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Chapter 1
Bivariate Left Fractional Pseudo-Polynomial
Monotone Approximation

George A. Anastassiou

Abstract In this article we deal with the following general two-dimensional
problem: Let f be a two variable continuously differentiable real-valued function
of a given order, let L* be a linear left fractional mixed partial differential operator
and suppose that L* (f) > 0 on a critical region. Then for sufficiently large n, m € N,
we can find a sequence of pseudo-polynomials Q) in two variables with the
property L* (Q:m) > 0 on this critical region such that f is approximated with rates
fractionally and simultaneously by Q7 in the uniform norm on the whole domain
of f. This restricted approximation is given via inequalities involving the mixed
modulus of smoothness w4, 5,q € N, of highest order integer partial derivative

of f.

1.1 Introduction

The topic of monotone approximation started in [10] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is > 0 by polynomials having
this property.

In [3] the authors replaced the kth derivative with a linear differential operator of
order k. We mention this motivating result.

Theorem 1.1. Let h, k,p be integers, 0 < h < k < p and let f be a real function,
@ continuous in [—1, 1] with modulus of continuity w (f(p),x) there. Let aj (x),
J = hh+1,... k be real functions, defined and bounded on [—1, 1] and assume
ay, (x) is either > some number o« > 0 or < some number < 0 throughout [—1, 1].
Consider the operator

£ &
L= a;j (x) |:—:| (1.1)
; ! dax/
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2 G.A. Anastassiou

and suppose, throughout [—1, 1],
L(f)=0. (1.2)

Then, for every integer n > 1, there is a real polynomial Q, (x) of degree < n
such that

L(Q,) > 0 throughout [—1,1] (1.3)

and
o 10— 0,0 < P (£, (14

where C is independent of n or f.

Next let n,m € Z, Py denote the space of algebraic polynomials of degree < 6.
Consider the tensor product spaces P, ® C ([—1, 1]), C ([-1, 1]) ® P,, and their sum
P,®C([-1,1])) + C([~1,1]) ® P, that is

Pn ® C([—l, 1]) + C([_lv 1]) ®Pm
=12 YA + ) B0y AuB e C(-1.1]). xye[-11]

i=0 j=0

(1.5)

This is the space of pseudo-polynomials of degree < (n,m), first introduced by
A. Marchaud in 1924-1927 (see [7, 8]). Here f*! denotes P the (k, I)-partial

. . 0xk ay!
derivative of f.
In this section we consider the space C"* ([—1, 1]2) ={f:[-1,1 —» R; f&D

is continuous for0 <k <r,0 <l <p}.Letf € C ([—1, 1]2); for 61, 8, > 0, define
the mixed modulus of smoothness of order (s, g), s, g € N (see [9, pp. 516-517]) by

Wsq (f181.82) = sup {|< A}, oy A} f (x.¥)| : (x.y) .

(c+ shi.y + gho) € [ 117 il < 8,1 = 1,2} (1.6)
Here

<), 05 ALf (x.)

s q
Yoyt (;) (Z)f(x+ ohiy+ph) (17

o=0pu=0

is a mixed difference of order (s, ).
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We mention
Theorem 1.2 (Gonska [4]). Let r,p € Z, s,q € N, and f € C™” ([—1, 1]2). Let
n,m € Nwithn > max{4(r +1),r+ s} and m > max{4(p +1),p + q}. Then
there exists a linear operator Q. from C™P ([—1, 1]2) into the space of pseudo-
polynomials (P, ® C ([-1,1]) + C ([-1, 1]) ® P,,) such that

(F = Quan (™ (x.)
<M, -M,, (s (x))r_k “(An (.V))p_l * Wy g (f(r’p); A, (x), Ay (Y)) , (1.3)
forall (0,0) < (k,I) < (r,p), x,y € [—1, 1], where

V1 =72 1
; < +§, 0=nm;z=xye[-11]. (1.9)

The constants M, s, My, , are independent of f, (x,y) and (n, m); they depend only on
(r,s), (p, q), respectively.
See also [5], saying that Qf:;ﬁ) (f) is continuous on [—1, 1]°.

We need the following result which is an easy consequence of the last theorem
(see [9, p. 517]).

Ap (z) =

Corollary 1.3. Letr,p € Zt, 5,q € N, and f € C'? ([—1, 1]2). Let n,m € N with

n>max{4(r+1),r+s} and m > max{4(p + 1),p + q}. Then there exists a
pseudo-polynomial Qpm = Oum (f) € (P, ® C([=1.1]) + C([=1.1]) ® Py) such

that
11
go (f(””); - —) , (1.10)

= P
n -m

o - o] =
oo

nr—kmp—l

forall (0,0) < (k,1) < (r,p). Here the constant C depends only on r,p, s, q.
Corollary 1.3 was used in the proof of the main motivational result that follows.

Theorem 1.4 ([1]). Let hy, hy, vy, vy, 1, p be integers, 0 < hy <v; <r,0<hy <

vy < pandletf € C"* ([—1, 1]2), with f"P) having a mixed modulus of smoothness

W g (f(””);x,y) there, s,q € N. Let o;j (x,y), i = hy,hy + 1,...,v1;j = ha, hy +
1,..., vy be real-valued functions, defined and bounded in [—1, 1]2 and suppose
Oy, 1S either > a > 0 or < B < 0 throughout [—-1, 1]2. Take the operator

LI diti
L:ZZaU(x,y)W (1.11)
i=hy j=hy

and assume, throughout [—1, 1]2, that

L(f) = 0. (1.12)
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Then for any integers n,m with n > max{4(r+ 1),r+ s}, m > max{4d (p + 1),
p + g}, there exists a pseudo-polynomial

such that L(Qp.p) > 0 throughout [-1, 1)* and

Wy (f(’*p’;l l) , (1.13)

Hf(k’l) — 0 Hoo = n' m

nT P2

for all (0,0) < (k, 1) < (hy, hy). Moreover we get

C 11
k.l k,l) (r.p).
Hf( - Qﬁl’m 00 = n—kmp—1 FPsa (f rp)’ ;, E) 7

forall (hy + 1,hy + 1) < (k, 1) < (r,p). Also (1.13) is valid whenever 0 < k < hy,
hh+1<Il<porh +1=<k=<r0=1<hy Here Cis a constant independent of
f and n,m. It depends only on r,p, s, q, L.

We are also motivated by Anastassiou [2].
We need

Definition 1.5 (See [6]). Let [<1, 12 a1, a0 > 0; & = (a1, @2), f € C ([—1, 1]2),

x = (x1,x), t = (t1,1) € [—1,1]*. We define the left mixed Riemann—Liouville
fractional two dimensional integral of order «

(Iin) ()

X1 x2

1
= m_/l_/l 1 — 1) (o — )7 f (1, 1) dnidty, (1.14)

with x1,x, > —1.

Notice here that 1%, , (|f]) < oo.
Definition 1.6. Let «j,; > 0 with [1] = my, [aa] = my, ([-] ceiling of the
number). Let here f € C"™" ([— 1, 1]2). We consider the left Caputo type fractional
partial derivative:

1

(o1 ,2)

D L=

o O = T =)

X1 X2

< [ [ = e - e

-1 -1

L O™ (11, 1)

o i
1

(1.15)
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VY x=(x,x) €1, 1]2, where I” is the gamma function

F(v):/oooe_’t”_ldt, v > 0. (1.16)

We set
DY) =f (). Yxe[-11]; (1.17)
DS (x) = s () Vaxel[-1,1P. (1.18)

mi my
x| 0x5

Definition 1.7. We also set

DY ()
1 —ar—1 9™f (X1, 1)
= - gyl 2 S e 1.1
Ty — ) / (2 — 1) P dty, (1.19)
—1
DY @)
1 a1 0™ (11, x2)
= - — )™M l—dt, 1.20
T om _al)/(xl 1) 3 1 (1.20)
e
and
DY (x)

1 X2 am1+m2f (Xl lz)
== B S ——aLRe.C 1.21
T (m2 — az) /;1 ()Cz 2) axflnl atgnz 2 ( )

DS ()

1 o am1+m2f(t1 x2)

= — —pymmen Tt LT g 1.22
I (m; — o) /()q 1) 1y x5 ! (1.22)
-1

In this article we extend Theorem 1.4 to the fractional level. Indeed here L is
replaced by L*, a linear left Caputo fractional mixed partial differential operator.
Now the monotonicity property holds true only on the critical square of [0, 1%
Simultaneously fractional convergence remains true on all of [—1, 1%
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1.2 Main Result

We present
Theorem 1.8. Let hy, hy, vi, v, 1, p be integers, 0 < h; <v; <r,0=<h, <vy <
pandlet f € C™P ([—1, 1]2), with fP) having a mixed modulus of smoothness

Wy 4 (f(”’);x,y) there, s,q € N. Let ;i (x,y), i = hi,hi +1,...,v1;j = ho, hy +
1,...,v; be real-valued functions, defined and bounded in [—1, 1]2 and suppose
Qpp, is either > a > 0 or < B < 0 throughout [0, 1]2. Here nnm € N : n >
max{4(r+1),r+s}, m>max{d(p+1),p+ q)}. Set

lij == sup }ah_llhz (x, ) o (x, y)} < 00 (1.23)
(y)el[-1.1]

fOI‘ all hy < i < vy, hy < Jj =< vy Let oy, 0y = 0 with |—O{1i—| = | [azj—‘ =J
i=0,1,...,r;5 = 0,1,...,p, ([] ceiling of the number), a;p = 0, azp = 0.
Consider the left fractional bivariate differential operator

V1 %)
L* =Y e (x.y) Dﬁfﬁ'{’;zf'). (1.24)
i=hy j=h
Assume L*f (x,y) > 0, on [0, 1]>. Then there exists
Q:.m = Q:,m (f) € (Pn ® C([_lv 1]) + C([_l» 1]) ® Pm)

such that L*Qy , (x,y) > 0, on [0, 11%. Furthermore it holds:
(H

e 0ol

o0, [—1.1]
i) —(eni+e) 11
= . B — " Wsyg (f(r’p)§_,_ ,
F(i—oy+ )T (j—ay+ 1) n~imr n’ m
(1.25)

where C is a constant that depends only on r,p, s, q;, (hy + 1,h, + 1) < (i,)) <
(r.p),orO<i<h,hy+1=<j<porhi+1=<i<r,0=<j=<h,
2

(cri.) (o))
Dyilty” ) =Duly” Qo

oo, [-1,1]

. 1
S a2

RV P2 n’'m
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for (1,1) < (i,)) < (h1, ha), where c;; = CAij, with

2(7“"#)7(‘11: +0‘2;z)

A= Z Z F(r—al +1)F(,u az,L—i-l)

‘rhl/J,h

hi—i hi—ayi—k hy—j hy—azi—A
2 1 1 2 202
X
(; k'F(hl —Olli—k+ 1)) (; Ar (/’lz—()lzj—lﬁ‘ 1))

(i) (erni+az)
+ - - (1.27)
F(z—a1i+ 1)F(]—(X2j+ 1)
3)
I = 0nl S (1.28)
nmlloo [— 11> = pr—vi pp—v2 nm)’ .
where coy 1= CAOO, with
i i 9+ —(arctaz)
Ago = l +1,
I’l]'/’lz t=hy p=hy TuF(T_alf—i—l)F(l’L_azﬂ—i_l)
4)
(O "‘2/) (O "‘2/') *
H *(—1) (f) *( 1) Qn,m ool[—L. 1]2
_ ep, 11
= nrv P2 Ws.q (f n’'m)’ (1'29)
where co; = CAoj,j =1,...,h, with

2(T+N)7(a]r+a2u)

Z Z mF(t—alr—i—l)F(,u—azM—i—l)

t=h; p=hy

ha—j ha—0n—A 2j—aj
x b — . (130
;)A!F(hz—azj—)t-i-l) F(]—Oézj+1) )
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5

(GITR 0) (17,0) *
HD*(I n ) =Dy Qo

co,[—1,1]?

,~ 11
<—" o, (f(”’) - —), (1.31)

n'~vimpPTv2 n’ m
where cig = CAj, i = 1,...,hy, with

2(r+u)—(an+a2#)

Ao = ZZ Prc—a+ 1) (k—oy +1)

T=hi p=hy

h—i 2h1—ot1,'—k 2i_0‘1i
. 1.32

Proof. By Corollary 1.3 there exists

such that

-], -
oo

nr_imP_J

(f(”’) ! i) , (1.33)

nm

for all (0,0) < (i,j) < (r.p), while Q,,,, € C"? ([—1, 1])*. Here c depends only on
r.p,Ss,q, where n > max{4(r+ 1),r+ s} and m > max{4 (p + 1) ,p + ¢}, with

rp€Zs,s,qEN,feC ([—1, 1]2).
Indeed by [5] we have that QV?) is continuous on [—1, 1]2.

n,m

We observe the following i = 0,1,...,r;j=0,1,...,p)

‘Dghsb)f (x1,x2) — DS(E?) Onm (x1,X2)

X1 X2

1 P e
(1 — 1) (g — 1)y !

- F(i—ali)F(j—azj)

(1.34)

i+j i+j
% a f.(tl ? t2) _ a Qn,.m (tl s tZ) dlldlz
ot dt, a1, dt,




1 Bivariate Left Fractional Pseudo-Polynomial Monotone Approximation 9
X1 X2
1
= ; X
r (l - Olli) r (]— Otzj)

—1 -1

(o — 1) " o — ) !

OIF (11, ¢ Q. (11,1
o f.( I 2) 070 : (.1 2) dnyds (135
ot at, ar dt,
1
= : ;
F(l—Ol]i)F (]—Otzj)
X| X2
X / / (x1 — ll)i_a“_l ()C2 — tz)j_azi_l dtdty (1.36)
151
c 11
. (rp). =
an—im[’—j Ws.q (f " m)
_ 1 (+ D)7 (1YY C
CTi—ayl (—oy) i—ay j—ay  nTimr
11
X g (f(’"’); -, —) (1.37)
n m

@)™ ™ C op. L1
- - Wy f P S, —
ri—oa;+1) F(j—azj—i- 1) nr=imp=i 1 n m

That is, there exists O, -

DEf (1) - D0, 11,20

(1.38)

(0 + D"+ 1 C o, 1]
—— o |- =)
o F(i—Ol]i+l)F(i—(X2j+1) n""'mpP~J 4 n m

i=0,1,....r,j=0,1,....p, ¥V (x1.x) € [-1,1]%.
We proved there exists Q) ,, such that

(e1i.027) (e1i.027)
HD*H)j =Dty Qoim

o0
2(i+j)_(ali+l¥2j)é 11
< 40 (f(’"’)' - —) (1.39)
= . . ) - s.q s T )
F(l—Ol1i+1)F(]—a27+1)n’ imp=i n om

i=01,....r,j=0.1,....p.
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Define
. 11
Pnm = Cay, (f(l ;- _)
n m
v (i) = (errj+ay) o
X2 (s )] e
i=hy j=hy F(l_a1+1)r(]_azj+l)

L. Suppose, throughout [0, 1]%, Oy (x,y) > a > 0. Let Oy (x,y), (x,y) €
[—1,1]%, as in (1.39), so that

o1i,00) xhl h ay,00)
HDi( 1))(f(x Y)+anh']y1') ,E( 1) )Qnm(x )’)”

2(i+j)_(a1i+062j)c 11
S N N - sq (f(rp) - _) - 7-'[‘]1 (141)
ri—o;+1)rI (/— o + 1) wimpi nom

i=0,1,....,r;j=0,1,...,p.

If(h +1L,h+1)<Gj)<@por0<i<h,h+1<j<porh +1<
i <r,0<j<hy, we get from the last

H Do) (1) _ plane) ge

*(—1) *(—1)
o0
(i)~ (eri+azy) ¢
< 2t — (f(”’) : l), (1.42)
F(i—a“—i—l)F(i—azj—i—l)n’_’ml’_f m

proving (1.25).
If (0,0) < (i.)) < (h1,hy), we get

(alx 0(21) a1 xhl ) yhz
HD*( b L @)+ oD | 3 ) Peon
_DSZIISZJ)QZJ" (x,y)“ <Tj. (1.43)
o0

Thatis, fori =1,...,h;;j=1,...,h, we obtain

o;,000 hy—i 1 & . B —ak
DYEF (53) + (Z CU e+ D )
k

=0 k'\r (/’l] —Ol]i—k+ 1)
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hai hy—apj—A
D'y + 1) plena)
(ZA'F h2 Olzj—/\—l-l)) D,y Qnm(x y)

o

<Tj. (1.44)

Hence for (1, 1) < (i,j) < (hy, hy), we have

(011, 0(2) (OéliaUQ')
*( ])/f D*( 1)] Q:m

0
hi—i hi—ai—k h—j hy—a2j—2.
2 1 1i 2 2 Q)
=< n,m +Tl
= Pn, (;k!F(kl—ali—k+l)) (;}A!F(hz—azj—)t"f‘l)) /

(1.45)
= Ca) (f(rp) % %)

i V2 2(;+Ji)*(“1?+°‘2}') 1 1
X l? = = = =
gy Y r (l —a;+ 1) I (] — 052], + 1) i mp—i

hi—i hy—ai—k hy—j By —ai—A
2 1 li 2 2 2
x (1.46)
(; KU (hy — o —k + 1)) (g ME (hy — gy — A + 1))
2(l+j) (ah—i-otz/) Ca) (f(, D). l)
F(l—Ol1,+1)F(] ozzj—i—l)n’ imp=i

o, (f(”’) 1 1) %Ay, (1.47)
n' m ) nr—vimp—v2
where
- o (40)~(eitery)
= i=2h:1j=hzlljr(;—a1i+1)FG_(X2J+1)

(hlZl 2]11—0[1,’—/( ) (hzz_j 2h2—0{2j—l )
=0 K (b —ai—k+1) A:OA!F (hz—()lzj—/x—l—])
z(i-iii)—(dli+0€2_f)
+
F(i—(11,‘+ I)F(j—a2j+ 1)

(1.48)

(Set ¢ := CAij)
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We proved, for (1,1) < (i,j) < (hy, hy), that

So that (1.26) is established.
When i = j = 0 from (1.41) we obtain

(i) (c1i.2y)
D,y f =Dyl Oum

. 11
<9, (f(”’) = —). (1.49)
o0

nvimbTv2 n m

oy 11
Hf(x,y) Wi Qo (X, y)H (f(”’) —) . (1.50)
n m
Hence
—o o € en. L 1
IF=Qul < TRl (f == (1.51)
c 11
- (rp) -
]’l]!hz!wqu (f n m)
UZI UZZ 26"'})_(0‘1?4‘0‘2;) 1 1
— ”F ( o 1) r G_azj + 1) nr—i mp—i
11
(f(”’) - —) (1.52)
n"'mpP n m
Ca) rp). 1 1
n,_(flm,, ™ ’")Aoo, (1.53)
where
1 V] V2 lﬁ2(;+j)_(al?+a2})
Ago := — - +1]. (1.54)
hylhy! - Fi—ag+1)I(j—ay+1)
(Set cgo = CAOO).
Then
* €00 ), 11
(T prarr—— (f r i (1.55)

So that (1.28) is established.
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Nextcaseof i =0,/ =1,...

(0.0)
_D*( lj)

Then

(O 0‘2/)
*( 1)

(0 2/)

*(1

h

C

1P aparTes

i=

A

+
F(i—a2j+

Ca)

=

hy—j
(T

(O "‘2/)
D,y @

o

2h2 —a;

hy—j

, hp, from (1.41) we get

O (1Y) H =< Ty.
o0

—A

h 1 hz—(xz,—l
)+ o (ZA(,F) o+ )

hz—azj l—i—l)

a)sq

o ha—j
< n,m j :
! ()L:O Alr (hz—Oézj—

1 1
(rp). _
(f nm)

A+1)

>+T0,-

o (i)~ (eitary) !

1

hy j=h

zhzfazjf)u

0‘1?+1)F(7_0‘2]'+

0

2 C

(hy — 0y — A

+1))

(f(r p) - ;

%)

where

(Set co; 1= CAp)

n'— P2

(

0j>

1) e (f

(rp)ll
n’ m

1) le’_f

vzl ”ZZ 2(;+j)_(a1?+“2})
i=hy j=hy UF a1;+1)1—‘(;_a2}+1)
ha—j zhz—azj—l 2/’—azj
+
Z/UF(/’Q—O[Z/'—A—FI) F(j—a2j+

i)

13

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)
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We proved that (case of i = 0,7 = 1,...,hy)

ploe) (0.03)) Coj ep. L1

*( 1)f D*( 1 Qn,m = Wﬂos,q A m) (1.61)
establishing (1.29).

Similarly we get fori = 1,...,h,j = 0, that
D(Oth O) D(Wh O)Q* < ciO_ f(rp) ! l (1 62)
*(— 1) *(—1) =nm 0o — nfTUigppv2 I’l m ’ :
where ¢;p 1= CA,-O, with
i i 2(E+j)*(°‘12+°‘2j)
UF(— all I)F(;_a2}+l)

i=hy j=hy

hy—i 2h1—a1,'—k 2[ ol
' Z%HFUu—a”—k+l)_%FU—aU+D

i| (1.63)

deriving (1.31).
Soif (x,y) € [0, 1]2, then

Gy (5 V) L (O, (x,3))

h—ai; ha—on;
1 * (x+1) O+D i
= x,y) L X, + Pum
hiy VLT (F (4, 9) + o L —ai+ DT (h—oy+1)

vy v
+ Z Za;l}lz (x.y) oij (x,y)

i=hy j=hy

is i o xhl )
|: Szl 10;2])Q:;m (xvy) _DSZI IL;ZJ)f (X y) pnm )E‘Zl 10;2/) (h ' h2 ):| (164)
(1.41) 1) ERZ,
2 et D O+D (165)
F(h—ay+ 1) I (hy—ay + 1)

U1 V2 (H_.)_ i+ .
=22 Ui 2t = s@mll)

i=hy j=h, Jr(i_a1i+l)F(j—(X2j+1) n=imp=i n'm

1 hy—ay; 1 hy—a;
= pon | XD O+ —1 (1.66)
F(h1—011[+1)F(h2—a2j+1)
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1
zpn,m _1
I(h—oy;+ 1) T (hy— o+ 1)

1—T(hy—ay;+ D) (hy—ay + 1
=an|: (hy —a;; + 1) (2 o + ):|Z (1.67)

F(hl_a1i+1)r(h2_a2j+l)

Explanation: we have that I" (1) = 1, I"' (2) = 1, and I" is convex on (0, c0) and
positive there, here 0 < hy —otyp, ho — ooy, < land 1 < by — oy, + 1,y — oo, +
1 <2.Thus O < I'" (hy —otgp, + 1), I' (hy —oop, + 1) < 1, and

0TI (h—ay, +1) I (hy—ay, +1) <1 (1.68)
And
1 =T (hy—ap, + 1) I (hy —aop, +1) > 0. (1.69)
Therefore it holds
L* (Qum (x.3)) = 0, V (x,y) €[0,1]>. (1.70)

II. Suppose, throughout [0, 1]? SO, (6y) < B < 0. Let Q7 (x,y), (x,y) €
[—1,1]%, as in (1.39), so that

i

ho
y ) (@1i:02)) e
1) T Pacy Qo (9
hy! hy! *E) onm o0

2(i+j)—(061i+a2j)C 1 1
= . . : - Ws. g (f(r,p);_,_)’ (171)
F(l—oeli~|—1)1"(1—ot2j+l)n’_lml’—l n m

HDﬁTf’ffj ) (f (X, ) = Pam

i=0,1,....,r,j=0,1,...,p.

