows that

1 − αC2 ≤ f ′(x) ≤ 1 − αC1

for all x ∈ [a, b]. So, we can choose α such that | f ′(x)| ≤ λ for some λ < 1 and
f (x) ∈ [a, b] for all x ∈ [a, b]. Then, we have

| f (x2) − f (x1)| ≤ λ|x2 − x1|

for all x1, x2 ∈ [a, b]. Hence, it follows that f is a Banach contraction and so, by
Banach’s fixed point theorem, a sequence {xn} defined by, for any x0 ∈ [a, b],

x1 = f (x0), x2 = f (x1), . . . , xn+1 = f (xn), . . .

converges to a unique solution of the equation f (x) = x , that is, to a solution of the
equation F(x) = 0.

[B] Consider the m × n system Ax = b for all m, n ≥ 1, that is,
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⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b1
b2
...

bm

⎞
⎟⎟⎟⎠

From the m × n system Ax = b for all m, n ≥ 1, we can consider the following
cases:

(1) If m < n, that is, in the system Ax = b, the unknowns are more than the
equations, then the system Ax = b has many solutions;

(2) If m = n, that is, in the system Ax = b, the unknowns and the equations are
same, then the system has a unique solution;

(3) If m > n, that is, in the system Ax = b, the equations are more than the
unknowns, then the system is usually inconsistent.

Thus, in general, we cannot expect to find a vector (solution) x ∈ R
n for which

Ax = b. But we can look for a vector x for which Ax is “closest” to b by using the
linear least squares.

For the case (3), consider the m × n system of the equations Ax = b. For each
x ∈ R

n , we can form a residual

r(x) = b − Ax .

The distance between b and ax is given by

‖b − Ax‖ = ‖r(x)‖.

Now, we wish to find a vector x ∈ R
n for which ‖r(x)‖ will be a minimum. In

fact,
Minimizing ‖r(x)‖ is equivalent to Minimizing ‖r(x)‖2

A vector x that accomplishes this is called a least squares solution to the system
Ax = b.

For the case (3), we will discuss some minimum-norm problems again.

Now, we consider the case (2) by applying Banach’s fixed point theorem.
The m × n system of the equations Ax = b can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = (1 − a11)x1 − a12x2 − · · · − a1n xn + b1
x2 = −a21x1 + (1 − a22)x2 − a23x3 − · · · − a2n xn + b2
x3 = −a31x1 − a32x2 + (1 − a33)x3 − · · · − a3n xn + b3

· · ·
xn = −an1x1 − an2x2 − an3x3 − · · · + (1 − ann)xn + bn.

Put αi j = −ai j + δi j , where
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δi j =
{
1, if i = j,

0, if i �= j.

Then, the above system is equivalent to the following:

xi =
n∑

j=1

αi j x j + bi (i = 1, 2, 3, . . . , n).

Thus, if x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) ∈ R
n , then the above system is

equivalent to the following:
x = Ax + b.

In other words, the problem x = Ax + b is to find the fixed point of the mapping
T : Rn → R

n defined by
T (x) = Ax + b

for all x = (x1, x2, . . . , xn) ∈ R
n .

If T is a contractive mapping, then we can use Banach’s fixed point theorem and
obtain the unique solution of T (x) = x by the method of successive approximation.

The conditions under which T is a contractive mapping depend on the choice of
the metric on X = R

n .

Theorem SE. Let X = R
n be a metric space with the metric d∞(x, y) =

maxi≤i≤n |xi − yi |. If

n∑
j=1

|αi j | ≤ α < 1 (i = 1, 2, 3, . . . , n),

then the n × n system of the equations Ax = b has a unique solution.

[C] Consider the following (ordinary) differential equation:

{
dy
dx = f (x, y),

y(x0) = y0.
(DE)

By using Banach’s fixed point theorem, we can show the following:
Theorem DE. Let f (x, y) be a continuous function on A = {(x, y) : a ≤

x ≤ b, c ≤ y ≤ d} satisfies the following:

| f (x, y) − f (x, y′)| ≤ α|y − y′|
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for all y, y′ ∈ [c, d]. Further, let (x0, y0) be an interior point of A. Then, the differ-
ential equation (DE) with the given initial condition has a unique solution.

[D] Let K (x, y) be a continuous function on [a, b] × [a, b] and φ(x) be a con-
tinuous function on [a, b]. Consider the following integral equation:

f (x) = φ(x) + λ

∫ x

a
K (x, y) f (y)dy (VE)

for all x ∈ [a, b], where λ is a parameter, which is called the Volterra equation.

By using Banach’s fixed point theorem, we can show the following:

Theorem IE. For each λ ∈ R, the Volterra equation (VE) has a unique solution
f which is continuous on [a, b].
Proof. Let X = C[a, b] be the set of all continuous functions on [a, b] with the

uniform metric. Since K is continuous, there exists k > 0 such that

|K (x, y)| ≤ k

for all x, y ∈ [a, b]. Define a mapping T : f �−→ T ( f ) on X by

T ( f (x)) = φ(x) + λ

∫ x

a
K (x, y) f (y)dy.

For all f, g ∈ X , we have

|T ( f (x)) − T (g(x))| =
∣∣∣λ ∫ x

a
K (x, y)| f (y) − g(y)|dy

∣∣∣
≤ |λ|k(x − a)d( f, g)

for all x ∈ [a, b]. Since T 2( f ) − T 2(g) = T (T ( f ) − T (g)), we have

|T 2( f (x)) − T 2(g(x))| =
∣∣∣λ ∫ x

a
K (x, y)|T ( f (y)) − T (g(y))|dy

∣∣∣
≤ |λ|

∫ x

a
|K (x, y)||λ|k(y − a)d( f, g)dy

≤ |λ|2k2
∫ x

a
(y − a)dyd( f, g)

≤ |λ|2k2(x − a)2

2
d( f, g).

Continuing this iterative process, we have
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|T n( f (x)) − T n(g(x))| ≤ |λ|nkn(x − a)n

n! d( f, g)

for all x ∈ [a, b]. Therefore, we have

|T n( f ) − T n(g)| ≤ |λ|k(x − a)|n
n! d( f, g).

Since rn

n! → 0 as n → ∞ for any r ∈ R, we conclude that there exists a positive
integer n such that T n is a Banach contraction. For sufficiently large n, we have

|λ|k(x − a)|n
n! < 1.

Therefore, by Banach’s fixed point theorem, there exists a unique solution f ∈ X
such that T ( f ) = f . Obviously, if T ( f ) = f , then f solves the integral equation
(VE). This completes the proof.

9 Converses of Banach’s Fixed Point Theorem

Now, we consider the converse problem of Banach’s fixed point theorem. The most
elegant result in this diction is due to Bessaga [76] in 1959.

Theorem BE. Suppose that M is an arbitrary nonempty set and T : M → M has
the property that T and each of its iterates T n have a unique fixed point in M . Then,
for each λ ∈ (0, 1), there exists a metric dλ on M such that (M, dλ) is complete and

dλ(T x, T y) ≤ λdλ(x, y)

for all x, y ∈ M .

In 1975, Subrahmanyam[77] proved thatKannan’s contraction (KC) characterizes
the metric completeness, that is,

Theorem SU. A metric space (X, d) is complete if and only if every Kannan’s
contraction on X has a fixed point.

Recall that a metric space (M, d) is ultrametric if and only if, for all x, y, z ∈ M ,

d(x, y) ≤ max{d(x, z), d(y, z)}.

An ultrametric space (M, d) is said to be spherically complete if every descending
sequence of closed balls in M has the nonempty intersection. Thus, a spherically
complete ultrametric space (M, d) is complete.
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In 1990, Priess-Crampe [78] proved an analogue to Banach’s fixed point theorem
in ultrametric spaces.

Theorem PC. An ultrametric space (M, d) is spherically complete if and only
if every strictly contractive mapping T : M → M has a unique fixed point in M ,
where a mapping T : M → M is strictly contractive if

d(T x, T y) < d(x, y)

for all x, y ∈ M .

In 1993, Park and Kang [79] gave some characterizations of metric completeness
by using Caristi’s contraction (CC).

Theorem PK. A metric space (X, d) is complete if and only if, for every self-
mapping T of X with a uniformly continuous function φ : X → [0,∞) such that

d(x, T x) ≤ φ(x) − φ(T x)

for all x ∈ X , T has a fixed point in X .

In 1996, Suzuki and Takahashi [80] gave some characterizations of metric com-
pleteness by using weakly contractive mapping in metric spaces.

Let X be a metric space with a metric d. Then, a function p : X × X → [0,∞)

is called a w-distance on X if the following are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X ;
(b) For any x ∈ X , p(x, ·) : X → [0,∞) is lower semi-continuous;
(c) For any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

Note that the metric d is aw-distance on X . Some other examples of w-distances
are given in [63].

A mapping T : X → X is said to be weakly contractive or p-contractive if there
exists a w-distance p on X and α ∈ [0, 1) such that

p(T x, T y) ≤ αp(x, y)

for all x, y ∈ X . In the case of p = d, the mapping T is said to be contractive.
They proved the following:

Theorem ST1. A metric space X, d) is complete if and only if every weakly
contractive mapping T : X → X has a fixed point in X .
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Theorem ST2. Let X be a normed linear space and D be a convex subset of X .
Then, D is complete if and only if every contractive mapping T : D → D has a fixed
point in D.

From Theorem ST2, we have the following:

Corollary ST. Let X be a normed linear space. Then, X is a Banach space if and
only if every contractive mapping T : X → X has a fixed point in X .

On the other hand, in 2014, Ansari [81] gave some characterizations of metric
completeness (the converse of Ekeland’s variational principle) in metric spaces.

Theorem A. A metric space (X, d) is complete if, for every functional f : X →
R ∪ {+∞} which is proper, bounded below, and low semi-continuous on X and, for
any ε > 0, there exists x̄ ∈ X such that, for all x ∈ X ,

f (x̄) ≤ inf
x∈X

f (x) + ε, f (x̄) ≤ f (x) + εd(x, x̄).

10 Conjectures of Banach’s Fixed Point Theorem

The following theoremwas one of the interesting conjecture connectedwithBanach’s
fixed point theorem, which was suggested by Jachymski et al. [82] in 1999:

Theorem GBC. (Generalized Banach’s fixed point theorem Conjecture) Let
(E, d) be a complete metric space and T : E → E be a mapping. Suppose that
there exist an integer p and a number L ∈ [0, 1) such that

min{d(T i x, T i y) : 1 ≤ i ≤ p} ≤ Ld(x, y) (GCM)

for all x, y ∈ E . Then, T has exactly one fixed point z ∈ E ?

min{d(T i x, T i y) : 1 ≤ i ≤ p} ≤ Ld(x, y) (GCM)

Remark BGC. (1) The condition (GCM) does not imply the continuity of T .
(2) If p = 1 in the condition (GCM), then T is a contractive mapping on E .
(3) If T k is a contractive mapping, then the condition (GCM) holds for all p ≥ k.
(4) In 1999, if p = 2, then, without any additional assumption on T , Jachymski

et al. [82] showed that Theorem GBC is true. Moreover, Theorem GBC is true if
p = 3 with the additional assumption that T is continuous on E .

(5) In 1999, Jachymski and Stein [83] showed that Theorem GBC is true for any
p if T is uniformly continuous.

(6) In 2000, Stein [84] showed that TheoremGBC is true for any p if T is strongly
continuous, where we say that a mapping T : E → E is strongly continuous if, for
any ε > 0, there exists δ > 0 such that
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n∑
k=1

d(xk, yk) < δ =⇒
n∑

k=1

d(T xk, T yk) < ε.

(7) In 2001,Merryfield et al. [85] showed that TheoremGBC is true if T is contin-
uous. Moreover, Theorem GBC is true for p = 3 without any additional assumption
on T .

(8) In fact, Theorem GBC is not true for all p ∈ N (see [84]).

Example S. Let E = [0,∞) with the usual metric d(x, y) = |x − y| for all x,
y ∈ E . Define a mapping T : E → E by

T x =
√

x2 + 1

for all x ∈ E . It is easy to show that T n x = √
x2 + n for all x ∈ E and, for all

x, y ∈ E with x < y,

min{d(T i x, T i y) : i ∈ N} ≤ Ld(x, y).

However, it is clear that T has no fixed point in E .

11 Relations Between Banach’s Fixed Point Theorem
and Best Proximity Point Theorems

Banach’s fixed point theorem plays an important role in showing the existence of
solutions of various equations of the form T x = x for a self-mapping T : A → A
defined on a subset A of a metric space E .

Now, if T : A → B is a nonself-mapping, where A and B are subsets of E , then
the equation T x = x does not necessarily have a solution, which is known as a
fixed point of the mapping T . Thus, in such circumstance, it may be considered to
determine an element x for which the error d(x, T x) is minimum, in which case x
and T x are in close proximity to each other.

In this perspective,best approximation theorems andbest proximity point theorems
are very relevant.

One of the most interesting results, best approximation theorem, in this direction
is due to Ky Fan [86]:

Theorem KF. Let K be a nonempty compact convex subset of a normed space
E and T : K → E be a continuous nonself-mapping. Then, there exists x ∈ K such
that

‖x − T x‖ = d(K , T x) = inf{‖T x − u‖ : u ∈ K }.

Let A and B be nonempty subsets of a metric space E . Then, we recall the
following:



Survey on Metric Fixed Point Theory and Applications 229

d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}.

It is clear that if T : A → B is a nonself-mapping, then, for all x ∈ A,

d(x, T x) ≥ d(A, B).

When a nonself-mapping T : A → B has no fixed point, it is quite natural to find
an element x∗ such that d(x∗, T x∗) is minimum. The best proximity point theorems
assure the existence of an element x∗ such that

d(x∗, T x∗) = d(A, B).

This element x∗ is called the best proximity point of T .
Moreover, if the mapping T under discussion is a self-mapping, then a best prox-

imity point theorem becomes to a fixed point result. In fact, the best proximity point
evolves as a generalization of the idea of the best approximation.

The best approximation results provide an approximate solution to the fixed
point equation T x = x , when the nonself-mapping T has no fixed point, that is,
the best approximation theorem assures the existence of an approximate solution
(see Theorem KF). But such solution need not yield an optimal solution. But the best
proximity point theorem is considered for solving the problem to find an approximate
solution which is optimal.

Indeed, if there is no exact solution of the fixed point equation T x = x for a
nonself-mapping T : A → B, then a best proximity theorem offers sufficient condi-
tions for the existence of an optimal approximate solution x , which is called a best
proximity point of the mapping T , satisfying the following condition:

d(x, T x) = d(A, B).

Let (E, d) be a metric space and A, B be subsets of E . Let T : A ∪ B → A ∪ B
be a mapping such that T (A) ⊂ B and T (B) ⊂ A, where the mapping T is said to
be cyclic.

(1) A point x ∈ A ∪ B is called a best proximity point of T if

d(x, T x) = d(A, B);

(2) T is called a cyclic proximity contraction if there exists α ∈ (0, 1) such that, for
all x, y ∈ X ,

d(T x, T y) ≤ αd(x, y) + (1 − α)d(A, B);

Let A and B be nonempty subsets of a complete metric space (E, d) and T :
A ∪ B → A ∪ B be a cyclic proximity contraction. If A ∩ B �= ∅, then d(A, B) = 0
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and so T is the Banach contraction on a complete metric space (A ∩ B, d). Thus,
applying Banach’s fixed point theorem, T has a unique fixed point in A ∩ B.

In 2013, Yadav et al. [87] introduced the following:

(3) T is called a generalized cyclic proximity contraction if there exists
0 ≤ α1,α2,α3 with α1 + α2 + α3 < 1 such that, for all x, y ∈ X ,

d(T x, T y) ≤ α1d(x, y) + α2d(x, T x) + α3d(y, T y)

+ [1 − (α1 + α2 + α3)]d(A, B).

Example YTS. Let E = R be a complete metric space with the usual metric and
let A = [0, 1

2 ], B = [1, 1
2 ]. Define a mapping T : A ∪ B → A ∪ B by

T x =
{
1, if x ∈ A,

0, if y ∈ B.

If α1 = 1
2 and α2 = 1

3 and α3 = 1
9 , then T is a generalized cyclic proximity contrac-

tion.

(4) Let S, T : A ∪ B → A ∪ B be two mappings such that T (A) ⊂ B and T (B) ⊂
A. Then, a pair of mappings S, T is called a T S-cyclic proximity contraction if there
exists 0 ≤ α1,α2,α3 with α1 + α2 + α3 < 1 such that

d(T x, Sy) ≤ α1d(x, y) + α2d(x, T x) + α3d(y, Sy)

+ [1 − (α1 + α2 + α3)]d(A, B)

for all x, y ∈ X .

