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Abstract. In this paper, we introduce a concept of lacunary statistically p-quasi-Cauchyness of a real sequence in the sense that a
sequence (αk) is lacunary statistically p-quasi-Cauchy if limr→∞

1
hr
|{k ∈ Ir : |αk+p − αk | ≥ ε}| = 0 for each ε > 0. A function f is

called lacunary statistically p-ward continuous on a subset A of the set of real numbers R if it preserves lacunary statistically p-
quasi-Cauchy sequences, i.e. the sequence f (x) = ( f (αn)) is lacunary statistically p-quasi-Cauchy whenever α = (αn) is a lacunary
statistically p-quasi-Cauchy sequence of points in A. It turns out that a real valued function f is uniformly continuous on a bounded
subset A of R if there exists a positive integer p such that f preserves lacunary statistically p-quasi-Cauchy sequences of points in A.
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INTRODUCTION

In [19] (see also [20]) Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that
a sequence (αk) of points in R is called lacunary statistically convergent, or S θ-convergent, to an element L of R if
limr→∞

1
hr
|{k ∈ Ir : |αk−L| ≥ ε}| = 0 for every positive real number εwhere Ir = (kr−1, kr] and k0 = 0, hr : kr−kr−1 → ∞

as r → ∞ and θ = (kr) is an increasing sequence of positive integers (see also [28], [33], [26], and [27] ). In this case
we write S θ − limαk = L. The set of lacunary statistically convergent sequences of points in R is denoted by S θ. In
the sequel, we will always assume that lim in fr qr > 1. A sequence (αk) of points in R is called lacunary statistically
quasi-Cauchy if S θ − lim∆αk = 0, where ∆αk = αk+1 − αk for each positive integer k. The set of lacunary statistically
quasi-Cauchy sequences will be denoted by ∆S θ. Using the idea of continuity of a real function in terms of sequences
in the sense that a function preserves a certain kind of sequences, many kinds of continuities were introduced and
investigated, not all but some of them we recall in the following: slowly oscillating continuity ([3]), quasi-slowly
oscillating continuity ([18]), ward continuity ([4]), δ-ward continuity ([6]), statistical ward continuity ([7]), [9], [31])
and Nθ-ward continuity ([8]) which enabled some authors to obtain conditions on the domain of a function for some
characterizations of uniform continuity (see [32, Theorem 6],[2, Theorem 1 and Theorem 2],[18, Theorem 2.3], [2,
Theorem 1], and [15, Theorem 5].

The purpose of this paper is to introduce lacunary statistically p-quasi-Cauchy sequences, and prove some theo-
rems.

Variations on lacunary statistical p ward compactness

Definition 1 A sequence (αk) of points inR is called lacunary statistically p-quasi-Cauchy if st−limk→∞ ∆pαk = 0,
ie. limr→∞

1
hr
|{k ∈ Ir : |∆pαk | ≥ ε}| = 0 for each ε > 0, where ∆pαk = αk+p − αk for every k ∈ N.

Definition 2 A subset A of R is called lacunary statistically p-ward compact if any sequence of points in A has a
lacunary statistically p-quasi-Cauchy subsequence.

Since any lacunary statistically quasi-Cauchy sequence is lacunary statistically p-quasi-Cauchy we see that any lacu-
nary statistically ward compact subset of R is lacunary statistically p-ward compact for any p ∈ N. A finite subset of
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R is lacunary statistically p-ward compact, the union of finite number of lacunary statistically p-ward compact subsets
of R is lacunary statistically p-ward compact, and the intersection of any family of lacunary statistically p-ward com-
pact subsets of R is lacunary statistically p-ward compact. Furthermore any subset of a lacunary statistically p-ward
compact set of R is lacunary statistically p-ward compact and any bounded subset of R is lacunary statistically p-ward
compact. These observations above suggest to us the following.

Theorem 1 A subset A of R is bounded if and only if there exists some p ∈ N such that A is lacunary statistically
p-ward compact.

Corollary 1 A subset of R is statistically p ward compact if and only if it is statistically q ward compact for any
p, q ∈ N.

Corollary 2 A subset of R is statistically p ward compact if and only if it is both statistically upward half compact
and statistically downward half compact.

Corollary 3 A subset of R is statistically p ward compact for some p ∈ N if and only if it is both lacunary
statistically upward half compact and lacunary statistically downward half compact.