As earlier we produce the same convergence inequalities (1.25), (1.26), (1.28),
(1.29), and (1.31).
So for (x,y) € [0, 1]* we get

iy, (69 L (O, (5.9))

= o, (1Y) L* (F ()

DT DT

1.72
F(hl—ot1i+1)r(h2—(xzj+l) ( )

—Pn,m

! U2

+ 30 ek, ) ey ()

i=hi j=h



16 G.A. Anastassiou

(cr1ie2f) (or1i,002)) (cr1i,002)) xft th
: |:D*(_1)j Q:; (x,y) — D*(_l)/ f &y + pn.mD*(_l)j THE

(1.71) (x + Dl (5 + 1=
=< Pn,m]"(hl —op + I)F(hz—a2j+ 1)

v 0 2 (i+j)—(a1i+azy) C 11
55 e (17 50)
Fi—ant D)l (/'—Olzj T 1) W—imp—i > n om

i=hy j=hy

(x + 1)h1—011i O+ l)hz—azj
+0onm | 1— 1.73
Pn, |: F(hl—()lli-f—l)r(hz—(hj-i—l) ( )

3 I (hy— o+ 1) T (hy —agj + 1) — (x + D40 (y + 1)
Pram ' h—a;+1)I (h2 —ay + 1)

_ hy—ay; hy—a;
< pu | A FVT TOFDEE (1.74)
I (hy —ay+ 1) I (hy —ag+ 1)

Explanation: for x,y € [0,1] we getthatx + 1,y + 1 > 1,and 0 < h; — oy,
hy — oap, < 1. Hence (x + =i (y + 1)27*% > 1, and then

(e D 1) =
so that
1— (x4 D= (y 4 1) <0, (1.75)
Hence again

L* (0¥* (x,y)) = 0, for (x,y) € [0,1]*. (1.76)

nm
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Chapter 2
Bivariate Right Fractional Polynomial
Monotone Approximation

George A. Anastassiou

Abstract Letf € C'? ([0, 1]2), r,p €N, and let L be a linear right fractional mixed

partial differential operator such that L (f) > 0, for all (x,y) in a critical region
of [0,1]* that depends on L. Then there exists a sequence of two-dimensional
polynomials Qpr iy (x,y) With L (Qpr iz (x,¥)) > 0 there, where 77,717, € N such
that m; > r, my > p, so that f is approximated right fractionally simultaneously
and uniformly by Q7 on [0, 1%, This restricted right fractional approximation
is accomplished quantitatively by the use of a suitable integer partial derivatives
two-dimensional first modulus of continuity.

2.1 Introduction

The topic of monotone approximation started in [5] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is >0 by polynomials having
this property.

In [2] the authors replaced the kth derivative with a linear differential operator of
order k. We mention this motivating result.

Theorem 2.1. Let h, k, p be integers, 0 < h < k < p and let f be a real function,
£ continuous in [—1,1] with modulus of continuity ® (f(p),x) there. Let a; (x),
j=hh+1,... kbe real functions, defined and bounded on [—1, 1] and assume
ay, (x) is either > some number o > 0 or < some number < 0 throughout [—1, 1].
Consider the operator

k .
L= ax [%}
j=h

and suppose, throughout [—1, 1],
L(f) > 0. (2.1

G.A. Anastassiou (<)
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Then, for every integer n > 1, there is a real polynomial Q, (x) of degree < n such
that

L(Q,) > 0 throughout [—1,1]

and
700 - 0,001 = G P (£, ).

where C is independent of n or f.
We need
Dmmmmzzaun&mmuﬂyLafecgauﬁiquﬁzmjmemem

(x1,¥1), (x2,¥2) € [0, 1]2 and 81,8, > 0. The first modulus of continuity of f is
defined as follows:

w1 (f,81,82) = sup |f (x1,y1) —f (x2,y2)] -

[x1—x2|<é1
[y1=y21<8>

Definition 2.3. Let f be a real-valued function defined on [0, 1]2 and let m, n be two
positive integers. Let B,,, be the Bernstein (polynomial) operator of order (m, n)

given by
Bty = £ (L) (") (1)
N i=0j=0 m’ n i Jj (2.2)
X (L=x)""y - (L= )"
For integers r,s > 0, we denote by f(”) the differential operator of order (r,s),

given by

0 ()

(r.5) -
J ) By

We use

Theorem 2.4 (Badea and Badea [3]). It holds that

[ = Baan™ |
oo

, wn. | 1 )
=t ‘“1(f e T

kk—1) 1(I—1)
m = n }‘

+ max % ‘f(k’l) H , (2.3)
o0
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where m > k > 0, n > | > 0 are integers, f is a real-valued function on
[0, 1]2 such that f*&V is continuous, and t is a positive real-valued function on
Z4 =1{0,1,2,...}. Here ||-|| o, is the supremum norm on |0, 1%

Denote C"? ([O 1]2) = {f : [0,1* — R;f®D is continuous for 0 < k < r,
0<I1<p}

In [1] the author proved the following main motivational result.
Theorem 2.5. Let hy, hy, vy, vy, 7, p be integers,0 < h; <v; <r,0<h <v, <p
andletf e CP ([0, 1]2) Letoeij(x,y), i=h,h+1,...,v;j=hy,hh+1,...,0

be real-valued functions, defined and bounded in |0, 1]2 and assume oy, is either
>a > 0or < p < 0 throughout [0, 11*. Consider the operator

v v 8l+

=2 D ey o 3 2.4)

i=h) j=h

and suppose that throughout [0, 1],
L(f)>0.

Then for integers m,n with m > r, n > p, there exists a polynomial Q,,, (x,y) of
degree (m,n) such that L (Q,,, (x,y)) > 0 throughout [0, 1 and

P (L.f)

(k1) (kl < 25
] e R G 25)
all (0,0) < (k, ) < (h1, hy). Furthermore we get
o — 0| < mi ). 2.6)
o0

forall (hy + 1,hy + 1) < (k, 1) < (r,p). Also (2.6) is true whenever 0 < k < hy,
hh+1<Il<porh+1<k<r0=<I1=<h Here

MEL = M5 () = 1 (kD) - o (f(k” \/1_ \/,:T)

+ max { k- 1), G 1)} . Hf(k’l) H 2.7
m n [ee]
and
Pun=Pun(L)=) Y lj-M, (2.8)
i=hy j=h>

where t is a positive real-valued function on Zi and

li= sup o, (x.y) e (x,)] < oo. (2.9)
(xy)el0.1]
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In this article we extend Theorem 2.5 to the right fractional level. Indeed here L
is replaced by L, a linear right Caputo fractional mixed partial differential operator.
Now the monotonicity property is only true on a critical region of [0, 1]* that
depends on L parameters. Simultaneous right fractional convergence remains true
on all of [0, 1]°.

We need
Definition 2.6 (See [4]). Let oy, > 0; @ = (0, 02), f € C([O, 1]2> and let

x = (x1,x),t = (t1,n) € [0, 1]2 . We define the right mixed Riemann-Liouville
fractional two-dimensional integral of order o:

o . 1 ! ! a;—1 ar—1
(1_f) (x) = m/;l /xz (= x)™ (2 —x2)™ f (1, 12) dhdn,

with x1,x, < 1. Here I" stands for the Gamma function.
Notice here

1 (|f]) < oo. (2.10)

Definition 2.7. Let oy, > 0 with [ay] = my, [ax] = my, ([-] ceiling of
the number). Let here f € C™"™ ([O, 1]2>. We consider the right (Caputo type)

fractional partial derivative:

( l)ml—i-mz

(al )
FO = T —an T (=)

It (J1,4)

. _ mp—a—1 _ my—ar—1
/XI /xz (J1 —x1) (2 —x2) ETRETE dJydJs,
2.11)
Y x = (x1,x) € [0,1]%
We set
DYVf () :=f (),
am1+m2
D () =~y S FO e (2.12)
ox|' ox3”?
Definition 2.8. We also set
(Oaz) ( l)mz [ mz—az—l 3m2f ()Cl,Jz)
= J ———=dJ,, 2.13
f(x) = T o —a3) ()2 — o > (2.13)
—1)y™ 1 omf (J ,
D0 (= U [ gyt ZLOL) gy 1

F(ml—ozl) x1 8JI"‘
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and
l)mz _ aml+m2f (xl, J2)
plmay oy .o D™ / 7 m—a=t O S 4y 5 s
1— f ()C) F (m2 _ az) ( 2 — X ) ml aJ;nz 2 ( )
(al.mz) ( l)ml f mp—a—1 aml+m2f (Jl -x2)
D == J ————"dJ;. 2.16
1— f('x) F (m[ —a]) ( 1—X ) aJmla n12 1 ( )

2.2 Main Result

We present our main result
Theorem 2.9. Let hy, hy, v1, V2,1, p beintegers,0 < h; <vi <r0<h <v, <p
andletf € C"™P ([0 1]2>. Letaj (x,y), i=hi,m+1,...,v5j=h,lb+1,...,0

be real-valued functions, defined and bounded in [0, 1]2 and assume oy, is either
>a > 0or<p <0 throughout [0, 1]%.
Let integers my, my withmy > r, my > p. Set

lij:= sup |oeh_122 (x,y) - o (x,y)| < 00. 2.17)
e’

Also set ([ay;] =i, [azj] =, [] ceiling of number)

1
Fi—ay+ DI (—ay+1)

iy .
MWl,mz = m1 Noy (f)

%“’ por (19 e )

-1 -1
+ max { i(i ) ] U )% Hf(hl) } i (2.18)
my
i=h1,...,v1;j=h2,...,v2.
Here t is a positive real-valued function on Zi, Il o is the supremum norm on
[0, 1]%. Call
v v
Parms o= Prs () = ) )l Myt . (2.19)
i=hy j=hy
Let

050(1},1f/’ll<0511<h1+1<0112<h1+2<0113

<h +3<--<opy <v <. <o <",
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with |—a1h1_] = hy;
0§a2h2§h2<a21<h2+1<a22<h2+2<a23
<h +3<--<ay, <vy<---<ay <p,

with [aop, | = hp. Here hy + hy =2m, m =0,1,2,....
Consider the right fractional bivariate operator

U1 V2

L= a;(x.y) Dl(‘i”"”zf'). (2.20)

i=hy j=hy

Then there exists a polynomial Qmy s (x,y) of degree (my,my) on [0, 1% such
that

HDg(ﬂkvazl) () — Dg‘ﬂkﬂﬂ) (O 75

h1—k
- P ‘2: h—k\ T'(hi—k—0+1)
T =Rt =D |\ 0 I'(h—oay—0+1)
Pl I\ T (h—1—p+1)
Z( 2 ) 2 P + M 2.21)
p ) T'(hh—ay—p+1) o

p=0

fOV (070) = (k7 l) =< (hlv h2)

If (h+1hh+1) < (ki) < (rp,or0 =<k =<h,h+1=<1=<por
h+1<k=<r0=<I1=hy, then
<M (2.22)

- 1,m2

k20 -2

IfL(f(0,0)) > 0, then L(Qprms (0,0)) > 0.
Let0 < x < 1,0 <y < 1, with ap, 7# hy and oz, # ha, such that

N
e e +1)M’ (2.23)
l—y>TI (h2 —Qop, + 1) (h27°‘2h2) ,
equivalently,
N
£ 1T =, + D)), (2.24)
y= 1-r (l’l2 —Qop, + 1)(}'2_0‘2’12)),
and

L(f (x,y) = 0.
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Then

L Qi (x,)) = 0.

To prove Theorem 2.9 it takes some preparation. We need

Definition 2.10. Let f be a real-valued function defined on [0,1]* and let
my, my € N. Let By;m; be the Bernstein (polynomial) operator of order (i, ;)
given by

. e NI N i my\ ((m
Brram (fix1,x2) 1= 30 X inmof (m:‘I %) ( i ) ( i ) (2.25)
X (L=x)™ X7 (1 —x)™ 2.

We need the following simultaneous approximation result.

Theorem 2.11 (Badea and Badea [3]). If holds that

Hf(kl ka) (BWTWZf) (k1.k2)

(o]

1 1
<tk ko) oy [ fER); ) )
< t(ki, k) 1(f NN e
ky (ky — 1), ky (ky — 1)% . Hfuq,kz)
o0

ny my

+ max % (2.26)

where my > ki > 0, my > ko > 0 are integers, f is a real-valued function on [0, 1]2,
such that %% is continuous, and t is a positive real-valued function on Zﬁ_. Here

Il is the supremum norm on [0, 1]°.

Remark 2.12. We assume that m; > my; = [ai], mz > mp = [ay], where
oy, 0 > 0.
We consider also

(_1)m1+m2
I (my—ay) I' (my — )

1 1
'//(11 —x)" TN (1 —xp) !

X1 X2

"™ *"2 (Byg af) (11, 12)
ot} oty

D\ (B if) (X1, %2) =

dtdt,, 2.27)

Y (x1,x) € [0,1]%
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Proposition 2.13. Let o, > 0 with [oy] = my, [ax] = mo, f €
Ccmm ([0 1]2>, where mi,m; € N : my > my, mz > my. Then

1
<
co " I'(m—ay+ 1T (my—ax+1)

R

1 1
rommon (s N m)

o [P0 M2 =D ]
mj mp oo
(2.28)
Proof. We observe the following:
(DI f (1x2) = DI (B ) (1. )|
| 11
— t _ ml—al—l t _ mz—olz—l
I (my — o) I" (my — ) //(] ) (2 =)
X1 X2
am]-‘rmzf (11, 12) gmtm (BWWJ) (tly 12) dds (2.29)
o1y 9y o1y 9y 1 '

1
<
T I'(m —oy) I (my —ay)

1 1
/ / (tl —Xl)ml_al_] (12 —Xz)mz_az_] (230)
x1 Jx

. am1+m2f (fl ) 12) _ am1+m2 (B”TD"T’—f) (tl ’ t2) dtldt2
TR oty 0y
(2.26) 1 1
< {i(mi,my) o (f " e v )
{ Vmy—my - my —my

+ max % my (my — 1)’ my (my — 1)} ) Hf(ml,mz)

} (2.31)

m my

1
T (my—a)) T (my — )

1 1
// (t1 —xl)ml_al_l (tz —.Xz)mz_az_l dtdty
X1 X2
L —x)" T (1)
o F(ml — o] + I)F(mZ—O[2+ 1)

1 1
1t (my,ma) (f(m]’m); — S )
% vmp—my my —my

-1 -1
+ max { m (m_1 ), 72 (m_2 ) % Hf(ml’mZ)
my ny

} , (2.32)

Y (x1,x2) € [0, 1]%
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Proof (Proof of Theorem 2.9).
We need for (0,0) < (k,1) < (hy, hy) to calculate

hy i k+1
pfewes) (£102) _ 1)

) Tk—ap) I (—oy)
F o k—ay—1 I—ap—1 J{”_k étz—l
[ o=t iy et AR,
(2.33)
. ()t 1 ! f—aii—1 shi—k
T =R — D! F(k—alk)/x =250
1
(Nlim / Uy — y)f—w—lfngdjz)}. (2.34)
g
We find that
1
/ A A L 7
1
= (-D"~* / (=" =
1
— 0 [ @ =) -
(A k
= (~ph* / (Z( Y )(1—J1)h‘“’ (—1)0)
© \g=0
x (J] —x) el gy, (2.35)
h1—k
_ IX: (hl —k) (—1ylH+o
- 0
6=0
1
X/(l _J])(hl—k—0+l)—l (Jl _x)k_alk_l dJ]
h1—k
- 1 (hl _k) (_1)h1—k+0
- 6
=0
F(h—k—0+1)T (k—
{ : G —o:;_)e i D A RCE D
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Similarly we find

1
/ (Jo —y) @ gy,

ha—1
_ Z hy —1 ha—l+p
= —1

( P ) =D

X{F(hz—l—p+l)F(l—Olzl)
I'(hh—ay—p+1)

(1- y)’“—“ﬂ‘ﬁ} . (2.37)

Therefore
plaka) ()‘hl ) — 1
1= hy! hy! (b — k)Y (hy — D!

h1—k
. h=k\, mpef Ti—k=0+1) . _6%
é[Z( 9 )( D %F(hl_alk_e-i-l)(l AT

0=0

hy—l
NE (m-1) +{ T=l=pt+ D) _,hz—azz—p}
|:Z( P )( v F(hz—olzz—/)"‘l)(l Y .

p=0
(2.38)
Here we use a lot Proposition 2.13.

Case (i). Assume that on [0, 1]2, Qpp, = o > 0.

Call
¥ yhz
O jmz (%, ) 1= Bz (1%, y) + Prr iz 7 - (2.39)
! hy!
Then by (2.28) we get
Ak, xh] yhz o o
HD(I—”“ 21) (f+ P"’l’”2h_11h_2|) ( 1k-0021) (Qwrm (2, ) H ml mz’
(2.40)

forall0 <k <r,0<I[<p.
When (0,0) < (k,[) < (hy, hy), using (2.38) inequality (2.40) becomes

1
(hy — k)! (hy — 1)

hi—k
hl —k h1+0 r (hl —k—0 + 1) _ \m—a—0
{[Z( 0 )(_1) {F(hl—alk—9+1)(1 %) §:|

0=0

HDgoﬁk’azl) (f) + Prr




2 Bivariate Right Fractional Polynomial Monotone Approximation 29

hy—l
ZZ (h2 , l) (=1 { TP (e
pr P F(hz—(xz[—p‘l‘l)

—D{ ) (Qpry s (x.)) H - (2.41)

for all (0,0) < (k,]) < (hy, hy), x,y € [0, 1].
Using (2.41) and triangle inequality we obtain for (0,0) < (k, 1) < (hy, hy) that

(1k,21) (Otlk ;) Pm1 Vi3
HD "= (Omm)| o = Ui =0t (=)
A5 (= (Ln—kootn |
= 0 'y —ay—0+1)
hy—l1
. hy =1 M} ML
|:,;,( P ){F(hz—azl—p-i-l) :|}+ "2

(2.42)

proving (2.21).
Next if (hy + 1,hp + 1) < (k,)) < (r,p),or 0 <k < h;,hp, +1 <[ <p,or
hi+1<k=<r0=<I=<hy, we getby (2.40) that

<M (2.43)
o0

HD(alk 021) ) — D(Oélk on) (le -

proving (2.22).
Furthermore, if (x, y) in critical region, see (2.23), we get

i, @Y L (O (0,9) = ajph, YL (x,3)

a _x)hl—otux] a _y)hz—DtZIxz

+ P (i —auny +1) T (ha — oo, + 1)
V1 V2
+ Z Z oth_l,llz (x,y) ajj (x, y)
i=hi j=h
oy
(a],az/) |:le s (L y) —f(xy) — ijhfllz 2']
(2.40) (1 —x)n=m (1 _y)hz—‘mz
= " (hy —agy + 1) T (= o, + 1)
V1 v2
- Z Z liM; ml T
i=hy j=h

(2.44)
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(1= "7 (1 —y) e
—a + l) ( —aop, + 1)

F h1
hy—aip _ y2—oon
— Prs i A Ul ) (2.45)
hl —ayy + 1) T (h — o, + 1)

Il
T

— Py

ny

m

—x)hl_w‘ (1—y)27m — [ (hy —aypy + 1) T (hy — o + 1)
(= + 1) T (hy —aopy + 1)

— (%) (2.46)

We know I" (1) = 1, I"' (2) = 1, and I" is convex and positive on (0, co). Here
0<m —ap <1 and 0 < hz—azhz < 1,hence 1 < Iy —ay +1 < 2,
1 <hy—oaop+1<2.Thus 0 < I'" (hy —ayp, + 1), I' (hy —agp, + 1) < 1, and
1 —T (h —oup + 1) T (hy— o, + 1) > 0. Clearly acting as in (2.44)—(2.46),
when L (f (0,0)) > 0, we get L (Quirim; (0,0)) > 0.

Also clearly here on the critical region (2.23) we have (%) > 0. That is, there
L Qs (x,y)) = 0.

Case (ii). Assume that throughout [0, 1]2, A, < B < 0. Consider

Lyt

mlmz( y)—Bmlmz(fxy) Pmlmzh'h2

Then by (2.28) we get

(o1k,0021) a th (Dtlk 1) < pmkd
Dy- = Paim 7 (@i )| = M,
00

T By
(2.47)
al0 <k=<r,0<I<p.
Working similarly as earlier in this proof we derive again (2.21), (2.22).
Furthermore, if (x, y) in critical region, see (2.23), we get
ahlhz (x, y)L( my iy (x, y))
hi—aip hy—azp
—1 - (1—x) H(1—y) 2
=« x,y) L(f (x,y)) — Pz
b DL ) = P e o e
V1 1%
0D e, @) e (x.y)
i=hy j=hy
h o
a0/ _ y
D) [ o () =F (9) + P ,} (2:48)
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(2.47) (1 _x)hl—ﬂtlhl (1 _y)hZ_Othz
= —VLPurm
N PR (= + DT (hy —aon, + 1)
vl v2 ..
+Y > My (2.49)
i=h j=h,
1— hi—ainy 1— hy—a2n,
= Py (1 =1 1=y (2.50)

Py iy
T (= + D) T (hy =g, + 1) = (1= )"0 (1 — y)27e
I'(h—oup + D) I (hy —aop, + 1)

=: (%%). (2.51)

We know I" (1) = 1, I"' (2) = 1, and I" is convex and positive on (0, co). Here
0<m —ap <1 and 0 < hz—Olzhz < 1,hence 1 < Iy —ay +1 < 2,
1 <hy—amy,+1<2.ThusO0 < I" (hy —oyp, + 1), I (hy —azp, + 1) < 1, and

F(hl — oy + 1)F(h2—0l2h2 + 1)—1 <0.
Clearly acting as in (2.48)—(2.51), when L (f (0,0)) > 0, we get

L(Qz s (0,0)) > 0.

my.my

_ Also clearly here on the critical region (2.23) we get (%) < 0. That is, there
L(Qp iz (x.3)) = 0.
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Chapter 3

Uniform Approximation with Rates
by Multivariate Generalized Discrete
Singular Operators

George A. Anastassiou and Merve Kester

Abstract Here we establish the uniform approximation properties of multivariate
generalized discrete versions of Picard, Gauss—Weierstrass, and Poisson—Cauchy
singular operators over RV, N > 1. We treat both the unitary and non-unitary
cases of the operators above. We give quantitatively the pointwise and uniform
convergence of these operators to the unit operator by involving the multivariate
higher order modulus of smoothness.

3.1 Introduction

This article is motivated mainly by Favard [4], where J. Favard in 1944 introduced
the discrete version of Gauss—Weierstrass operator

(Fof) () = J% i £ (=) e (—n (- —x)z), (3.1)

V=—00

n € N, which has the property that (F,f) (x) converges to f(x) pointwise for each
x € R, and uniformly on any compact subinterval of R, for each continuous function
f (f € C(R)) that fulfills |[f(r)| < AeP” 1t € R, where A, B are positive constants. We
are also motivated by Anastassiou [1], Anastassiou and Kester [2] and Anastassiou
and Mezei [3].

In this article, we define the multivariate generalized discrete versions of the
Picard, Gauss—Weierstrass, and Poisson—Cauchy singular operators and we study
their uniform approximation properties. We cover thoroughly the unitary and non-
unitary cases and their interconnections.
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3.2 Background

In [1], for r € N, m € Z, the author defined

07O if=1.2,

[m] . r
a; . = r—j (r\:—m e (32)
i 1 —j; (=1 (j)] , ifj=0,
and
s ="l k=1.2....meN. (3.3)
j=1

The author observed that

e =1, (3.4)

_’_,_jrz_,r_ 5
FZI( 1) (J) (-1) (O> (3.5)

In [1], the author let ¢, be a probability Borel measure on RV, N > 1, &, > 0 for
n € N. Then, the author defined the multiple smooth singular integral operators as

and

O (Fixy, .. oxn) ==Y a}f’r’] [ f G+ s, x4 52, xn + snj) dpg, (5)
j=0 RN
(3.6)

where s 1= (s1,...,55), x = (x1,...,xy) ERV:n,r e Z,me Zy,f :R¥V - R
is a Borel measurable function, and also (§,),ey is @ bounded sequence of positive
real numbers.

In [1], the author stated

Remark 3.1. The operators 9,[fj;] are not in general positive.
Furthermore, the author observed
Lemma 3.2. The operators Qr[f’fl] preserve the constant functions in N variables.
In [1], the author needed
Definition 3.3. Letf € Cp (RN ) the space of all bounded and continuous functions

on R". Then, the rth multivariate modulus of smoothness of f is given by

o (fih) = sup AL L, (D] <00 h>0, 3.7)
ik +..Auk<h
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where |||, is the sup-norm and
Af () := A o (15 XN)
r

= Z (—l)r_j (J)f (x] + jur, xo +jup, ... XN +]MN) . (3.8)
=0

Letm e Nandletf € C™ (]RN).
Assume that all partial derivatives of f of order m are bounded, i.e.