In 2003, Kirk et al. [88] proved the following:

TheoremKSV. Let A and B be two nonempty closed subsets of a complete metric
space (E, d). Suppose that a mapping T : A ∪ B → A ∪ B satisfies the following:

(a) T (A) ⊂ B and T (B) ⊂ A;
(b) There exists α ∈ (0,1) such that

d(T x, T y) ≤ αd(x, y)

for all x ∈ A and y ∈ B.
Then, T has a unique fixed point in A ∩ B.

Note that, if A = B in Theorem KSV, we have Banach’s fixed point theorem.
Recently, in 2013, Yadav et al. proved the following [87]:
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Theorem YTS1. Let A, B be two nonempty closed subsets of a complete metric
space (E, d) and T : A ∪ B → A ∪ B be a generalized cyclic proximity contrac-
tion. For any x0 ∈ A, define xn+1 = T xn for each n ≥ 1. If {x2n} has a convergent
subsequence to x∗ ∈ A, then x∗ is a best proximity point of T .

Theorem YTS2. Let A, B be two nonempty closed subsets of a complete metric
space (E, d) and S, T : A ∪ B → A ∪ B be a T S-cyclic proximity contraction. For
any x0 ∈ A, define x2n+1 = T x2n and x2n = Sx2n−1 for each n ≥ 1. If {x2n} has a
convergent subsequence to x∗ ∈ A ∪ B, then x∗ is a best proximity point of T and S.

Recently, some authors have considered the following problems:

(1) How to find more generalized cyclic proximity contractions than a generalized
cyclic proximity contraction?

(2) How to show the existence of a common best proximity point of two mappings?
(3) How to extend best proximity point theorems in metric spaces to the classes

of probabilistic metric spaces, fuzzy metric spaces, ordered metric spaces, and
other spaces?

12 Some Better Nonlinear Mappings than Banach’s
Contraction

In particular, Banach’s fixed point theorem is a widely applied tool for an itera-
tive approximation of fixed points, but, unfortunately, its application is restricted to
contractive mappings. Thus, we need appropriate, nice nonlinear mappings for some
iterative approximations of fixed points, for example, nonexpansive mappings, firmly
nonexpansive mappings, and other nonlinear mappings.

Let C be a nonempty subset of a normed linear space E . A mapping T : C → C
is said to be nonexpansive if, for all x, y ∈ C ,

‖T x − T y‖ ≤ ‖x − y‖.

Note that if a nonexpansive mapping T : E → E has a fixed point in E , then it
need not be unique (for example, the identitymapping) and the sequence {xn} defined
by

xn+1 = T xn

for all n ≥ 0may fail to converge to a fixed point of T . For example, define amapping
T : R → R by

T x = 1 − x

for all x ∈ R. Then, for x0 = 1,
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x1 = T x0 = 0, x2 = T x1 = 1, x3 = T x2 = 0, . . . ,

x2n = T x2n−1 = 1, x2n+1 = T x2n = 0, . . . .

Then, the sequence {xn} defined by

xn+1 = T xn

for all n ≥ 0 does not converge to the fixed point 1
2 even if the mapping T has a

unique fixed point 1
2 ∈ R.

Further, if T is a nonexpansive mapping on R, then T need not have a fixed point
as the example

T x = x + 1

for all x ∈ R.

In 1973, Bruck [89] introduced a class of nonexpansive mappings which he called
firmly nonexpansive mappings as follows:

Let C be a nonempty closed convex subset of a Banach space X . A mapping
T : C → X is said to be firmly nonexpansive if, for all x, y ∈ C and for t ≥ 0,

‖T x − T y‖ ≤ ‖t (x − y) + (1 − t)(T x − T y)‖.

Remark B1. (1) Firmly nonexpansive mappings are nonexpansive;
(2) The resolvent of an accretive mapping is firmly nonexpansive;
(3) In some sense, the class of firmly nonexpansive mappings is quite restrictive.

For example, the identity mapping IX : BX → BX is trivially firmly nonexpansive,
but −IX fails to be firmly nonexpansive, where BX the closed unit ball of a Banach
space X .

Recently, some authors introduced the concept of a firmly nonexpansive mapping
has been widely studied and generalized in several ways as follows:

Definition FNM1. A mapping T : c → X is said to be:

(1) λ-firmly nonexpansive [90] if there exists λ ∈ (0, 1) such that, for all x, y ∈ C ,

‖T x − T y‖ ≤ ‖(1 − λ)(x − y) + λ(T x − T y)‖.

(2) nonspreading [91] if, for all x, y ∈ C ,

2‖T x − T y‖2 ≤ ‖x − T y‖2 + ‖y − T x‖2.

(3) hybrid [92] if, for all x, y ∈ C ,

3‖T x − T y‖2 ≤ ‖x − T y‖2 + ‖y − T x‖2 + ‖x − y‖2.
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(4) T J1-mapping [93] if, for all x, y ∈ C ,

2‖T x − T y‖2 ≤ ‖x − y‖2 + ‖T x − y‖2.

(5) T J2-mapping [93] if, for all x, y ∈ C ,

3‖T x − T y‖2 ≤ 2‖T x − y‖2 + ‖T y − x‖2.

Remark B2. (1) The class of λ-firmly nonexpansive mappings is wider than the
class of firmly nonexpansive mappings;

(2) Every λ-firmly nonexpansive mapping is nonexpansive.

DefinitionFNM2. LetC be a nonempty closed convex subset of aHilbert space H
and let λ ∈ R. A mapping T : C → X is said to be λ-hybrid [94] if, for all x, y ∈ C ,

‖T x − T y‖2 ≤ ‖x − y‖2 + 2(1 − λ)〈x − T x, y − T y〉.

Definition FNM3. A mapping T : C → X is said to be α-nonexpansive [95] if,
for all x, y ∈ C and α < 1,

‖T x − T y‖2 ≤ α‖T x − y‖2 + α‖T y − x‖2 + (1 − 2α)‖x − y‖2.

Remark B3. (1) Every firmly nonexpansive mapping is α-nonexpansive for all
α ∈ [0, 1

2 ];
(2) For any λ ∈ [0, 1), if a mapping T : C → X is λ-firmly nonexpansive, then

T is α-nonexpansive with α = λ
1+λ

;
(3) For all λ ∈ [0, 1

2 ], if a mapping T : C → X is λ-firmly nonexpansive, then T
is α-nonexpansive with α = λ.

The following properties between α-nonexpansive mappings and other nonlinear
mappings can be found in Ariza-Ruiz et al. [96]:

Remark B4. (1) The identity mapping IX is α-nonexpansive for all α < 1;
(2) A mapping T : C → X is 0-nonexpansive if and only if T is nonexpansive;
(3) 1

2 -nonexpansive mappings are nonspreading;
(4) 1

3 -nonexpansive mappings are hybrid;
(5) For all α < 0, the unique α-nonexpansive mapping is the identity mapping

IC : C → C . In fact, taking y = x in the definition of the α-nonexpansive mapping,
we have the following: For all x ∈ C ,

0 ≤ 2α‖T x − x‖2.

So, since α < 0, it follows that T x = x for all x ∈ C .
In [96], we can see that there exists a constant mapping failing to be

α-nonexpansive for α > 2
3 .

(6) For all 0 ≤ α ≤ 2
3 , every constant mapping T : C → C is α-nonexpansive.
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(7) Every T J1-mapping is 1
4 -nonexpansive;

(8) Every T J2-mapping is nonspreading and so 1
2 -nonexpansive.

Now, we give some relations between Banach’s contraction and α-nonexpansive
mappings as follows:

(1) Let C be a nonempty subset of a Banach space X . If T : C → X is k-
contractive for some k ∈ ( 13 , 1), then T isα-nonexpansive for allα ∈ [0, 1−k

1+k ];
(2) If T : C → X is k-contractive for some k ∈ [0, 1

3 ], then T is α-nonexpansive
for all α ∈ [0, 1

2 ].
Recall that a mapping T : C → X is said to be generalized nonexpansive if there

exist nonnegative constants a1, a2, . . . , a5 with a1 + a2 + · · · + a5 ≤ 1 such that, for
all x, y ∈ C ,

‖T x − T y‖
≤ a1‖x − y‖ + a2‖x − T x‖ + a3‖y − T y‖ + a4‖x − T y‖ + a5‖y − T x‖.

(GNM1)

Since the distance function is symmetric, we can replace a2, a3 with a2+a3
2 and

a4, a5 with
a4+a5

2 and so the generalized nonexpansivemapping (GNM1) is equivalent
to the following:There exist nonnegative constantsa, b, cwitha + 2b + 2c ≤ 1 such
that, for all x, y ∈ C ,

‖T x − T y‖
≤ a‖x − y‖ + b(‖x − T x‖ + ‖y − T y‖) + c(‖x − T y‖ + ‖y − T x‖).

(GNM2)

Remark B5. Every generalized nonexpansive mapping T : C → X with b = 0
is c-nonexpansive.

In 2007, Pineda and Goebel [97] introduced the new class of mappings called
α-mean nonexpansivemappings,which iswider the class of nonexpansivemappings,
as follows:

Definition PG1. A mapping T : C → C is said to be α-mean nonexpansive if,
for all x, y ∈ C ,

n∑
i=1

ai‖T i x − T i y‖ ≤ ‖x − y‖,

where ai ≥ 0 for all i = 1, 2, . . . , n and
∑n

i=1 ai = 1.

Shortly, we consider the following α-mean nonexpansive mapping:

Definition PG2. Let α ∈ (0, 1] and C be a nonempty subset of a normed space
X . A mapping T : C → C is said to be α-mean nonexpansive if, for all x, y ∈ C ,

a‖T x − T y‖ + (1 − a)‖T 2x − T 2y‖ ≤ ‖x − y‖.
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Remark B6. (1) Every α-mean nonexpansive mapping T is continuous since
a > 0;

(2) For any α ∈ (0, 1), there exists an α-nonexpansive mapping which is not an
α-mean nonexpansive mapping;

(3) In fact, none of the classes of α-mean nonexpansive mappings and
α-nonexpansive mappings is included in the other one.

Now, we can consider the following problems:

(1) How to study the structures of the fixed point sets of the mappings introduced
above?

(2) How to find approximating fixed point sequences {xn} for the mappings intro-
duced above?

(3) How to prove some classic fixed point theorems, demiclosedness principles,
Pazy’s fixed point theorems, ergodic theorems for the mappings introduced
above?

Next, we introduce the concept of asymptotically nonexpansive mappings on a
normed linear space E .

Let C be a nonempty subset of a normed linear space E . A mapping T : C → C
is said to be asymptotically nonexpansive [98] if there exists a sequence {ki } of real
numbers with ki → 1 as i → ∞ such that

‖T i x − T i y‖ ≤ ki‖x − y‖

for all x, y ∈ C .
Note that every nonexpansive mapping is an asymptotically nonexpansive map-

ping.

Example GK. Let BX = {x ∈ X : ‖x‖ ≤ 1} be the closed unit ball in a Hilbert
space X = l2, where

l2 =
{

x : x = (x1, x2, . . . , xi , . . .),

∞∑
i=1

|xi |2 < ∞
}
,

and T : BH → BH be a mapping defined by

T (x1, x2, . . .) = (0, x2
1 , a2x2, a3x3, . . .),

where {ai } is a sequence of real numbers such that 0 < ai < 1 and
∏∞

i=2 ai = 1
2 .

Then, we have
‖T x − T y‖ ≤ 2‖x − y‖

for all x, y ∈ BH , that is, T is a Lipschitz mapping, but not a nonexpansive mapping.
Note that
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‖T n x − T n y‖ ≤ 2
∞∏

i=2

ai‖x − y‖

for all x, y ∈ BH and n ≥ 2, where 2
∏∞

i=2 ai → 1 as n → ∞. Therefore, T is an
asymptotically nonexpansive mapping, but not a nonexpansive mapping.

Now, we consider the class of multi-valued asymptotically nonexpansive map-
pings.

Let C be a nonempty subset of a metric space E and C B(C) denote the family of
nonempty bounded closed subsets of C . The Hausdorff metric on C B(C) is defined
by

H(A, B) = max{sup
u∈A

d(u, B), sup
v∈B

d(v, A)}

for all A, B ∈ C B(C), where d(u, A) = infv∈A d(u, v).

Definition GK. (1) A multi-valued mapping T : C → C B(C) is said nonexpan-
sive if

H(T x, T y) ≤ ‖x − y‖

for all x, y ∈ E .
(2) A multi-valued mapping T : K → C B(C) is said to be asymptotically quasi-
nonexpansive if F(T ) is nonempty and there exists a sequence {kn}with lim

n→∞ kn = 0

such that
φ(xn, z) ≤ (kn + 1)φ(x, z)

for all xn ∈ T n x , z ∈ F(T ), x ∈ C and n ≥ 1.

Here, we have one question: What means xn ∈ T n x?

Let E be a real Banach space andC be a nonempty closed convex subset of E . Let
T : K → C B(C) be a multi-valued mapping. For any z ∈ C , define the following:

T z = {z1 : z1 ∈ T z},

T 2z = T T z = ∪w1∈T zTw1,

T 3z = T T 2z = ∪w2∈T 2zTw2,

· · ·

T n+1z = T T nz = ∪wn∈T n zTwn,

· · ·
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Then, by using this new definition,

Can we extend the corresponding results for the class of single-valued asymptoti-
cally nonexpansive mappings to the class of multi-valued asymptotically nonexpan-
sive mappings?

Let E be a Banach space with the norm ‖ · ‖ and the dual space E∗ and 〈·, ·〉 be
the paring between E and E∗. Let A : E → 2E∗

be a multi-valued mapping and the
graph of A, G(A) is defined by

G(A) = {(x, x∗) : x ∈ E, x∗ ∈ E∗}.

In 2007, Bartz et al. [99] introduced the following:

Definition BB1. (1) A mapping A : E → 2E∗
is said to be n-cyclically monotone

if, for all n ∈ {2, 3, . . .},⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a1, a∗
1) ∈ G(A)

(a2, a∗
2) ∈ G(A)

· · ·
(an, a∗

n) ∈ G(A)

an+1 = a1

=⇒
n∑

i=1

〈ai+1 − ai , a∗
i 〉 ≤ 0.

(2) A mapping A : E → 2E∗
is said to be monotone if T is 2-cyclically monotone,

equivalently, {
(x, x∗) ∈ G(A)

(y, y∗) ∈ G(A)
=⇒ 〈x − y, x∗ − y∗〉 ≥ 0.

(3)Amapping A : E → 2E∗
is said to be cyclically monotone if, for alln ∈ {2, 3, . . .},

A is n-cyclically monotone.
(4) A mapping A : E → 2E∗

is said to be maximal n-cyclically monotone if, for all
n ∈ {2, 3, . . .}, A ismonotone and no proper extension of A is n-cyclicallymonotone.
(5) A mapping A : E → 2E∗

is said to be maximal cyclically monotone if A is
cyclically monotone and no proper extension of A is cyclically monotone.
(6) A mapping A : E → 2E∗

is said to be maximal monotone if A is maximal 2-
cyclically monotone.

Remark BB. (1) There exists a maximal 3-cyclically monotone mappings on R2

which is not maximal monotone.
(2) We can find some examples of mappings which are n-cyclically monotone,

but not (n + 1)-cyclically monotone.
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(3) For some more details on n-cyclically monotone and maximal n-cyclically
monotone mappings, see the paper [99].

In 2007, Bartz et al. [99] also introduced the following in a Hilbert space H :

Definition BB3. A mapping A : H → H is said to be cyclically firmly nonexpan-
sive if, for all n ∈ {2, 3, . . .},

n∑
i=1

〈xi − T xi , T xi − T xi+1〉 ≥ 0

for all set {x1, x2, . . . , xn} of x1, x2, . . . , xn ∈ H with xn+1 = x1.

Now, we can consider the following problems:

How to solve some nonlinear equation, fixed point theorems, equilibrium prob-
lems, variational inequality problems, optimization problems, and some other nonlin-
ear problems in Banach spaces, and Hilbert spaces by using n-cyclically monotone,
maximal n-cyclically monotone and cyclically firmly nonexpansive mappings?
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in orbitally complete metric spaces endowed with directed graphs. Carpathian J. Math. 32,
303–313 (2016)

32. M.S. Khan, M. Berzig, B. Samet, Some convergence results for iterative sequences of Presic
type and applications. Advan. Differ. Equ. 2012(38), 12 pp (2012)
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1 Introduction

Let Em(x) be the Euler polynomials given by the generating function
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et + 1
ext =

∞∑

m=0

Em(x)
tm

m! , (see [1-3,7,12,13,15,19]). (1)
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When x = 0, Em = Em(0) are called Euler numbers. For any real number x , we let

< x >= x − [x] ∈ [0, 1) (2)

denote the fractional part of x .
Fourier series expansion of higher-order Bernoulli functions was treated in the

recent paper [14]. Here we will consider the following three types of functions
given by sums of finite products of Euler functions and derive their Fourier series
expansions. In addition, wewill express each of them in terms of Bernoulli functions.

