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Abstract. In this paper, a known theorem dealing with weighted mean summability methods of non-decreasing sequences has
been generalized for |A, p,; d|, summability factors of almost increasing sequences. Also, some new results have been obtained
concerning

N, p,,|k, |N, D (5|k and |C, 1; 6], summability factors.
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INTRODUCTION

Let )} a, be a given infinite series with the partial sums (s,). We denote u? the nth Cesaro mean of order a, with
a > —1, of the sequence (s,), that is (see [8]),

1 -
u® ZA‘;,jsv (1

"= A
my=0
where

(a+ D(a+2)...(a+n)
n!

Ay = =0m*), A%, =0 for n>0. 2)

A series ) ay, is said to be summable |C, @; 6|, , k > 1 and § > 0, if (see [10]),

o

Zn5k+k—l|u3 _ M;ll/_1|k < oo, (3)

n=1

If we take § = 0, then we have |C, a|; summability (see [9]).
Let (p,,) be a sequence of positive numbers such that

n
Pn=va—>oo as n—oo, (P_j=p_;=0, i=1). 4)
v=0

The sequence-to-sequence transformation

1

Wp = P_n PvSy 5)
v=0
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defines the sequence (w,,) of the weighted arithmetic mean or simply the (V, p,) mean of the sequence (s,) generated
by the sequence of coefficients (p,) (see [11]).

The series 3 a, is said to be summable |N, p,; S, k > 1 and 6 > 0, if (see [4]),

) P Sk+k—1
Z(—") | At < oo, 6)
n=1 Dn
where
Aw,_y = ——2" iPV_lav, n>1. (7
PnPn—] —1

In the special case if we take § = 0, we have |N, p,|x summability (see [2]). When p,, = 1 for all values of n, |N, p,,; 0l
summability is the same as |C, 1; 8|, summability. Also if we take 6 = 0 and k = 1, then we have |N, p,| summability.
Let A = (ay,) be a normal matrix. i.e., a lower triangular matrix of nonzero diagonal entries. Given a normal matrix
A = (an), we associate two lower semimatrices A = (d@,,) and A = (&,,) as follows:

n
apy = Z Api, N,V = 0,1,.. (8)
i=v

and
&00 = doop = Ago, anv =dapy — an—l,va n= 1, 2’ (9)

Then A defines the sequence-to-sequence transformation, mapping the sequence s = (s,) to As = (A,(s)), where

n

A(s) = Zam,sv, n=0,1,.. (10)

v=0

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series transformations,
respectively. Then, we have

Au(s) = 23:0 ApySy = Z::O any Z}/:O a; = Z?:O a; Zc:i Ay
= S il = X Ay an
. B -1
Since  Gp-1n = X ap-1; =0,

=n

AA,,(S) = A,,(S) - An—l(s) = Z:}l:() @y — Z:;é an—l,vav

= Z";’:O(anv - an—l,v)av + an—l,nan = Z:;Z:() z\lnvaw (12)
The series ; a, is said to be summable |A, p,; |, k = 1 and 6 > 0, if (see [14])
© i p \ktkl
> (—) A4, ()| < o0 (13)
Pn

n=1

where
AAL(S) = An($) = Apr1(s),  and  AA,(s) = Au(s) — Apoi ().

By a weighted mean matrix we state

{ B 0<v<n

a =9 "

0 v >n,

where (p,,) is a sequence of positive numbers with P, = po + p; + p2 + ... + p, = o0 asn — oo.

If we take 6 = O, then |A, p,; 6|, summability is the same as |A, pu|;, summability (see [15]) and if we take 6 = 0 and
ayy = %, then |A, p,; 0|, summability is the same as |V, p,|x summability. Also, if we take § = 0, a,,, = % and p, =1
for all n, then |A, p,; 6|, summability is the same as |C, 1|, summability.
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The Known Results

Quite recently, Bor has proved the following theorems concerning on weighted arithmetic mean summability factors
of infinite series.

Theorem 2.1 [3] Let (X,,) be a positive non-decreasing sequence and suppose that there exists sequences (8,) and (4,,)
such that

|A| < B, (14)
Bp—0 as n— o (15)
Zine1 MABAIX, < oo, (16)
41X, = O(1). (r7)
If
O Isalt
Z =0X,) as m— oo, (18)
n
n=1
and (p,) is a sequence that
Py = O(npn), (19)
PnApn = O(pnpn+])7 (20)

then the series an% is summable |N, p,li, k > 1.

Theorem 2.2 [5] Let (X,,) be a positive non-decreasing sequence. If the sequences (X,,), (8,), (1,), (pn) satisfy the
conditions (14)-(17), (19)-(20) of Theorem 2.1, and

m ok k
(ﬂ) sl o) as m— oo, @n
n=1 DPn n
m+1 k-1
P,,) 1 PG |
— =0(—‘ —) as m— oo, 22)
Z (pn Pn—l (Pv) P,

n=v+1

then the series ) a, ’;"p/l" is summable |N, p,; S|, k > 1 and 0 < 6 < 1/k.

Theorem 2.3 [6] Let (X,,) be a positive non-decreasing sequence. If the sequences (X,,), (8,), (1,), and (p,) satisfy the
conditions (14)-(17), (19)-(20) of Theorem 2.1, and

SRS
Z = 0(X,) as m— o, (23)

k-1
= nX,

then the series Y a, ’;; is summable |N, p,li, k > 1.

Theorem 2.4 [7] Let EX,,) be a positive non-decreasing sequence. If the sequences (X,,) , (8,), (1,), and (p,) satisfy
the conditions (14)-(17), (19)-(20) of Theorem 2.1, condition (22) of Theorem 2.2, and

m P ok |S |k
(—") = 0Xy) as m— oo, (24)
— \Pn nX,~
n=1
then the series Zan% is summable |N, p,; S|, k > 1,0 < 6 < 1/k.
The Main Results

In this paper we generalize Theorem 2.4 to |A, p,; dlx summability method using almost incerasing sequences and
normal matrix instead of non-decreasing sequences and weighted mean matrix, respectively. The following our main
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theorem is generalized the above results concerning |N, p,|x and |N, p,; 6|x summability methods.
Theorem 3.1 Letk > 1and 0 < 6 < 1/k. Let A = (a,,) be a positive normal matrix such that

ao = 1,n=01,.., (25)
-1y = apy, for n2>2v+1, (26)
Pn
nn = 0 - /) 27
a ( Pn) (27)
n—1
avv&n,vH = O(alm)a (28)
y=1
m+1 ok
P, Sk—1
> (—) @l =0{(2) as mo e, (29)
n=v+l n
m+1 5k
P, 3
> (—) o] = 0{(%‘)6 } as m— oo, (30)
n=v+l1 n

Let (X)) be an almost increasing sequence. If the sequences (X,), (8,), (1,), and (p,) satisfy all the conditions of
Theorem 2.4, then the series ), a,,% is summable |A, p,; 6. k > 1,0 < 6 < 1/k. If we take 6 = 0 in Theorem 3.1,
then Theorem 3.1 reduces to |A, p,|x summability theorem (see [17]).
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