’8’”f(c,~,...,')

ax{t ... oxyY
N

forallay € Zt,j=1,....N: Yo =m.
j=1

< 00, (3.9

’ (e ¢]

In [1], the author proved

Theorem 34. Letm € N, f € C"(RY), N = 1, x € RV, Assume H dlzf(a‘”}V

0x; " ...0xy

o0
N

< oo, for all o € Zt,j=1,....,N : |a| := Zaj = m. Let |ig, be a Borel
j=1

probability measure on RY, for &, > 0, (£,),ey bounded sequence. Assume that for

N
alla = (oy,...,ay), ¢, € ZT,i=1,....N, |a| := Y a; = m, we have that
i=1
i Isll )"
Ug, ‘= / (l_[ |Si|ai) (1 + S—z) d/Lg:n (S) < oQ. 3.10)
RN i=1 n
~ N ~
Forj=1,....,manda := (aj,...,ay), @; € ZT, i=1,...,N, |a| := > a; =},
i=1
call
N
Can 7= Cy i 1= /Hsf"'dugn (51,2, 5N) - (3.11)
oy =1
Then

i) Forallx e RY,

B () = |00 (g —f o — 3o |y St
, ’ j=1 J,r oy 0N 20t l_[l-zloli!
jal=s
N r
<y @) ( (Frio) (1 22 (s))_

(3.12)
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ii)

Given that &, — 0, as n — oo, and ug, is uniformly bounded, then we obtain
that ”E%] ||oo — 0 with rates.
iii) It holds also that

£t

<R.H.S. (3.12). (3.13)

" Conj|Malloo
0 () —flo = 2|80 | xR
” ! ”oo 7=1 Jr ap,....any=0: ]I_V[ai! (3'14)
loe|=j =l
+R.H.S. (3.12),
given that ||f,||o, < o0, forall a : || = j,j = 1,...,m. Furthermore, as
» — Owhen n — oo, assuming that ¢, = — 0, while uz, is uniformly bounded,
o,n,j Sn
we conclude that
ot —r|_ o (3.15)
’ oo

with rates.
In [1], for the case of m = 0, the author gave

Theorem 3.5. Letf € Cp (RN ) (the space of all bounded and continuous functions
onRY), N > 1. Then

08 -] _ = ( / (1 + m)rdﬂ& (s)) or (.6, (3.16)
(o) RN En

under the assumption

@, ;=/ (1 n ”;”2) djus, (s) < oo. (3.17)
RN n

Asn — oo and §, — 0, given that @, are uniformly bounded, we obtain that

ejglf—fHoo -0 (3.18)

with rates.



3 Uniform Approximation by Multivariate Discrete Operators 37

3.3 Main Results

Here, let ug, be a Borel
Assume that v := (v, ..
measurable function.

1. When

probability measure on RY, N > 1,0 < §, < 1,n € N.

un), X = (x1,...,xy) € RV and f : RV — R is a Borel
N
—5% > il
e =1
pe, (v) = — (3.19)
00 00 _igllwl
Z . Z e &n
V1 =—00 VN =—00

we define generalized multiple discrete Picard operators as:

P;ir[m] (f‘;xl’ A 5'xN)
o0 0 ] -5 % [vil
3 DR DI He A CIIE I TR U S (VO R
V] =—00 Vw=—00 \;j=0
- x ®© -5 % [vil
... e =l
Vl—Z—OO vN;—oo
2. When (3-20)
1 N 2
e_gigl K
g, (v) = i (3.21)
& X w LV
. e "=l
v1=Z—OO UN;—OO

we define generalized multiple discrete Gauss—Weierstrass operators as:

W:jn[m] (f;-xl, e ,.)CN)
00 00 . _%n %Uf
Z Z aj,rf(‘xl +jvls~--,xN +ij) e i=1
VI=—00 vy=—00 \j=0
) o o) _1 % 2
Z . Z e &n =1 i
V=—00  IN=—00
3.22
3. Let&eNandﬁ>é.When (3.22)
N -_—
[T (v +82)
=1 "
K, (V) = T 0o N —, (3.23)
Y X T +a)
VI=—00 VN=—00 i=1
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38
we define the generalized multiple discrete Poisson—Cauchy operators as:
A (i)
00 00 r [ ] N
Y o X (Zeflrei et ) T ( i g g2a)”
_ VI =—00 VN=—00 \j=0 i=1
- o] 00 N 2
> oy H 4y g2
V] =—00 VN=—00 \i=1
(3.24)
4. When
& E‘“l
e, (v) = — (3.25)
(1 + 265075 )

we define the generalized multiple discrete non-unitary Picard operators as

P%] (fsxi, ..., xn)
o) e [m] SL
ooy Z f(x1 +jvi, .. xy +Jjvy)

V] =—00 VN=—0Q =l
_1\N
(1+2gne sn)

N
il

(3.26)
5. When

_1
én
e

g, (v) = e
(v (1 eff(f)) +1)

we define the generalized multiple discrete non-unitary Gauss—Weierstrass

IIMz

(3.27)

operators as:

W (Fixr, )
DD Z“;rf(xl + Vi, XN+ o)

V] =—00 VN =—00 =
)

(V& (1-ert () +1)" (3.28)

where erf(x) = % / e~ dt with erf(co) = 1.
0

Additionally, in this article we assume that 0° = 1.

‘We observe
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Proposition 3.6. Let « := (ay,...,ay), o0 € ZT,i = 1,...,N € N, |a| :=
N
> «; = m € N. Then, there exist K| > 0 such that

i=1
S S A 5 Il
) HI,I“' e &S
V] =—00 VN =—00 gn

N
S o =g X vl

o) e

V| =—00 VN =—00

<K; < oo,

Upg, =

(3.29)
forall &, € (0,1] wheren € Nandv = (vq,...,vy).

Proof. First, we observe that

> > —£ > vl
Yoo D e A > (3.30)

Thus, we obtain

N
3 S (11 T
e < Y .2 (Hlvir") (IJr II\gllz) e A" Z R, (33D
V]| =—00 i n

- VN=—00 =1
Since
N
Wl = Vi +-+ vk < D Il (332)
i=1
we get
> > l N - %l”t‘
Rl o E e Z (l_[ |V[|ai) (1 + — Z |\)l|) e §n i=1
V] =—00 y=—00 \i=I En i=1
[es) [es) N 1 N r LS,
=2NZ...Z(H1)?") (I—G—E—Zvi) e s (3.33)
vi=1 =1 \i=1 =1

We also observe that, for each v; > 1, we have

() 8 o)

N N
< 2r§_-n—rNr 1_[ U,'r < 2ré-n—NrNr 1_[ V,'r

i=1 i=1

N r N r
=N ] (;—) <2N'[] (1 ;) (3.34)

i=1 i=1
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Thus,

u*

N+ o o LA vi\"\ —& % Vi
P&, S Rl,a,- < 2 "N" Z .. Z 1_[ Vl-l l_[ 1 + — e i=1
vi=1 vy=1 \i=lI i

N A\ v
— NN S z (]_[v (1+&) e-sn)
vi=1 i=1 i:n

K\
— N n $ e ( _) =3

lvkl

(3.35)
In [2], for oy € N, the authors showed that

a Vi "t
. k —%
My, = vl 1+ e b
Z £,

< 2% (Aak + Qo + 1

(3.36)
) < o0,

where

20

_%
Ay 1= E vite™2 < o0

. (3.37)
=1
Soif a; € N, by (3.35)—(3.37), we obtain

~ +1
uh, < NNV () 11 (Aak T Qo+ D% 5L | (et

< 00,

(3.38)
for all &, € (0, 1]. For oy = 0, we have that

o) _u X v _u
Ml,O = Z (1 + %_ ) e b < Z Vi (1 + g_—) e o= Ml,l < 00, (339)
V=1 n n

vr=1

so that, by (3.36), we have

My < oo (3.40)
for all £, € (0, 1].

Thus, by (3.35), (3.38), and (3.40), we get

*
Upg, = Ry o < 00,

(3.41)
so that the proof is complete.
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Next, we have

Proposition 3.7. Let o := (a,...,ay), o € ZT, i = 1,...,N € N, la| =
N

> «; = m. Then, there exist K, > 0 such that

i=1

N
00 0o N 1 3 12
PORETPY (,n|u,»|“f)(1+";,[lz)

0o VN =—00

i=

u*Wq&:V‘ 1 % <K, <00
(o9 o0 =
S .Y e S
V] =—00 VN=—00
(3.42)
forall &, € (0,1 wheren € Nandv = (vy,...,vy).
Proof. We observe that
S S LY,
1 Z ;
Z Z e T S (3.43)

Thus, we obtain

N
Whe < D > (INHv-I”") (um)rﬁf;”g =R (3.44)
W, = L] v E, =R g

V] =—00 VN=—0OQ

On the other hand, we have

V2> |yl (3.45)
which yields that
v} Vil
£ >—=>1 (3.46)
En n
and
_ o _lul
e <e & (3.47)
foralli=1,...,N. Thus
N Vil N
-ty Moz M- — X uil
e S 1‘[ a<[]e bn = S, (3.48)
i=1 i=1
Therefore, by (3.31), (3.44), and (3.48), we get
uwg < Rza <R e (3.49)

Hence, by Proposition 3.6, the proof is done.
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We get
Proposition 3.8. Let o := (a,...,ay), & € ZT, i = 1,...,N € N, la| =

N
> «; = m. Then, there exist K3 > 0 such that

£ K (fer) (1) (fL0F )

* _ V| =—00 VN =—00 =
quEﬂ - o0 o0 N " R —B
o £ ((wee)”)
V] =—00 vyw=—00 \i=1
< K3 < o0,

(3.50)
forall &, € (0,1] where @, n € N, § > max{%, %f}foralli =1,...,N,
andv = (v,...,vy).

Proof. First we observe that
o) . N —p .
> (v ) =g (3.51)
Vi=—00
foralli =1,...,N. Thus, we get
00 00 N R N\ —B
DS (n (v + &) )
v =—00 vpw=—00 \i=1
N [} R N\ —B
Za 20
= o+ n
51;[1 v,=2—:oo( ! )
=1 (3.52)
Hence, by (3.32), (3.34), and (3.52), we get
uafn S R3,Oé,' N N ﬂ
~ o o0 —
—g o 8 () (14 ) (11 () )
V| =—00 vyw=—00 \i=I E’Z i=1
_ S5No?/521v io: § l—lv{xi) (1+ ||V||2) (11\—][ (Uga+ 2&) ﬂ)
=1 wy=1 \i=1 €n =1\ "
R [es) [es) N R A\ =B
< NrggNaﬁ2N+r Z Z (l‘[ lOKz (1+ ) (vi2a+§3a) )
vi=1 =1 \i=l1 gn
. i . N\ B
= N'2" ]‘[ (2g2°‘ﬂ > v (1 + v—) (v,?“ +§3"‘) )
vi=1 El‘l
(3.53)

In[1], fore; € Nand 8 > % the authors proved

. i\ 7 s B
Mg, = 2625 Zl v (1 + ;—) (v + &)
V= n

00 2af—ai—r
< or+l Z (l) < 00,

Vi

vi=l (3.54)
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for all &, € (0, 1]. Clearly we also have that
R34, < 00. (3.55)
Hence, by (3.53) and (3.54), we have
N
whe, < N2 [ [ Mo, < oo (3.56)
i=1
forall§, € (0,1],; €N, 8 > %,andi: 1,...,N.
For o; = 0, we observe that
248 o vi\ (2 4 g2a) P
Moy =267 3 (1421 ) (v +824)
vi=1 E"
o, 0O A\ R N\ B
<26 3y (1 + 5) (v +£2%) (3:57)
V,'=1 gl’l
== qul.

Thus, by (3.54), when «; = 0, we get

N

whe <N'2[ [ Mo < oo, (3.58)
i=1

forall §, € (0,1],and 8 > % Therefore by (3.56) and (3.58), the proof is done.
We need

Definition 3.9. We define

I VN=—00 =1
o x 0 —L T
B 2 Vi
DRSSP
V] =—00 VN =—00
> > (Hi—]”flle E”) N D vie @
V1 =—00 VN=—0Q Vi=—00
00 00 N ol _i];ll o |ul ’
Y oY ([[es Y e
V| =—00 vyww=—00 \i=1 Vi=—00

(3.59)
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Poynj = N
[e%s) o) _Ein > uf
¥ o¥ A
V] =—00 Vy=—00
fe) oo l”1'2 2
Vp=—00 VN——OO(znlU N sn) N v:ij Uale_si’”
- oo oo N "iz - 1_[ l oo "i2 ’
X e =Zoo(£[165") =l D
‘ N . ’ (3.60)
and
o0 [ele] N ) . R
o 8 (M (e )
o V] =—00 vyw=—00 \i=1
danj = 00 00 N N N—
Y oo (o)
V| =—00 IN=—00 i=1
S ai (24 AN
N VI:X_:OO v ("ia + Sna)
= l_Il = —
= Z (v_20l+ 20()
=00 \ ' " (3.61)
We will use
Lemma3.10. Forj=1,....m anda := (ay,....ay), @i € Z*, i =1,...,N,
N -
|| := Y a; = j, we have that
i=1
%0 © (N —L Sl
£ o £ ([r)e s
Com = ¢ o= UZT0 =m0 Ni=l < 0. (3.62)

18
|||M8

for all &, € (0, 1]. Additionally, let o; € N, then as &, — 0 when n — oo, we get

Conf ™ 0.

Proof. Let «; € N. In [2], the authors showed that

oo, il
2. vle &
=—00

o [vi]

> e
Vi=—00

< 00, (3.63)
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foreachi =1,...,N € N, and for all §, € (0, 1]. Then by (3.59) and (3.63), we get

o0 o Tvil
N > vie ®
Vi=—00
ca,n.} = l_[ ﬂ < 00, (364)
i=1 Z e &
Vi=—00

S S A —f%lvi\
0<cy,;< > ... X (]_[vf")e "Il < Ry < 00. (3.65)

a.n,
V] =—00 vyw=—00 \i=1

Additionally, we observe that

0 if ¢; 1s odd,
= o) o) N ) _gi % Vi
AN D (]_[ v;’")e "= if o; is even,
vi=1 vy=1 \i=1 (366)
see also [2].
Assume that ¢; is even. Therefore,
N
[es) o) N ) _Ei 3 v N [es) o
o o vf")e E [l (Euet). o6
V= ww=1 \i= i=1 \v=

Observe that the function f(x) = x% ¢ b s positive, continuous, and decreasing on
[1, 00). Hence, by Smarandache [5], we obtain

X o — o0 o -
Z vi‘e & §f(1)+fvi’e & dv;
vi=1 1
_1 % v
=e b + [ve & dv,.
1

(3.68)

By the integral calculation in [3, p. 86], it is easy to see that

o0 L 0 L v
'/Vi,e 5ndl)i < fl)i’e E”dVi
1 0

— . 1eaitl
= oilgy (3.69)
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Hence, by (3.67)-(3.69), we get
KL, <eTm 4 aleit! 0, asE, — 0. (3.70)
Thus, by (3.65), and (3.70) we have as §, — 0 when n — oo, ¢, i — 0.

Now, let «; = 0. For each v;, we have ( > niz = % Euler 1741 )
n=1

Z e & =1 + 2 Z e &
vi=1

Vi=—00
| 2
<142Y 5 =14+=> <00 (3.71)
i=1 Vi 3
Thus,
& & _gi %l‘}ll
Y oy e
I V] =—00 VN=—0Q
o 0  —L T
1 Vi
Y .y e A
V] =—00 VN=—0Q
% i
N v,‘=X—:OOe '
= ];[l s ol | = 1 <o
! Z e én
vi=—00 (3.72)

Next, we give our results for P} !"

Theorem 3.11. Letm € N, f € C" (RY), N > 1, x € R". Assume H if(a,)v

o0

N

< oo forallaj € Z%,j = 1,...,N : |a| := Y o = m. Let jug, be a Borel
=1

probability measure on RY defined as in (3.19), for &, € (0, 1]. Then for all x € R,

we have

)

P o - sl | el s @b,

N Péf
F=1 Al 200 [ o af,...any>0: (ni‘\,:lai!) "
; i=1 5
ii)

P () — f — Nzg[m] Yy Ceaile <RHS.(373).  (3.74)

A,y aN;OZ l_[ o;!
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When &, — 0, as n — 00, we obtain that
p* [m] [m] Ca.nif“
03| %
A,y an>0: 1_[ 051
\01|—J i=1 00
with rates,
iii) it holds also that
prlm 2 | olm] Coni| Vfelloo
’ ) fH <y |8 y Ll | 4 R LS. (3.73),
j=1 ST ap,...an=0: IT !
loe|=j =1
(3.75)
given that ||fy|lee < 00, for all a : || = J.j = 1,....m. Furthermore, for

o €N, as§, — 0whenn — oo, Conl
we conclude that

J

[PE () = £l =0
with rates.
Proof. By Theorem 3.4, Proposition 3.6, and Lemma 3.10.
For the case of m = 0, we have
Theorem 3.12. Letf € Cz (RY), N = 1. Then
[PEY () =l = @700 (f 6.

where

is uniformly bounded for all &, € (0, 1].
Proof. We observe

> Il | —& T
Z (1 + —2) e = <R <o0.
L 3

Thus, by Theorem 3.5 and (3.41), the proof is done.

— 0, and uP & is uniformly bounded,

(3.76)

3.77)

(3.78)

(3.79)
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Next we show
Lemma3.13. Forj=1,....m and o := (ay,...,ay), @i € Z*, i =1,...,N,
N

la| :== 3" «; = j, we have that

=

Pan = Pa’nj = < Q. (3.80)

for all &, € (0,1]. Additionally, let o; € N, then as £, — 0 when n — 0o, we get

pot,nj — 0.

Proof. Leta; e Nfori=1,2,...,N € N. In [2], the authors showed that

2

—vf

o0 . i
3 e
v=—00

Z e én

V=—00

for all &, € (0, 1]. Therefore, by (3.60) and (3.81), we obtain

Pani < 00, (3.82)

for all £, € (0, 1].
Additionally, when «; € N, by (3.48), (3.67), and (3.70), we have

2R (LN EET e g g
0 = PWI\; < Ul:Z: e Z (H Vi ’) e i=1 = Kfmvi < KS",U,. ( . )

—00 vw=—00 \i=1

see also [2].
Thus, we have as §, — 0 when n — o0, p,, ,= — 0.

o0
Now, let «; = 0. For each v;, we have ( > niz = %2, Euler 1741)
n=1

) 2 oo o 1 72
Y e =142Y B <142) 5 =1+"7 <oo. (3.84)
Vi=—00 vi=1 i=1V; 3
Thus,
! % > )
& X THE X o v
Z . Z e bn i=1 N e En
pa,n‘; _ V== VN=—00 . _ l_[ Vj=—00 ! — 1 <. (3.85)
oo —L 2 i=1 _%
> . e = . eF
V| =—00 Yy =—00 Vi=—00

Next, we state our results for the operators W*Lm]

B
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Theorem 3.14. Letm € N, f € C" (R¥), N > 1, x € RY. Assume ) )
Ox; " ...0xy 00
N
< oo, forallay € ZF,j = 1,...,N : |a| := Y o = m. Let g, be a Borel
Jj=1

probability measure on RY defined as in (3.21), for &, € (0, 1]. Then for all x € R,
we have

i)
" m e ()
W:n[]of;x)—f(x) Z&] Z pN‘,fx
j=1 O 5. OtN~ZO: T !
lal=j =1 (3.86)
C oy @),
ap,...,ay>0 (HN_] ai!) W&,
la|=m =
ii)

WP () — £ — ~Z5[m] Y e <RHS.(386).  (3.87)

j=1 al,‘..,ozN;O: ]_[ a;!
When &, — 0, as n — oo, we obtain that
m
wml (py _p_ [] pa,nifa
Wr,n (f) f Z 5j~r Z —0
i=1

[0 5 U an>0: l_[ 051
\01|—J i=1

o0
with rates,
iii) it holds also that
[m] - | lm P3| o ll oo
H w2l () fH 3 y el | R HS. (3.86),
;:] b AL,y OINNZOS ]_[ a;!
loe|=j =

(3.88)

given that ||fy|lee < 00, for all a : || = J.j = 1,....m. Furthermore, for

o €N as &, — 0whenn — oo, Ponj = 0, and ”;V.En is uniformly bounded,
we conclude that

|wrm @y —f] ., — 0 (3.89)

with rates.
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Proof. By Theorem 3.4, Proposition 3.7, and Lemma 3.13.
For the case of m = 0, we have

Theorem 3.15. Letf € Cy (RY), N > 1. Then

W2 () = £ < Py, 0r(F - E0). (3.90)
where
00 00 FooLl3 2
I (FE S Pty
e, = S— (3.91)

118
g/

V1 =—00 VN =—0OQ

is uniformly bounded for all &, € (0, 1].
Proof. We observe

N
i i 4 e 5 _ g
E_ e i S Ko <00, 3.92)

v =—00 VN=—00

Thus, by Theorem 3.5 and (3.49), the proof is done.
We also need
Lemma3.16. Forj = 1,....m and o := (ay,....ay), @i € Z*, i =1,...,N,

N ~
le| := Y «; = j, we have that
i=1

£ o £ (M (Fes) )

V] =—00 VN=—0O0

Qo = o = <oco. (393

£ S A

vV =—00 VN=—00 =1

for all &, € (0,1] where & € N and B > % Additionally, let a; € N, then as

& — 0 when n — oo, we get Dynj = 0.

Proof. Leta; e Nfori=1,2,...,N € N. In [2], the authors showed that

) : . .\ —B
Z vl?tx (vi2a + i‘-,%a)
Vi=—00

SR M -

Vi=—00
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forall §, € (0, 1] where @ € Nand B > %L Therefore, by (3.61) and (3.94), we
obtain

G < 0O, (3.95)

for all &, € (0,1] where @ € Nand 8 > %
Moreover, we observe that when «; € N, by the proof of Proposition 3.8, we have

e’} N _
0 < q,,; < &N Z Y (]‘[ Ve (u,?& + s,f&) ﬂ) (3.96)

v =—00 VN =—00

We define

oo
Kgm‘}i = Z

We observe that

Z (]_[ ( 2 +§2“) ﬂ). (3.97)
0, if o; is odd,

K3 = N o0 o 2% 2% - . .
&n.vi N I[mt> v (Uia + n“) , if @; is even.

i=1 \vi=1

see also [2].
Assume that «; is even. We observe that

A ~ _ﬂ 24
(v %) " = (3.98)
Then
oo A B e’} . e’} 1 2aB—a;
S (g = o3 (1) <
Vi
V,'=1 \),'=1 U,'=]

for all v; when 8 > +1 . Thus, we have
Kén.w < 00. (3.99)
Hence, by (3.97)—-(3.99), we get

ENGPK] | — 0,as £, — 0. (3.100)

Thus, by (3.96) and (3.100), for & € N and 8 > — 0 when

n— oo, qu_)O




52 G.A. Anastassiou and M. Kester

Now, let o; = 0. We observe that

> (Fag) =S (1) <

Vi=—00 vi=1 vi=1

—=
/N

<
~Jo
=B

+
S o
5]
—
|

g
|
3
. - .
I|I Mg |||M8
8
Il

qav"\; = () N R —
> [T (v + )
V] =—00 VN o0 =1
o 24 | £24
N V:X_:oo (vi + o )
=111 - = — | =1<o
=t ¥ (v_z&+ 2&)
vi==00 (3.101)

Next, we state our results for the operators Qf}f"]

Theorem 3.17. Let m € N, f € C"(RY), N > 1, where &, n € N, f >

max{M ZL2Y and x € RN, Assume H o ’(‘)"ZN < oo, forall a; € 77,

26 2@ X
N o0
N
ji=1,...,N:|a| := Y o = m. Let jg, be a Borel probability measure on RY
j=1
defined as (3.23), for &, € (0, 1]. Then for all x € RY, we have
i)
o olm o @)
GEETIOED St DI s
7:1 - al,A...aNNZOZ IT ot
ll=j =
(@ (o §0)) o
- Z -0 N Q &n’
Oseee s N 2 o;!
lo|=m (11;[1 ! ) (3.102)
i)

OFI () — f — Z&ml Y i <RHS.(3.102).  (3.103)

la|=j =1 00
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When &, — 0, as n — 00, we obtain that

0L (1) —f - z(s[f;] DRl | .

o 0N 20: l_[a[

\a|—] i=1 00
with rates,
iii) it holds also that
HQT,,E’”] " —f H < > ";ﬂ +R.H.S. (3.102),
0 }: o ,...,OlNNEOZ l_[ o;!
loe]=j =1
(3.104)

given that ||fy|ls, < oo, for all a : |a| = j, j = 1,...,m. Furthermore, for
o € N, as § — 0 whenn — oo, Qi — O, and qu is uniformly bounded,

we conclude that

lox ¢y —£|, — 0 (3.105)
with rates.
Proof. By Theorem 3.4, Proposition 3.8 ,and Lemma 3.16.
For the case of m = 0, we have
Theorem 3.18. Letf € Cg (RY), @, NeN, f > % Then
H * [0] f) f“ < q§5 Enw’(f’ &), (3.106)
where
o0 [ r N . N\ —B
> oo 2 (14 L) T (v 4 g
V] =—00 VN =—00 i=1
Po, - - - (3.107)
> oy (v +ge)
V] =—00 VW=—00 =1
is uniformly bounded for all &, € (0, 1].
Proof. We observe that
(3.108)