(1) αm(〈x〉) = ∑
c1+c2+···+cr=m,c1,...,cr≥0 Ec1(〈x〉)Ec2(〈x〉) · · · Ecr (〈x〉),

(m ≥ 1);
(2) βm(〈x〉) = ∑

c1+c2+···+cr=m,c1,...,cr≥0
1

c1!c2!···cr ! Ec1(〈x〉)Ec2(〈x〉) · · · Ecr (〈x〉),
(m ≥ 1);

(3) γr,m(〈x〉) = ∑
c1+c2+···+cr=m,c1,··· ,cr≥1

1
c1c2···cr Ec1(〈x〉)Ec2(〈x〉) · · · Ecr (〈x〉),

(m ≥ r).

For elementary facts about Fourier analysis, the reader may refer to any book (e.g.,
see [16, 20]).

As to βm(< x >), we note that the next polynomial identity follows immediately
fromTheorems 3.1 and 3.2, which is in turn derived from the Fourier series expansion
of βm(< x >):

∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1(x) · · · Ecr (x)

= 1

r
�m+1 +

m∑

j=1

r j−1

j ! �m− j+1Bj (x),

where

�l =
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=l

1

c1!c2! · · · ca ! Ec1Ec2 · · · Eca

−
∑

c1+c2+···+cr=l

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr .

(3)

The obvious polynomial identities can be derived also for αm(< x >) and γm(<

x >) from Theorems 2.1 and 2.2, and Remark4.1 and Theorem4.2, respectively. It is
remarkable that from the Fourier series expansion of the function

∑m−1
k=1

1
k(m−k) Bk(<

x >)Bm−k(< x >), we can derive the Faber–Pandharipande–Zagier identity (see [5,
8–11]) and the Miki’s identity (see [4, 6, 8–11, 17, 18]).
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2 The Functionαm(< x >)

Let αm(x) = ∑
c1+c2+···+cr=m Ec1(x)Ec2(x) · · · Ecr (x), (m ≥ 1). Here the sum runs

over all nonnegative integers c1, c2, . . . , cr with c1 + c2 + · · · + cr = m, (r ≥ 1).
Then, we will consider the function

αm(< x >) =
∑

c1+c2+···+cr=m

Ec1(< x >)Ec2(< x >) · · · Ecr (< x >), (4)

defined on R, which is periodic with period 1.
The Fourier series of αm(< x >) is

∞∑

n=−∞
A(m)
n e2πinx , (5)

where

A(m)
n =

∫ 1

0
αm(< x >)e−2πinxdx

=
∫ 1

0
αm(x)e−2πinxdx .

(6)

Before proceeding further, we need to observe the following.

α′
m(x) =

∑

c1+c2+···+cr=m

(
c1Ec1−1(x)Ec2(x) · · · Ecr (x)

+ · · · + cr Ec1(x)Ec2(x) · · · Ecr−1(x)
)

=
∑

c1+c2+···+cr=m,c1≥1

c1Ec1−1(x)Ec2(x) · · · Ecr (x)

+ · · · +
∑

c1+c2+···+cr=m,cr≥1

cr Ec1−1(x)Ec2(x) · · · Ecr (x)

= (m + r − 1)
∑

c1+c2+···+cr=m−1

Ec1(x)Ec2(x) · · · Ecr (x)

= (m + r − 1)αm−1(x).

(7)

From this, we obtain

(
αm+1(x)

m + r

)′
= αm(x). (8)
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∫ 1

0
αm(x)dx = 1

m + r
(αm+1(1) − αm+1(0)) . (9)

For m ≥ 1, we put

�m = αm(1) − αm(0)

=
∑

c1+c2+···+cr=m

(
Ec1(1)Ec2(1) · · · Ecr (1) − Ec1Ec2 · · · Ecr

)

=
∑

c1+c2+···+cr=m

(
(−Ec1 + 2δ0,c1) · · · (−Ecr + 2δ0,cr ) − Ec1Ec2 · · · Ecr

)

=
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=m

Ec1Ec2 · · · Eca−
∑

c1+c2+···+cr=m

Ec1Ec2 · · · Ecr .

(10)
Observe here that the sum over all c1 + c2 + · · · + cr = m of any term with a of

−Ece and b of 2δ0,c f , (1 ≤ e, f ≤ r, a + b = r), all give the same sum

∑

c1+c2+···+cr=m

(−Ec1) · · · (−Eca )(2δ0,ca+1) · · · (2δ0,ca+b)

=
∑

c1+c2+···+ca=m

(−1)a2r−a Ec1Ec2 · · · Eca .
(11)

Note here that, for a = 0, the sum in (11) is 2rδ0,m = 0.
Also,

αm(1) = αm(0) ⇐⇒ �m = 0, (12)

and ∫ 1

0
αm(x)dx = 1

m + r
�m+1. (13)

Now, we would like to determine the Fourier coefficients A(m)
n .

Case1 : n �= 0.

A(m)
n =

∫ 1

0
αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0
+ 1

2πin

∫ 1

0
α′
m(x)e−2πinxdx

= − 1

2πin
(αm(1) − αm(0)) + m + r − 1

2πin

∫ 1

0
αm−1(x)e

−2πinxdx

= m + r − 1

2πin
A(m−1)
n − 1

2πin
�m

= m + r − 1

2πin

(
m + r − 2

2πin
A(m−2)
n − 1

2πin
�m−1

)
− 1

2πin
�m (14)
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= (m + r − 1)2
(2πin)2

A(m−2)
n −

2∑

j=0

(m + r − 1) j−1

(2πin) j
�m− j+1

= · · ·
= (m + r − 1)m

(2πin)m
A(0)
n −

m∑

j=1

(m + r − 1) j−1

(2πin) j
�m− j+1

= − 1

m + r

m∑

j=1

(m + r) j
(2πin) j

�m− j+1,

where A(0)
n = ∫ 1

0 e−2πinxdx = 0.
Case2 : n = 0.

A(m)
0 =

∫ 1

0
αm(x)dx = 1

m + r
�m+1. (15)

As to Bernoulli functions Bm(< x >), we recall the following facts:
(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞
n �=0

e2πinx

(2πin)m
, (16)

(b) for m = 1,

−
∞∑

n=−∞
n �=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.
(17)

αm(< x >), (m ≥ 1) is piecewise C∞. Moreover, αm(< x >) is continuous for
those positive integers m with �m = 0 and discontinuous with jump discontinuities
at integers for those positive integers m with �m �= 0.
Assume first that m is a positive integer with �m = 0. Then αm(1) = αm(0). Hence
αm(< x >) is piecewise C∞ and continuous. Thus, the Fourier series of αm(< x >)

converges uniformly to αm(< x >), and

αm(< x >) = 1

m + r
�m+1

+
∞∑

n=−∞
n �=0

⎛

⎝− 1

m + r

m∑

j=1

(m + r) j
(2πin) j

�m− j+1

⎞

⎠ e2πinx

= 1

m + r
�m+1 + 1

m + r

m∑

j=1

(
m + r

j

)
�m− j+1
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×
⎛

⎜⎝− j !
∞∑

n=−∞
n �=0

e2πinx

(2πin) j

⎞

⎟⎠ (18)

= 1

m + r
�m+1 + 1

m + r

m∑

j=2

(
m + r

j

)
�m− j+1Bj (< x >)

+�m ×
{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.

We are now ready to state our first result.

Theorem 2.1 For each positive integer l, let

�l =
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=l

Ec1 Ec2 · · · Eca −
∑

c1+c2+···+cr=l

Ec1 Ec2 · · · Ecr .

Assume that �m = 0, for a positive integer m. Then we have the following.

(a)
∑

c1+c2+···+cr=m Ec1(< x >)Ec2(< x >) · · · Ecr (< x >)has theFourier series
expansion

∑

c1+c2+···+cr=m

Ec1(< x >)Ec2(< x >) · · · Ecr (< x >)

= 1

m + r
�m+1 +

∞∑

n=−∞
n �=0

⎛

⎝− 1

m + r

m∑

j=1

(m + r) j
(2πin) j

�m− j+1

⎞

⎠ e2πinx ,

for all x ∈ R, where the convergence is uniform.
(b) ∑

c1+c2+···+cr=m

Ec1(< x >)Ec2(< x >) · · · Ecr (< x >)

= 1

m + r
�m+1 + 1

m + r

m∑

j=2

(
m + r

j

)
�m− j+1Bj (< x >),

for all x ∈ R, where B j (< x >) is the Bernoulli function.

Assume next that �m �= 0, for a positive integer m. Then αm(1) �= αm(0). Hence
αm(< x >) is piecewiseC∞ and discontinuous with jump discontinuities at integers.
The Fourier series of αm(< x >) converges pointwise to αm(< x >), for x /∈ Z, and
converges to
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1

2
(αm(0) + αm(1)) = αm(0) + 1

2
�m, (19)

for x ∈ Z.
Now, we are going to state our second result.

Theorem 2.2 For each positive integer l, let

�l =
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=l

Ec1 Ec2 · · · Eca −
∑

c1+c2+···+cr=l

Ec1 Ec2 · · · Ecr .

Assume that �m �= 0, for a positive integer m. Then we have the following.

(a)
1

m + r
�m+1

+
∞∑

n=−∞
n �=0

⎛

⎝− 1

m + r

m∑

j=1

(m + r) j
(2πin) j

�m− j+1

⎞

⎠ e2πinx

=
{∑

c1+c2+···+cr=m Ec1(< x >)Ec2(< x >) · · · Ecr (< x >), for x /∈ Z,∑
c1+c2+···+cr=m Ec1Ec2 · · · Ecr + 1

2�m, for x ∈ Z.

(b)
1

m + r
�m+1 + 1

m + r

m∑

j=1

(
m + r

j

)
�m− j+1Bj (< x >)

=
∑

c1+c2+···+cr=m

Ec1(< x >)Ec2(< x >) · · · Ecr (< x >), f or x /∈ Z;

1

m + r
�m+1 + 1

m + r

m∑

j=2

(
m + r

j

)
�m− j+1Bj (< x >)

=
∑

c1+c2+···+cr=m

Ec1Ec2 · · · Ecr + 1

2
�m, f or x ∈ Z.

3 The Function βm(< x >)

Let βm(x)=
∑

c1+c2+···+cr=m
1

c1!c2!···cr ! Ec1(x)Ec2(x) · · · Ecr (x), (m ≥ 1). Here the

sum runs over all nonnegative integers c1, c2, . . . , cr with c1 + c2 + · · · + cr =
m, (r ≥ 1). Then we will investigate the function

βm(< x >) =
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1(< x >)Ec2(< x >) · · · Ecr (< x >),

(20)
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defined on R, which is periodic with period 1. The Fourier series of βm(< x >) is

∞∑

n=−∞
B(m)
n e2πinx , (21)

where

B(m)
n =

∫ 1

0
βm(< x >)e−2πinxdx =

∫ 1

0
βm(x)e−2πinxdx . (22)

β′
m(x) =

∑

c1+c2+···+cr=m

( c1
c1!c2! · · · cr ! Ec1−1(x)Ec2(x) · · · Ecr (x)

+ · · · + cr
c1!c2! · · · cr ! Ec1(x) · · · Ecr−1(x)Ecr−1(x)

)

=
∑

c1+c2+···+cr=m,c1≥1

1

(c1 − 1)!c2! · · · cr ! Ec1−1(x)Ec2(x) · · · Ecr (x)

+ · · · +
∑

c1+c2+···+cr=m,cr≥1

1

c1!c2! · · · (cr − 1)! Ec1(x) · · · Ecr−1(x)Ecr−1(x)

=
∑

c1+c2+···+cr=m−1

1

c1!c2! · · · cr ! Ec1(x)Ec2(x) · · · Ecr (x)

+ · · · +
∑

c1+c2+···+cr=m−1

1

c1!c2! · · · cr ! Ec1(x)Ec2(x) · · · Ecr (x)

= rβm−1(x).
(23)

From (23), we obtain
(

βm+1(x)
r

)′ = βm(x),

and ∫ 1

0
βm(x)dx = 1

r

(
βm+1(1) − βm+1(0)

)
. (24)

Let

�m = βm(1) − βm(0)

=
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1(1)Ec2(1) · · · Ecr (1)

−
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr (25)

=
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! (−Ec1 + 2δ0,c1) · · · (−Ecr + 2δ0,cr )
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−
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr .

Observe here that the sum over all c1 + c2 + · · · + cr = m of any term with a of
−Ece and b of 2δ0,c f , (1 ≤ e, f ≤ r, a + b = r), all give the same sum

∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! (−Ec1) · · · (−Eca )(2δ0,ca+1) · · · (2δ0,ca+b)

=
∑

c1+c2+···+ca=m

1

c1!c2! · · · cr ! (−1)a2r−a Ec1Ec2 · · · Eca .

(26)

Thus

�m =
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=m

1

c1!c2! · · · ca ! Ec1Ec2 · · · Eca

−
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr .

(27)

In addition,
βm(1) = βm(0) ⇔ �m = 0,
∫ 1

0
βm(x)dx = 1

r
�m+1.

(28)

Next, we would like to determine the Fourier coefficients B(m)
n .

Case 1: n �= 0.

B(m)
n =

∫ 1

0
βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0
+ 1

2πin

∫ 1

0
β′
m(x)e−2πinxdx

= − 1

2πin

(
βm(1) − βm(0)

)
+ r

2πin

∫ 1

0
βm−1(x)e

−2πinxdx

= r

2πin
B(m−1)
n − 1

2πin
�m

= r

2πin

( r

2πin
B(m−2)
n − 1

2πin
�m−1

)
− 1

2πin
�m (29)

=
( r

2πin

)2
B(m−2)
n −

2∑

j=1

r j−1

(2πin) j
�m− j+1

= · · ·
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=
( r

2πin

)m
B(0)
n −

m∑

j=1

r j−1

(2πin) j
�m− j+1

= −
m∑

j=1

r j−1

(2πin) j
�m− j+1,

where B(0)
n = ∫ 1

0 e−2πinxdx = 0.
Case 2: n = 0.

B(m)
0 =

∫ 1

0
βm(x) = 1

r
�m+1. (30)

βm(< x >), (m ≥ 1) is piecewise C∞. Moreover, βm(< x >) is continuous for
those positive integers m with �m = 0 and discontinuous with jump discontinuities
at integers for those positive integers m with �m �= 0.

Assumefirst thatm is a positive integerwith�m = 0.Thenβm(1) = βm(0). Hence
βm(< x >) is piecewise C∞ and continuous. Thus, the Fourier series of βm(< x >)

converges uniformly to βm(< x >), and

βm(< x >)

= 1

r
�m+1 +

∞∑

n=−∞
n �=0

(
−

m∑

j=1

r j−1

(2πin) j
�m− j+1

)
e2πinx

= 1

r
�m+1 +

m∑

j=1

r j−1

j ! �m− j+1 ×
(
− j !

∞∑

n=−∞
n �=0

e2πinx

(2πin) j

)

= 1

r
�m+1 +

m∑

j=2

r j−1

j ! �m− j+1Bj (< x >)

+ �m ×
{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.

(31)

Now, we can state our first result.

Theorem 3.1 For each positive integer l, let

�l =
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=l

1

c1!c2! · · · ca ! Ec1Ec2 · · · Eca

−
∑

c1+c2+···+cr=l

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr .

(32)
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Assume that �m = 0, for a positive integer m. Then we have the following.

(a)
∑

c1+c2+···+cr=m
1

c1!c2!···cr ! Ec1(< x >)Ec2(< x >) · · · Ecr (< x >) has the
Fourier series expansion

∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1(< x >)Ec2(< x >) · · · Ecr (< x >)

= 1

r
�m+1 +

∞∑

n=−∞
n �=0

(
−

m∑

j=1

r j−1

(2πin) j
�m− j+1

)
e2πinx ,

(33)

for all x ∈ R, where the convergence is uniform.

(b)
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1(< x >)Ec2(< x >) · · · Ecr (< x >)

= 1

r
�m+1 +

m∑

j=2

r j−1

j ! �m− j+1Bj (< x >)

(34)

for all x ∈ R, where B j (< x >) is the Bernoulli function.

