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Abstract. In this paper, a known theorem dealing with weighted mean summability methods of non-decreasing sequences has
been generalized for |A, pn; δ|k summability factors of almost increasing sequences. Also, some new results have been obtained
concerning

∣∣∣N̄, pn

∣∣∣
k
,
∣∣∣N̄, pn; δ

∣∣∣
k

and |C, 1; δ|k summability factors.
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INTRODUCTION

Let
∑

an be a given infinite series with the partial sums (sn). We denote uαn the nth Cesàro mean of order α, with
α > −1, of the sequence (sn), that is (see [8]),

uαn =
1

Aαn

n∑
v=0

Aα−1
n−v sv (1)

where

Aαn =
(α + 1)(α + 2)...(α + n)

n!
= O(nα), Aα−n = 0 f or n > 0. (2)

A series
∑

an is said to be summable |C, α; δ|k , k ≥ 1 and δ ≥ 0, if (see [10]),

∞∑
n=1

nδk+k−1|uαn − uαn−1|k < ∞. (3)

If we take δ = 0, then we have |C, α|k summability (see [9]).
Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n→ ∞, (P−i = p−i = 0, i ≥ 1). (4)

The sequence-to-sequence transformation

wn =
1
Pn

n∑
v=0

pvsv (5)
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defines the sequence (wn) of the weighted arithmetic mean or simply the (N̄, pn) mean of the sequence (sn) generated
by the sequence of coefficients (pn) (see [11]).

The series
∑

an is said to be summable |N̄, pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [4]),
∞∑

n=1

(
Pn

pn

)δk+k−1

| Δwn−1 |k< ∞. (6)

where

Δwn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1. (7)

In the special case if we take δ = 0, we have |N̄, pn|k summability (see [2]). When pn = 1 for all values of n, |N̄, pn; δ|k
summability is the same as |C, 1; δ|k summability. Also if we take δ = 0 and k = 1, then we have |N̄, pn| summability.
Let A = (anv) be a normal matrix. i.e., a lower triangular matrix of nonzero diagonal entries. Given a normal matrix
A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (8)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (9)

Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ... (10)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series transformations,
respectively. Then, we have

An(s) =
∑n

v=0 anvsv =
∑n

v=0 anv
∑v

i=0 ai =
∑n

i=0 ai
∑n

v=i anv

=
∑n

i=0 aiāni =
∑n

v=0 ānvav. (11)

Since ān−1,n =
n−1∑
i=n

an−1,i = 0,

Δ̄An(s) = An(s) − An−1(s) =
∑n

v=0 ānvav −∑n−1
v=0 ān−1,vav

=
∑n

v=0(ānv − ān−1,v)av + ān−1,nan =
∑n

v=0 ânvav. (12)

The series
∑

an is said to be summable |A, pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [14])
∞∑

n=1

(
Pn

pn

)δk+k−1 ∣∣∣Δ̄An(s)
∣∣∣k < ∞ (13)

where

ΔAn(s) = An(s) − An+1(s), and Δ̄An(s) = An(s) − An−1(s).

By a weighted mean matrix we state

anv =

{ pv
Pn
, 0 ≤ v ≤n

0 v > n,

where (pn) is a sequence of positive numbers with Pn = p0 + p1 + p2 + ... + pn → ∞ as n→ ∞.
If we take δ = 0, then |A, pn; δ|k summability is the same as |A, pn|k summability (see [15]) and if we take δ = 0 and
anv =

pv
Pn

, then |A, pn; δ|k summability is the same as |N̄, pn|k summability. Also, if we take δ = 0, anv =
pv
Pn

and pn = 1
for all n, then |A, pn; δ|k summability is the same as |C, 1|k summability.
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The Known Results

Quite recently, Bor has proved the following theorems concerning on weighted arithmetic mean summability factors
of infinite series.
Theorem 2.1 [3] Let (Xn) be a positive non-decreasing sequence and suppose that there exists sequences (βn) and (λn)
such that

|Δλn| ≤ βn, (14)
βn → 0 as n→ ∞ (15)∑∞

n=1 n|Δβn|Xn < ∞, (16)
|λn|Xn = O(1). (17)

If
m∑

n=1

|sn|k
n
= O(Xm) as m→ ∞, (18)

and (pn) is a sequence that

Pn = O(npn), (19)
PnΔpn = O(pn pn+1), (20)

then the series
∑

an
Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.
Theorem 2.2 [5] Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn), (βn), (λn), (pn) satisfy the
conditions (14)-(17), (19)-(20) of Theorem 2.1, and

m∑
n=1

(
Pn

pn

)δk |sn|k
n

= O(Xm) as m→ ∞, (21)

m+1∑
n=v+1

(
Pn

pn

)δk−1 1
Pn−1

= O
((

Pv
pv

)δk 1
Pv

)
as m→ ∞, (22)

then the series
∑

an
Pnλn
npn

is summable |N̄, pn; δ|k, k ≥ 1 and 0 ≤ δ < 1/k.
Theorem 2.3 [6] Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn), (βn), (λn), and (pn) satisfy the
conditions (14)-(17), (19)-(20) of Theorem 2.1, and

m∑
n=1

|sn|k
nXk−1

n
= O(Xm) as m→ ∞, (23)

then the series
∑

an
Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.
Theorem 2.4 [7] Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn) , (βn), (λn), and (pn) satisfy
the conditions (14)-(17), (19)-(20) of Theorem 2.1, condition (22) of Theorem 2.2, and

m∑
n=1

(
Pn

pn

)δk |sn|k
nXk−1

n
= O(Xm) as m→ ∞, (24)

then the series
∑

an
Pnλn
npn

is summable |N̄, pn; δ|k, k ≥ 1, 0 ≤ δ < 1/k.

The Main Results

In this paper we generalize Theorem 2.4 to |A, pn; δ|k summability method using almost incerasing sequences and
normal matrix instead of non-decreasing sequences and weighted mean matrix, respectively. The following our main
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theorem is generalized the above results concerning |N̄, pn|k and |N̄, pn; δ|k summability methods.
Theorem 3.1 Let k ≥ 1 and 0 ≤ δ < 1/k. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (25)
an−1,v ≥ anv, for n ≥ v + 1, (26)

ann = O(
pn

Pn
), (27)

n−1∑
v=1

avvân,v+1 = O(ann), (28)

m+1∑
n=v+1

(
Pn

pn

)δk
|Δv(ânv)| = O

{(
Pv
pv

)δk−1
}

as m→ ∞, (29)

m+1∑
n=v+1

(
Pn

pn

)δk
|ân,v+1| = O

{(
Pv
pv

)δk}
as m→ ∞. (30)

Let (Xn) be an almost increasing sequence. If the sequences (Xn), (βn), (λn), and (pn) satisfy all the conditions of
Theorem 2.4, then the series

∑
an

Pnλn
npn

is summable |A, pn; δ|k, k ≥ 1, 0 ≤ δ < 1/k. If we take δ = 0 in Theorem 3.1,
then Theorem 3.1 reduces to |A, pn|k summability theorem (see [17]).
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