Do, < R < 0o,

when B > 2. Thus, by Theorem 3.5, the proof is done.
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Our final result for unitary case is the following:
Remark 3.19. The operators Pi,E”’], W I and or [ are not in general positive.
N
For instance, consider the function g (x,...,xy) = > xi2 and also take r = 2,

m = 3. Observe that g > 0, however

*[m] R IN=—00 \j=0 i=1
rn (ga ""90)_ ]ﬁl‘
0 00 -4 Vi
Y oy et
Vv =—00 VN =—00
(3.109)
We have that
[3].2 [3] 4 Bl _ ) l _ _é 3.110
Z%z =ap; tda;; = +2— 7 (3.110)
Therefore, we obtain
x x N - %lvil
£ £ (T)enE
m VI =—00 VN =—00 i=1
Pri" (g:0.....00 =3[ & . T <0.
00 o -1 i
> oY e
V1 =—00 VN =—00
] (3.111)

Similarly, we can show the same result for W, "l and Orn -

Now, we give our results for the non-unitary operators P,[,, and W,!:,"]. We
start with

Definition 3.20. We define the following error quantities:

[0] L(fix) = P[O](f;X) —f(x) (3.112)

and

EVy(f:x) == W10 — £ (). (3.113)

Additionally we introduce the errors

B = P G - - 3ot |y CendeD (3.114)
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and
m m L m Nan.’ffa(x)
ENo=whlo—fo-y| ¥ MEE) @)
j=1 " op,an=00 T o)
|oe|=/ =l
where
% § N\ > Il
. vile Mi=t
~ R e VN =—00 (i=1 ' ) 11
a,nj'_ AN (3 6)
(1 + 2§ne‘sn)
and
£ F (fe)ets
prile M=t
~ V] =—00 vyw=—00 \i=1 !
Ponj = 7 (3.117)
(V& (1ot () +1)
We observe

Remark 3.21. Let

ZOO Zoo _Zﬁ%ll‘)il
oo D00 € "
g p = - (3.118)
(1+2§ne sn)
and
=) 0 _Ei % v,z
> oY e
L V] =—00 VN=—0Q
meg, w = (\/E(l_erf( : ))+1)N (3.119)
" N
In [2], the authors showed that
00 [vil
> o
;“=‘;‘; - — las§, — 0%, (3.120)
—|— ne én
and
o0 vi2
> et
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Therefore, we have

N o] —
Zv,‘=—OOe o +
mgmpzn | > las§, - 0",

and

N

mé”'W:E 1+ \/E(l —erf (=

Mg
o
|
o

o0

)

Furthermore, we observe that

EVL(fix) = PN 0) — F(0) — F(0)mg, p + f(x)me, p

n»

plO
=msn,p< Brrtfiz) )—f(x)) £ () om0~ 1),

Since

we get

Similarly we obtain the inequalities

] P (Fx) = f () — Z 81"

P

x)‘<m

Conja (JC)
x| o O ) e, p

EOL (0| < mg,p [PV F20) = F@)] + 01 g, p = 1

O (50| < me [WF0) = £ + @I [,

—las§, — 07,

_1|’

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)
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and
[m] < *[m] sl
W(F0)| < mew (WA () —f @) - z‘
ot.n.k'“(x)
X > % + [F@)] |me,w — 1. (3.128)
af,..., ozNNzO: IT ot

‘a | =J i=1
Thus, we derive

Theorem 3.22. Letm € N, f € C" (RY), N > 1, x € R". Assume H%

N

<oo foralley € ZT,j=1,...,N: |a| := Y a; = m. Let jus, be a Borel measure
j=1

on RN defined as in (3.25), for &, € (0, 1]. Then for all x € RV, we have

oo

. @r (for &)
B0 <mep X S + 00 e — 1. 3.129
ii)
[m] H (O (fou gn)
E! < + —1].
PO| <mer X g, + oo mg,. = 1] (3.130)

When &, — 0, as n — oo, we obtain that ‘

ELm,],(f ;X) “oo — 0 with rates.

Proof. By Theorem 3.11 and (3.127).
For the case of m = 0, we have

Theorem 3.23. Letf € Cg (RY), N > 1. Then

EVLD| = e p®Fe 006 + o e = 1] (3.131)

Proof. By Theorem 3.12 and (3.125).



58 G.A. Anastassiou and M. Kester

We demonstrate also

Theorem 3.24. Letm € N.f € C" (RY), N = 1, x & RY. Assume | Zoftecs;
xl )CN 00
N
< oo, forall aj € Zt,j=1,...,N: le| ==Y o = m. Let j1g, be a Borel measure
=1
on RY defined as in (3.27), for &, € (0, 1]. Then for all x € RY, we have
)
m wr (f ’ g:l’l)
B0 < mw X S 4 ) e, 1.
(3.132)
ii)
m wr (fo &)
B, =mw £ R W 1],
h i (1:[ Oli!)
(3.133)

When &, — 0, as n — 00, we obtain that ”E,[lm‘]v(f) H — 0 with rates.
oo

Proof. By Theorem 3.14 and (3.128).
Our final result is for the case of m = 0

Theorem 3.25. Letf € Cy (RY), N > 1. Then

[ES 20| = mewi onf 6 + 1o e, — 1]

Proof. By Theorem 3.15 and (3.126).
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Chapter 4
Summation Process by Max-Product Operators

Tiirkan Yeliz Gokcer and Oktay Duman

Abstract In this study, we focus on the approximation to continuous functions
by max-product operators in the sense of summation process. We also study
error estimation corresponding to this approximation. At the end, we present an
application to max-product Bernstein operators.

4.1 Introduction

In the 1950s, the approximation to continuous function by positive linear operators
has been examined by Korovkin [16] (see also [1, 3]). Under a weaker linearity
condition, Bede et.al. studied some approximating operators, the so-called max-
product operators (see [4—12]). Later this non-linear approximation process has
been studied by Duman [14] via the concept of statistical convergence in order
to overcome the lack of the classical convergence. More detailed results on the
statistical approximation theory may be found in the monograph book [2]. In the
present paper, motivating the results in [14] and also using a general summability
process given by Bell [13] we obtain some new approximation results for these
max-product operators. We also compute its error estimation by using the classical
modulus of continuity. We should remark that our results are not only different from
the ones in [14] but also include many approximation process, such as ordinary
convergence, arithmetic mean convergence, and almost convergence. An application
presented at the end of this paper clearly explains why we really need such a
summability process in the approximation.

We first remind the concept of summation process.

Let &/ = {A"} = {[a;,]} (j,n.v € N) be the sequence of infinite matrices, i.e.,
for each fixed v € N, we have an infinite matrix AV. Then, we say that a sequence
x := (x,) is &/-summable to a number L if

oo
lim E a;."nxn, uniformly in v,
J—>00 *

n=1
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oo

where we assume that the series ) -,

limit is denoted by

aj'?nxn is convergent for each n,v € N. This

o — lim x; = L.

j—>00

Also we say that .o is regular if it preserves both convergence and the limit value.
For the regularity of .7, Bell [13] proved the following useful characterization
which is similar to the well-known Silverman—Toeplitz conditions:

* VneN, lim g, = 0, uniformly in v;
j—o00 J
o
. _ . L
 lim ) a; = 1 uniformly in v;
J—>00 n=1

oo
* there are positive integers N, M such that Vj,v € N, > < 00, and forj > N
n=1

v
ajn

v
ajn

o0
andVv e N, ) <M.
n=1
This general summation process includes many well-known (regular) summa-
bility methods as follows:

e If, for each v € N, we take AY = I, the identity matrix, then .o/-summability
method reduces to classical convergence;

* For each v € N, taking A = C; = [cju], the Cesaro matrix given by
¢pn = 1/jifn = 1,2,...,j; and ¢;, = 0 otherwise, then we immediately get
Cesaro (arithmetic) mean convergence.

* Assume that A” = F" = [cj ], where

& 1/j,ifv<j<j+v-—1
e 0, otherwise.

In this case, ./-summability method coincides with the almost convergence
introduced by Lorentz [17].

Finally, we should remark that a summability process and the concept of
statistical convergence introduced by Fast [15] cannot be comparable with each
other.

4.2 Approximation in Sense of Summation Process

In this section, with the help of a general summability process given in the first
section, we obtain approximation results by means of max-product operators. Now
we consider the following operators:
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Let (X, d) be an arbitrary compact metric space; and let C(X, [0, 00)) denote the
space of all non-negative continuous functions on X. Then we consider the following
max-product operators which are defined by

Ly(f;%) :=\/ Kni(®) - f (), (4.1)

k=0

wherex e X,n e Ny x,, € X (k=0,1,...,n), f € C(X,[0,00)), and K, x(.) is a
non-negative continuous function on X. Here the symbol \/ represents the maximum
operation. The max-product operators in (4.1) are first introduced in the paper [5].
The operators are positive but do not to be linear. Actually they obey the property
of the pseudo-linearity as follows:

Lo -f\/ B-8) = aLy(f) \/ BLu(3)

holds for all f, g € C(X, [0, 00)) and for any non-negative numbers «, 8 (see [5]).
The following lemma is useful for us to prove our main results.

Lemma 4.1 (See [5]). For any ay, by € [0,00), k =0,1,...,n, we have
Vo= \/ b
k=0 k=0

Throughout the paper, we consider a non-negative regular summability method
o0

n

<\ lax—bil.

k=0

o/ ={A"} = {[ay]} such that the transformed operator )_ a},L, is acting from

n=1
C(X, [0, 00)) into itself.
Now, for y € Y, consider the test function ¢y(y) := 1 and the moment function
@.(y) := d*(y. x) for each fixed x € X. Then, we get the next approximation result.

Theorem 4.2. Leto/ ={A"} = {[axk]} be a non-negative regular summability
method. If the operators L, given by (4.1) satisfy the following conditions

o0
lim Z a;,Ln(eo) — eo|| = 0, uniformly in v 4.2)
Jzee n=1
and
o0
lim a; L,(¢y) || = 0, uniformly in v, 4.3
J.%o;,n (¢2) iformly 43)

then, for all f € C(X, [0, 00)), we have

lim
j—o0

o0
Za;nLn(f) —fH = 0, uniformly in v,
n=1

i.e., in other words, the sequence {L,(f)} is (uniformly) <f -summable to f on X.
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Proof. Letx € X and f € C(X, [0, 00)) be given. By definition of the operators and
using Lemma 4.1, we may write that, for allj, v € N,

o0
=24
et

\/K,,k(x) f (k) — \/Knk(x> -f (%)

k=0

Z \/Knk(-x)_l

n=1 k=0

Z a;nLn (f; )C) _f(x)
n=1

+f )]

Z \/ Ky i (x) - If (eni) — f(0)]

n=1 k=0

+ lf(x)| a;,Ln(eo; x) — eo(x)| .

By the uniform continuity of f on the compact set X, for a given & > 0, one can find
a § > 0 such that the following inequality

2|A1

lf(xn,k) _f(x)| =&+ 52 (px(xn %)

holds for all x, x,,x € X. Then, we get

< SZ (e |lf|| Z b, L (¢3:%)

,,,Ln (f1x) —f(x)

n=1
+1f )] Za Ly(eq; x) — ()
<e+(+IrI) Z b Lu(eo: x) — eo(x)
n=1
+20 S L.
n=1

Now, taking supremum over x € X on the both sides of the last inequality, we
see that

apLa(f) —f| <&+ (e + D Z b L(eo) —
n=1
2 oo
+% Zq;nLn(wx)
n=1

Finally, taking limit as j — oo (uniformly in v) and also using (4.2) and (4.3),
the proof is completed.
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4.3 Error Estimation in the Approximation

This section is devoted to obtain the error estimation of the summation process in
Theorem 4.2. We first need the following lemma.

Lemma 4.3 (See [14]). For every arby >0 (k= 0,1,...,n), we have

n
2
\/"k

k=0

n n
Van= |\Va |\
k=0 k=0

For the classical modulus of continuity it is well known that w(f, A6) < (A + 1)
w(f,8) forany A,§ € [0, 00). Then we obtain the next result.

Theorem 4.4. Let o7 ={A"} = {(azk)} be a non-negative regular summability
method. Then, for all f € C(X, [0, 00)), we have

00 o
Z ajl')nL"(f) —f < C()(f, 8]1)) Z aj"),,Ln(eO)
n=1 n=1
o0
+o(f,8)) || D ahLu(eo)
n=1
o0
I D alLnleo) — eo
n=1
where
o0
8 = || ahLu(@)| G.v €N).
n=1

Proof. Letx € X andf € C(X, [0, 00)) be given. Then, as in proof of Theorem 4.2,
we obtain that, for any § > 0,

e ¢]

Y@ Lu(f:x) — ()

n=1

< Z a, \/ K i () - [f (X 0) — f(x)]

n=1 k=0

+F)

[ele)
Z a]l')nLn (80; -x) — €0 (.X)
n=1
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< (f,5) Zam \/K,,k(x) (1 n d(xngk,x))

1Dt — o)
Then we get
ia,,-”nLn(f; x) —f@)| < o(f.8) ia;nLn(eo;x)
+ DS a \/Knk(x) Ao, )
=

+ @I

o0
> @l Lieo:x) — eo ()] -
n=1

If we use Lemma 4.3, then we have

< o(f.8) Y ayLu(eo;x)

n=1

) R
! w(}; ) Y@, VLu(eo: 1) v/Lu(gxix)
n=1

n

+ ()] Z ap,Lu(eo; ) — eo(x)| .

n=1

Now applying again the Cauchy—Schwarz inequality on the summation, we obtain
that

@y Ly(f; %) = f()| < off, 8)2 b Lu(eo; %)

n=1

+ 8’ E aj, Ly (eo; x) E ah L (@ %)
n=1

n=1

+f ()| Z b La(eo: x) — eo(x)
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o0
Letting supremum over x € X and also taking § := &} = > a;, Ly (gx) | we get
n=1
o0 o0
Y @ L) —f|| < o(f.8) Y a},Li(eo)
n=1 n=1
o0
+a)(f» 8;)) Z ajann (60)
n=1
o0
A1 | Y ahLa(eo) — eo
n=1
which completes the proof.
4.4 An Application to Max-Product Bernstein Operators
Define the sequence (u,) by
= 0, %fn%sodd (4.4)
2, if n is even.

Then observe that (u,) is Cesaro mean convergent to 1 (denote this by
C; —limu, = 1); however, it is non-convergent in the usual sense.
n

Now take X = [0,1],n € N, x, s = £ € [0, 1](k =0, 1,...,n), and

(Z)x"(l —xyk
. 4.5)

\n/ (n>x’"(l—x)"_’"
m=0 \M

Using (4.5), Bede and Gal (see [4]) introduced the max-product Bernstein operators
as follows:

Kn,k ()C) =

v (”)xk(l O
o \k "

BM (f1x) == \/Kn,k(x)_f(g) - k=n
k=0 \/ (”)xm(l —x)rm
m=0 \M

(4.6)
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We know from [4] that

Jim B () —f| = 0. “7)
Now using (4.4) and (4.6) we consider the following operators:

L, (f; %) := u,B™ (f; x). (4.8)

Then, observe that it is impossible to approximate f by means of L, (f) since (u,) is a
non-convergent sequence in the ordinary sense. However, in the summation process,
if we take Cesaro matrix C; instead of 27, we claim that L,(f) given by (4.8) is
Cesaro mean convergent to f on [0, 1].

Indeed, for any f € C ([0, 1], [0, 0c0)) we may write that

J J
S =f| = |5 L w1

n=1 n=1

IA

1 1
L LR R U BT
n=1

n=1

A

2 / 1 J
5 1B A+ 171 |5 Y
n=1

n=1

Finally, letting j — oo and also using the regularity of C;, we get

J
;I,ZLn(f)—f — 0 (asj — o0)

n=1

which corrects our claim.
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Chapter 5
Fixed Point in a Non-metrizable Space

Abdalla Tallafha and Suad A. Alhihi

Abstract In this paper, we shall define Lipschitz condition for functions and
contraction functions on non-metrizable spaces. Finally, we ask the natural question:
“Does every contraction have a unique fixed point?”.

5.1 Introduction

A uniform space is a set with a uniform structure. Uniform spaces are topological
spaces with additional structure that is used to define uniform properties such as
completeness, uniform continuity and uniform convergence.

The notion of uniformity has been investigated by several mathematicians such
as Weil [10-12], Cohen [3, 4] and Graves [6]. The theory of uniform spaces was
given by Bourbaki in [2]. Also Weil’s booklet [12] defines uniformly continuous
mapping.

Contraction functions on complete metric spaces played an important role in
the theory of fixed point (Banach fixed point theory). Lipschitz condition and
contractions are usually discussed in metric and normed spaces, and have never been
studied in a non-metrizable space. The object of this paper is to define Lipschitz
condition, and contraction mapping on semi-linear uniform spaces, which enables
us to study fixed point for such functions. We believe that the structure of semi-
linear uniform spaces is very rich, and all the known results on fixed point theory
can be generalized.

Let X be a non-empty set and Dy be a collection of all subsets of X x X, such that
each element V of Dy contains the diagonal A = {(x,x) :x € X}and V=V ~! =
{(y,x) : (x,y) € V} forall V € Dy. Dy is called the family of all entourages of the
diagonal. Let I" be a sub-collection of Dx. Then we have the following definition.
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Definition 5.1 ([2]). The pair (X, I") is called a uniform space if

(1) Vinv, e I' for all V],Vzil’lp.

(i) Forevery V € I', there exists U € I" suchthat Uo U C V.
(i) {V:V e I'} = A.

iv) fVelandV C W e Dy, then W e I'.

If the condition V = V ~! is omitted, then the space is quasiuniform.

5.2 Semi-linear Uniform Spaces

In [9] Tallaftha and Khalil define a new type of uniform space, namely, semi-linear
uniform space.

Definition 5.2 (See [9]). Let I" be a sub-collection of Dy. Then, the pair (X, I") is
called a semi-linear uniform space if

(i) I is a chain,
(ii) forevery V e I', there exists U € I" suchthat Uo U C V,

(i) NV =A4,
verl

(v) U V=XxX.
ver

Definition 5.3 (See [9]). Let (X , I") be a semi-linear uniform space, for (x,y) €
X xX,and let I(,,) = {V € I' : (x,y) € V}. Then, the set valued map p on
X x X is defined by p(x,y) =) {V Ve F(xyy)}.

Semi-linear uniform spaces are stronger than topological spaces.
If (X, I') is a semi-linear uniform space, then we have

Definition 5.4 (See [S]). Forx € Xand V € I'. The open ball of center x and radius
V is defined by B(x, V) = {y : p(x,y) C V}.

Clearly, from the properties of I', if y € B(x, V), then there isa W € I such that
B(y, W) € B(x, V).
The family

T ={G C X: forevery x € GthereisaV € I" such that B (x, V) C G}

is a topology on X. That is, a set G is open if for every point x in G, there exist
V e I such that B(x,V) € G. Also, metric spaces are stronger than semi-linear
uniform spaces (see Theorem 5.24).

In [9], it was shown that open balls separate points, so if X is finite, then we have
the discrete topology; therefore, interesting examples are given when X is infinite.
Also, if X is infinite, then I" should be infinite; otherwise, A € I', which implies
that the topology is the discrete one. The elements of I" may be assumed to be open
in the topology on X x X (see [5, 7]).
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Clearly, from Definition 5.3, for all (x,y) € X x X, we have p(x,y) = p(y, x) and
A C p(x,y). In [8], Tallatha defines a new set valued §. Let

I\Iy = (Tay) ={VeT :(xy) ¢V},
from now on, we shall denote I"\ I, by I,

xy)°

Definition 5.5 (See [8]). Let (X, I') be a semi-linear uniform space. Then, the set
valued map § on X x X is defined by

5(x.y) = H{V:Ve F(x,y)}, %fx #£y
o, if x = y.

In [8], Tallatha gave some important properties of semi-linear uniform spaces,
using the set valued map p and 6. And he showed that if (X, I") is a semi-linear
uniform space, then (X, §), (X, p) and (X, I" Uo U§) are semi-linear uniform spaces,
where

§ ={8 (x,y): (x,y) e X xX},
p=1{p(x.y):(xy) € XxX}.
Also Alhihi in [1] gave more properties of semi-linear uniform spaces. Now,

we shall give new properties of semi-linear uniform spaces used in the following
definitions.

Proposition 5.6. Let (X, I') be a semi-linear uniform space. If A is a sub-collection
of I' such that (1 V # A, then there exists U € I" suchthatU & () V.

veA veA
Proof. Since (| V # A, there exists a point (x,y) € () V such that x # y. Let
veA veA

U € I" be such that (x,y) ¢ U. Clearly since I" is a chain, U is the required set.

The following is an immediate consequence of Proposition 5.6 and Proposition
3.2in [9].
Corollary 5.7. Let (X, I') be a semi-linear uniform space. If p(x,y) # A, then,

1. there exist U € I such that U G p(x,y),
2. U Cd(x,y).

Let (X, I') be a semi-linear uniform space. If V € I', then, for all n € N, by nV,
wemean Vo Vo...oV (n-times).

Proposition 5.8. Let (X, ") be a semi-linear uniform space. If x # 'y, then
nd(x,y) = U nV.

;
Ver, ()
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Proof. Clearly n(x,y) € n |J V. Let (so,s,) € nd(x,y), then there exist
ver:

(x.y)
S1,...,8,—1 such that (s;,s;41) € 8(x,y), i = 1,...,n — 1. So there exist
U,Up,....U, € F(;y) such that (s;—;,s;) € U, Since I' is a chain, there

existUeAsuchthatUloUgo...OUngUO...OU=nU.So

(so,sp) €UjoUzo...0U, C U Uo...oU= U nV.

verf

c
(ry) Ver,

(xy)

By a similar idea one can prove the following proposition.

Proposition 5.9. Let (X,I") be a semi-linear uniform space. If A is a sub-
collection of ', then | ) nV =n |J V.
VeA VeA
Proposition 5.8 is one of the important properties of §. Now the question is

whether p satisfies a similar property or not. It is clear that np(x,y) € () nV,so
Vel

we ask the following question.

Question. () nV C np(x,y)?
Vel

Using the definition of §, p, one can note that, for (x,y) € X x X, if p(x,y) # A,
then for all r,n € N, r < n, we have

1. rp(x,y) € np(x,y),
2. r8(x,y) C nd(x,y).

5.3 Topological Properties of Uniform Spaces

Uniform spaces are stronger than topological spaces.
If (X, U) is a uniform space, then we have

Definition 5.10 (See [4]). Forx € X and u € U, the open ball of center x and radius
u is defined by B(x, u) = {y : (x,y) C u}.

The family
7 ={G C X :forevery x € G, Ju € U such that B (x,u) € G},

is a topology on X. That is, a set G is open if for every point x in G, there exists
u € U such that B(x,u) € G. Also, metric spaces are stronger than uniform spaces.
If (X, 7) is a topological space induced by a metric d on X, then

U = {uec :€>0},uc = {(x,y) : d(x,y) <€}

is a uniform structure on X and the topology induced by U on X is t.
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Definition 5.11 (See [S]). A topological space is called uniformizable if there is a
uniform structure compatible with the topology.

Theorem 5.12 (See [5]).

1. Every uniformizable space is a completely regular topological space,
2. For a uniformizable space X, the following are equivalent:

* X is a Kolmogorov space,
* X is a Hausdorff space,
* X is a Tychonoff space.

Definition 5.13 (See [5]). Let (X, Ux), (Y, Uy) be two uniform spaces and f :
(X,Ux) — (Y, Uy). Then f is uniformly continuous if Vu € Uy, Jv € Uy such
that, for all x, y € X, if p, (x,y) € v, then p,(f (x) .f (y)) € u.

Also it is known that, for any compatible uniform structure, the intersection of
all entourages {(x,x) : x € X} = A. Some authors (see, for instance, [5]) add this
last condition directly in the definition of a uniformizable space.

Conversely, each completely regular space is uniformizable. A uniformity
compatible with the topology of a completely regular space X can be defined as the
coarsest uniformity that makes all continuous real-valued functions on X uniformly
continuous. A fundamental system of entourages for this uniformity is provided
by all finite intersections of sets (f x f)~!(V), where f is a continuous real-valued
function on X and V is an entourage of the uniform space X. This uniformity defines
a topology, which is coincides with the original topology (hence coincides with it)
is a simple consequence of complete regularity: for any x € X and a neighborhood
V of x, there is a continuous real-valued function f : X — R with f(x) = 0 and
f(v) = 1, where v° is the complement of v.

In particular, a compact Hausdorff space is uniformizable. In fact, for a compact
Hausdorff space X, the set of all neighborhoods of the diagonal in X x X form the
unique uniformity compatible with the topology.

A Hausdorff uniform space is metrizable if its uniformity can be defined by a
countable family of pseudometrics. Indeed, as discussed above, such a uniformity
can be defined by a single pseudometric, which is necessarily a metric if the space is
Hausdorff. In particular, if the topology of a vector space is Hausdorff and definable
by a countable family of seminorms, it is metrizable.