Assume next that m is a positive integer with �m �= 0. Then, βm(1) �= βm(0).
Hence βm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at
integers. Thus, the Fourier series of βm(< x >) converges pointwise to βm(< x >),
for x /∈ Z, and converges to

1

2
(βm(0) + βm(1)) = βm(0) + 1

2
�m

=
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr + 1

2
�m,

(35)

for x ∈ Z.
Now, we can state our second result.

Theorem 3.2 For each positive integer l, let

�l =
∑

0<a≤r

(
r

a

)
(−1)a2r−a

∑

c1+c2+···+ca=l

1

c1!c2! · · · ca ! Ec1Ec2 · · · Eca

−
∑

c1+c2+···+cr=l

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr .

(36)

Assume that �m �= 0, for a positive integer m. Then we have the following.



254 T. Kim et al.

(a)
1

r
�m+1 +

∞∑

n=−∞
n �=0

(
−

m∑

j=1

r j−1

(2πin) j
�m− j+1

)
e2πinx

=
{∑

c1+c2+···+cr=m
1

c1!c2!···cr ! Ec1 (< x >)Ec2 (< x >) · · · Ecr (< x >), for x /∈ Z,
∑

c1+c2+···+cr=m
1

c1!c2!···cr ! Ec1 Ec2 · · · Ecr + 1
2�m , for x ∈ Z.

(b)

1

r
�m+1 +

m∑

j=1

r j−1

j ! �m− j+1Bj (< x >)

=
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1(< x >) · · · Ecr (< x >), for x /∈ Z;

1

r
�m+1 +

m∑

j=2

r j−1

j ! �m− j+1Bj (< x >)

=
∑

c1+c2+···+cr=m

1

c1!c2! · · · cr ! Ec1Ec2 · · · Ecr + 1

2
�m, for x ∈ Z.

4 The Function γr,m(< x >)

Let γr,m(x)= ∑
c1+c2+···+cr=m,c1,··· ,cr≥1

1
c1c2···cr Ec1(x)Ec2(x) · · · Ecr (x), (m ≥ r ≥ 1),

where the sum runs over all positive integers c1, c2, · · · , cr with c1 + c2 + · · · +
cr = m.

γ′
r,m(x) =

∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c2 · · · cr Ec1−1(x)Ec2(x) · · · Ecr (x)

+
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1c3 · · · cr Ec1(x)Ec2−1(x)Ec3(x) · · · Ecr (x)

+ · · · +
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1c2 · · · cr−1
Ec1(x) · · · Ecr−1(x)Ecr−1(x)

=
∑

c2+···+cr=m−1,c2,··· ,cr≥1

1

c2 · · · cr Ec2(x) · · · Ecr (x)

+
∑

c1+···+cr=m−1,c1,··· ,cr≥1

1

c2 · · · cr Ec1(x) · · · Ecr (x)

+ · · · +
∑

c1+c2+···+cr−1=m−1,c1,··· ,cr−1≥1

1

c1c2 · · · cr−1
Ec1(x) · · · Ecr−1(x)
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+
∑

c1+c2+···+cr=m−1,c1,··· ,cr≥1

1

c1c2 · · · cr−1
Ec1(x) · · · Ecr (x)

= rγr−1,m−1(x) + (m − 1)
∑

c1+c2+···+cr=m−1,c1,··· ,cr≥1

1

c1 · · · cr Ec1(x)Ec2(x)

· · · Ecr (x)

= rγr−1,m−1(x) + (m − 1)γr,m−1(x). (37)

Thus,
γ′
r,m(x) = rγr−1,m−1(x) + (m − 1)γr,m−1(x), (m ≥ r), (38)

with γr,r−1(x) = 0.
From this, we obtain.

γr,m(x) = − r

m
γr−1,m(x) + 1

m
γ′
r,m+1(x).

Let �r,m = γr,m(1) − γr,m(0). Denoting
∫ 1
0 γr,m(x)dx by ar,m , we have

ar,m = − r

m
ar−1,m + 1

m
�r,m+1. (39)

From (39), we can easily obtain

∫ 1

0
γr,m(x)dx =

r∑

j=1

(−1) j−1(r) j−1

m j
�r− j+1,m+1. (40)

Here we note that

a1,m =
∫ 1

0
γ1,m(x)dx = 1

m

∫ 1

0
Em(x)dx, (41)

�1,m+1 = 1

m + 1
(Em+1(1) − Em+1(0)) =

∫ 1

0
Em(x)dx . (42)

�r,m = γr,m(1) − γr,m(0)

=
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1 · · · cr
(
Ec1(1) · · · Ecr (1) − Ec1 · · · Ecr

)

=
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1 · · · cr (−Ec1 + 2δ0,c1) · · · (−Ecr + 2δ0,cr )
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−
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1 · · · cr Ec1 · · · Ecr (43)

= (
(−1)r − 1

) ∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1 · · · cr Ec1 · · · Ecr

=
{

−2
∑

c1+c2+···+cr=m,c1,··· ,cr≥1
1

c1···cr Ec1 · · · Ecr , for r odd,

0, for r even.

Remark 4.1 (a) We note here that �r,m = 0, and hence γr,m(1) = γr,m(0), for any
even positive integer r and any integer m with m ≥ r .

(b) For r even,

∫ 1

0
γr,m(x)dx =

r
2∑

j=1

(−1)2 j−1(r)2 j−1

m2 j
�r−2 j+1,m+1; (44)

for r odd,
∫ 1

0
γr,m(x)dx =

r+1
2∑

j=1

(r)2 j−2

m2 j−1
�r−2 j+2,m+1. (45)

Also, γr,m(1) = γr,m(0) ⇔ �r,m = 0.
Now, we are going to consider the function

γr,m(< x >) =
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1c2 · · · cr Ec1 (< x >)Ec2 (< x >) · · · Ecr (< x >),

(46)
defined on R, which is periodic with period 1.

The Fourier series of γr,m(< x >) is

∞∑

n=−∞
C (r,m)
n e2πinx , (47)

where

C (r,m)
n =

∫ 1

0
γr,m(< x >)e−2πinxdx =

∫ 1

0
γr,m(x)e−2πinxdx . (48)

Now, we would like to determine the Fourier coefficients C (r,m)
n .
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Case 1: n �= 0.

C (r,m)
n =

∫ 1

0
γr,m(x)e−2πinxdx

= − 1

2πin

[
γr,m(x)e−2πinx

]1
0
+ 1

2πin

∫ 1

0
γ′
r,m(x)e−2πinxdx

= − 1

2πin
�r,m + 1

2πin

∫ 1

0

(
rγr−1,m−1(x) + (m − 1)γr,m−1(x)

)
e−2πinxdx

= m − 1

2πin
C (r,m−1)
n + r

2πin
C (r−1,m−1)
n − 1

2πin
�r,m

= m − 1

2πin

(m − 2

2πin
C (r,m−2)
n + r

2πin
C (r−1,m−2)
n − 1

2πin
�r,m−1

)

+ r

2πin
C (r−1,m−1)
n − 1

2πin
�r,m

= (m − 1)2
(2πin)2

C (r,m−2)
n +

2∑

j=1

r(m − 1) j−1

(2πin) j
C (r−1,m− j)
n −

2∑

j=1

(m − 1) j−1

(2πin) j
�r,m− j+1

= · · ·

= (m − 1)m−r

(2πin)m−r
C (r,r)
n +

m−r∑

j=1

r(m − 1) j−1

(2πin) j
C (r−1,m− j)
n −

m−r∑

j=1

(m − 1) j−1

(2πin) j
�r,m− j+1

=
m−r+1∑

j=1

r(m − 1) j−1

(2πin) j
C (r−1,m− j)
n −

m−r+1∑

j=1

(m − 1) j−1

(2πin) j
�r,m− j+1.

(49)
Here we need to note that

C (r,r)
n =

∫ 1

0

(
x − 1

2

)r

e−2πinxdx

= − 1

2πin

((
1

2

)r

−
(

−1

2

)r)
+ r

2πin
C (r−1,r−1)
n ,

(50)

�r,r = γr,r (1) − γr,r (0) = (
1

2
)r − (−1

2
)r . (51)

In addition, we can show that, for n �= 0,

C (1,m)
n = 1

m

∫ 1

0
Em(x)e−2πinxdx

= 2

m

m∑

j=1

(m) j−1

(2πin) j
Em− j+1,

(52)

For n �= 0, (49) together with (52) determines all C (r,m)
n recursively.
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Case 2: n = 0.

C (r,m)
0 =

∫ 1

0
γr,m(x)dx =

r∑

j=1

(−1) j−1(r) j−1

m j
�r− j+1,m+1. (53)

γr,m(< x >), (m ≥ r ≥ 1) is piecewise C∞. In addition, γr,m(< x >) is contin-
uous for those integers r,m with �r,m = 0 and discontinuous with jump discontinu-
ities at integers for those integers r,m with �r,m �= 0. We recall here that �r,m = 0,
and hence γr,m(1) = γr,m(0), for any even positive integer r and any integer m with
m ≥ r . Assume first that �r,m = 0, for some integers r,m with m ≥ r ≥ 1. Then
γr,m(1) = γr,m(0).Hence γr,m(< x >) is piecewise C∞ and continuous. Thus, the
Fourier series of γm(< x >) converges uniformly to γm(< x >), and

γm(< x >) = C (r,m)
0 +

∞∑

n=−∞
n �=0

C (r,m)
n e2πinx ,

where C (r,m)
0 is given by (53), and C (r,m)

n , for each n �= 0, are determined recursively
from the relations (49) and (52).

Now, we are ready to state our first theorem.

Theorem 4.2 For all integers s, l with l ≥ s ≥ 1, we let

�s,l = ((−1)s − 1)
∑

c1+c2+···+cs=l,c1,··· ,cs≥1

1

c1 · · · cs Ec1 · · · Ecs .

Assume that �r,m = 0, for some integers r,m with m ≥ r ≥ 1. Then we have the
following.∑

c1+c2+···+cr=m,c1,··· ,cr≥1
1

c1···cr Ec1(< x >) · · · Ecr (< x >) has the Fourier series
expansion

∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1 · · · cr Ec1(< x >) · · · Ecr (< x >)

= C (r,m)
0 +

∞∑

n=−∞
n �=0

C (r,m)
n e2πinx ,

where C (r,m)
0 = ∑r

j=1
(−1) j−1(r) j−1

m j �r− j+1,m+1, and C (r,m)
n , for each n �= 0, are deter-

mined recursively from

C (r,m)
n =

m−r+1∑

j=1

r(m − 1) j−1

(2πin) j
C (r−1,m− j)
n −

m−r+1∑

j=1

(m − 1) j−1

(2πin) j
�r,m− j+1, (54)
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and

C (1,m)
n = 2

m

m∑

j=1

(m) j−1

(2πin) j
Em− j+1. (55)

Here the convergence is uniform.

Next, assume that �r,m �= 0, for some integers r,m with m ≥ r ≥ 1. Then
γr,m(1) �= γr,m(0). Hence γr,m(< x >) is piecewiseC∞ and discontinuouswith jump
discontinuities at integers. Then the Fourier series of γr,m(< x >) converges point-
wise to γr,m(< x >), for x /∈ Z, and converges to

1

2
(γr,m(0) + γr,m(1)) = γr,m(0) + 1

2
�r,m

=
∑

c1+c2+···+cr=m,c1,··· ,cr≥1

1

c1 · · · cr Ec1 · · · Ecr + 1

2
�r,m,

(56)

for x ∈ Z.
Hence we can now state our second theorem.

Theorem 4.3 For all integers s, l with l ≥ s ≥ 1, we get

�s,l = ((−1)s − 1)
∑

c1+c2+···+cs=l,c1,··· ,cs≥1

1

c1 · · · cs Ec1 · · · Ecs .

Assume that �r,m �= 0, for some integers r,m with m ≥ r ≥ 1. Then we have the
following.

Let C (r,m)
0 ,C (r,m)

n (n �= 0) be as in Theorem 4.2. Then we have the following.

C (r,m)
0 +

∞∑

n=−∞
n �=0

C (r,m)
n e2πinx

=
{∑

c1+c2+···+cr=m,c1,··· ,cr≥1
1

c1···cr Ec1(< x >) · · · Ecr (< x >), for x /∈ Z,
∑

c1+c2+···+cr=m,c1,··· ,cr≥1
1

c1···cr Ec1 · · · Ecr + + 1
2�r,m, for x ∈ Z.

(57)
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On a New Extension of Caputo Fractional
Derivative Operator

İ.O. Kıymaz, P. Agarwal, S. Jain and A. Çetinkaya

Abstract In this paper, by using a generalization of beta function we introduced a
new extension of Caputo fractional derivative operator and obtained some of its prop-
erties. With the help of this extended fractional derivative operator, we also defined
new extensions of some hypergeometric functions and determined their integral rep-
resentations, linear and bilinear generating relations.

Keywords Caputo fractional derivative · Hypergeometric functions · Generating
functions · Integral representations
2010 MSC 26A33 · 33C05 · 33C20 · 33C65

1 Introduction

In [2], Chaudhry et al. presented the following extension of Euler’s beta function

Bp(x, y) :=
∫ 1

0
t x−1(1 − t)y−1e

( −p
t (1−t)

)
dt, (1)

where �(p) > 0. Then in [4], Chaudhry et al. used Bp(x, y) to extend the hyperge-
ometric functions as
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262 İ.O. Kıymaz et al.

Fp(a, b; c; z) :=
∞∑
n=0

(a)n

n!
Bp(b + n, c − b)

B(b, c − b)
zn,

where p ≥ 0, �(c) > �(b) > 0, and | z |< 1. Here, the symbol (a)n denotes the
Pochhammer’s symbol which defined by

(a)n := �(a + n)

�(a)
, (a)0 := 1.

Afterward, in [8] Özarslan and Özergin obtained linear and bilinear generating
relations for extended hypergeometric functions by defining the extension of the
Riemann–Liouville fractional derivative (RLFD) operator by using the similar para-
meter with (1) as

Dμ,p
z f (z) := dm

dzm
Dμ−m

z f (z)

= dm

dzm

{
1

�(−μ + m)

∫ z

0
(z − t)−μ+m−1e

( −pz2

t (z−t)

)
f (t)dt

}
,

where �(p) > 0 and m − 1 < �(μ) < m.
Very recently, in [6] Kıymaz et al. used the same parameter to define the extended

Caputo fractional derivative (ECFD) operator as

Dμ,p
z f (z) := 1

�(m − μ)

∫ z

0
(z − t)m−μ−1e

( −pz2

t (z−t)

)
dm

dtm
f (t)dt, (2)

where �(p) > 0 andm − 1 < �(μ) < m. In the case p = 0, ECFD reduces to clas-
sical Caputo fractional derivative (CFD), and also when μ = m ∈ N0 and p = 0,
Dm,0

z f (z) := f (m)(z). It is obvious that these extensions given above coincide with
original ones when p = 0.

Another extension of Beta function which is given by Choi et al. in [5] is

Bp,q(x, y) :=
∫ 1

0
t x−1(1 − t)y−1e(

−p
t − q

1−t )dt, (3)

where min{�(p),�(q)} > 0. Note that when p = q and p = q = 0, the extension
of Beta function (3) reduces to the extended Beta function (1) and the classical Beta
function, respectively.

Finally in [1], Beleanu et al. defined a new extension of RLFD operator, by using
the similar parameter in the definition of generalized Beta function (2) as
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Dμ
z { f (z); p, q} := dm

dzm
Dμ−m

z [ f (z); p, q]

= dm

dzm

{
1

�(−μ + m)

∫ z

0
(z − t)−μ+m−1e(

−pz
t − qz

z−t ) f (t)dt

}
,

where min{�(p),�(q)} > 0 and m − 1 ≤ �(μ) < m. They also studied their prop-
erties in a same way with [8].

Motivated by the above works, in this paper we give a new extension of CFD
operator, by using the similar parameter in the definition of generalized Beta function
(3) and calculate the extended fractional derivatives of some elementary functions.
Furthermore, we present extensions of some hypergeometric functions and their
integral representations, and obtained linear and bilinear generating relations for
extended hypergeometric functions.

2 New Extensions of Hypergeometric Functions

In this section, we introduce the new extensions of Gauss hypergeometric func-
tion 2F1, the Appell hypergeometric functions F1, F2, and the Lauricella hypergeo-
metric function F3

D . Throughout this paper, we assume that m ∈ N and min{�(p),
�(q)} > 0. The reader also should note that

(i) when p = q, the following definitions (4)–(7) and (8) reduce to the correspond-
ingdefinitions (2.1), (2.2), (2.5), (2.6) and (3.1)which is given in [6], respectively,

(ii) when p = q = 0, the following definitions (4)–(7) and (8) reduce to well-known
Gauss hypergeometric function 2F1, Appell functions F1, F2, Lauricella function
F3
D and CFD operator, respectively.