Variations on lacunary statistical p ward continuity

In this section, we investigate connections between uniformly continuous functions and lacunary statistically p-ward
continuous functions. A function f : R −→ R is continuous if and only if it preserves statistically convergent se-
quences. Using this idea, we introduce statistical p-ward continuity.

Definition 3 A function f is called lacunary statistically p-ward continuous on a subset A of R if it preserves
lacunary statistically p-quasi-Cauchy sequences, i.e. the sequence f (x) = ( f (αn)) is lacunary statistically p-quasi-
Cauchy whenever α = (αn) is lacunary statistically p-quasi-Cauchy of points in A.

Theorem 2 If f is lacunary statistically p-ward continuous on a subset A of R for some p ∈ N, then it is lacunary
statistically ward continuous on A.

Corollary 4 If f is lacunary statistically p-ward continuous on a subset A of R, then it is continuous on A in the
ordinary case.

Theorem 3 Lacunary statistical p-ward continuous image of any lacunary statistically p-ward compact subset of
R is lacunary statistically p-ward compact.

Corollary 5 Lacunary statistical p-ward continuous image of any G-sequentially connected subset of R is G-
sequentially connected for a regular subsequential method G (see [5], [22], and [13]).

Theorem 4 If f is uniformly continuous on a subset A of R, then ( f (αn)) is lacunary statistically p-quasi-Cauchy
whenever (αn) is a p-quasi-Cauchy sequence of points in A.

Corollary 6 If f is slowly oscillating continuous on a bounded subset A of R, then ( f (αn)) is lacunary statistically
p-quasi-Cauchy whenever (αn) is a p quasi-Cauchy sequence of points in A.

It is well-known that any continuous function on a compact subset A of R is uniformly continuous on A. We
have an analogous theorem for a lacunary statistically p-ward continuous function defined on a lacunary statistically
p-ward compact subset of R.

Theorem 5 If a function is lacunary statistically p-ward continuous on a lacunary statistically p-ward compact
subset of R, then it is uniformly continuous on A.

Corollary 7 If a function defined on a bounded subset of R is lacunary statistically p-ward continuous, then it is
uniformly continuous.
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We note that when the domain of a function is restricted to a bounded subset of R, lacunary statistically p-ward
continuity implies not only ward continuity, but also slowly oscillating continuity.

It is well-known that the uniform limit of continuous functions on a subset A of R is continuous on A. We
have an analogous theorem for a lacunary statistically p-ward continuous function that the uniform limit of lacunary
statistically p-ward continuous functions on a subset A of R is lacunary statistically p-ward continuous on A.

Theorem 6 If a sequence of lacunary statistically p-ward continuous function is uniformly convergent to a func-
tion f on a subset of R, then f is lacunary statistically p-ward continuous

Theorem 7 The set of lacunary statistically p-ward continuous functions on a subset A of R is a closed subset of
the space of continuous functions.

Theorem 8 The set of lacunary statistically p-ward continuous functions on a subset A of R is a complete subset
of the space of continuous functions on A.

Conclusion

In this paper, mainly a new types of continuity, namely lacunary statistically p-ward continuity of a real function
are introduced and investigated. In this investigation we have obtained results related to lacunary statistically p-
ward continuity, some other kinds of continuities via lacunary statistically p-quasi Cauchy sequences, convergent
sequences, statistical convergent sequences, lacunary statistical convergent sequences of points in R. We not that the
set of lacunary statistically p-ward continuous functions is a proper subset of the set of ordinary continuous functions.
We suggest to investigate lacunary statistically p-quasi Cauchy sequences of fuzzy points in fuzzy spaces, and in
soft spaces (see [10], [21] for the definitions and related concepts in fuzzy setting, and see [1], and [17] for the soft
setting). We also suggest to investigate lacunary statistically p-quasi Cauchy double sequences (see for example [11],
[24], [16] and [25] for the definitions and related concepts in the double sequences case). For another further study,
we suggest to investigate lacunary statistically p-quasi Cauchy sequences of points in a cone metric space ([23], [12],
[29], [30], and [14]).
Acknowledgment: The author acknowledges that the full paper of the results of this extended abstract is to appear in
Maltepe Journal of Mathematics ([34]).
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[5] H. Çakallı, On G-continuity, Comput. Math. Appl. 61 2 (2011), 313-318.
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