Similar to continuous functions between topological spaces, “which preserve
topological properties”, are the uniform continuous functions between uniform
spaces, which preserve uniform properties. Uniform spaces with uniform maps
form a category. An isomorphism between uniform spaces is called a uniform
isomorphism.

All uniformly continuous functions are continuous with respect to the induced
topologies. Generalizing the notion of complete metric space, one can also define
completeness for uniform spaces. Instead of working with Cauchy sequences, one
works with Cauchy filters (or Cauchy nets).
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A Cauchy filter F on a uniform space X is a filter F such that for every entourage
u, there exists o € F with o x 0 C u. In other words, a filter is Cauchy if it contains
“arbitrarily small” sets. It follows from the definitions that each filter that converges
(with respect to the topology defined by the uniform structure) is a Cauchy filter.
A Cauchy filter is called minimal if it contains no smaller (i.e., coarser) Cauchy
filter (other than itself). It can be shown that every Cauchy filter contains a unique
minimal Cauchy filter. The neighborhood filter of each point (the filter consisting of
all neighborhoods of the point) is a minimal Cauchy filter.

Conversely, a uniform space is called complete if every Cauchy filter converges.
Any compact Hausdorff space is a complete uniform space with respect to the
unique uniformity compatible with the topology.

Theorem 5.14 (See [S]). Let X be a uniform space and let f : A — Y be a
uniformly continuous function from a dense subset A of X into a complete uniform

space Y. Then f can be extended (uniquely) into a uniformly continuous function on
all of X.

Definition 5.15 (See [5]). A topological space that can be made into a complete
uniform space, whose uniformity induces the original topology, is called a com-
pletely uniformizable space.

Theorem 5.16 (See [5]). Every uniform space X has a Hausdorff completion; that
is, there exist a complete Hausdorff uniform space Y and a uniformly continuous
map i : X — Y with the following property: for any uniformly continuous mapping
f of X into a complete Hausdorff uniform space Z, there is a unique uniformly
continuous map g . Y — Z such thatf = g o i.

The Hausdorff completion Y is unique up to isomorphism. As a set, Y can be
taken to consist of the minimal Cauchy filters on X. As the neighborhood filter B(x)
of each point x € X is a minimal Cauchy filter, the map i can be defined by mapping
x to B(x).

In the definition of semi-linear uniform spaces condition (i) is stronger than
condition (i) and condition (iv) is weaker than condition (iv) in the definition of
uniform spaces, so we have the following question.

Question. Which of the above topological properties are satisfied in semi-linear
uniform spaces?

5.4 Contractions

The following definitions are given in [S]. In [9] the authors modified the definitions
of semi-linear uniform spaces.

Definition 5.17. Let (X, I") be a semi-linear uniform space. A sequence (x,) in X
converges to x € X, if for all V € I, there exists N. € N such that (x,,x) € V for
alln > N.
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Definition 5.18. Let (X, I") be a semi-linear uniform space. A sequence (x,) in X is
Cauchy, if for all V € I', there exist N € N such that (x,, x,,) € V for all n,m > N.

The concept of uniform continuity is given by Weil [12]. Now, we shall rewrite
the definition using our notation for semi-linear uniform spaces.

Definition 5.19. Let (X, I'y), (Y, I'y) be two semi-linear uniform spaces and let
f 1 (X, Ix) — (Y, Iy) be any function. Then, f is called uniformly continuous,
if YU eIy, 3V € [Ix such that, for all x,y € X, if p,(x,y) < V, then

py(f () .f (») € U.

The following Proposition shows that we may replace p by § in Definition 5.19.

Proposition 5.20. Let f : (X, Tx) — (Y, Iy). Then, f is uniformly continuous if
and only if VU € Iy, 3V € Ix such that, for all x,y € X, if 6,(x,y) € V, then
§(f®).f»<cU.

Proof. Let f : (X,Ix) — (Y, Iy) be uniformly continuous. Let U € [y, then
AW e Iy such that, if p, (x,y) € W, then p,(f (x),f (¥)) € U. Let V be a proper
subset of W. We want to show that V is the required set. Let x,y be such that
8,(x,y) € V. Then, §,(x,y) & W. So, by Proposition 3.2 (i) in [9], p, (x,y) S W,
and so 8(f (x) .f (v)) S p, (f () .f (v)) S W.

Conversely, let U € I'y. Choose W a proper subset of U, by assumption 3V € I'y
such that for all x,y € X, if 6,(x,y) € V, then §,(f (x) .f (y)) € W & U. Also by
Proposition 3.2 (i) in [9], §, (f (x) ,f (¥)) & U, therefore p, (f (x) .f (v)) € U.

In [9], Tallaftha gave the following example of a space which is semi-linear
uniform spaces, but not metrizable.

Example 5.21. LetX =R, I" ={U, : 0 < t < oo} where
U ={(x,y): x> +y> <t} U{(x,x): x € R}.

Till now, to define a function f that satisfies Lipschitz condition, or to be a
contraction, it should be defined on a metric space to another metric space. The
main idea of this paper is to define such concepts without metric spaces, just we
need a semi-linear uniform space, which is weaker as we mentioned before.

Definition 5.22. Let f : (X, ") — (X, I"). Then, f satisfied Lipschitz condition
if there exist m,n € N such that m§(f (x),f (y)) € nd(x,y). Moreover, if m > n,
then we call f a contraction.

Remark 5.23. One may use the set valued function p, instead of § in the above
definition. But we use §, since § satisfies Proposition 5.8.

It is known that, every topological space (X, 7), whose topology induced by a
metric or a norm on X, can be generated by a uniform space. In the following
theorem we shall show that (X, 7) can be generated also by a semi-linear uniform
space.
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Theorem 5.24. Every topological space whose topology induced by a metric or a
norm on X can be generated by a semi-linear uniform space.

Proof. Let (X, ) be a topological space whose topology induced by a metric or a
norm on X. Let

[={Ve.e>0:Ve=|J{x} xB(x.€) .

xeX

Clearly, I" is a chain and, since B (x, Ve) = B (x, €), the topology induced by I" on
X is . Moreover, we have

1. A C Vg, forall e> 0,

2. if (s, 1) € Ve, then (s,1) € {s} x B(s, €), hence (¢,5) € {t} X B(t,€) C Ve,
3. V% o V% C Ve,

4. N V=_)Ve=A4,

ver €>0

o0 o0
5. foralle> 0, |JnVe = Vye =X xX.

n=1 n=1
Let (X,d) — (Y, 8) metric spaces, and f : (X,d) — (Y, §). It is known that

1. if f is continuous at x and x, — x, then f (x,,) — f (x),
2. if f is uniformly continuous, f maps Cauchy sequences to Cauchy sequences.

Now we shall show that these statements are still valid if the metric spaces
(X,d), (Y, ) are replaced by a semi-linear uniform space (X, I'y), (Y, I'y).

Theorem 5.25. Let (X, I'x), (Y, I'y) be two semi-linear uniform spaces, and f :
(X, I'x) — (Y, I'y). Then:

1. iff is continuous at x, then x,, — x implies f (x,) — f (x) ;
2. iff is uniformly continuous, then f maps Cauchy sequences to Cauchy sequences.

Proof. 1. Letf : (X,Ix) — (Y, Iy) be continuous, and x, — x. Let U € Iy, so
3V € Iy such that, for all x,y € X, if p,(x,y) € V, then p,(f (x),f (y)) € U.
Now since x, — x, there exists k such that (x,,x) € V for every n > k, which
implies that (f (x,) ,f (x)) € U for every n > k.

2. Letf : (X, Ix) — (Y, I'y) be uniformly continuous, and x, is Cauchy. Let U €
I'y, by uniformly continuity 3V € I, such that for all x,y € X, if p,(x,y) €
V, then p,(f (x),f (y)) € U. Now since x, is Cauchy, there exists k such that
(Xn, xm) € V for every m,n > k, which implies that (f (x,).f (x,)) € U, for
every n,m > k.

In metric spaces the converse of part (1) is true, so is it still true in semi-linear
uniform spaces?

Question. Let (X, I),(Y,Iy) be two semi-linear uniform spaces, and f
X, I'y) » (Y, Iy). If f(x,) — f(x)in (Y, IYy), for all x, — xin (X, IY), is f
continuous?
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Let (X, U), (Y, V) be any two uniform spaces and f : (X, U) — (Y, V). We know
that if f is uniformly continuous, then f is continuous [5].

Also, if the uniform spaces (X, U), (Y, V) are replaced by the metric spaces
(X,d), (Y,8) and if f : (X,d) — (Y, §), then we have

1. if f is a contraction, the f satisfied Lipschitz condition;
2. if f satisfied Lipschitz condition, then f is uniformly continuous;
3. if f is uniformly continuous, then f is continuous.

Now we shall show that these statements are still valid if the metric spaces (X, d),
(Y, §) are replaced by semi-linear uniform spaces (X, I'x), (Y, I'y).

Theorem 5.26. Let (X, I'x) be any semi-linear uniform space, and f : (X,I") —
(X, I'). Then:

1. iff is a contraction, then it satisfies Lipschitz condition;
2. if f satisfy Lipschitz condition, then it is uniformly continuous.

Proof. Since (1) is trivial, we shall prove (2). Let f : (X, ") — (X, I") satisfies
Lipschitz condition. Then there exist m, n € N such that mé(f (x) ,f (v)) € nd(x,y).
Let U € I'. Since 3V € I" such that nV C U, for x,y € X, if §(x,y) C V, then

8(f (0).f () S md(f (x) .f (v)) S ndlx,y) SnV S U.

By Proposition 5.20, the result follows.

Definition 5.27 (See [9]). A semi-linear uniform space (X, I") is called complete,
if every Cauchy sequence is convergent.

Fixed point theorems are well-known results in mathematics, and have useful
applications in many applied fields such as game theory, mathematical economics,
and the theory of quasi-variational inequalities. It states that every contraction from
a complete metric space to itself has a unique fixed point. So the following question
is natural.

Question. Let (X, I") be a complete semi-linear uniform space, and f : (X, I") —
(X, I') be a contraction. Does f have a unique fixed point?

Remark 5.28. All the results which were obtained using contraction on metric
spaces can be considered as open questions in semi-linear uniform spaces.
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Chapter 6
Second Hankel Determinant for New Subclass
Defined by a Linear Operator

Aisha Ahmed Amer

Abstract In Amer and Darus (Missouri J Math Sci, to appear; Int ] Math Anal
6(12):591-597, 2012), the author introduced and studied a linear operator defined
on the class of normalized analytic function in the unit disk. This operator is
motivated by many researchers. With this operator sharp bound for the nonlinear
functional for the class of analytic functions in the open unit disk is obtained. In
this paper we discuss sharp bound for the nonlinear functional for the class of
analytic functions defined by a linear operator has been considered. Several other
results are also considered. There are interesting properties of normalized function
in the unit disk for sharp sconced hankel for linear operator. In addition, various
other known results are also pointed out. We also find some interesting corollaries
on the class of normalized analytic functions in the open unit disk. Our results
certainly generalized several results obtained earlier. Therefore, many interesting
results could be obtained and we also derive some interesting corollaries of this
class. The operator defined can be extended and can solve many new results and
properties.

6.1 Introduction

In 1976, Noonan and Thomas [16] defined the gth Hankel determinant of the
function f for given by (6.1) and g € N = {1,2,3,...}, by

g Q41 ** " Akdg—1

Ak+1 Ag+2 *°* Uk+gq

Ak+q—1 Ak+q *°° Ak+29—2
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Further, Fekete—Szego [7] considered the Hankel determinant of f € &/ for ¢ = 2

and n = 1, Hy(1) = araz) They made an early study for the estimates of
3

lazas — a%|, when a; = 1 with p real. The well-known result due to them states
that if f € <7, then

4p —3, ifu>1,
las — paj| < 1+2exp(%), ifo<u=>1,
3—4u, if uw <0.

Furthermore, Hummel [8, 9] obtained sharp estimates for |a;— ,ua%| when f is convex
function and also Keogh and Merkes [11] obtained sharp estimates for |a; — ,ua%|
when f is close-to-convex, starlike, and convex in U. Here we consider the Hankel
determinant of f € &/ forg =2 and n = 2,

ar a
H,(2)= |77

as dg

In this article, by making use of the operator D}"’A (a, b)f(z) defined recently by
the author, a class of analytic functions 2* (A, A,, [, n, @) of < is introduced. The
sharp upper bound for the nonlinear functional |aya, — a§| is obtained. The rest of
the article is organized as follows. In Sect. 6.2, we introduce some definitions and
results that we use in our proofs. Section 6.3 contains the main results. The last
section is devoted to several previous known results as special cases.

6.2 Background

As usual, in this section we introduce some notations, definitions, and lemmas which
will be needed later.

Definition 6.1. The class of functions of the form

f@=z+ Zakzk, (z € 1), 6.1)

k=2

which are analytic in the open unit disc U = {z : |z| < 1} on the complex plane C
will be denoted by 7.

Definition 6.2. In particular, let & be the family of all functions p analytic in U for
which R{p(z)} > 0 and

PR =1+ a. (el (6.2)
k=1

In particular, for f € &/ and (z € U,b # 0,—1,-2,-3,...),A > 0,m e Z,l > 0,
the authors (cf., [2, 3]) introduced the following linear operator:
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Definition 6.3. Forf € .o/ the operator D;”'A (a, b)f (z) is defined by D;”'A (a,D)f (z) :
o/ — of and let

1+1—1 z n A z
4+l 1=z 1+ =2

and
D" a,b)f(2) = ¢(2) % -+ * (2) %2F (a, 1;b;2) * f(2),
N e’
(m)-times
ifm=20,1,2,...;and
D" (@, b)f (2) = §(2) * -+ x p(2) x2F(a, 1: b1 2) * f(2),
(—m)-times

if (m = —1,-2,...). Thus we have

i . (T + A=) +1\" (@-1
D, (a,b>f(z>.—z+;( = )(b)k_lakz,

wheref € & and (z € U,b #0,—1,-2,-3,...), A >0,me Z,1 > 0.
This linear operator is the generalized form of the following operators:

 Dy°(a.b)f(z) = D) (a.b)f () = L(a. b)f (2) (see [4]).

« DY°(B+1,1)f(z) = DPf(z); B = —1 (see [18)).

« DPMN(1,1)f(2), m € N (see [19]).

o DIM(1,Df(z), m € N (see [1]).

o D1, 1)f(z) = D" (see [5]).

« DY°2,2—p)f(2) = 27f(z) = I'(2—y)z’ DLf (z), where DLf(z) is the fractional
derivative of f of order y;y # 2,3,4,... (see [17]).

Definition 6.4. We consider the following subclass Z*(A,,l,m,a, ) of <:

D" (a, b)f(2)
Z

Z*(A,, Lm,a,a) = {f ) § (1—oa) + a(D;"'A(a,b)f(z))’} > 0} ,

where
(zeU,b#0,-1,-2,-3,..), A>0,meZ,[>0.
Remark 6.5. The subclass #*(0,0,0,1,1) = 2% was studied systematically by

MacGregor [14] who indeed referred to numerous earlier investigations involving
functions whose derivative has a positive real part.
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Lemma 6.6 (See [6]). Ifp € &, then |ci| < 2 for all k.

Lemma 6.7 ([13], See Also [12]). Let the function p € & be given by the power
series (6.2). Then,

2¢, = c% 4+ x(4 — ¢3),
for some x, |x| < 1, and
4oy = +2(4 —chex — (4 — D) +2(4 — )21 — D)z,

for some z, |z| < 1.

Now, we will obtain sharp upper bound for the functional |aas — a§|, of

fe#xZ*(A,,l,m,a,a).

6.3 Main Results

In this section, we present and prove our main results.
Using the techniques of Libera and Zlotkiewicz [12, 13], we now prove the
following theorem.

Theorem 6.8. Leta > 0. Iff € Z*(A,,l,m,a,q), then

2| < 16(1 + £)?m=D
a .
3= (1 4 20)2(1 + 24 4 120D @2(a + 1)2

|a2a4 —

The result is sharp.
Proof. Since f € Z*(A,,l,m,a,a)

D" (a, b)f (2)
Z

(1-a) + (D" (a, b)f ) = p(2), (6.3)

for some p € Z. Equating coefficients in (6.3), we have

~ ei(1 4 m!
CT 0r(+r+)a
2 1 m—1
as = (1 +1) , (6.4)
(1 +20)(1 + 24 + )" a(a + 1)
B 6¢5(1 + 1y
T U300+ 32+ ) laa+ D@+ 2)




6 Second Hankel Determinant for New Subclass Defined by a Linear Operator 83

From (6.4), it can be established that
_ 6¢i1c3(1 + l)2(m—l)
A+ )1+ 3a)(1+ A+ D)1+ 34 + D" a?(a + 1)(a + 2)
4c3(1 + 1)?m=b
(14 22)2(1 + 24 + D2m=Dg2(g 4+ 1)2|”

Now assume that

‘a2a4 — a%’

¥ _(A4+A+D""a (4221 + D" "ala+ 1)(a + 2)
T R 2(1 + fym=1 ’
and
¥ 1432+ D" a(a+ 1)(a+2)
3 = .

1+ nmt
Also, let ¢; = ¢ (0 < ¢ < 2), and making use of Lemma 6.7 we have
|a2a4 — a%\
(c* + dac) (X5 — X1X3) + (4o’ X5 — 302c*X 1 X3)
41+ a)(1 + 20)2(1 + 30) X1 X5X;

n [(2c® + 8ac?) (X3 — X1 X3) + (8a?c?X; — 60%c* X1 X3)]x(4 — ¢?)
41+ a)(1 + 20)2(1 + 30) X1 X5X;

2 (A=) [(F+4ac?) (X3—X1X3)+(4a? X3 =302 2 X | X3)+4X1 X3+ 160X X3+1202X X3]
4(1+a) (1420)2(1+30) X1 X2 X3

c(4—cH)(1 - |xP)z
2(] + 0[)(1 + 30[)X1X3 ’

An application of triangle inequality and replacement of |x| by p is given by
|a2a4 — a§|
(c* + 4ach) (X5 — X1X3) + (4a’c* X5 — 302c* X1 X3)
4(1 + a)(1 + 20)%(1 + 30) X1 X3X;3
N [(? + 8ac®) (X5 — X1X3) + (4a%c*X3 — 30°c?X1X3)]p(4 — ¢?)
2(1 + a)(1 + 20)2(1 + 3) X1 X3X;3
0*(4—c) [(c2 + 4ac?) (X5 — X1 X3) + (4a?c?X3 — 3a202X1X3)]
4(1 + a)(1 + 20)2(1 + 32)X1 X5 X3
N P24 — c?) [4X1 X3 + 160X X3 + 1202X1 X3 — 2cX3(1 + 20)?]

41+ a)(1 + 20)2(1 + 30) X1 X3X;3
c4—-c%
2(1 —+ Ol)(l =+ 30[)X1X3

— F(p), (6.5)

IA
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with z = |x| < 1 and o« > 0. We assume that the upper bound for (6.5) is attained at
an interior point of the set {(p,¢) : p € [0, 1], ¢ € [0, 2]}, then
F  [( + 4ac?) (X3 — X1X3) + (4a’X5 — 30??X 1 X3)] (4 — 2)
p 2(1 4 ) (1 + 2a)2(1 + 30) X, X2X5
p(4—c?) [(c2 +4ac®) (X5 — X1 X3) + (4a?c?X3 — 3a2c2X1X3)]
2(1 4+ a)(1 + 20)%(1 + 30) X1 X5X;3
p(4 — c?) [4X1 X3 + 160X, X3 + 1207X X3 — 2cX3(1 + 20)?]
2(1 + a)(1 + 20)2(1 + 3) X1 X3X;3

. (6.6)

We note that F'(p) > 0 and consequently F is increasing and max <, <1y F(p) =
F(1), which contradicts with our assumption of having the maximum value at the
interior of p € [0, 1]. Now let

G(c) = F(1)
(c* + dach) (X3 — X1X3) + (4a’c* X3 — 3a2c* X1 X3)
41+ a)(1 + 20)2(1 + 3) X1 X3X;3
n [( + 8ac®) (X5 — X1X3) + (4a%c*X3 — 302c?X1X3)](4 — ¢2)
2(1 + o)(1 + 20)2(1 + 30) X1 X3X;3
(4= ) [(® + 4ac?) (X3 — X1 X3) + (4a??X3 — 3a??X1X3) ]
4(1 + a)(1 + 20)%(1 + 30) X1 X3X;3
(4 — ) [4X1X3 + 16aX1 X3 + 127X, X3 — 2cX3(1 4 20)?]
414 a)(1 + 20)2(1 + 30) X1 X3X;3
c(4—c?)
2(1 + a)(1 + 3a)X X5

+

then,

(4c* + 16ac) (X5 — X1X3) + (162%c*X3 — 1202 X1 X3)
4(1 4+ a)(1 + 20)2(1 + 30) X1 X3X;
[(2c + 16ac) (X5 — X1X3) + (8a’cX? — 60°cX1X3)](4 — ¢?)
2(1 + a)(1 + 20)%(1 + 30) X1 X5X3
2c[(? + 8ac®) (X5 — X1X3) + (4a’c*X3 — 302X, X3)]
B 2(1 4 ) (1 + 2a)2(1 + 30)X; X2X5
G(e) = (4_62)[(26+SM)f((%;ﬁ;fﬁjirﬁ;ffg;})_ZX%(1+2a)2]
1X5X3
2¢ [(¢* + dac®) (X3 — X1 X3) + (4a??X3 — 302c*X1X3) |
B 4(1 + a)(1 4 20)2(1 + 30)X, X2X5
2c [4X1X;3 4 160X X3 + 1202X1 X3 — 2cX3(1 + 20)?]
41+ a)(1 + 20)2(1 + 30) X1 X5X;
4 —3¢?
+2(1 +o)(1 4+ 3a)X1 X5
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Therefore the last equality implies ¢ = 0, which is a contradiction. Thus any
maximum points of G must be on the boundary of ¢ € [0, 2]. However, G(c) > G(2)
and thus G has maximum value at ¢ = 0. The upper bound for (6.5) corresponds to
o = 1 and ¢ = 0, in which case

6c1c3(1 + l)2(m—1)
(A +a)(1+3a)(1 + A+ D11+ 34 + D 'a2(a + 1)(a + 2)
4c3(1 + >
(1 +20)2(1 + 2X1 + )2tn=Dg2(g + 1)2
- 16(1 + 7)>m=D
T (14 20)2(1 + 24 + D2m=Dg2(a + 1)%°

This completes the proof of Theorem 6.8.

6.4 Conclusions

Remark 6.9. If o > 0, then we get the corresponding functional |a,as — a%|, for the
class f € 2%(0,0,0,0,a) = R(a), studied in [15] as in the following corollary.

Corollary 6.10. Iff € R(«), then

4

<
laxas — a3] < (1 + 20)2°

the result is sharp.

Remark 6.11. 1f « = 1, then we get the corresponding functional |axas — a3, for
the class f € 2*(0,0,0,0, 1) = %, studied in [10] as in the following corollary.

Corollary 6.12. Iff € %, then

ol &~

lazay — a3| <

)

the result is sharp.
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Chapter 7
Some Asymptotics for Extremal Polynomials

Gokalp Alpan, Alexander Goncharov, and Burak Hatinoglu

Abstract We review some asymptotics for Chebyshev polynomials and orthogonal
polynomials. Our main interest is in the behaviour of Widom factors for the
Chebyshev and the Hilbert norms on small sets such as generalized Julia sets.

7.1 Introduction

Let K C C be a compact set containing an infinite number of points and Cap(K)
stand for the logarithmic capacity of K. Given n € N, by ., we denote the set of
all monic polynomials of degree at most n.

Given probability measure p with supp(i) = K and 1 < p < oo, we define the

nth Widom factor associated with u as WP (u) = % where || - ||, is taken

in the space L (). If K is polar, then let W?(u) := oo. Clearly, W?'(u) < W (w)

for 1 < p <r < oo; W? is invariant under dilation and translation of p.

We omit the upper index for the case p = oco. Here the values W, (K) = (‘g:’l‘)%

provide us with information about behaviour of the Chebyshev polynomials 7, ¢
on K. In Sect. 7.2 we review some results in this direction.