Definition 1 The extended Gauss hypergeometric function is defined for all | z |< 1
as

2F1(a, b; c; z; p, q) :=
∞∑
n=0

(a)n(b)n
(b − m)n

Bp,q(b − m + n, c − b + m)

B(b − m, c − b + m)

zn

n! , (4)

where m < �(b) < �(c).

Definition 2 The extended Appell hypergeometric function is defined for all | x |<
1, | y |< 1 as

F1(a, b, c; d; x, y; p, q) :=
∞∑

n,k=0

(a)n+k(b)n(c)k
(a − m)n+k

Bp,q(a − m + n + k, d − a + m)

B(a − m, d − a + m)

xn

n!
yk

k! , (5)

where m < �(a) < �(d).
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Definition 3 The extended Appell hypergeometric function is defined for all | x | +
| y |< 1 as

F2(a, b, c; d, e; x, y; p, q) :=
∞∑
n=0

∞∑
k=0

[
(a)n+k(b)n(c)k

(b − m)n(c − m)k

Bp,q(b − m + n, d − b + m)

B(b − m, d − b + m)

Bp,q(c − m + k, e − c + m)

B(c − m, e − c + m)

xn yk

n!k!
]
, (6)

where m < �(b) < �(d), and m < �(c) < �(e).

Definition 4 The extended Lauricella hypergeometric function is defined for all
|x | < 1, |y| < 1, |z| < 1 as

F3
D(a, b, c, d; e; x, y, z; p, q) :=

∞∑
n,k,r=0

[
(a)n+k+r (b)n(c)k(d)r

(a − m)n+k+r

Bp,q(a − m + n + k + r, e − a + m)

B(a − m, e − a + m)

xn

n!
yk

k!
zr

r !
]
, (7)

where m < �(a) < �(e).

3 A New Extension of CFD Operator

The classical CFD operator is defined in [7] as

Dμ f (z) := 1

�(m − μ)

∫ z

0
(z − t)m−μ−1 d

m

dtm
f (t)dt,

where m − 1 < �(μ) < m.
Inspired by the same idea in [1, 6], we introduce a new extension of Caputo

fractional derivative (NECFD) operator as

Dμ
z { f (z); p, q} := 1

�(m − μ)

∫ z

0
(z − t)m−μ−1e(

−pz
t − −qz

z−t )
dm

dtm
f (t)dt, (8)

where m − 1 < �(μ) < m.
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Now, we begin our investigation by calculating the NECFD’s of some elementary
functions.

Theorem 1 Let m − 1 < �(μ) < m, and �(μ) < �(λ) then

Dμ
z

{
zλ; p, q} = �(λ + 1)Bp,q(λ − m + 1,m − μ)

�(λ − μ + 1)B(λ − m + 1,m − μ)
zλ−μ.

Proof With direct calculation, we get

Dμ
z

{
zλ; p, q} = 1

�(m − μ)

∫ z

0
(z − t)m−μ−1e(

−pz
t − qz

z−t )
dm

dtm
tλdt

= 1

�(m − μ)

�(λ + 1)

�(λ − m + 1)

∫ z

0
(z − t)m−μ−1tλ−me(

−pz
t − qz

z−t )dt

= zλ−μ

�(m − μ)

�(λ + 1)

�(λ − m + 1)

∫ 1

0
(1 − u)m−μ−1uλ−me(

−p
u − q

1−u )du

= �(λ + 1)Bp,q(λ − m + 1,m − μ)

�(λ − μ + 1)B(λ − m + 1,m − μ)
zλ−μ.

�

Remark 1 Note that Dμ
z
{
zλ; p, q} = 0 for λ = 0, 1, . . . ,m − 1.

The next theorem expresses the NECFD of an analytic function.

Theorem 2 If f (z) is an analytic function on the disk | z |< ρ with its power series
expansion f (z) = ∑∞

n=0 anz
n, then

Dμ
z { f (z); p, q} =

∞∑
n=0

anD
μ
z

{
zn; p, q}

where m − 1 < �(μ) < m.

Proof Using the power series expansion of f , we get

Dμ
z

{
f (z); p, q

}
= 1

�(m − μ)

∫ z

0
(z − t)m−μ−1e(

−pz
t − qz

z−t )
∞∑
n=0

an
dm

dtm
tndt.

Since the power series converges uniformly and the integral converges absolutely,
then the order of the integration and the summation can be changed. So we get,
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Dμ
z

{
f (z); p, q

}
=

∞∑
n=0

an

(
1

�(m − μ)

∫ z

0
(z − t)m−μ−1e(

−pz
t − qz

z−t )
dm

dtm
tndt

)

=
∞∑
n=0

anD
μ
z

{
zn; p, q}

.

�

The proof of the following theorem is obvious from Theorems 1 and 2.

Theorem 3 If f (z) is an analytic function on the disk | z |< ρ with its power series
expansion f (z) = ∑∞

n=0 anz
n, then

Dμ
z

{
zλ−1 f (z); p, q} =

∞∑
n=0

anD
μ
z

{
zλ+n−1; p, q}

= �(λ)zλ−μ−1

�(λ − μ)

∞∑
n=0

an
(λ)n

(λ − μ)n

Bp,q(λ − m + n,m − μ)

B(λ − m + n,m − μ)
zn

= �(λ)zλ−μ−1

�(λ − μ)

∞∑
n=0

an
(λ)n

(λ − m)n

Bp,q(λ − m + n,m − μ)

B(λ − m,m − μ)
zn

where m − 1 < �(μ) < m < �(λ).

The following theoremswill be useful for finding the generating function relations.

Theorem 4 Let m − 1 < �(λ − μ) < m < �(λ), then

Dλ−μ
z

{
zλ−1(1 − z)−α; p, q

}
= �(λ)zμ−1

�(μ)

∞∑
n=0

(α)n(λ)n

(λ − m)n

Bp,q (λ − m + n, μ − λ + m)

B(λ − m, μ − λ + m)

zn

n!

= �(λ)

�(μ)
zμ−1

2F1(α, λ; μ; z; p, q) (9)

for | z |< 1.

Proof If we use the power series expansion of (1 − z)−α and (4), we get

Dλ−μ
z

{
zλ−1(1 − z)−α; p, q} = Dλ−μ

z

{
zλ−1

∞∑
n=0

(α)n
zn

n! ; p, q
}

=
∞∑
n=0

(α)n

n! Dλ−μ,p
z

{
zλ+n−1; p, q}

=
∞∑
n=0

(α)n

n!
�(λ + n)

�(μ + n)

Bp,q(λ − m + n,m − λ + μ)

B(λ − m + n,m − λ + μ)
zμ+n−1
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= �(λ)

�(μ)
zμ−1

∞∑
n=0

(α)n(λ)n

(μ)n

Bp,q(λ − m + n,m − λ + μ)

B(λ − m + n,m − λ + μ)

zn

n!

= �(λ)

�(μ)
zμ−1

∞∑
n=0

(α)n(λ)n

(λ − m)n

Bp,q(λ − m + n,μ − λ + m)

B(λ − m,μ − λ + m)

zn

n!

= �(λ)

�(μ)
zμ−1

2F1(α,λ;μ; z; p, q).

�

Theorem 5 Let m − 1 < �(λ − μ) < m < �(λ), then

Dλ−μ
z

{
zλ−1(1 − az)−α(1 − bz)−β; p, q

}

= �(λ)

�(μ)
zμ−1

∞∑
n,k=0

(λ)n+k(α)n(β)k

(λ − m)n+k

Bp,q (λ − m + n + k, μ − λ + m)

B(λ − m, μ − λ + m)

(az)n

n!
(bz)k

k!

= �(λ)

�(μ)
zμ−1F1(λ,α, β;μ; az; bz; p, q) (10)

for | az |< 1 and | bz |< 1.

Proof Using the power series expansion of (1 − az)−α, (1 − bz)−β , and (5), we get

Dλ−μ
z

{
zλ−1(1 − az)−α(1 − bz)−β; p, q

}

= Dλ−μ
z

⎧⎨
⎩

∞∑
n=0

∞∑
k=0

(α)n

n!
(β)k

k! anbk zλ+n+k−1; p, q
⎫⎬
⎭

=
∞∑

n,k=0

(α)n

n!
(β)k

k! anbk Dλ−μ
z

{
zλ+n+k−1; p, q

}

=
∞∑

n,k=0

(α)n

n!
(β)k

k! anbk
�(λ + n + k)Bp,q (λ − m + n + k,m − λ + μ)

�(λ − m + n + k)�(m − λ + μ)
zμ+n+k−1

= �(λ)

�(μ)
zμ−1

∞∑
n,k=0

(λ)n+k(α)n(β)k

(λ − m)n+k

Bp,q (λ − m + n + k,m − λ + μ)

B(λ − m,m − λ + μ)

(az)n

n!
(bz)k

k!

= �(λ)

�(μ)
zμ−1F1(λ,α, β;μ; az; bz; p, q).

�
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Theorem 6 Let m − 1 < �(λ − μ) < m < �(λ), then

Dλ−μ
z

{
zλ−1(1 − az)−α(1 − bz)−β(1 − cz)−γ; p, q

}

= �(λ)

�(μ)
zμ−1

∞∑
n,k,r=0

(λ)n+k+r (α)n(β)k(γ)r

(λ − m)n+k+r

Bp,q(λ − m + n + k + r,μ − λ + m)

B(λ − m,μ − λ + m)

× (az)n

n!
(bz)k

k!
(cz)r

r !
= �(λ)

�(μ)
zμ−1F3

D(λ,α,β, γ;μ; az; bz; cz; p, q) (11)

for | az |< 1,| bz |< 1 and | cz |< 1.

Proof Using the power series expansion of (1 − az)−α, (1 − bz)−β , (1 − cz)−γ , and
(7), we get

Dλ−μ
z

{
zλ−1(1 − az)−α(1 − bz)−β(1 − cz)−γ; p, q

}

= Dλ−μ
z

{ ∞∑
n=0

∞∑
k=0

∞∑
r=0

(α)n

n!
(β)k

k!
(γ)r

r ! anbkcr zλ+n+k+r−1; p, q
}

=
∞∑

n,k,r=0

(α)n

n!
(β)k

k!
(γ)r

r ! anbkcr Dλ−μ
z

{
zλ+n+k+r−1; p, q

}

=
∞∑

n,k,r=0

(α)n

n!
(β)k

k!
(γ)r

r ! anbkcr

× �(λ + n + k + r)Bp,q(λ − m + n + k + r,m − λ + μ)

�(λ − m + n + k + r)�(m − λ + μ)
zμ+n+k+r−1

= �(λ)

�(μ)
zμ−1

∞∑
n,k,r=0

(λ)n+k+r (α)n(β)k(γ)r

(λ − m)n+k+r

Bp,q(λ − m + n + k + r,m − λ + μ)

B(λ − m,m − λ + μ)

× (az)n

n!
(bz)k

k!
(cz)r

r !
= �(λ)

�(μ)
zμ−1F3

D(λ,α,β, γ;μ; az; bz; cz; p, q).

�

Theorem 7 Let m − 1 < �(λ − μ) < m < �(λ) and m < �(β) < �(γ), then

Dλ−μ
z

{
zλ−1(1 − z)−α

2F1

(
α,β; γ; x

1 − z
; p, q

)
; p, q

}
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= �(λ)

�(μ)
zμ−1

∞∑
n=0

∞∑
k=0

[
(α)n+k(β)n(λ)k

(β − m)n(λ − m)k

Bp,q(β − m + n, γ − β + m)

B(β − m, γ − β + m)

· Bp,q(λ − m + k,μ − λ + m)

B(λ − m,μ − λ + m)

xnzk

n!k!
]

= �(λ)

�(μ)
zμ−1F2(α,β,λ; γ,μ; x, z; p, q). (12)

for | x | + | z |< 1.

Proof Using the power series expansion of (1 − z)−α and Eqs. (4) and (6), we get

Dλ−μ
z

{
zλ−1(1 − z)−α

2F1

(
α,β; γ; x

1 − z
; p, q

)
; p, q

}

= Dλ−μ
z

{
zλ−1(1 − z)−α

∞∑
n=0

(α)n(β)n

(β − m)nn!
Bp,q (β − m + n, γ − β + m)

B(β − m, γ − β + m)

(
x

1 − z

)n

; p, q
}

= Dλ−μ
z

{
zλ−1(1 − z)−α−n

∞∑
n=0

(α)n(β)n

(β − m)n

Bp,q (β − m + n, γ − β + m)

B(β − m, γ − β + m)

xn

n! ; p, q
}

=
∞∑
n=0

(α)n(β)n

(β − m)n

Bp,q (β − m + n, γ − β + m)

B(β − m, γ − β + m)

xn

n! D
λ−μ
z

{
zλ−1(1 − z)−α−n; p, q

}

= �(λ)

�(μ)
zμ−1

∞∑
n=0

∞∑
k=0

[
(α)n+k(β)n(λ)k

(β − m)n(λ − m)k

Bp,q (β − m + n, γ − β + m)

B(β − m, γ − β + m)

· Bp,q (λ − m + k,μ − λ + m)

B(λ − m,μ − λ + m)

xnzk

n!k!
]

= �(λ)

�(μ)
zμ−1F2(α,β,λ; γ,μ; x, z; p, q).

�

4 Generating Function Relations

In this section, we use the equalities (9), (10), and (12) for obtaining linear and
bilinear generating relations for the extension of hypergeometric function 2F1.

Theorem 8 Let m − 1 < �(λ − μ) < m < �(λ), then

∞∑
n=0

(α)n

n! 2F1(α + n,λ;μ; z; p, q)tn = (1 − t)−α
2F1

(
α,λ;μ; z

1 − t
; p, q

)

(13)
where |z| < min{1, |1 − t |}.
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Proof Taking the identity

[(1 − z) − t]−α = (1 − t)−α

(
1 − z

1 − t

)−α

in [12] and expanding the left-hand side, we get

∞∑
n=0

(α)n

n! (1 − z)−α

(
t

1 − z

)n

= (1 − t)−α

(
1 − z

1 − t

)−α

when |t | < |1 − z|. If we multiply both sides with zλ−1 and apply the NECFD oper-
ator, we get

Dλ−μ
z

{ ∞∑
n=0

(α)ntn

n! zλ−1(1 − z)−α−n; p, q
}

= Dλ−μ
z

{
(1 − t)−αzλ−1

(
1 − z

1 − t

)−α

; p, q
}

.

Since |t | < |1 − z| and �(λ) > �(μ) > 0, it is possible to change the order of the
summation and the derivative as

∞∑
n=0

(α)n

n! Dλ−μ
z

{
zλ−1(1 − z)−α−n; p, q}

tn = (1 − t)−α

Dλ−μ
z

{
zλ−1

(
1 − z

1 − t

)−α

; p, q
}

.

So we get the result after using Theorem 4 on both sides. �

Theorem 9 Let m − 1 < �(λ − μ) < m < �(λ), then

∞∑
n=0

(α)n

n! 2F1(β − n,λ;μ; z; p, q)tn = (1 − t)−αF1

(
λ,β,α;μ; z; −zt

1 − t
; p, q

)

where |t | < 1
1+|z| .

Proof Taking the identity

[1 − (1 − z)t]−α = (1 − t)−α

(
1 + zt

1 − t

)−α
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in [12] and expanding the left hand side, we get

∞∑
n=0

(α)n

n! (1 − z)ntn = (1 − t)−α

(
1 − −zt

1 − t

)−α

when |t | < |1 − z| over minus 1. If we multiply both sides with zλ−1(1 − z)−β and
apply the NECFD operator, we get

Dλ−μ
z

{ ∞∑
n=0

(α)n

n! zλ−1(1 − z)−β(1 − z)ntn; p, q
}

= Dλ−μ
z

{
(1 − t)−αzλ−1(1 − z)−β

(
1 − −zt

1 − t

)−α

; p, q
}

.

Since |zt | < |1 − t | and �(λ) > �(μ) > 0, it is possible to change the order of the
summation and the derivative as

∞∑
n=0

(α)n

n! Dλ−μ
z

{
zλ−1(1 − z)−β+n; p, q}

tn

= (1 − t)−αDλ−μ
z

{
zλ−1(1 − z)−β

(
1 − −zt

1 − t

)−α

; p, q
}

.

So we get the result after using Theorems 4 and 5. �

Theorem 10 Let m − 1 < �(β − γ) < m < �(β) and m < �(λ) < �(μ), then

∞∑
n=0

(α)n

n! 2F1(α + n,λ;μ; z; p, q)2F1(−n,β; γ; u; p, q)

= 1 − t−αF2

(
α,λ,β;μ, γ; z

1 − t
,

−ut

1 − t
; p, q

)
.