Another important case is p = 2, where inf_4, ||Q||, is realized on the monic
orthogonal polynomial with respect to w. The sequence (W2(w))S2, is rather
convenient to describe measures that are regular in the Stahl-Totik sense and the
Szegd class that provides the strong asymptotics of general orthogonal polynomials.
In Sect.7.3 we recall basic concepts of the theory, in Sect. 7.4 model examples
of W2(u) are considered. The next sections are related to the results of the first
two authors about orthogonal polynomials with respect to equilibrium measures
on generalized Julia sets. All results of the authors mentioned in this review were
recently published or submitted except Theorem 7.1, which is new.
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We suggest the name Widom factor for W2 () because of the fundamental paper
[42], where Widom systematically considered the corresponding ratios for finite
unions of smooth Jordan curves and arcs.

For basic notions of logarithmic potential theory we refer the reader to [30], log
denotes the natural logarithm, pg is the equilibrium measure of K. Introduction
to the theory of general orthogonal polynomials can be found in [33, 34, 37, 40],
see [27] for basic concepts of complex dynamics and [13] for a generalization of
Julia sets. The symbol ~ denotes the strong equivalence: a, ~ b, means that a, =
b, (1 + 0(1)) forn — oo.

7.2 Widom Factors for the Sup-Norm

Given K as above, by T, x we denote the nth Chebyshev polynomial and by #,(K)
the corresponding Chebyshev number 7,(K) := ||T,k||oco- By M. Fekete and G.
Szegb we have tn(K)% — Cap(K) as n — oo. Bernstein—Walsh inequality (see, e.g.,
Theorem 5.5.7 in [30]) implies that #,(K) > (Cap(K))" for all n. Thus, W, (K) > 1
and (W,(K))S2, have subexponential growth (that is, log W,,/n — 0). We mention
two important cases: W, (0D) = 1 and W, ([—1,1]) =2 foralln € N.

If K is a subarc of the unit circle with angle 2o, then W, (K) ~ 2 cos?(a/4) (see,
e.g., p. 779 in [36]). The circle and the interval can be considered now as limit cases
with ¢ — 7 and ¢ — 0.

By Schiefermayr [31], W, (K) > 2 if K lies on the real line.

The behaviour of (W, (K))S2, may be rather irregular, even for simple compact
sets. Achieser considered in [1, 2] the set K = [a,b] U [c,d] and showed that
(W,(K))52, has a finite number of accumulation points from which the smallest is
2 provided K is a polynomial preimage of an interval. Otherwise, the accumulation
points of (W,(K))>2, fill out an entire interval of which the left endpoint is 2.

In the generalization of this result the concept of Parreau—Widom sets is
important. Let K C R be regular with respect to the Dirichlet problem. Then the
Green function gc\x of C \ K with pole at infinity is continuous throughout C. By
¢ we denote the set of critical points of g ¢\g, where its derivative vanishes. Clearly,
% is at most countable. Then K is called a Parreau—Widom set if

PW(K) := ) 8w (@) < 0.
2€C

It was shown recently in [18] that W, (K) < 2 exp(PW(K)) for a Parreau—Widom
set K.

In extension of Widom’s theory, Totik and Yuditskii considered in [39] the
case when K = U/_|K; is a union of p disjoint C** Jordan curves which are
symmetric with respect to the real line. They showed that the accumulation points
of (W,(K))2, lie in [1,exp(PW(K))]. Moreover, if the values (,LLK(KJ'))]’;I are
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rationally independent, then the limit points of W, (K) fill out the whole interval
above. We recall that (x;)?_; C R are rationally independent if } 7, ox; = 0 with
aj € Z implies that a; = 0 for all j.

There are also new results [8, 38] for the case when K = UleK_,- is a union of p
disjoint Jordan curves or arcs (not necessarily smooth), where quasi-smoothness or
Dini-smoothness is required instead of smoothness.

Parreau—Widom sets have positive Lebesgue measure (see, e.g., [14] for a proof).
All finite gap sets (see, e.g., [15, 17]) and symmetric Cantor sets with positive length
(see, e.g., [29]) are Parreau—Widom sets. Hence, in all cases considered above the
sequence of Widom factors is bounded. The second and the third authors showed
that any subexponential growth of (W,(K))52, can be achieved and presented a
Cantor-type set with highly irregular behaviour of Widom factors, namely [21],

1. For each (M,) of subexponential growth there is K with W, (K) > M,, for all n.
2. Given 0, \{ 0 and M,, — oo (of subexponential growth), there is K such that
W, (K) < 2(1 + o) and W, (K) > M,,, for some subsequences (n;) and ().

In the last section, we consider non-Parreau—Widom sets with slow growth of
Widom factors.

7.3 General Orthogonal Polynomials

Given u as above, the Gram-Schmidt process in L?(u) defines orthonormal
polynomials p,(z, u) = k,z" + -+ with k, > 0. Let g, = k! p,. Then ||g,||>» =
;! = infpe.z, ||Q||2. If K C R, then a three-term recurrence relation

xq,,(x) = ‘Zn-H(x) + b, qn (x) + ai—l Qn—l(x)

is valid with the Jacobi parameters a, = k,/k,+1 and b, = [ xp2(x) du(x). Since
H(R) =1, wehave py = go = 1,s0k9 = 1 and apa; ---a,—1 = /cn_l.

Thus, W2(1) = (k, - Cap"(K))™! and, in particular, for K = [—1, 1] we have
W2(i) = apay -+ ap—y - 2"

For example, the equilibrium measure dp[—11] = m/% generates the Cheby-
shev polynomials of the first kind with W2(u(—1.1)) = /2 for all n, whereas for the

Chebyshev polynomials of the second kind dv = %x/ 1 —x2dxand W2(v) = 1.
The Jacobi parameters generate the matrix

boaoo 0...
aoblaIO...
J = 0a bya, ...
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where p is the spectral measure for the unit vector §; and the self-adjoint operator
J on [5(Z4), which is defined by this matrix.

Both (a,) and (b,) are bounded sequences. Conversely, if we are given bounded
sequences (a,) and (b,) with a, > 0 and b, € R, then, as a result of the spectral
theorem, there is a unique probability measure u such that the associated recurrence
coefficients are (a,, by);2-

For a wide class of measures the polynomials p,, = p,(-, ) enjoy regular limit
behaviour. Let 2 = C \ K and v, be the counting measure on the zeros of p,.
Suppose the set K is not polar. Let us consider the asymptotics:

k" — Cap(K)™! B
CpalV" = expgao (locally uniformly on C \ Conv.hull(K))
. 11msup Ipn(2)]/" = 1 0n 882

1
- 2 Vp, % UK-

-b-u)l\.):—

By Theorem 3.1.1 in [34], the conditions (1)—(3) are pairwise equivalent. If, in
addition, K C 062 and the minimal carrier capacity of u is positive, then (1) is
equivalent to (4).

A measure p with support K is called regular in the Stahl-Totik sense (1 € Reg)
if (1) is valid. This definition allows measures with polar support. In this case the
equivalence of (1)—(3) is still valid if we take g, = oo in (2).

Till now there is no complete description of regularity in terms of the size of u.
We will use the generalized version of the Erdos—Turan criterion for K C R ([34],
Theorem 4.1.1): u € Reg provided duu/dug > 0, wg — a.e. Thus (see also [41]
and [32]), equilibrium measures are regular in the Stahl-Totik sense.

We see that u € Reg if and only if (W2(x))S2, has subexponential growth.

7.4 Strong Asymptotics

The conditions (1)—(4) from the previous section can be considered as weak
asymptotics. For measures from the Szegd class stronger asymptotics are valid for
the corresponding orthogonal polynomials.

Suppose diu = w(x)dx on K = [—1, 1]. Then we say that p is in the Szegd class
(1 € Sz[—1,1]) if

U logw(x)

171 —x2

which means that the integral converges for it cannot be +o0. For such measures
[35, p. 297]

I(w) = dx = /1oga)(x) dug(x) > —o0,

Pz ) = k" + - =1 +0(1) @+ V2 -1)" DM (@)
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where the Szegd function
1 log[w(x)v/1 — x?
D) = exp (5 e duk(x))

is a certain outer function in the Hardy space on C \ [—1, 1]. Here the square root

~/72 — 1 is taken such that |z + ~/72 — 1| > 1 at 7 ¢ K.

Now z — oo implies not only that K,lz/ " > 2,50 i1 € Reg, but also the

existence of
lim W2(1) = v/ exp(l(@)/2)

((12.7.2) in [35]), which is essentially stronger than the fact of subexponential
growth of the sequence.

The inverse implication is also valid: if lim, W2(u) exists in (0, o), then we
have u € Sz[—1, 1] (see, e.g., T.2.4 in [16]).

The Szegd theory was extended first to the case of measures that generate a finite
gap Jacobi matrix (see, e.g., [9, 16, 28, 42]) and then for measures on R such that
the essential support of w is a Parreau—Widom set.

Let {y;}; be the set of all isolated points of the support of 1 and K = ess supp(it),
so supp(u) = K U {y;};. Suppose that K is a Parreau—Widom set, so it has positive
Lebesgue measure. Let w(x) dx be the absolutely continuous part of du in its
Lebesgue decomposition. In addition, let ) gc\x(y;) < oo. Then, in our terms (see,
e.g., Theorem 2 in [14]),

/logw(x)duK(x) > —00 <= limsup Wf(u) > 0. (7.1)

n—>oo

Moreover, if one of the conditions above holds, then there is a positive number M
such that

1 2

v <" (w) <M,
holds for all n. Thus, any of the conditions in (7.1) implies regularity of the
corresponding measure.

We write 1 € Sz(K) if the Szegd condition on the left-hand side of (7.1) is valid.
We see that this definition can be applied only to measures that have nontrivial
absolutely continuous part. On the other hand, the Widom condition (on the right
side) is applicable to any measure.

For each Parreau—Widom set K, its equilibrium measure pg belongs to Sz(K)
[14] and the sequence ( Wf (uk)) is bounded above [18]. In [5, 7] the first two authors
presented non-polar sets with unbounded above sequence (W2 (ix)).
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The Widom condition is the main candidate to characterize the Szeg6 class in the
general case. In [5] it was conjectured that the equilibrium measure always is in the
Szegd class and the following form of the Szegd condition was suggested

/ log(dp/dux)dpx (1) > —oo

that can be used for all non-polar sets.

7.5 Widom Factors for the Hilbert Norm

Here we consider some model examples of Widom-Hilbert factors (see [7] for more
details).

1. Jacobi weight. For —1 < o, B < oo let
dptep = Cyp(1 = 2)%(1 + x)Pdx
with

1
Cop = [_1(1 —x)%(1 + x)? dx.

Set Wy p := /W;T—Cﬂ' Then W2(iq,8) — W p. Here, Wy 3 — 0 as (o, B)

approaches the boundary of the domain (—1, 00)? and

sup Wa,ﬂ = W—1/2.—1/2 = \/E

—l<a,f<00

We see that, in the class of Jacobi polynomials, the maximal value of I(w) is
attained on the equilibrium measure. By Jensen’s inequality, @[, gives the
maximum of the Szeg6 integral in the whole class Sz[—1, 1]. Indeed,

1
/log(a)/we) dp—i < log/w/a)e dp—i = log/ w(x)dx =0,

—1

1
av1—x2

2. Regular measure beyond the Szegd class. A typical example of such measure is
given by the density

where u € Sz[—1, 1] with du = w(x)dx and w,.(x) =

+a exp(—=2¢-arcsinx) - | I'(1/2 +ir) |?

w(x) =
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ax+b
with ¢t = —+, where a,b € R, a > |b|, a+ |b| > 0. The measure generates

241 —x2
the Pollaczek polynomials. Here, p is regular, as @ > 0 for |x| < 1, but since
o — 0 exponentially fast near 1, the integral /(w) diverges, so u ¢ Sz[—1,1].

In this case,

lim W2(y) - n®? = I’ (“ + 1) :
n 2
so the Widom factors go to zero but not very fast.

3. u ¢ Reg. Using techniques from [34], one can show that any rate of decrease,
as fast as we wish, can be achieved for the sequence (W?(p)). Namely, ([7],
Example 5) for each sequence g, \, O there exists a measure p such that
W2(u) < o, for all n. Here, Cap(supp(4)) does not coincide with the minimal
carrier capacity of w.

4. Jacobi matrix with periodic coefficients (a,) and zero (or slowly oscillating) main
diagonal. The periodic coefficients give a Jacobi matrix in the Szegd class. We
follow [26] here.

Let ay,—1 = a,ay, = bforn € Nwithb > 0 and a = b + 2. These values with
b, = 0 define a Jacobi matrix By with spectrum

0(By) =[-b—a,b—a]lUla—b,a+ b].

The same values (a,)°2, with b, = sin n” for 0 < y < 1 give a matrix B with

oB)=[-b—a—-1,b—a+1]Ula—b—1,a+b+1].
Then Cap(o(By)) = +ab, Cap(c(B)) = /a(b+ 1). Let o and pu be spectral

measures for By and B correspondingly. Then W3 (wo) = 1 and W3 _ (io) =
va/b. Hence, 1y € Sz(o(By)), as we expected. On the other hand,

b n
W22n(/~'l‘) = (m)

b \" a
Wan (1) = (m) Vo+1°

Thus, Wf(u) — 0asn — oo, u ¢ Sz(o(B)) and, moreover, i ¢ Reg.
5. Julia sets generated by T(z) = z> — Az with A > 3 [11].
Iterations Ty = z, T, = T,,—(T) define a Cantor-type Julia set J = supp(u,).
Let Wy := W7(u;). Then W3n = 1, whereas Wan_; — oo. Also,

and

W3n+1 — 2}./3, W3n+2 g \/51/3, etc.
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7.6 Weakly Equilibrium Cantor Sets

The theory of orthogonal polynomials is well developed for measures that are
absolutely continuous with respect to the Lebesgue measure (© = p,), at least for
the finite gap case. There are also numerous results for measures (1t = g + 1p)
that allow nontrivial point spectrum. Here in the description of the Szegd class
a condition of Blaschke-type is added. But there are only a few results for
concrete singular continuous measures, mainly they are concerned with orthogonal
polynomials for equilibrium measures on Julia sets. As we mentioned above,
Parreau—Widom sets (in particular homogeneous sets in the sense of Carleson) may
have Cantor structure, but their Lebesgue measure is positive.

There are only particular results for a prescribed measure p supported on a
Cantor set with zero Lebesgue measure. For example, if y is the Cantor—Lebesgue
measure or the equilibrium measure on the Cantor ternary set Ky, then a little is
known except some conjectures depending on numerical results. For this case and
other attractors of iterated function systems, we refer the reader to [22, 23, 25].

The first two authors found in [5] a new family of orthogonal polynomials with
respect to the equilibrium measure on the so-called weakly equilibrium Cantor sets,
that were suggested in [20]. Here we recall the construction. Given y = (y,)$2,
with 0 <y, < i, letro=1and ry = ysrf_l. We define recursively polynomials

Py(x) =x(x—1)
and
Post1 = Pos - (Pas + 15).
We consider the complex level domains
Dy ={z€C: |Py(z) +r/2| <ry/2}

with D; N\, which allows, by the Harnack Principle, to get a good representation of
the Green function for the intersection of domains, and

E :={xeR: |Py(x) + ry/2| <r,/2} = UL L.

Then the set

) 0o ) —1
Ky)=(\D,=(\E =) (rz Py + 1) ([~1,1])
s=1 s=1 s=1 S

is an intersection of polynomial preimages that provides some additional useful
features. In particular, Pos + ry/2 is the 2°th Chebyshev polynomial on K(y).
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At least for small y, the set K(y) is weakly equilibrium in the following sense.
Let us distribute uniformly the mass 27 on each I; for 1 < j < 2°. This defines

a measure A, supported on E; with dA; = (251j,3)_1dt on ;. Then A, 5 MK ()
provided y, < 1/32 and K(y) is not polar.

In [21] the Widom—Chebyshev factors for K(y) were calculated and the result
mentioned in Sect. 7.2 was obtained.

In [4] it was shown that, provided some restriction on the sequence y, the equi-
librium measure on K(y) and the corresponding Hausdorff measure are mutually
absolutely continuous. This is not valid for geometrically symmetric Cantor-type
sets, where these measures are essentially different. Makarov and Volberg proved
in [24] a surprising result: the equilibrium measure for the classical Cantor set is
supported by a set whose Hausdorff dimension is strictly smaller than log 2/ log 3.
Therefore, jtk, is mutually singular with the Hausdorff measure of the set. Later this
was generalized to Cantor-type sets of higher dimension and to Cantor repellers that
appear in complex dynamics.

The set K(y) has positive Lebesgue measure if y, are rather closed to 1.

4
Moreover, in the limit case y, = % for all s we have K(y) = [0, 1].

7.7 Orthogonal Polynomials on K(y)

The set K(y) is non-polar if and only if

> 1
22_” log — < oo,
Vn

n=1

where the series represents the Robin constant of the set. Orthogonal polynomials
with respect to the equilibrium measure on non-polar K(y) were considered in [5].
It is proven that the monic orthogonal polynomials Qys coincide with the Chebyshev
polynomials of the set. Procedures were suggested to find orthogonal polynomials
Q,, of all degrees and to calculate the corresponding Jacobi parameters. In addition,
it was shown that the sequence of Widom factors is bounded below by a positive
number (in confirmation of our hypothesis that equilibrium measures always belong
to the Szeg6 class in its Widom characterization).

First the authors used a technique of decomposition of zeros of Py + r;/2 into
certain groups and the approximation of the equilibrium measure k() by the
normalized counting measure at zeros of the Chebyshev polynomials of the set.
Namely, let v, = 27° Zf:l 8y, where (xk),%;l are the zeros of Py + ry/2 (they are
simple and real). Then for s > m it is possible to decompose all zeros (xk),%;l into
257m=1 oroups, on which we can control the value of Py + r,,/2. This allows to

show that
'm
/ (sz =+ ?) dvs =0.
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Since vy — k(y) in the weak-star topology, we have that the integral
rm
(sz + 7) duky)
also is zero.

Similarly it was shown that

Ty Ty Tin
(P2i1 +?) (P2i2 +?)...<P2in +?)dvs =0

for0 <i; <ip <--- <i, <s.Each polynomial P of degree less than 2° is a linear
combination of polynomials of the type

(P + rs—l)n'v7] (P + ri )nl 1 no
2s—1 2 “ee 2 2 2 ’

with n; € {0, 1}. Therefore, Q,s coincides with Pys + r;/2. In addition, the norm
||Q2s||2 has a simple representation in terms of ()/k)i—:] ((3.1)in [5]).

In the next step, A-type and B-type polynomials were introduced. In particular,
for 2" < n < 2"™*! with the binary representation n = i,, 2" + - - - + iy, the second

polynomial is

Bn = (QZ”’)im (QZm_l)im_l <o (Ql)i1 .

The polynomials B(oi1).2s and B(jy1y.on are orthogonal for all j, k,m,s € Z, with
s # m. They can be considered as a basis in the set of polynomials: for each n € N
with n = 2°(2k + 1), the polynomial Q, has a unique representation as a linear
combination of

Bos, B3.os, Bs.os ..., Boi—1)-25, Bor+1)2s.

This allows to present formulas to express coefficients of each O, and the cor-
responding Jacobi parameters in terms of (yx)72,. Some asymptotics of Jacobi
parameters were presented in Theorem 4.7 in [5]: Let y, < 1/6 for all s. Then
lim a;3s4, = a, forj € N andn € Zy. Here, ap := 0. In particular, liminfa, = 0.
§—>00

In the last section the Widom factors for ug,) were evaluated. If y; < % for all
k, then

liminf W, = liminf Wy > /2
—00

n—>oo 5

and

limsup W, = oo.
n—>oo
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The following examples illustrate the behaviour of Widom factors:

. If y, = 0, then Wys — o0. Therefore W,, — oo.

. There exists y, - 0 with W,, — o0. One can take y = 1/6, yu—1 = 1/k.

. If y, = ¢ > 0 for all n, then lim inf,,_, o, W, < 1/2c.

. There exists y with infy, = 0 and liminf,—. W, < oco. Here we can take
Yn = 1/6 for n # n and y,, = 1/k for a sparse sequence (n);2,. Then
(W )2, is bounded.

AW N —

Later, in [6], it was shown that K(y) is a Parreau—Widom set if and only if
> \-n<os
2 \3 Vn .

7.8 Generalized Julia Sets

In [6] the first two authors generalized some of the results [10-12] by Barnsley
et al. obtained for autonomous Julia sets to more general class of sets. Also, [6]
is a generalization of Alpan and Goncharov [5] as K(y) can be considered as a
generalized Julia set.

We recall some basic definitions.

Let (f,(z))32, be a sequence of rational functions with degf, > 2. in C. Let us
define F,(z) := f, o F,—1(z) recursively for n > 1 and Fy(z) = z. Then domain
of normality for (F,)72, in the sense of Montel is called the Fatou set for (f,). The
complement of the Fatou set in C is called the Julia set for (f,). We denote them by
F, and Ji,), respectively. In particular, if f, = f for some fixed rational f for all
n, then we use the notations F(f) and J(f). To distinguish this last case, the word
autonomous is used.

We consider only polynomial Julia sets. In order to have an appropriate Julia
set in terms of orthogonal polynomials and potential theory, we need to put some
restrictions on the given polynomials. Let f,(z) = 27;0 ayj -7 where d, > 2 and
ang, # 0 for all n € N. Following [13], we say that (f,) is a regular polynomial
sequence if the following properties are satisfied:

* There exists a real number A; > 0 such that |a, 4,| > A;, foralln € N.

* There exists a real number A, > 0 such that |a,;| < Aj|a,g,| for j =
0,1,...,d,—landn € N.

¢ There exists a real number A3 such that

loglana,| < As-dy,

forall n € N.
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If (f,) is a regular polynomial sequence, then we write (f,) € Z. If this is the
case then, by Briick and Biiger [13], Ji;,) is a compact subset of C that is regular
with respect to the Dirichlet problem. Thus, Cap(J,)) > 0. Moreover, Ji, is just
the boundary of

) (00) == {z € C: (F, (z))52, goes locally uniformly to co}.

Let K = Ji,) with (f,) € Z. In [6], it was shown that, for each integer n, the
monic orthogonal polynomial associated with pg of degree d; - - - d, can be written
explicitly in terms of F,,. In [3], it was proven that the Chebyshev polynomials of
degree d, - - - d,, on K are same up to constant terms with the orthogonal polynomials
for ug.

In some cases the set J,) is real. For example, this is valid for admissible
(in the sense of Geronimo and Van Assche [19]) polynomials. Then a three-term
recurrence relation is valid for orthogonal polynomials and the corresponding Jacobi
coefficients can be found by a recursive procedure that is depicted.

Let a sequence y be the same as in Sect. 7.6. If we take

fu2) =

for all n, then K (y) := Jis,) is a stretched version of the set K(y). Let g = % - Y.
By Theorem 8 in [6], the Green function gc\g,(y) has optimal smoothness (is
Holder continuous with the exponent 1/2) if and only if io: & < oo. This completes
the analysis of smoothness of g c\k(;) for the case of snfazlll y in [20].
By Theorem 9 in [6], K (y) is a Parreau—Widom set if and only if Z €k < 0.

It is interesting to analyse the character of growth of Widom’s factor for non-
Parreau—Widom sets.

7.9 Widom’s Factor for Non-Parreau—Widom Sets

Here we return to Widom factors for the Chebyshev norm on K(y). As above, let

1
& = i yk. Clearly, 0 < 1 — 4¢; < 1. Suppose
o0 o
D e < oo but Y /e = oo. (7.2)
k=1 k=1

By C we denote the product 2 H (1 — 4&;)™', which is finite by (7.2). Also this

condition implies that the set K (y) is not polar and is not Parreau—Widom.
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Theorem 7.1. Lety = (yi)i2, be a monotone sequence satisfying (7.2). Then the
bound W, (K(y)) < Cn holds for alln € N.

Proof. By [21], for all s € Z we have
1 > 1
Was(K(y)) = —exp |2’ Z 2 % log — |.
2 k=s+1 Vi
Since (yx);2, monotonically increases, we get the inequality

_ 2
- 1-— 48s+1 '

1
Wa(K(y)) = 3 (7.3)
Vs+1

Given n € N, take s € Z with 2° < n < 25t If n = 2* then, by (7.3),

2
Wu(K(y) = ——— <C.
1 —deeq

If n # 2°, then there are integer numbers 0 < p; < p, < -++ < p,, < s — 1 with
m < ssuch thatn = 2°+2P» 4...4+ 2P, Widom factors are logarithmic subadditive,
that is W,,4,(K) < W,(K) - W,(K). Therefore,

Wu(K(y)) = Was(K(y)) - Wan (K(y)) - - Wari (K(y)).

By (7.3) we see that

2 2 2
Wi (K(y)) <
1— 4‘9s+l 1— 48pm+] 1— 4‘9p1+l
<2*lc/2 <ncC.