Proof If we take t → (1 − u)t in (13) and then multiply both sides with uβ−1, we
get

∞∑
n=0

(α)n

n! 2F1(α + n,λ;μ; z; p, q)uβ−1(1 − u)ntn

= uβ−1[1 − (1 − u)t]−α
2F1

(
α,λ;μ; z

1 − (1 − u)t
; p, q

)
.
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Applying the NECFD Dβ−γ
u to both sides and changing the order, we find

∞∑
n=0

(α)n

n! 2F1(α + n, λ; μ; z; p, q)Dβ−γ
u

{
uβ−1(1 − u)n; p, q

}
tn

= Dβ−γ
u

{
uβ−1[1 − (1 − u)t]−α

2F1

(
α, λ; μ; z

1 − (1 − u)t
; p, q

)
; p, q

}

when |z| < 1,
∣∣ 1−u
1−z t

∣∣ < 1 and
∣∣ z
1−t

∣∣ + ∣∣ ut
1−t

∣∣ < 1. If we write the equality like

∞∑
n=0

(α)n

n! 2F1(α + n,λ;μ; z; p, q)Dβ−γ
u

{
uβ−1(1 − u)n; p, q}

tn

= Dβ−γ
u

{
uβ−1

[
1 − −ut

1 − t

]−α

2F1

(
α,λ;μ;

z
1−t

1 − −ut
1−t

; p, q
)

; p, q
}

and using Theorems 4 and 7, we get the desired result. �

5 Further Results and Observations

In this section, we apply the NECFD operator (8) to familiar functions ez and
2F1(a, b; c; z). We also obtain the Mellin transforms of some NECFD, and we give
the integral representations of extended hypergeometric functions.

Theorem 11 The NECFD of f (z) = ez is

Dμ
z {ez; p, q} = zm−μ

�(m − μ)

∞∑
n=0

zn

n! Bp,q(n + 1,m − μ)

for all z.

Proof Using the power series expansion of ez and Theorem 2, we get

Dμ
z {ez; p, q} =

∞∑
n=0

1

n!D
μ
z {zn; p, q}

=
∞∑

n=m

�(n + 1)Bp,q(n − m + 1,m − μ)

�(n − μ + 1)B(n − m + 1,m − μ)

zn−μ

n!



On a New Extension of Caputo Fractional … 273

=
∞∑
n=0

�(n + m + 1)Bp,q(n + 1,m − μ)

�(n + m − μ + 1)B(n + 1,m − μ)

zn+m−μ

(n + m)!

= zm−μ

�(m − μ)

∞∑
n=0

zn

n! Bp,q(n + 1,m − μ).

�
Theorem 12 The NECFD of 2F1(a, b; c; z) is

Dμ
z

{
2F1(a, b; c; z); p, q

}
= (a)m(b)m

(c)m

zm−μ

�(1 − μ + m)

·
∞∑
n=0

(a + m)n(b + m)n

(c + m)n(1 − μ + m)n

Bp,q(n + 1,m − μ) zn

B(m − μ, n + 1)

for | z |< 1.

Proof Using the power series expansion of 2F1(a, b; c; z) and making similar cal-
culations, we get

Dμ
z {2F1(a, b; c; z); p, q} = Dμ

z

{ ∞∑
n=0

(a)n(b)n
(c)n

zn

n! ; p, q
}

=
∞∑
n=0

(a)n(b)n
(c)nn! Dμ

z

{
zn; p, q}

=
∞∑

n=m

(a)n(b)n
(c)nn!

�(n + 1)Bp,q(n − m + 1,m − μ)

�(n − μ + 1)B(m − μ, n − m + 1)
zn−μ

=
∞∑
n=0

(a)n+m(b)n+m

(c)n+m(n + m)!
�(n + m + 1)Bp,q(n + 1,m − μ)

�(n + m − μ + 1)B(m − μ, n + 1)
zn+m−μ

= (a)m(b)m
(c)m

zm−μ

�(1 − μ + m)

∞∑
n=0

(a + m)n(b + m)n

(c + m)n(1 − μ + m)n

Bp,q(n + 1,m − μ) zn

B(m − μ, n + 1)
.

�
The following theorem is about the integral representations of new extensions of

hypergeometric functions.

Theorem 13 The following integral representations are valid

2F1(a, b; c; z; p, q) = 1

B(b − m, c − b + m)

∫ 1

0

{
tb−m−1(1 − t)c−b+m−1

e(
−p
t − q

1−t )2F1(a, b; b − m; zt)
}
dt, (14)
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F1(a, b, c; d; x, y; p, q) = 1

B(a − m, d − a + m)

∫ 1

0

{
ta−m−1(1 − t)d−a+m−1

e(
−p
t − q

1−t )F1(a, b, c; a − m; xt, yt)
}
dt, (15)

F2(a, b, c; d, e; x, y; p, q) = 1

B(b − m, d − b + m)B(c − m, e − c + m)∫ 1

0

∫ 1

0

{
tb−m−1uc−m−1(1 − t)d−b+m−1(1 − u)e−c+m−1

e

( −p
t − q

1−t − p
u − q

1−u

)
F2(a, b, c; b − m, c − m; xt, yu)

}
dtdu.

(16)

Proof The integral representations (14)–(16) can be obtained directly by replacing
the function Bp,q with its integral representation in (4)–(6), respectively. �
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An Extension of the Shannon Wavelets
for Numerical Solution of
Integro-Differential Equations

Maryam Attary

Abstract In this work, an extension of the algebraic formulation of the Shannon
wavelets for the numerical solution of a class of Volterra integro-differential equation
is proposed. Our approach is based on the connection coefficients of the Shannon
wavelet and collocation method for constructing the algebraic equivalent represen-
tation of the problem. Also, the Shannon approximation is applied to solve one type
of nonlinear integral equation arising from chemical phenomenon. An analysis of
error for the problem is given. The obtained numerical results show the accuracy of
the presented method.

Keywords Integro-differential equations · Shannon wavelet · Numerical
approximation of solutions

2010 AMS Math. Subject Classification Primary 45J05 · Secondary 34K28

1 Introduction

Integral, integro-differential, ordinary and fractional differential equations are used
in modelling problems of engineering and science fields, including mathematical
biology, electromagnetic theory, potential theory and chemical engineering, see
[1, 2, 5, 7, 8, 11, 14] and references therein.

Themain purpose in this article is to develop and to provide a numerical algorithm
based on the coefficients of the Shannon wavelets for the following form of integro-
differential equation

1∑

i=0

�i u
(i)(x) = f (x) +

∫ x

a
k(x, t)u(t)dt, (1)
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u(a) = a0,

where �i are constants, k and f are given functions and u(x) is a solution to be
determined. Noting that for �1 = 0, (1) be transformed to integral equation.

Over the past few decades, the numerical solvability of these type of equations
has been studied intensively by many authors, such as Chebyshev spectral solution
[6], rationalized Haar functions [12] and Sinc-Legendre collocation method [13].

Wavelets are very powerful and useful tool in data compression, signal and oper-
ator analysis. The real part of the harmonic wavelets is Shannon wavelets. These
wavelets can be used to study frequency changes as well as oscillations in a small
range time interval [4].

This paper is organized as follows: Sect. 2 introduces some basic definitions and
preliminaries of the Shannon wavelets. We derive formulas for a class of IDEs and
give a numerical scheme based on proposed method in Sect. 3. Error analysis of
our method is considered in Sect. 4. Finally, in Sect. 5, we report several numerical
experiments to clarify the efficiency and accuracy of the proposed method.

2 Preliminary Definitions

Here, we give some basic definitions of the Shannon wavelets family [4, 9]. The Sinc
function is defined on the whole real line by:

Sinc(x) =
{

sin(πx)
πx , x �= 0,

1, x = 0.

The Shannon scaling functions and mother wavelets can be defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ j,k(x) = 2 j/2Sinc(2 j x − k) = 2 j/2 sin π(2 j x − k)

π(2 j x − k)
, j, k ∈ Z ,

ψ j,k(x) = 2 j/2
sin π(2 j x − k − 1

2 ) − sin 2π(2 j x − k − 1
2 )

π(2 j x − k − 1
2 )

, j, k ∈ Z ,

we recall the following theorem from [3]:

Theorem 2.1 If u(x) ∈ L2(R), then

u(x) =
∞∑

k=−∞
αkϕ0,k(x) +

∞∑

j=0

∞∑

k=−∞
β j,kψ j,k(x), (2)

with

αk =< u,ϕ0,k >=
∫ ∞

−∞
u(x)ϕ0,k(x)dx, (3)
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β j,k =< u,ψ j,k >=
∫ ∞

−∞
u(x)ψ j,k(x)dx . (4)

Using a finite truncated series of the above theorem, we can define an approxi-
mation function of the exact solution u(x) as follows:

u(x) �
M∑

k=−M

αkϕ0,k(x) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(x). (5)

The nth derivatives of u(x) in terms of the Shannon wavelets can be written as
(see e.g. [9] for further details):

u(n)(x) �
M∑

k=−M

αkϕ
(n)
0,k(x) +

N∑

j=0

M∑

k=−M

β j,kψ
(n)
j,k(x), (6)

on the other hand, we have the following relations [4]:

ϕ(n)
0,k(x) =

M∑

h=−M

λ(n)
kh ϕ0,h(x) (7)

ψ(n)
j,k(x) =

M∑

h=−M

γ
(n) j j
kh ψ j,h(x). (8)

Therefore, (6) rewritten as:

u(n)(x) �
M∑

k=−M

αk

M∑

h=−M

λ(n)
kh ϕ0,h(x) +

N∑

j=0

M∑

k=−M

β j,k

M∑

h=−M

γ
(n) j j
kh ψ j,h(x), (9)

where

λ(n)
kh =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k−h in

2π

∑n
s=1

l!πs

s![i(k − h)]n−s+1
[(−1)s − 1], k �= h,

i nπn+1

2π(n + 1)
[1 + (−1)n], k = h,

(10)

γ
(n) j j
kh =

⎧
⎪⎪⎨

⎪⎪⎩

i n2 jn

2π
�n

m=1(−1)n
n!πm(2m − 1)

m![i(h − k)]n−m+1
[(−1)m − 1], k �= h,

i n2 jnπn+1

2π(n + 1)
[1 + (−1)n][2n+1 − 1], k = h,

(11)

which λ(n)
kh and γ

(n) j j
kh are known as the connection coefficients.
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Moreover, it is

γ
(n) j j
kh = 2n( j−1)γ(n)11

kh . (12)

3 Numerical Treatment of the Problem

In this section, we will obtain formulas for numerical solvability of (1), based on the
previous results. We define an approximation function u

′
(x) as follows:

u
′
(x) �

M∑

k=−M

αk

M∑

h=−M

λ(1)
kh ϕ0,h(x) +

N∑

j=0

M∑

k=−M

β j,k

M∑

h=−M

γ
(1) j j
kh ψ j,h(x). (13)

By taking n = 1 in (10), (11) and using simple computations, we obtain the following
relations for λ(1)

kh and γ
(1) j j
kh :

λ(1)
kh =

{− (−1)k−h

k−h , k �= h,

0, k = h,
γ

(1) j j
kh =

{
2 j

(h−k) , k �= h,

0, k = h,
(14)

and due to (12), we can write γ
(1) j j
kh = 2( j−1)γ(1)11

kh , for j > 1.
Now, we are ready to apply the obtained results for constructing the algebraic

equivalent presentation of (1). Equation (1) can be rewritten as:

�0u(x) + �1u
′
(x) = f (x) +

∫ x

a
k(x, t)u(t)dt,

by substituting (5), (13) and (14) in the above equation, we have:

�0

⎡

⎣
M∑

k=−M

αkϕ0,k(x) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(x)

⎤

⎦

+ �1

⎡

⎣
M∑

k=−M

αk

M∑

h=−M

λ(1)
kh ϕ0,h(x) +

N∑

j=0

M∑

k=−M

β j,k

M∑

h=−M

γ
(1) j j
kh ψ j,h(x)

⎤

⎦

= f (x) +
∫ x

a
k(x, t)

⎡

⎣
M∑

k=−M

αkϕ0,k(t) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(t)

⎤

⎦ dt,
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and by rearranging the above equation based on unknowns αk and β j,k , we get

M∑

k=−M

αk

[
�0ϕ0,k(x) + �1

M∑

h=−M

λ
(1)
kh ϕ0,h(x) −

∫ x

a
k(x, t)ϕ0,k(t)dt

]
(15)

+
N∑

j=0

M∑

k=−M

β j,k

[
�0ψ j,k(x) + �1

M∑

h=−M

γ
(1) j j
kh ψ j,h(x) −

∫ x

a
k(x, t)ψ j,k(t)dt

]
= f (x).

We may set

�k(x) = �0ϕ0,k(x) + �1

M∑

h=−M

λ(1)
kh ϕ0,h(x) −

∫ x

a
k(x, t)ϕ0,k(t)dt,

� j,k(x) = �0ψ j,k(x) + �1

M∑

h=−M

γ
(1) j j
kh ψ j,h(x) −

∫ x

a
k(x, t)ψ j,k(t)dt,

therefore, we can write (15) as:

M∑

k=−M

αk�k(x) +
N∑

j=0

M∑

k=−M

β j,k� j,k(x) = f (x). (16)

For obtaining (2N + 1)(2M + 2) unknowns αk and β j,k , we take x = xi for i =
1, . . . , (2N + 1)(2M + 2) − 1, where xi be collocation points. So, we have

M∑

k=−M

αk�k(xi ) +
N∑

j=0

M∑

k=−M

β j,k� j,k(xi ) = f (xi ). (17)

On the other hand, u(a) = a0 can be written as

M∑

k=−M

αkϕ0,k(a) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(a) = a0. (18)

According to above equations, a system of (2N + 1)(2M + 2) linear equations is
obtained. By solving the resulting system, unknowns αk and β j,k can be determined
and so the approximate solution u(x) will be obtained.



282 M. Attary

The following algorithm summarizes our proposed method:

Algorithm 1. The construction of Shannon method for a class of IDEs

Step 1. Input:
�0, �1, f (x), k(x, t),ϕ0,h(x),ψ j,h(x), a, a0.

Step 2. Choose N , M;
Step 3. Compute:

λ(1)
kh =

{− (−1)k−h

k−h , k �= h,

0, k = h,
γ

(1) j j
kh =

{
2 j

(h−k) , k �= h,

0, k = h.

Step 4. Compute �k(xi ),� j,k(xi ), f (xi ); for i = 1, . . . , (2N + 1)(2M + 2) − 1;
Step 5. Compute αk and β j,k from (17) and (18);
Step 6. Set: u(x) � ∑M

k=−M αkϕ0,k(x) + ∑N
j=0

∑M
k=−M β j,kψ j,k(x).

4 Error Analysis

In this section, we will provided a convergence analysis of the numerical algorithm
for a class of integro-differential equation (1).

Theorem 4.1 Assume that ũ(x) be the approximate solution of Eq. (1). If u(1)(x) ∈
L2(R), then the obtained approximation solution of the proposed method converges
to the exact solution, where αk and β j,k are given in Theorem 2.1.

Proof Note that

ũ(x) =
∞∑

k=−∞
< u,ϕ0,k > ϕ0,k(x) +

N−1∑

j=0

∞∑

k=−∞
< u,ψ j,k > ψ j,k(x) (19)

=
N−1∑

j=−∞

∞∑

k=−∞
< u,ψ j,k > ψ j,k(x).

Due to [9], the following relation holds

‖D(n)

⎡

⎣
N−1∑

j=−∞

∞∑

k=−∞
< u,ψ j,k > ψ j,k(x) − u(x)

⎤

⎦ ‖2 → 0, as N → ∞,
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or

‖
[ ∞∑

k=−∞
< u,ϕ0,k > ϕ(n)

0,k(x) +
N−1∑

j=0

∞∑

k=−∞
< u,ψ j,k > ψ(n)

j,k(x) − u(n)(x)

]
‖2 → 0,

as N → ∞,

according to definitions of αk and β j,k in Theorem 2.1 and Eqs. (7) and (8), for n = 1
above relation can be written as

lim
N→∞

⎡

⎣
∞∑

k=−∞
αk

∞∑

h=−∞
λ(1)
kh ϕ0,h(x) +

N−1∑

j=0

∞∑

k=−∞
β j,k

∞∑

h=−∞
γ

(1) j j
kh ψ j,h(x)

⎤

⎦ = u(1)(x),

which proves the theorem. �
Theorem 4.2 Let u(1)

M (x) be the first-order derivative of the approximate solution
of Eq. (1), then there exist constants C1 and C2 independent of N and M, such that

∣∣∣u(1)(x) − ũ(1)
M (x)

∣∣∣ ≤ |C1(u(−M − 1) + u(M + 1))

−C2

[
3
√
3

π
[u(2−N−1(−M − 1

2 )) + u(2−N−1(M + 3
2 ))]

]
|,

where C1 = Max{|∑k

∑
h λ(1)

kh |}, C2 = Max{| ∑k

∑
h γ

(1) j j
kh |} and M, N refer to

the given values of j and k.