This completes the proof.
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Chapter 8

Some Differential Subordinations Using
Ruscheweyh Derivative and a Multiplier
Transformation

Alina Alb Lupas

Abstract In this paper the author derives several interesting differential subordina-
tion results. These subordinations are established by means of a differential operator
obtained using Ruscheweyh derivative R™f(z) and the multiplier transformations
1(m, A, 1) f(z), namely RI,, , , the operator given by

R, @ A — o,
RI,  f(2) = (1 —)R"f(2) + ol (m, A, D) f(2),
forze U, me N, A, 1> 0and
dy=4{f e HAWU): f2) =2+ a1+, €U},
with 2] = /. A number of interesting consequences of some of these subordina-

tion results are discussed. Relevant connections of some of the new results obtained
in this paper with those in earlier works are also provided.

8.1 Introduction

Denote by U the unit disc of the complex plane,
U={zeC:|z7l < 1}

and JZ (U) the space of holomorphic functions in U.
Let

dy={f e HAWU): f@) =z+ad"T 4+, 2€ U}
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with &/, = &7; and let
Hlan)={f € AU):f(Q) =a+ad" + a1+, z€ U}

fora € Candn € N.
Denote by

7" (2)

= o
K fe Re Q)

+1>0,z€eU;,

the class of normalized convex functions in U.

If f and g are analytic functions in U, we say that f is subordinate to g, written
f < g, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all
z € U, such that f(z) = g(w(z)) for all z € U. If g is univalent, then f < g if and
only if f(0) = ¢(0) and f(U) < g(U).

Let ¢ : C* x U — C and h an univalent function in U. If p is analytic in U and
satisfies the (second-order) differential subordination

Y (), (2),2p"(2);2) < h(z), z€ U, (8.1)

then p is called a solution of the differential subordination. The univalent function
q is called a dominant of the solutions of the differential subordination, or more
simply a dominant, if p < ¢ for all p satisfying (8.1).

A dominant g that satisfies ¢ < ¢ for all dominants g of (8.1) is said to be the
best dominant of (8.1). The best dominant is unique up to a rotation of U.

Definition 8.1 (See Ruscheweyh [13]). For f € </, m € N, the operator R™ is
defined by R" : & — o,

Rf2)=f@.Rf@ =%, ...
(m+ D)R™'f () = 2(R"f (2)) + mR"f (), z € U.

Remark 8.2. Iff € &, f(z) =z + Zfiz a;7Z, then

Rr@ =+ Y el ze v
=2

!

Definition 8.3 (See [4]). Forf € «/, m € N, A, > 0, the operator I (m, A, 1) f(z)
is defined by the following infinite series

ImADf@) =2+ (W)maﬂ.
j=2
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Remark 8.4. It follows from the above definition that

10,1, D) f(z) =f(2),
I+ DIm+1,4Df@) =1+1=)1m A Df(2)+ iz (m A, D f(z)
(z e U).
Remark 8.5. Forl = 0, A > 0, the operator D}’ = I (m, A, 0) was introduced and

studied by Al-Oboudi [10], which is reduced to the Saldgean differential operator
[14] for A = 1.

Definition 8.6 (See [3]). Let o, A,/ > 0, m € N. Denote by R]Z.A,l the operator
givenby RI} ; 1 o — o,

RI, , f(2) = (1 =)R"f(2) +al (m, A, ) f(2), z€ U.

Remark 8.7. Iff € &, f(z) =z + Z;iz a;7, then

1+2G=D+1\"
0‘<+z(i1)+) i
a;z

RI, (@) =2+ Z 7
j=2 + (1 - (X) (;114(—;‘]—11))!!

[o9)
J

forz e U.

Remark 8.8. For « = 0, Rlz.l’lf(z) = R"f(z), where z € U and for « = 1,
RI;L 2 f @ =1(m, A, 1)f (z), where z € U, which was studied in [2, 9].

For [ = 0, we obtain RI}, , .f (z) = RD} ,f (z) which was studied in [5-7, 11]
and for / = 0 and A = 1, we obtain RI}; | .f (z) = Lf (z) which was studied

in [1, 8].
Forn = 0,
RIG; f () = (1 =) R (2) + &l (0,1, 1) f (2)
=f@=Rf@=10,11)f (),
where z € U.

Lemma 8.9 (See Miller and Mocanu [12]). Let g be a convex function in U and
let h(z) = g(z) + nazg'(z), for z € U, where a > 0 and n is a positive integer. If

pR) = gO0) + pu* + pr1t 4+ ze U,
is holomorphic in U and
p@) +azp'(x) <h(@), zeU,

then p(z) < g(z), z € U, and this result is sharp.
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Lemma 8.10 (See Hallenbeck and Ruscheweyh [12, Theorem 3.1.6, p. 71]). Let
h be a convex function with h(0) = a, and let y € C\{0} be a complex number with
Rey > 0.1Ifp € Hla,n] and

p(2) + izp/(z) <h(z), zeU,

then
p(2) <g(2) <h(z), ze U,

where

Z

/h(t)ty/"_ldt, zeU.
0

g(@) =

y/n

8.2 Main Results

Theorem 8.11. Let g be a convex function, g(0) = 1 and let h be the function
z
hz) = 8@ + 58’ z€U.

Ifa, A, 1,6 =0, m €N, f € o and satisfies the differential subordination

§—1

(Rla EAS) ) (RIZ, f(2) < h(z), z€ U, (8.2)

then

(R]a o j(z)) o). zeU.

and this result is sharp.

Proof. Consider

o 8
p2) = (R—Im'*’lf(z))

Z

/‘\ . m n .
z+ Zfiz {0‘ <1+ 1&11)“) +(1-a) (mJ(r,j 11)” ;7

=14pz+pd+---, zeU.
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We deduce that p € 71, 1]. Differentiating we obtain

RI}, mA, S (2) 1

( ) (le,‘,,x,;f(z))/ =p@) +37'@). zeU.
Then (8.2) becomes
1, z
p(2) + 3P (2) < h(z) = g(2) + 580 zel.
By using Lemma 8.9, we have

(V4 8
p(2) < g(z), z€ U, ie., (w) <g@, zeU.

Theorem 8.12. Let h be a holomorphic function which satisfies the inequality

Zh//(Z) 1
Re| 1 ——, U,
e( * h/(z))> 23 €

and h(0) = 1. If ¢, A, L8 = 0, m € N, f € o and satisfies the differential
subordination

RI® 5-1
( A;f (Z)) (RIZ, f(2)) <h(z), zeU, (8.3)
then
(RI AZJ(Z)) <q(2), zeU,
§ 2 ~
where q(z) = 7 f h(t)P=1dr.
0
Proof. Let
RI 5
o = (F)
(e -0 e
- Z
§
A AN -y
- 1+Z{ (#) Hl_a)%%a’z]_l

o
=1+ ijz’_l
=2
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for z € U, p € (1, 1]. Differentiating, we obtain

(RI”‘ Y f (@)

Z

§—1
) (R, f () = p() + ézp'(z), zeU,
and (8.3) becomes
p(@) + ézp'(z) < h(z), zeU.
Using Lemma 8.10, we have
p(2) <q(z), zeU,ie.
1.€.,

(RI"‘“f(z)) q(z) = %/h(r)t‘S ldr, z e U,
z

0

and q is the best dominant.

Corollary 8.13. Let

1+@28—-1)

h() = 14z

be a convex function in U, where 0 < 8 < 1. If ,8,,A >0, m e N, f € o and
satisfies the differential subordination

o -1
(le’kz’lf@) (RE, f @) < ). z€ U, B4

then

(R[a s j(z)) 4. ze U,

where q is given by

20— p)8 [
q@)=2B—-1)+ . /1+tdt,zeU.

0

The function q is convex and it is the best dominant.
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Proof. Following the same steps as in the proof of Theorem 8.12 and considering

@) =

’

RI%, f(2)\’
(=)

the differential subordination (8.4) becomes

1+@28—-1)

, zeU.
14z

P@) + 37/ < h(z) =

By using Lemma 8.10 for y = §, we have p(z) < ¢(2), i.e.

Z

(RI"‘ J(Z)) <q(z) = %/h(t)t‘g_ldt

0

Z
8 / sl @Bt

bl 1+t
0

31
=%[[<2ﬁ DA 420 p) ] ]
0

2(1-p)8 [ 7!
ep—n+ =522 [

141

forz e U.

Theorem 8.14. Let g be a convex function such that g (0) = 1 and let h be the
function

Z
h(z) =g+ gg’(z), zeU.
Ifa, A, 1,6 > 0,meN, f € o and the differential subordination

§+1 RIy, f@)
Z s )
(Rl;xn-i-l,)t,lf (Z))

= RE ) (RI““f(z)) _2(R1a+1“f(z))
’ (Rlzzﬂ.x,;f(z))z RE (@) RIY 5 f(2)

+

< h(z), (8.5)



110 A. Alb Lupas

z € U, holds, then
RIY, f(2)
zk—lfz <g(@@), ze U,
<ng1+l.l.lf (Z))

and this result is sharp.

Proof. Consider
RE, /(2

() =z
a Z<R1;an+1,x,1f (Z))2

and we obtain

+

§+1 RI, f(@) 2 RE, Q)
]

PR @) (R @)
(R5s @) (Rl @)

PE+ 5P (@) =2

RIS, (@) RIC 5 /()

Relation (8.5) becomes
z, z,
(@) + 5p(2) < h(z) = g(2) + 58@. 2z U
By using Lemma 8.9, we have
p(@) <g@). zeU,

ie.,

ZM <g(z), zeU.
(RIS 10 @)

Theorem 8.15. Let h be a holomorphic function which satisfies the inequality

' (2) 1
Re | 1 ——=, e U,
e(+W@)> 2 C

and h(0) = 1. If e, A, L8 = 0, m € N, f € o and satisfies the differential
subordination
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z8+1 RI , f (@)
’ (R1a+1uf(z))

2 R0 | (R ©) . (R, @)
’ ( m+1.2 f(@) Ry @) RE 154/ (2)

< h(2), (8.6)

+

z € U, then
Ry, f @)
(RI;;H,A,J )

)
2

Zz
where q(z) = — [ h(t)*~dt.
0

Proof. Let

p() = ZM, zeU. pe A1)

(RIg10 @)

Differentiating, we obtain

p@)+ gl" () = At Rl @ + WA

Z
SRt @) O (R, o)
(Rla n ;f(Z)) 5 <R1a+1 2 J(Z))

RV, f(2) RIS 15 /(2

’

z € U, and (8.6) becomes
PO + 3/ <h2). z€U.
Using Lemma 8.10, we have

p(@) <q(@), zeU,

ie.,
z
RI®. f(z 4
Z*—lf() <4q@@) = —,s/h(t)t‘g_ldhz €v,

(RIZ+1.A,lf (Z)>2 0

and ¢ is the best dominant.

I
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Theorem 8.16. Let g be a convex function such that g(0) = 0 and let h be the
function

h(z) = g(z) + gg’(z), zeU.

Ifa, A, 1,6 >0, m €N, f € & and the differential subordination

La+2 (R @)

§ R, f(
2
o) (o)
8 RI* ., lf(Z) RI“,X ;f(z)

< h(z), ze U, (8.7)

holds, then
(RI"‘ .\ f(z))
Z W<g(z), zeU.
This result is sharp.
Proof. Let
(RI"‘ ) lf(z)>
p(Z) = Z W.

We deduce that p € 5[0, 1]. Differentiating, we obtain

o, 2 (R, Q)
p () + 57 () =z 5 R, Q)

2 (RI““f(z)) (RI““f(z)) 2
i RIY, f@ | R, [f() ’

z € U. Using the notation in (8.7), the differential subordination becomes

P@) + 57/ () < h@) = 8(2) + S5/ (2).

By using Lemma 8.9, we have

p(@) <g(2), ze U,
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ie.,

(R[a N Lf(Z)) @ U
P2 < g(2), z€U,
RI} 5 f(2)
and this result is sharp.
Theorem 8.17. Let h be a holomorphic function which satisfies the inequality
Zh'(2) 1
Re |1 > ——, eV,
e ( + () 3 z

and h(0) = 0. If ¢, A, L8 = 0, m € N, f € o and satisfies the differential
subordination

42 (RS @)

§ RI%, [()
2
o (R @) (R @)
i RIY, f@ | R, [f()
< h@). zeU, (8.8)
then
(RI"‘ ) lf(g))
Z W<q(z), zeU,
where q(z) = % [z h(t)fde.
0
Proof. Let
(R, F @)
P(Z)ZZ W, ze U, pes[0,1].
Differentiating, we obtain
52 (R, f @)
P@+ @) =7 R f(2)

o (R o) ((Re,0@) 2
s RIY, f@ | R, [ ’
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z € U, and (8.8) becomes

P + ézp’(Z) <h(z). z€U.
Using Lemma 8.10, we have

r(@) <q(2), z€ U,

ie.,

e < 4@ = 5

RIE, /@) 5 [
2( A 5—1
RIS (@) o .O/h(t)t dr zeU.

and q is the best dominant.

A. Alb Lupas

Theorem 8.18. Let g be a convex function such that g(0) = 1 and let h be the

function
h(z) = g(z) +z¢'(z), z€U.
Ifa, A, 1 >0, meN,f € .o and the differential subordination

| RES@ (1, f (z))”
- 2

[(rrz,7 )

<h(z), ze U

holds, then
RIY  f (z)
mA,

——— <), zeU.

F4 (le,i,“f (z))
This result is sharp.
Proof. Let

R} f(2)
p@) = ———0.
b4 (RI::L,AJf (z))

We deduce that p € 57[1, 1]. Differentiating, we obtain
"
RS @) (ri2, @)
o 2
/
[(RIZMf ) ]

=p@)+z' (), z€U.

(8.9)
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Using the notation in (8.9), the differential subordination becomes
p(@) +2p'(2) < h(z) = g(2) +28'(2).
By using Lemma 8.9, we have
p(z) <g@). z€U,

ie.,
Ry, f @)

(o)

and this result is sharp.
Theorem 8.19. Let h be a holomorphic function which satisfies the inequality
Zh"(2) ) 1
Re| 1+ >——, zeU,
( H(2)

and h(0) = 1. If a,A,l > 0, m € N, f € & and satisfies the differential
subordination

RIS, £ Q) (R, )

<h(z), ze U, (8.10)

[(RI“ @) }

then
M =< (Z(Z), z € U,

2(Re, j(z))

where q(z) = % fz h(t)dt.
0
Proof. Let
p(2) = M zeU, pe 1]
2 (RI2, £ )

Differentiating, we obtain
RIS, £ @ (RIS, £ @)

[(RI“ )]

=p@)+z' (), z€UU,
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and (8.10) becomes
p@) + /() <h(2), z€ U.
Using Lemma 8.10, we have
p@) <q@), zeU,

1.€.,

z
RI* Z 1
*—‘f()< = —/h(t)dt, zeU,
Z
0

7 <q(2) =
(R]a“f(z)) -

and ¢ is the best dominant.

Corollary 8.20. Let

14+ @28—1)z

h@) = 1+z

be a convex function in U, where 0 < B < 1. If ¢, A,l > 0, m € N, f € & and
satisfies the differential subordination

RIS, Q- (R, @)

5 < h(z), ze U, (8.11)
[(RP*A f(z)) }
then
L‘f(z) <q(2), zeU,
o(rr, @)
where q is given by
00 = -1 +20—py 3 +Z) zeU.

The function q is convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 8.19 and considering

RI“ Y lf (z)
pl@) = ——————
(RI"‘ Vi (z))
the differential subordination (8.11) becomes
1+ Q28 —1)z

@)+ 70/ (2) < h(z) = , zeU.

14z
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By using Lemma 8.10 for y = 1, we have p(z) < ¢(z), i.e.

Z

M < q(z) = l/h(t)dt

2 (RIS, f ) o
L1281
_2/ 141 dr

0

Z

1 2(1-P)
E()/[(zﬂ—l)+—}dt

141t

= @p-n+20-ptd

forz e U.

Example 8.21. Leth(z) = ]

Zhl/ (Z) 1
Re( h/(z) + 1) > —5

Letf(z) =z+2%z€U.Forn=1,m=1,1=21=1,a =1, weobtain

© a convex function in U with / (0) =1 and
z

1 1 1
R} of @) = SR @) + 51 (1, 1.2)f ()

= O +37 0

3
5,
=z+ -z, zeU.
3
Then
1 ! 10
(Rlﬁl’zf (Z)) =1+ ?Z
and

1 " 10
(rir @) =5
1
R} of (@) 2432 345
! "z (1+ Ry 34107
Z(Rllz.l,zf (Z)) ( 3 )

117
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1 1 "
CEOT
_ 502 +30z+9
3+ 107)?
We have
q(2) = % OZ:—;dtz -1+ w

By using Theorem 8.19 we obtain

5072 4+ 30z + 9 . 1-z
(3 +102)° 1+z

induce

345z - 1_i_21n(1+z)
3+ 10z z

eU.

A. Alb Lupas

Theorem 8.22. Let g be a convex function such that g(0) = 1 and let h be the

function
h(z) = g(z) + 28’ (2), z€ U.
Ifa, A, 1> 0,meN, f € o and the differential subordination

[(RI;‘;Wf (z))’]2 +RIE, f @ (R, f @) <h(). z€U
holds, then

Rz, £ ) (R, £ @)

Z

<g(@, zeU.

This result is sharp.

Proof. Let

RI%, f(2)- <RIS1,A,Lf (Z))/

Z

p(z) =

We deduce that p € (1, 1]. Differentiating, we obtain

(8.12)

[(RIg, . of (z))/]2 +RI, f @ (R, f@) =p@+2' @), z€U.
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Using the notation in (8.12), the differential subordination becomes

() + 20’ (2) < h(z) = g(2) + 28’ (2).

By using Lemma 8.9, we have

p(2) <g@), zeU,

ie.,

<g@, ze U,

RIS @) (RIZ, f @)
Z

and this result is sharp.

Theorem 8.23. Let h be a holomorphic function which satisfies the inequality

' (2) 1
Re| 1 -, e U,
e( e ) 7Tyt

and h(0) = 1. If a,A,1 = 0, m € N, f € & and satisfies the differential
subordination

[(Rzr“A f(z))] +RI%, f (@) (RI, £ (2) <h(), z€U, (8.13)

then

RI%, f(2)- (RI;‘,‘MJ (Z))I

<4q(z), ze U,
z
where q(z) = l fz h(t)de.
)
Proof. Let
RIL, f (2) - (RL, f (2)
p(@) = i E mad ),zeU,pe%[l,l].

Differentiating, we obtain

[R5, @) + R @+ (RE i ) =0 @+ 9 @),

z € U, and (8.13) becomes

p(2) +2p'(2) < h(z), z€ U.
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Using Lemma 8.10, we have

p(@) <q(@), zeU,

ie.,

RIE, f @) (R, £ @) z
,A,lf V4 E ,A,lf Z) < q(Z) — l/h([)dt, ze U,
0

and ¢ is the best dominant.

Corollary 8.24. Let

14+ 28-1)z

h(@) = 14z

be a convex function in U, where 0 < B < 1. Ifa,A,l > 0, m € N, f € & and
satisfies the differential subordination

[(RIO‘“f(z))] R, f () (RIS, f(2) <h(). z€U, (8.14)
then

RIS, f Q) (RIZ, £ )

Z

<q@@), z€U,
where q is given by

g =2-1)+2(1—-p) ———= In(l +Z) zeU.

The function q is convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 8.23 and considering

RIS, f @) (RIZ, f (z))

Z

p@) =

the differential subordination (8.14) becomes

@)+ 20’ (2) < h(z) = #ﬁ;l)z zeU.

By using Lemma 8.10 for y = 1, we have p(z) < ¢(z), i.e.
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RI%, f (2)- (RI“ il (Z))

Z

<q(z) = h(r)dt
:

1j1+(2ﬁ—1)t
- R ——;

z 14+t
0

U T . 20-8)
‘z![(zﬂ D }dt

— @B t2(_p it ln(1+Z)

11—z .. .
Example 8.25. Leth(z) = m < a convex function in U with & (0) = 1 and
z

" (2) 1
Re( @ 1) Ty

Letf(z) =z+ 2, z€ U.Forn=1,m= Ll:2,)&:1,a:%,weobtain

RItof ) = SR Q)+ 51 (1.7 @)

1 2, 5,
z z = -z, z€e U.
3f(z) + 3Zf @) =z+ 3% 2

Then
| ’ 10 1 "
(le_mf (z)) =1+ 3z (Rlﬁl,zf (Z))
o Fibo @ (R )
EN b4

(z + gzz) (1 + 13—0Z)

Z

50 ,
zgz +5Z+17

14

[(lel,l,zf(z))/}z + Rllé,l,zf(z) . (RIEI,J(Z))

B lJr10 2+ Jr5 10
= 3z Z 3Z 3

50 ,

zeU.
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We have

z
1—t¢ 2In(1 +z2)
— dt=—14 T
q() = T + .
0

By using Theorem 8.23 we obtain

50 , -z
—z7+10z4+1<——, zeU,

3 14z
induce
50 2In(1
3z2+5z+1<—1+M, cU.
Z

Theorem 8.26. Let g be a convex function such that g(0) = 1 and let h be the
function

h(z) = g(z) + %g’(z), zeU.
Ifa,A,1>0,8 €(0,1), m eN, f € o and the differential subordination

Zz ' R, 5 (@) (ngl-l-l,l.lf (Z)) _s (Rla A ;f(Z))
Rl @) 1-8 RIG, @) RI%, f (@)

< h(z), zeU (8.15)

holds, then

R131+1.A,zf (@) ( 2z

8
z RI"‘“f()) <8, ze .

This result is sharp.

Proof. Let

o R @ (e )
RIy, f (@)

We deduce that p € JZ[1, 1]. Differentiating, we obtain

( 2 ) Rigif @ (Rlinnd @) (Rif @)

RI%, f () 1-6 RIE. ., f@ R, f()

1
=P(Z)+—1_82p’(z), zeU.
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Using the notation in (8.15), the differential subordination becomes

P@) + 5%/ @) < h2) = 5C) + 8.

1
1-§
By using Lemma 8.9, we have
p() <g@), zeU,

ie.,

RIZ+1,A,lf (€3] ) ( z

8
= <g@), ze U,
z RIS, f (z))

and this result is sharp.

Theorem 8.27. Let h be a holomorphic function which satisfies the inequality
n' 1

Re(l + z (Z)) >——,z€Uand h(0) = 1. Ifa,A,1 > 0,8 € (0,1), m € N,

W (z) 2
f € o and satisfies the differential subordination

e\ R/ o ((RE/©)  (RE/©)
RE,f@) 1=6 | R, /@ R, [Q)

<h(z), zeU, (8.16)

then

RIC 5 f (@) ) ( z

8
: R 7 (Z)) <q(2), ze U,

1=
where ¢(z) = —— [ h()t~dt.
< 0

Proof. Let

- RIEG 154 (2) ) ( Z

1)
, ze U, pe[l,1].
RI,‘f,,A,;f(Z)> p (1.1]

Differentiating, we obtain

z ’ Ry (@) (le[n-i-l,l,lf (Z)) s (er(f,,x.lf (Z))
RIfr‘l.“f (z) 1-6 RIZH’“}” (2) RI;"‘L“f (z)

1
=P(Z)+mZPl(Z), ze U,
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and (8.16) becomes

p(@) + ' (2) < h(z), z € U.

1-6

Using Lemma 8.10, we have

r(@) <q@@), zeU,

ie.,

Z

1-§6
<q(z) = Zl—_(g/h(f)f_édl, ze U,
0

RI 5 (@) ) 2z
2 R, (@)

and q is the best dominant.
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Chapter 9
Some Results on the Bivariate Laguerre
Polynomials

Mehmet Ali Ozarslan and Cemaliye Kiirt

Abstract In this paper, we consider the general class of bivariate Laguerre
polynomials introduced in Ozarslan and Kiirt (On a double integral equation
including a set of two variables polynomials suggested by Laguerre polynomials.
In: Proceedings of international conference on recent advances in pure and applied
mathematics ICRAPAM 2014), 2014). We first obtain linear and mixed multilateral
generating functions for the above-mentioned classes. We further derive a finite
summation formula for our polynomials. Finally, by using the fractional derivative
operator, we give a series relation between the bivariate Laguerre polynomials and
a product of confluent hypergeometric functions.

9.1 Introduction

Recently, a class of polynomials Z,(ﬁ,)...,n, (x1, R S P ,Oj) (see [5]) suggested
by the multivariate Laguerre polynomials were introduced as
Zflcll) nj (xlv .. 7xj;p1, e 7pj)

F(p1n1+---~|—pjnj+a+1)
n!...om!