Proof See [10].

Detailed analysis of the proof of this theorem can be found in [9, 10], so we refrain
from going into details.

5 Numerical Results

In this section, several test problems are considered to demonstrate the accuracy of
the proposed method.

Example 5.1 Consider the following equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
′
(x) − 2u(x) = f (x) + ∫ x

0 k(x, t)u(t)dt,

f (x) = 1 − 2x − x4

2
− x3

3
,

k(x, t) = x2 + t,
u(0) = 0,

(20)

with the exact solution u(x) = x .
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Example 5.2 Consider the following equation

⎧
⎪⎪⎨

⎪⎪⎩

u
′
(x) − 3u(x) = f (x) + ∫ x

0 k(x, t)u(t)dt,

f (x) = −1 + x − 2xex − ex ,
k(x, t) = x + t,
u(0) = 1,

(21)

with the exact solution u(x) = ex .
The computational results of Examples 5.1 and 5.2 have been reported in Tables1

and 2, to show the accurate solution of mentioned algorithm. The exact and approx-
imate solution of these examples for different values of M and N are compared in
Figs. 1 and 2.

Example 5.3 Consider the following equation with the exact solution

u(x) = 1 − sinh(x).

⎧
⎪⎪⎨

⎪⎪⎩

u(x) = f (x) + ∫ x
0 k(x, t)u(t)dt,

f (x) = 1 − x − x2

2
,

k(x, t) = x − t.

(22)

Table 1 Numerical results of
Example 5.1 using Shannon
approximation

x Absolute errors

M = 1, N = 3 M = 2, N = 4

0 1.11 × 10−16 0

0.2 3.50 × 10−2 3.43 × 10−2

0.4 9.33 × 10−3 2.57 × 10−2

0.6 1.26 × 10−1 3.65 × 10−3

0.8 2.92 × 10−1 2.05 × 10−2

1 4.08 × 10−1 4.65 × 10−4

Table 2 Numerical results of
Example 5.2 using Shannon
approximation

x Absolute errors

M = 1, N = 3 M = 2, N = 4

0 2.20 × 10−16 1.11 × 10−16

0.2 6.50 × 10−2 9.62 × 10−2

0.4 2.09 × 10−1 6.13 × 10−2

0.6 4.16 × 10−1 4.73 × 10−3

0.8 6.45 × 10−1 1.48 × 10−3

1 8.40 × 10−1 1.80 × 10−1
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Fig. 1 Exact and approximate solution of Example 5.1 for different values of M and N using
presented method

Fig. 2 Exact and approximate solution of Example 5.2 for different values of M and N using
presented method

Table 3 Numerical results of Examples 5.3 and 5.4 using Shannon approximation

x M = 1, N = 1 M = 2, N = 3

Example 5.3 Example 5.4 Example 5.3 Example 5.4

0 6.98 × 10−4 1.25 × 10−4 2.32 × 10−10 3.51 × 10−11

0.2 3.62 × 10−5 4.79 × 10−6 2.46 × 10−13 4.20 × 10−14

0.4 1.73 × 10−5 1.10 × 10−6 5.43 × 10−13 7.71 × 10−14

0.6 2.29 × 10−5 8.40 × 10−7 8.40 × 10−13 1.12 × 10−13

0.8 6.79 × 10−5 5.67 × 10−6 1.16 × 10−12 1.44 × 10−13

1 1.89 × 10−3 2.56 × 10−4 1.19 × 10−10 1.74 × 10−11

Examples 5.3 and 5.4, which are obtained by taking �1 = 0, are integral equations.
The numerical results of these examples are reported in Table3. Also, Figs. 3 and 4
show the exact and approximate solution of Examples 5.3 and 5.4 for M = 2 and
N = 3, respectively.
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Fig. 3 Exact and
approximate solution of
Example 5.3 for M = 2 and
N = 3 using presented
method

Fig. 4 Exact and
approximate solution of
Example 5.4 for M = 2 and
N = 3 using presented
method

Table 4 Numerical results of
Example 5.4 using Shannon
approximation

x Absolute errors

N = 4 N = 5

0 2.64 × 10−6 2.61 × 10−9

0.2 1.19 × 10−8 1.16 × 10−10

0.4 8.70 × 10−9 2.92 × 10−10

0.6 7.13 × 10−9 2.33 × 10−10

0.8 6.00 × 10−9 3.07 × 10−10

1 1.30 × 10−16 1.68 × 10−15

Example 5.4 Consider the following equation

⎧
⎨

⎩

u(x) = f (x) + ∫ x
0 k(x, t)u(t)dt,

f (x) = 1,
k(x, t) = −x + t,

(23)

with the exact solution u(x) = cos(x).
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Example 5.5 Consider the following equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x) = f (x) + ∫ 1
0 k(x, t)(u(t))−1dt,

f (x) = 21 − 11e10

100
e(−10(1+x)) + 1

1 + x
,

k(x, t) = e−10(x+t),

(24)

with the exact solution u(x) = 1

1 + x
. This problem is a nonlinear Hammerstein

integral equation which arising from chemical phenomenon. By choosing Shannon
scaling functions, Example 5.5 has been solved. The reported results in Table4
show that the Shannon approximation has produced highly numerical results. Good
numerical results can be achieved by additional numerical experiments (e.g. with
N ≥ 2). This problem has been solved by u(x) � ∑2N

k=1 αkϕN ,k(x).

6 Conclusions

In this present work, we applied an accurate and efficient method for solving a
class of IDEs. We consider a special class of IE, which is a quantum chemistry, by
the Shannon scaling functions. Our obtained results are in a good agreement with
the exact solutions and are given to demonstrate the applicability of our proposed
method.
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Inverse Source Problem for Multi-term
Fractional Mixed Type Equation
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Abstract In this work, we investigate an inverse source problem for multi-term
fractional mixed type equation in a rectangular domain. We seek solutions in a
form of series expansions using orthogonal basis obtained by using the method of a
separation of variables. The obtained solutions involve multi-variable Mittag-Leffler
functions, and hence, certain properties of the multi-variable Mittag-Leffler function
needed for our calculationswere established and proved. Imposing certain conditions
to the given data, the convergence of the infinite series solutions was proved as well.

Keywords Caputo operator · Mixed type equation · Mittag-Leffler function
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1 Introduction and Preliminaries

Fractional differential equations (FDEs) become one of the interesting targets in
mathematics due to their essential role in modelling of many problems of physics,
chemistry, mechanics, geology, medicine, and other applied fields. Most of the frac-
tional models of these problems derived from the classical equations by replacing
the integer order time derivative with non-integer order derivatives. For instance, in
[1, 2], fractional models inMaxwell fluid and generalized Oldroyd B-fluid have been
investigated, respectively. Many other interesting applications of FDEs can be found
in [3].
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Skipping huge amount ofworks, devoted to studying both theoretical and practical
aspects of various FDEs, we would like to mention some work related to multi-term
time-fractional differential equations. Luchko and Gorenflo [4] studied multi-term
time-fractional differential equation by operational method explicitly representing
its solution in terms of multi-variate Mittag-Leffler function. Later on, maximum
principles for such equations involving Riemann–Liouville and Caputo fractional
derivatives have been studied by many authors. For instance, maximum principle
for multi-term time-fractional diffusion equation with Riemann–Liouville derivative
was investigated by Al-Refai and Luchko [5]. Recently, strong maximum principle
for multi-term time-fractional diffusion equations and its application to an inverse
problem studied by Liu [6].

Many other boundary-value problems for various multi-term FDEs were investi-
gated by Daftardar-Gejji and Bhalekar [7], using the method of separation of vari-
ables, andMinget al. [8], generalizing the existing results for classicalNavier–Stokes,
Oltroyd-B, Maxwell, and second-grade fluids.

Inverse source problems for multi-term time-fractional partial differential equa-
tions with singularity studied in [9, 10], where authors expanded solutions of the
investigated problems in a form of Fourier–Bessel series and represented them in an
explicit form in terms of multi-variate Mittag-Leffler function.

We also note the work by Karimov and Feng [11], where inverse source prob-
lem for mixed type equation with Caputo fractional derivative was studied for weak
solvability. Recently, in [12], a non-local inverse source problem was investigated
for time-fractional mixed type equation in rectangular domain. Solutions were rep-
resented in a series form using bi-orthogonal basis and involve Mittag-Leffler-type
functions of two variables.

In the present work, we aim to investigate inverse source problem for multi-term
time-fractional mixed type equation in a rectangular domain. Using the method of
separation of variables, we represent solutions of the problem in a form of infinite
series, involving particular case of multi-variate Mittag-Leffler function. We proved
new estimation for this function, which allows us to impose less conditions in order
to provide uniform convergence of certain infinite series.

The rest of the paper is organized as follows. Further, in this section, we give
definition of the Caputo fractional derivative and represent several properties of
aforementioned Mittag-Leffler function of two variable. In the next section, we for-
mulate the problem and give formal representation of solutions by expanding them
into sine-Fourier series. Next, we provide detailed proofs for uniform convergence
of the obtained series solutions. In the last section, we present main results and
conclusion.

1.1 Caputo Fractional Derivatives

If α /∈ N ∪ {0}, the Caputo fractional derivatives C Dα
ax y and C Dα

xb y of order α are
defined by [13, p. 92]
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(
C D

α
ax y

)
(x) = 1

� (n − α)

x∫

a

y(n) (t) dt

(x − t)α−n+1 (n = [Re (α)] + 1, x > a) ,

(
C D

α
xb y

)
(x) = (−1)n

� (n − α)

b∫

x

y(n) (t) dt

(t − x)α−n+1 (n = [Re (α)] + 1, x < b) ,

(1)
respectively, while for α = n ∈ N ∪ {0}, we have

(
C D

0
ax y

)
(x) = y (x) ,

(
C D

0
xb y

)
(x) = y (x) ,

(
C D

n
ax y

)
(x) = y(n) (x) ,

(
C D

n
xb y

)
(x) = (−1)n y(n) (x) .

1.2 Two-Variable Mittag-Leffler Function

A particular case of multi-variate Mittag-Leffler function (see [4], formula (39)) in
two variables can be presented as

E(α−β,α),ρ (x, y) =
∞∑

n=0

n∑

i=0

n!
i !(n − i)!

xi yn−i

�(ρ + αn − βi)
. (2)

Lemma 1.1 For α > β > 0, the following properties are true:

(I) d
dt

[
tαE(α−β,α),α+1

(
m1tα−β,m2tα

)] = tα−1E(α−β,α),α

(
m1tα−β,m2tα

) ;
(II)

t∫

0
zα−1E(α−β,α),α

(
m1zα−β,m2zα

) = tαE(α−β,α),α+1
(
m1tα−β,m2tα

) ;
(III) m1tα−βE(α−β,α),α−β+ρ

(
m1tα−β,m2tα

) + m2tαE(α−β,α),α+ρ

(
m1tα−β,m2tα

) =

E(α−β,α),ρ

(
m1tα−β,m2tα

) − 1
�(ρ)

.

Here, m1, m2 are nonzero constants.
Wehave also established newproperties of the above givenMittag-Leffler function

in two variables, which will be used later in our calculations. These properties are
formulated in the following two lemmas along with their proofs.

Lemma 1.2 For 1 < β < α < 2 and 0 < ρ ≤ 1 the following statements are true:

(I) C D
ρ
t0

(
t E(α−β,α),2

(
m1(−t)α−β,m2(−t)α

)) =
(−t)1−ρE(α−β,α),2−ρ

(
m1(−t)α−β,m2(−t)α

)
,

(II) C D
ρ
t0

(
E(α−β,α),1

(
m1(−t)α−β,m2(−t)α

)) =
(−t)−ρ

[
E(α−β,α),1−ρ

(
m1(−t)α−β,m2(−t)α

) − 1
�(1−ρ)

]
,

(III) C D
ρ
t0

(
(−t)αE(α−β,α),α+1

(
m1(−t)α−β,m2(−t)α

)) =
(−t)α−ρE(α−β,α),α+1−ρ

(
m1(−t)α−β,m2(−t)α

)
.
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Proof Here, we prove the third property, and the proof of the first two can be done
similarly. Using the definition (1) and representation (2), one can get

C D
ρ
t0

(
(−t)αE(α−β,α),α+1

(
m1(−t)α−β,m2(−t)α

)) =
1

�(1 − ρ)

0∫

t

(z − t)−ρ d

dz

[
(−z)α

(
1

�(1 + α)
+ m2(−z)α)

�(2α + 1)
+ m1(−z)α−β

�(2α + 1 − β)
+

(m2(−z)α)2

�(3α + 1)
+ 2m1m2(−z)2α − β

�(3α + 1 − β)
+ (m1(−z)α−β)2

�(3α + 1 − 2β)
+ ...

)]
dz =

1

�(α)�(1 − ρ)

t∫

0

(− z)α−1(z − t)−ρdz + m2

�(2α)�(1 − ρ)

t∫

0

(−z)2α−1(z − t)−ρdz+

m1

�(2α − β)�(1 − ρ)

t∫

0

(−z)2α−β−1(z − t)−ρdz + ... = (−t)α−ρ

[
1

�(α + 1 − ρ)
+

m2(−t)α

�(α + 1 − ρ + α)
+ m1(−t)α−β

�(α + 1 − ρ + α − β)
+ ...

]
=

(−t)α−ρE(α−β,α),α+1−ρ

(
m1(−t)α−β,m2(−t)α

)
.

�

Note that here we have used the well-known Beta-function

1∫

0

ξa−1(1 − ξ)b−1dξ = �(a)�(b)

�(a + b)
.

Lemma 1.3 If ρ > 0, 0 < α − β < 2, λ ≤ |arg(x + y)| ≤ π such that π(α −
β)/2 < λ < min(π,π(α − β)), and

�(ρ + n(α − β) + kβ) > �(ρ + n(α − β)), n, k ∈ N, n ≥ k, (3)

then ∣∣E(α−β,α),ρ (x, y)
∣∣ ≤ c

1 + |x + y| . (4)

Here, c is any constant.

Proof According to (2), we have
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∣∣E(α−β,α),ρ(x, y)
∣∣ =∣∣∣ 1

�(ρ)
+

(
y

�(ρ+α)
+ x

�(ρ+α−β)

)
+

(
y2

�(ρ+2α)
+ 2xy

�(ρ+2α−β)
+ x2

�(ρ+2α−2β)

)
+

(
y3

�(ρ+3α)
+ 3xy2

�(ρ+3α−β)
+ 3x2 y

�(ρ+3α−2β)
+ x3

�(ρ+3α−3β)

)
+ ...

∣∣
∣

Here, we will replace �(ρ + α) with �(ρ + α − β) and �(ρ + 2α) with �(ρ +
2(α − β)). Generally, we replace �(ρ + n(α − β) + kβ) with �(ρ + n(α − β)),
where n, k = 1, 2, ..., such that n ≥ k. Imposing the condition (3), we obtain

∣
∣E(α−β,α),ρ(x, y)

∣
∣ ≤∣∣∣ 1

�(ρ)
+ x+y

�(ρ+α−β)
+ (x+y)2

�(ρ+2(α−β))
+ ... + (x+y)n

�(ρ+n(α−β))
+ ...

∣∣∣ ≤
∣
∣∣∣

∞∑

n=0

(x+yn)
�(ρ+n(α−β))

∣
∣∣∣ = ∣∣Eα−β,ρ(x + y)

∣∣ ≤ C
1+|x+y| .

In the last step, we have used an estimation of the two parametric Mittag-Leffler

function Em,n(z) =
∞∑

i=0

zi

�(n+mi) , given in [14]. �

2 Formulation of Problem and Formal Solution

2.1 Formulation of Problem

Consider fractional order mixed type equation

1 + sgn(t)

2

(
C D

α1
0t u + μ1C D

β1
0t u

)
+ 1 − sgn(t)

2

(
C D

α2
t0 u + μ2C D

β2
t0 u

)
− uxx = f (x)

(5)
in a rectangular domain � = {(x, t) : 0 < x < 1, −p < t < q}. Here, 0 < β1 <

α1 < 1, 1 < β2 < α2 < 2, μ1,μ2 ∈ R.

Problem. Find a pair of functions {u(x, t), f (x)}, satisfying
• u(x, t) ∈ C(�), uxx ∈ C(�+ ∪ �−), C D

α1
0t u ∈ C(�+), C D

α2
t0 u ∈ C(�−),

f (x) ∈ C(0, 1);
• Equation (5) in �+ and �−;
• the boundary conditions

u(0, t) = u(1, t) = 0, −p ≤ t ≤ q, (6)

u(x,−p) = ψ(x), 0 ≤ x ≤ 1; C D
γ
t0u(x,−p) = φ(x), 0 < x < 1, (7)

u(x, q) = ϕ(x), 0 ≤ x ≤ 1. (8)



294 E.T. Karimov et al.

Here,�+ = � ∩ {t > 0},�− = � ∩ {t < 0},ψ(x),φ(x) andϕ(x) are given func-
tions such that ψ(0) = ψ(1) = ϕ(0) = ϕ(1) = 0, 0 < γ ≤ 1.

2.2 Formal Solution

Using the method of separation of variables leads to the spectral problem in space-
variable x :

X ′′(x) − λX (x) = 0, X (0) = X (1) = 0. (9)

It is well known that the problem (9) is self-adjoint and its solutions, Xn(x) =
sin nπx, n ∈ N, form a complete orthogonal basis in L2(0, 1). Based on this, we
look for a solution of problem (5)–(8) as follows:

u(x, t) =
∞∑

k=1

T+
k (t) sin kπx, t ≥ 0, (10)

u(x, t) =
∞∑

k=1

T−
k (t) sin kπx, t ≤ 0, (11)

f (x) =
∞∑

k=1

fk sin kπx, (12)

where

T+
k (t) =

1∫

0
u(x, t) sin kπxdx, t ≥ 0,

T−
k (t) =

1∫

0
u(x, t) sin kπxdx, t ≤ 0,

fk =
1∫

0
f (x) sin kπxdx

(13)

are the Fourier coefficients of series (10)–(12), respectively.
Substituting (10)–(12) into Eq. (5), we formally obtain

C D
α1
0t T

+
k (t) + μ1C D

β1
0t T

+
k (t) + (kπ)2 T+

k (t) = fk, (14)

C D
α2
t0 T

−
k (t) + μ2C D

β2
t0 T

−
k (t) + (kπ)2 T−

k (t) = fk . (15)

According to [4], solution of (14) satisfying the condition T+
k (0) = Ak has a form
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T+
k (t) = fk

t∫

0
zα1−1E(α1−β1,α1),α1

(−μ1zα1−β1 ,−(kπ)2zα1
)
dz+

Ak
[
1 − μ1tα1−β1E(α1−β1,α1),α1−β1+1

(−μ1tα1−β1 ,−(kπ)2tα1
) −

(kπ)2tα1 E(α1−β1,α1),α1+1
(−μ1tα1−β1 ,−(kπ)2tα1

)]
.

(16)

Solution of (15), which satisfies conditions

T−
k (0) = Bk, T−

k
′
(0) = Ck

has a form

T−
k (t) = fk

0∫

t
(−z)α2−1E(α2−β2,α2),α2

(−μ2(−z)α2−β2 ,−(kπ)2(−z)α2
)
dz+

Bk
[
1 − μ2(−t)α2−β2E(α2−β2,α2),α2−β2+1

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
) −

(kπ)2(−t)α2 E(α2−β2,α2),α2+1
(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2

)]

−Ckt
[
1 − μ2(−t)α2−β2E(α2−β2,α2),α2−β2+2

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
) −

(kπ)2(−t)α2 E(α2−β2,α2),α2+2
(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2

)]
.

(17)
Here, Ak, Bk , and Ck are unknown constants, which should be determined.

Using the second and third statements in Lemma 1.1, we rewrite (16) and (17) as
follows:

T+
k (t) = fk tα1E(α1−β1,α1),α1+1

(−μ1tα1−β1 ,−(kπ)2tα1
)+

AkE(α1−β1,α1),1
(−μ1tα1−β1 ,−(kπ)2tα1

)
,

(18)

T−
k (t) = fk(−t)α2E(α2−β2,α2),α2+1

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
) +

BkE(α2−β2,α2),1
(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2

) −
Ckt E(α2−β2,α2),2

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
)
.

(19)

In order to find the unknown constants Ak, Bk , and Ck , we use the boundary condi-
tions (7)–(8), which can be written in terms of T±

k (t) as follows:

T−
k (−p) = ψk, T+

k (q) = ϕk, (20)

C D
γ
t0T

−
k (t)

∣
∣
t=−p = φk, (21)

where

ϕk =
1∫

0

ϕ(x) sin kπxdx, ψk =
1∫

0

ψ(x) sin kπxdx, φk =
1∫

0

φ(x) sin kπxdx

are Fourier coefficients of the Fourier series of the given functions ϕ(x),ψ(x), and
φ(x), respectively.
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From (18)–(21), we obtain

ϕk = fkqα1E(α1−β1,α1),α1+1
(−μ1qα1−β1 ,−(kπ)2qα1

)+
AkE(α1−β1,α1),1

(−μ1qα1−β1 ,−(kπ)2qα1
)
,

(22)

ψk = fk pα2E(α2−β2,α2),α2+1
(−μ2 pα2−β2 ,−(kπ)2 pα2

) +
BkE(α2−β2,α2),1

(−μ2 pα2−β2 ,−(kπ)2 pα2
) +

Ck pE(α2−β2,α2),2
(−μ2 pα2−β2 ,−(kπ)2 pα2

)
.

(23)

In order to use condition (21), we will first evaluate the expression C D
γ
t0T

−
k (t) based

on (19):

C D
γ
t0T

−
k (t) = fkC D

γ
t0

(
(−t)α2E(α2−β2,α2),α2+1

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
)) +

BkC D
γ
t0

(
E(α2−β2,α2),1

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
)) −

CkC D
γ
t0

(
t E(α2−β2,α2),2

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
))

.

(24)
According to Lemma 1.2, we get

C D
γ
t0T

−
k (t) = fk(−t)α2−γE(α2−β2,α2),α2+1−γ

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
) +

Bk(−t)−γ
[
E(α2−β2,α2),1−γ

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
) − 1

�(1−γ)

]
−

Ck(−t)1−γE(α2−β2,α2),2−γ

(−μ2(−t)α2−β2 ,−(kπ)2(−t)α2
)
.

Now, substituting this into (21), we get

φk = fk pα2−γE(α2−β2,α2),α2+1−γ

(−μ2 pα2−β2 ,−(kπ)2 pα2
)+

Bk p−γ
[
E(α2−β2,α2),1−γ

(−μ2 pα2−β2 ,−(kπ)2 pα2
) − 1

�(1−γ)

]
−

Ck p1−γE(α2−β2,α2),2−γ

(−μ2 pα2−β2 ,−(kπ)2 pα2
)
.

(25)

To find the unknown constant fk , we need another condition. For this aim, we rewrite
the transmitting condition u(x,+0) = u(x,−0), which follows from u(x, t) ∈
C(�), as T+

k (0) = T−
k (0). This leads to Ak = Bk . One can easily check this fact

by evaluating lim
t→+0

T+
k (t) and lim

t→−0
T−
k (t) using (18) and (19).

First, from (22) we find fk as

fk = ϕk − AkE(α1−β1,α1),1
(−μ1qα1−β1 ,−(kπ)2qα1

)

qα1E(α1−β1,α1),α1+1
(−μ1qα1−β1 ,−(kπ)2qα1

) . (26)

Further, considering that Ak = Bk from (23) and (25) we obtain system of algebraic
equations with respect to unknown constants Bk and Ck :
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φk = pα2−γE(α2−β2 ,α2),α2+1−γ(..p..)
qα1 E(α1−β1,α1),α1+1(..q..)

[
ϕk − BkE(α1−β1,α1),1(..q..)

] +
Bk p−γ

[
E(α2−β2,α2),1−γ(..p..) − 1

�(1−γ)

]
− Ck p1−γE(α2−β2,α2),2−γ(..p..),

ψk = pα2 E(α2−β2 ,α2),α2+1(..p..)
qα1 E(α1−β1 ,α1),α1+1(..q..)

[
ϕk − BkE(α1−β1,α1),1(..q..)

] +
BkE(α2−β2,α2),1(..p..) + Ck pE(α2−β2,α2),2(..p..).

(27)

If
�k = p1−γ

{
E(α2−β2,α2),2(..p..)

[
E(α2−β2,α2),1−γ(..p..) − 1

�(1−γ)

]
−

E(α2−β2,α2),2−γ(..p..)E(α2−β2,α2),1(..p..) − pα2 E(α1−β1 ,α1),1(..q..)

qα1 E(α1−β1,α1),α1+1(..q..)
×

[
E(α2−β2,α2),2(..p..)E(α2−β2,α2),α2+1−γ(..p..)+
E(α2−β2,α2),2−γ(..p..)E(α2−β2,α2),α2+1(..p..)

]} 
= 0,

(28)

then we can find Bk , Ck as follows:

Bk = Ak = 1
�k

{
pφk E(α2−β2,α2),2(..p..) + p1−γψk E(α2−β2,α2),2−γ(..p..)−

ϕk pα2+1−γ

qα1 E(α1−β1,α1),α1+1(..q..)

[
E(α2−β2,α2),2(..p..)E(α2−β2,α2),α2+1−γ(..p..)+

E(α2−β2,α2),1(..p..)
(
E(α2−β2,α2),1−γ(..p..) − 1

�(1−γ)

)]} (29)

Ck = 1
pE(α2−β2 ,α2),2(..p..)

{
ψk − pα2 E(α2−β2 ,α2),α2+1(..p..)

qα1 E(α1−β1 ,α1),α1+1(..q..)
ϕk+

1
�k

[
pα2E(α2−β2,α2),α2+1(..p..)E(α1−β1,α1),1(..q..) − qα1E(α1−β1,α1),α1+1(..q..)×

E(α2−β2,α2),2(..p..)
] {

pφk E(α2−β2,α2),2(..p..) + p1−γψk E(α2−β2,α2),2−γ(..p..)−
pα2+1−γϕk

qα1 E(α1−β1 ,α1),α1+1(..q..)

[
E(α2−β2,α2),2(..p..)E(α2−β2,α2),α2+1−γ(..p..)+

E(α2−β2,α2),1(..p..)
(
E(α2−β2,α2),1−γ(..p..) − 1

�(1−γ)

)]}}
.

(30)
Here in order to avoid bulky expressions, we have introduced the following short
notations:

(..q..) = (−μ1t
α1−β1 ,−(kπ)2tα1

)
, (..p..) = (−μ2(−t)α2−β2 ,−(kπ)2(−t)α2

)
.

3 Convergence of Infinite Series

Imposing certain conditions on the given functions, we will prove uniform conver-
gence of the infinite series corresponding to the functions u(x, t), f (x), uxx (x, t),
C D

α1
0t u(x, t), and C D

α2
t0 u(x, t).
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First, we start with the series corresponding to uxx since it requires stronger
conditions due to the appearance of the term (kπ)2. Precisely, we need to prove the

convergence of the series
∞∑

k=1
(kπ)2|T+

k (t)| and
∞∑

k=1
(kπ)2|T−

k (t)|.
Using estimation (4), we get from (18)

|T+
k (t)| ≤ c

(kπ)2
[| fk | + |Ak |] .

and from (29) and (26), we deduce

|Ak | ≤ 1

(kπ)2

1

|�k |
(
c1|φk | + c2|ψk | + c3

(kπ)2
|ϕk |

)
,

| fk | ≤ c4|ϕk | + c5
(kπ)2

|Ak | ≤ 1

(kπ)2
(c4|2ϕk | + c5|Ak |) .

Here, 2ϕk =
1∫

0
ϕ′′(x) sin kπxdx .

Therefore, one can easily state that

|T+
k (t)| ≤ 1

(kπ)4

[
c4|2ϕk | + 1

|�k |
(

c5
(kπ)2

+ 1

) (
c1|φk | + c2|ψk | + c3

(kπ)2
|ϕk |

)]
.

(31)

In order to get this estimation, we impose the following conditions on the given
functions:

ϕ(x) ∈ C[0, 1] ∩ C1(0, 1), ϕ(0) = ϕ(1) = 0, ϕ′′(x) ∈ L(0, 1), ψ(x),φ(x) ∈ C[0, 1].

Now, let us estimate T−
k (t). Again, using the estimation (4), from (19) we get

|T−
k (t)| ≤ 1

(kπ)2
(c6| fk | + c7|Bk | + c8|Ck |)

and from (30), we obtain

|Ck | ≤ c9|ψk | + c10|ϕk | + 1

|�k |
(

c11
(kπ)6

|φk | + c12
(kπ)6

|ψk | + c13
(kπ)6

|ϕk |
)

or

|Ck | ≤ 1

(kπ)2

[
c9|2ψk | + c10|2ϕk | + 1

|�k |
(

c11
(kπ)4

|φk | + c12
(kπ)4

|ψk | + c13
(kπ)4

|ϕk |
)]

,
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where 2ψk =
1∫

0
ψ′′(x) sin kπxdx . Based on this estimation, we finally get

|T−
k (t)| ≤ 1

(kπ)4
[c4c6|2ϕk | + (c5c6 + c7) |Ak | + c8c9|2ψk | + c8c10|2ϕk |+

c8
|�k |

(
c11

(kπ)4
|φk | + c12

(kπ)4
|ψk | + c13

(kπ)4
|ϕk |

)]
.

(32)

Hence, based on (31) and (32) and using the Weierstrass M-test, one can eas-
ily prove the uniform convergence of the infinite series corresponding to functions
u(x, t), uxx (x, t), and f (x). In order to prove the uniform convergence of infinite
series corresponding to C D

α1
0t u(x, t) and C D

α2
t0 u(x, t), we need the following esti-

mates:

∣∣
C D

α1
0t T

+
k (t)

∣∣ ≤ 1

(kπ)2
(c13| fk | + c14|Ak |) , (33)

∣∣
C D

α2
t0 T

−
k (t)

∣∣ ≤ 1

(kπ)2
(c15| fk | + c16|Bk | + c17|Ck |) . (34)

Uniqueness of solution to problem (5)–(8) easily follows from the completeness
property of the system {sin nπx}n∈N in L2(0, 1).

4 Main Result and Conclusion

We formulate our main result in the following theorem:

Theorem 4.1 If all fractional orders of (1) satisfy the conditions of Lemma 1.3 and
the condition (28) along with the following conditions:

ϕ(x),ψ(x) ∈ C[0, 1] ∩ C1(0, 1), ϕ(0) = ϕ(1) = 0, ψ(0) = ψ(1) = 0,

ϕ′′(x),ψ′′(x) ∈ L(0, 1), φ(x) ∈ C[0, 1]

is satisfied, then there exists a unique solution of the problem (5)–(8) represented by
(10)–(12), where the coefficients T+

k (t), T−
k (t), and fk are given by (18), (19), and

(26), respectively.

Remark 4.1 It is also possible to avoid restrictions to the fractional orders of (1)
given in the conditions of Lemma 1.3. In this case, instead of estimation (4), we will
use another estimation, given in [15] (see Lemma 3.2), precisely,

E(α−β,α),ρ(x, y) ≤ c

1 + |x | .

However, in this case, we have to impose more conditions on the given functions.
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The result for the later case can be formulated as follows:

Theorem 4.2 If condition (28) and the following conditions

φ(x) ∈ C[0, 1], ϕ(x),ψ(x) ∈ C2[0, 1] ∩ C3(0, 1), ϕ(0) = ϕ(1) = 0, ψ(0) = ψ(1) = 0,

ϕ′′(0) = ϕ′′(1) = 0, ψ′′(0) = ψ′′(1) = 0,ϕiv(x),ψiv(x) ∈ L(0, 1)

hold, then there exists a unique solution of the problem (5)–(8) represented by (10)–
(12), where the coefficients T+

k (t), T−
k (t), and fk are given by (18), (19), and (26),

respectively.

Conclusion. In this work, we have considered an inverse source problem for mixed
type equation involving two different orders of Caputo fractional derivatives in a
rectangular domain. In order to reduce conditions on the given functions, we proved
a new estimation for a particular case of the multi-variate Mittag-Leffler function.
We also proved some other properties of that Mittag-Leffler function, which is given
in Lemma 1.2.

In order to illustrate how important is the new estimation (4), we have presented
another result, whichwas obtained using another estimation.We also have to note that
new estimation requires additional restrictions to the fractional order of the equation
(5) as given in Lemma 1.3.

We also note that in both cases, condition to the geometry of the considered
domain in a form of (28) is essential.
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