. k pik
ny,....n (_nl)kl ...(_n‘/‘)ij/l)1 1 "'xjjj

X .
kl,,“Zlc_;:oF(plkl +o kit a+1) k! k!

9.1

(@, p1,....,0;€C, Re(p;)) >0,i=1,....))

and investigated by the first author.

M.A. Ozarslan * C. Kiirt (5<)
Department of Mathematics, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
e-mail: mehmetali.ozarslan@emu.edu.tr; cemaliye.kurt@emu.edu.tr

© Springer International Publishing Switzerland 2016 125
G.A. Anastassiou, O. Duman (eds.), Computational Analysis, Springer Proceedings
in Mathematics & Statistics 155, DOI 10.1007/978-3-319-28443-9_9


mailto:mehmetali.ozarslan@emu.edu.tr
mailto:cemaliye.kurt@emu.edu.tr

126 M.A. Ozarslan and C. Kiirt

Obv10usly Z,(H) (xl, e X PL pj) gives L,(“) (xl, .. ,xj) when p; =

L +-+n+a+l)

.....

m!...n!
s k;
IX:J (=), - - - (_"j)k P X 02
X .
W kj:OF(k1+---+kj+a+1)k1!...k,!

is the multivariable Laguerre polynomial defined by Carlitz [2] (see also [1]).
In [7], the authors introduce a new general class of bivariate Laguerre polynomi-
als as follows:

Fan+ pm+7y+1)

Lyt (x,y) =

I'(¢& + nm)
(—n)k, (—m)y, xaklyﬂkz
’ Zokzo Tk + oty + ) Mot Okl )

where o, 8, 7,1, & € C, Re(at), Re(B), Re(n), Re(§) > 0, Re(y) > —1.
They investigated double fractional integral and derivative properties of the

bivariate Laguerre polynomials L%%"") (x, y). Furthermore, they obtained linear

generating functions for L% (x, y) in terms of E(a ﬂ nr ¥ (x,y), which is defined

by Ozarslan and Kiirt [7]

Flepnid) (YD) ()i X"y
s Y) = X:OI; I (aky + Bka + A) I (nka + §)ki k!

where y1, 2, o, B, A, 0, € C, Re( + 1) > 0, Re(B) > 0.

Finally, they found double Laplace transforms of L,(fmﬁ V1) (x,y) and gave the
solution of a double integral equation involving the bivariate Laguerre polynomials
in the kernel.

Now, we consider a general double hypergeometric series which were defined
in [10]:

A:B B [x A:B: B [[(a):0.¢]:[():¥]: [(¥): ¥
S =S X,y
C:D;D \y C:D;D \ [(c):8,¢]: [(d):n]; [(d):7];
A B B/ ’
o oo l:[]l—'[aj+7m9j+mpj]ljp[bj+m%‘] l:[['[b;_'_nwj]
= ZZ C m! n!
m=0n=0 | TT I'[c; + md; —i—ns,] ]_[I"[d + mnj] ]_[ F[d +m7]

1

J
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where the coefficients

7 7
ﬁlv"'vﬂA;(plv"'quA; wls---st; w17"'7w3;815---98C;
7 7

817"'78C; nls---snD; nlv"'vnD/;

are real and positive. Here, (a) denotes the sequence of parameters aj,az, ..., da
with a similar manner as for (b), (b/), etc.

In the present paper, we consider the following special cases of the above
functions, which we give their name by (¥} and ¥, as follows:

* - @ B
0¥ ((a,ﬂ,wl),(n,s)’ Hh ”)
0:0;0 — -
=8 -1, =y
L0 \[(y + 1) e, B]:[(8) i m]s —;

and

* (1,21), (1, 42) o, B
i ((a,ﬂ,wl),(n,sx(l,m+1),<1,m+1>’ e ”)

0:1:1 — [(A): 1] [(A2) = 1]:
=S —Xt1, =Pt
1:20 \[(y + D, Bl [E o+ 1) i 1] [(ug + 1) 2 1]

Note that for the absolute convergence of the functions

* - P .}
o ((a,ﬁ,yﬂ),(n,s)’ & ”)

we need Re( + ) > —1 and Re(B) > —1 (see [10] and also see [11, 12]). In the
same way, for the absolute convergence of

; (1,21), (1,4) @ _ﬁ)
2 ((a,ﬂ,w1),(n,s>,(1,m+1),(1,m+1)’ R

we need Re(B + n) > —2 and Re(o) > —2 (see [10] and also see [11, 12]).
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9.2 Linear Generating Function and a Summation Formula

In this section, we give a linear, mixed multilinear generating functions and a
summation formula for the polynomials Lf, ,,,ﬂ PE) (x,y).

Theorem 9.1. The polynomials L,(, mﬂ 7€) (x,y) have the generating function as

follows:

ZZ L(aﬂ)”l?)(x W (€ + nm) o

== 0F(an+,3m+y+1)n'm' 12

_ itk B
e ((aﬁy+1) () ”)‘ -

Proof. Direct calculations yield that

ZZ Ll(lamﬂ}/nf e, )& + nm) g

— = 0F(om+,3m—+—y+I)n!m!12

Z Z (=1, (—m)g, x2k1yPhe m
o D(aky + Bhy +y + DI (€ + nko)nlm!ky k! 12

n.m=0 ky kr=
nm (_1)k1 +k2xak1yﬂk2
— tntm
n;()kl;() [ (aky + Bha +y + DI (E + ko) (n — k) !m — ko) ko2

Letting n = n + k; and m = m + ky, we have

i &0 LT (x,y) T (E + im)
T(an+ fm+y + Dutm! 2

n=0 m=0
_ i n (_l)kl +ka ki yﬂkz tk‘ tkz
<, Tk + ko +y + DI (E + nko)ky k! 172

n, m—O

_ it * B
= OWZ((aﬁHl) ) ”)'

Whence the result.

Now, we aim to obtain mixed multilateral generating functions for the polynomi-
als L%P7) (x, y) by using the same method considered in [13] (see also [4-6]). Let
) = (1, v2), Q) 1= (A1, A2), () == (1, m2), (¥) = (Y1, ¥2), (p) := (p1. 02)

be complex 2-tuples. By making use of the above theorem, we have the following
result.
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Theorem 9.2. Corresponding to an identically non-vanishing function

Q('})(slv 52» B »gs)

of complex variables &,,&,,...,& (s € N), let

Ay (€16, E5 61, 62)
o0

= Z Ak k> 'Qm-i-l/flkl,nz-‘rvfzkz ¢ &, ..., Es)gfl §§2~ 9.5)
k1,kp=0
(ak1~k2j # 0)

Suppose also that

.., . . .
ORI (e g Ex,x; (@, B) i1, 62)

allo
= . kX: o ak1,k29711+1//1k1le+1l/2kz(§1v 527 cees Ss)
1.K2=
§ LEBTED )T (1m = o) + ) s
I (a(n—qik) + B (m—qka) +y + 1) (n — gik)/(m — qako)! ™" 72
(g1.92 € N)
(9.6)

Then,

o0
)., (¥), S $2
3 e (sl, b G (@ B) 7) £y
1 2

n,m=0

= " AG. EL B 661 62)

* - R _ B
X°"I’2( @By +D.0ne) " ”2) O

provided that each member of Eq. (9.7) exists, where |t;| < 1 and |t;| < 1.

Proof. Let % denote the left member of (9.7). Substituting the polynomials

(), (m),(¥),
@(V)( ), (V). (517527

n,miq1,q2

s & xxas (e )61, 62)
from the definition (9.6) into the left-hand side of (9.7), we have
[ )]

o0
F = Z Z sy Ptttk €1, B2 ED ST 6)

nm=0 kikp=0

5 LEBrEn (= gak) + €)
I (a(n—qiky) + B (m— q2kz) +y + 1) (n— qik) ! (m — g2ks)!
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n—qiky_ m—q2kz
X 1) 1y

o0
§ ki _k
= akl.kz Qn+1//1k1,m+1//2kz (Elv 529 EIRIEIES és)gllgzz
k1,ko=0

o Lt P ) Cam + )
F'an+pm+y+1) 1%

X

n,m=0

Using Theorem 9.1 with y; — y; + A1k; and y, — y2 + Azky, we get

ki _k
F = iy 1o utyiks ok €1, 2, - E)G 1 652 T

xo¥s ( N ;—x"‘tl,—yﬂtz).
>\ By +1.(n.6)

Using (9.5), the result follows.

Using (9.4) and a technique used by Srivastava [8, 9], we give the following inter-

esting summation formula for the bivariate Laguerre polynomials L% (x, y) by
the following theorem:

Theorem 9.3. The bivariate Laguerre polynomials defined in (9.2) satisfy the
following summation formula:

L(Ol,ﬂ,%ﬂ,é)(x’ y) = I'an+ pm+y +1)
n,m F(S + r]m)

nglm LEPT (1, k) ‘
=)\ Fam—p)+pm—D+y+1)

N\ (VPN [ I (kP :
X(ﬁ) (k—ﬂ) (x—a‘l) (y—ﬂ‘l)' e

Proof. Setting t; = [—1%]z; and t, = [—k?]z, in (9.4), we have

(o<l o]

T Lt ™ (e, )T (€ + )
== I'(an+ pm+y + Dnlm!

([—z)" (kP ]z)™

= ™l +[—kﬂ]z201p*

o e )
9.9)
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Interchange x by ¢ and y by & to get

oo 00 L’('l‘f";lﬂvl’vnf) (f, k)F(E + r)m) ) i
n;) mg() I'(an+ Bm+y + Dnlm! ([—“121)" ([=)’]22)

= =l g (

(. By +1).(0.6)

Comparing (9.9) and (9.10), we have

i i LGP (e, )L (€ + im)

—% )" _kﬁ m
T(an + Bm+y + Dm0 CF22)

n=0 m=0

— e*t"‘m —kP o +xz 3Pz

00 00 r(aByné)
Ly t,k)YI'(§ + nm
‘3 R O Gl 1) WP
n=0

= I'(an+ Bm+y + Dnlm!

B i i Lyt " (1, k)T (€ + nm)
N T'(an+ Bm+ y + DHnlmijl!

n,m=0j,I=0
x(=x*21)" (=Y’ 22)" (=121 + X*2Y (kP20 + P 20),
and hence

0o nm L(‘iﬁw}’i?sf) (t, k)T (E + nm)
‘n—j,m—l
Z Z IM'am—j)+Bm—=0~+y+ D)(n—7m-=DH

n,m=0j,/=0

X (=x%2))" I (=P )" (21 + X2 Y (kP2 + ¥ 2)!

0 () (m) L R E A+ nm)
'n—j,m—l ’
Z Z(j)(l)F(oz(n—j)+/3(m—l)+)/+1)

n,m=0 j,I=0

X(—x20)" I (=P )" (121 + 2 Y (kP20 + P 2)!

from which, on comparing the coefficients z|z}' on both sides, we get (9.8).

9.3 A Series Relation for L,(,"f,,f9 V1) (| y)

131

X [—1%]zy, —yP [—kﬂ]&) .

(9.10)

In this section, we recall the definition of Riemann—Liouville fractional derivative.

Definition 9.4 (See [3]). The Riemann-Liouville fractional derivative of order u €

C (Re () = 0) is defined by
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d\" 1 X e
DLl = (a) m/; (x— O T (E)dE
(n=[Re()] + 1, x> a)

where, as usual, [Re()] means the integral part of Re(u).

Proposition 9.5. The following property holds true:

I'(1)

-1
F(;L—/\)WM for A # 1, 9.11)

Acou—l _i n—ly _
D) = s (wh ) =

where [ is an arbitrary complex number.

Theorem 9.6. The following series relation holds true between the bivariate
Laguerre polynomials and the confluent hypergeometric functions:

i S LTI L E + pm)AD)m(Ra)m
C(an+ Bm+y + D1 + Du(pa + Dnim!

n=0 m=0
X Fi(ui—AM+Ln+uw +5La)Fi(ue— A+ Lm+ po + L))

_ o I'(py + DIM(p2 + 1)
(AT (A2)

W ( (1. A1), (1, 42) ’_yﬂtz).

(o, B,y + 1), (. 6), (1, ur + 1), (1, M2+1)

Proof. If we rewrite (9.4) as

i o~ Lt M @) E )

== I'(an+ Bm+y + Dntm! 12

B
((aﬂy+1> (e 5 ”)

and expand the exponential function to a series, we get

353 Lt " @)L E +am) (<) (<o),
1

e A= T(an+pm+y+ Dnlm! rl k! 2

_ (=) (=y)f" o
Z Z « I'(an+ pm+y + DI (nm + 5)11'm't1t2 '
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Ar—1

Multiplying both sides by t’\‘ "and 15>, we obtain

(o, <IN o}

5 LGP0 (x y) L (€ + qm) (1) (1) gl gkl
F(an+ pm+y + Dulm! 1l Kl

n,m=0 r.k=0

_ Z Z (= n)" (o) e
F(om +Bm+y+ 1) (nm -|- Enlm!’

Now apply the operator D' ™" and D> 7", we get

i i L (e, y) (€ 4 qm) (—1)7 (= 1)
= o2, Tlan+ pm+y + Dnlm! rt k!

XDﬁl 1= 1[tn+ll+r— ]D)»z H2— l[tm-‘rlz-‘rk—l]

Z Z (=) (=P )"y
= Lan+ pm+y + DI (pm + §)nlm!

XDil—#l—l[tiu I]Dlz Ha— l[tlz—l].

Using (9.11), we have

i i Lf,%ﬁ’y'”f)(x, WEE+mm)TC(n+ A +r)C(m+ Ay + k)

o rizo F'lan+Bm+y+DI'(n+pu1 +r+ DI (m+ po + k+ Dnlm!

LED D s
r! k! i

_ i 3 ()" (P L (4 ADT (m + M)A

B F(an+Bm+y + D (gm + T (0 + py + DI (m + po + Dnlm!

n=0m=0

=¥ (1, A1), (1, 22) b
i ((“ﬁVH)(nE)(l o+ D (L 4 1)t 5 )

Therefore, we obtain

i i LS9 (¢ ) P E + nm)F ()T (h)
Tan+Bm+y+ DT (g + DI(2 + 1)

n,m=0rk=0
% (n+ 2)r(m+ 22)AD)a(A2)m § (1) # ()2
(n 4 1+ Dr(pr + DaOm + g2 + Dir(z + D nlm!rik!
Y (1,A1), (1, A2) 4
i <(°‘5V+1)(77§)(1M1+1)(1M2+1) =P )

9.12)



134 M.A. Ozarslan and C. Kiirt

For the sake of brevity, let . denote the left member of (9.12). It follows that

_ I'(A)I' (1)
I(pr+ D (2 + 1)

oo o0

33 L " @ ) D (E + im) (A2t
I'(an+ pm+y + D(ur + Da(pz + 1)puntm!

n=0 m=0

(), (m + A2)i L
o el Zm(—@’

which gives

_ I'(A) I (A2)
F(pr+ DE (2 + 1)

00 00 (a.B.y.n.8)
% Z Z Ln,m a (X,y)F(é + ﬂm)(kl)n(AZ)m

i Dlan+ fm+y + D(r + Da(pz + 1)ntm!

X Fi(n+ A, n+ py + 1 =t)1Fi(m+ Ay,m+ o + 1, =0).
Finally, since 1F}(a; b; z) = €1 F1(b — a; b; —z), we get

C T+ 1)F('L(L£ﬂ+ 13)
% io: OXO: L V" e, )T (€ + nm) (A1), (A2) w123
Zonzo Tlan+ Bm+y + V(i1 + Da(ez + 1)unlm!

XiFi(py— A+ Ln+pp + Lo Fi(pue — A + 1Lm + po + 150).
9.13)

—t1—1h

Comparing (9.12) and (9.13), we get the desired result.
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Chapter 10
Inner Product Spaces and Quadratic
Functional Equations

Choonkil Park, Won-Gil Park, and Themistocles M. Rassias

Abstract In this paper, we prove that the norm defined over a real vector space V
is induced by an inner product if and only if for a fixed integer n > 2

n 2 n n 2 n
| S|+ X | = Sl
i=1 i=1 =1 i=1

holds for all x;,...,x, € V. Let V, W be real vector spaces. It is shown that if a
mapping f : V — W satisfies

i=1 i=1 i=1

nf (in) + Zf nx; — ij =n Zf(xi)’ (n>2)
=1

or
() + 5 (S
i=1 i=1 j=1
SN )+ TS ). (02 2)
- 2 i=lfxl 2 i=l. s
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for all x,...,x, € V, then the mapping f : V — W is Cauchy additive-quadratic.
Furthermore, we prove the Hyers—Ulam stability of the above quadratic functional
equations in Banach spaces.

Keywords Inner product space ¢ Quadratic mapping * Quadratic Functional
equation * Hyers—Ulam stability.

2010 AMS Math. Subject Classification: Primary 39B72, 46C05; Secondary
46C05

10.1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[21] concerning the stability of group homomorphisms. Hyers [6] gave a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
theorem was generalized by Aoki [1] for additive mappings and by Th. M.
Rassias [12] for linear mappings by considering an unbounded Cauchy difference.
A generalization of the Th. M. Rassias theorem was obtained by Géavruta [5] by
replacing the unbounded Cauchy difference by a general control function in the
spirit of Th. M. Rassias’ approach.
A square norm on an inner product space satisfies the parallelogram equality

[l + 312+ floe = lI* = 2{1x)1* + 2]y ]1*.
The functional equation

fx+y) +f(x—y) =2f() + 2 ()

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. A Hyers—Ulam
stability problem for the quadratic functional equation was proved by Skof [20] for
mappings f : X — Y, where X is a normed space and Y is a Banach space. Cholewa
[3] noticed that the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. In [4], Czerwik proved the Hyers—Ulam stability of the
quadratic functional equation. Several functional equations have been investigated
in [2, 7-11, 14-19].

In [13], Th. M. Rassias proved that the norm defined over a real vector space V
is induced by an inner product if and only if for a fixed integer n > 2
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n

2 n n 2 n
+ 2 xi— 1 o) =2 Il (10.1)
=l j=1 i=1

1 n
§ 2
i=1

holds for all xq,...,x, € V.

Throughout this paper, let X be a real normed vector space with norm || - ||, and
Y areal Banach space with norm | - ||.

In this paper, we investigate the quadratic functional equations

nf (Z xi) +Y flm =D x| =n) fx). n>2) (10.2)
i=1 i=1 j=1 i=1

and

2 n 2 n
=° ;n S+ % Y f=x). (nz2), (10.3)
i=l i=1

and prove the Hyers—Ulam stability of the quadratic functional equations (10.2)
and (10.3) in Banach spaces.

10.2 On the Stability of a Cauchy Quadratic Functional
Equation Associated with Inner Product Spaces

Throughout this section, assume that V and W are real vector spaces and that n is a
fixed integer greater than 1.

Theorem 10.1. A norm || - || : V — Riis induced by an inner product if and only if

n

2 n n 2 n
+ Y =D x| =02l (10.4)
i=1 j=1 i=1

n
%
i=1

holds for all x,...,x, € V.

Proof. Assume that || - || satisfies (10.4).
Letting x; = --- = x,, = xin (10.4), we get
nllnx|)> = n’x|? (10.5)

forallx e V.
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By (10.5), replacing x; by ** (k = 1,...,n) in (10.4), we get the equality (10.1).
By [13, Theorem 2], the norm |- | is 1nduced by an inner product. The converse
follows from an easy computation.

We investigate the quadratic functional equation (10.2).

Lemma 10.2. If a mapping f : V — W satisfies

nf (in) +Y flm =D x5 =nD fx) (10.6)
i=1 i=1 j=1 i=1

forallxy,...,x, € Vand afixed integer n greater than 2, then the mapping f : V. —
W satisfies the Cauchy additive-quadratic functional equation

2f(x1 + x2) + f(x1 — x2) + f(x2 — x1)
= 3f(x1) + 3f(x2) + f(=x1) +f(—=x2) (10.7)
forall xy,x, € V.

Proof. Assume that f : V — W satisfies (10.6).

Letting x; = --- = x, = 0 in (10.6), nf(0) + nf(0) = n*f(0). So £(0) = 0.
Letting x; = --- = x,, = x in (10.6),
nf (nx) = nf (nx) + nf(0) = n’f(x) (10.8)
forallx e V.
By (10.8), replacing x; by #=1x% l)x‘ (k=1,...,n—1)and x, by ==~ Xi= lx/ in (10.6),

we get
n—1 n—1 n—1 n—1
(n—1)f (in) +Y flo—Dx=) x| =) fln—Dx) (109
i=1 i=1 j=1 i=1

forall xi,...,x,—1 € V.

Replacing x; by % (k=1,...,n—=2)and x,— by ==~ 1 Z in (10.9), we get

n—2 n—2 n—2 n—2
(n—2)f (Z x,-) +) fla=2x=Y 5] =D f((r—-2)x)
i=1 i=1 j=1 i=1

for all xy, ..., x,—» € V. Applying continuously this method n — 4 times, we get

2f (x1 +XQ) +f(X1 —.XQ) +f(X2 —X1) =f(2x1) +f(2)Q) (10.10)

for all x;,x, € V. Letting x, = 0 in (10.10), we get

2f (1) + f(x1) +f(=x1) = f(2x1)
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for all x; € V. Similarly, we obtain

3f(x2) + f(—x2) = f(2x2)

for all x, € V. It follows from (10.10) that

2f (x1 + x2) +f (1 = x2) + (2 —x1) = 3f(x1) + 3 (x2) +f(—x1) + f(—x2)

for all x;,x, € V, as desired.

One can easily show that an even mapping f : V — W satisfies (10.7) if and only
if the even mapping f : V — W is a quadratic mapping, i.e.,

F+y) +f(x=y) =2 () +2(),

and that an odd mapping f : V — W satisfies (10.7) if and only if the odd mapping
f : V — Wis a Cauchy additive mapping, i.e.,

Fa+y) =0 +f0).

From now on, assume that 7 is a fixed integer greater than 2. For a given mapping
f:X — Y, we define

Df(x1,...,x,) :=nf (Zx,-) + Zf nx; — ij —n? Zf(x,-)
i=1 i=1 j=1 i=1

forall xq,...,x, € X.
Now we prove the Hyers—Ulam stability of the quadratic functional equation
Df(xi,...,x,) = 01in real Banach spaces.

Theorem 10.3. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) such that

oo
; =3 0¥ (ﬁ Ty < 10.11
O(x1, ..y xp) j:Zlnw n/n1> 00, ( )
IDf (x1, ..o, x) || < @Cxry .. ey xn) (10.12)
forall x,...,x, € X. Then there exists a unique quadratic mapping Q : X — Y
satisfying (10.6) and
1. I .
1) +£(=0) — QW < = P(x.....X) + —=G(=x,....—) (10.13)
n N—— n ~———
n times n times

forall x € X.
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Proof. Letting x; = --+ = x, = xin (10.12), we get
an(nx)—n3f(x)H < @(x,...,x) (10.14)
——
n times

for all x € X. Replacing x by —x in (10.14), we get

|nf (=nx) = *f (—0)| < @(=x,....—x) (10.15)

n times

for all x € X. Let g(x) := f(x) + f(—x) for all x € X. It follows from (10.14)
and (10.15) that

||ng (nx) —n’g(x) || <o(,...,x) +o(—x,...,—x) (10.16)

n times n times

for all x € X. So

5 (X I | x X 1 X x
ls—ng (5)] =g |5 2 40222
n n |n n n
n times n times

for all x € X. Hence

m 2j

X X n x X
||n2[g Z)=nPg (=) < E —el—=.....=
nt nm/ " n3 W
j=i+1 —_—
n times

2 on¥ x X
—o|—, ..., — 10.17
+ Z n3 4 w w ( )
j=I+1 N———
n times

for all nonnegative integers m and / with m > [ and all x € X. It follows
from (10.11) and (10.17) that the sequence {nzkg(nik)} is Cauchy for all x € X. Since
Y is complete, the sequence {nZkg(ﬁ)} converges. So one can define the mapping
Q:X —Yby
O(x) := lim n*g (ik)
k—>00 n

for all x € X. By (10.11) and (10.12),
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1DO(x1, ..., x)l
X1 Xn
- o)
Jm ™ 1D e
< lim n?* ( ()ﬂ x—) (—x—l...—ﬁ))=
=AY nk’ T pk te nk’ "t gk 0

for all xq,...,x, € X. So DQ(x1, ...,x,) = 0. Since g is even, the mapping Q is
even. By Lemma 10.2, the mapping Q : X — Y is quadratic. Moreover, letting [ = 0
and passing the limit m — oo in (10.17), we get (10.13). So there exists a quadratic
mapping Q : X — Y satisfying (10.6) and (10.13).

Now, let Q' : X — Y be another quadratic mapping satisfying (10.6) and (10.13).
Then we have

loe -0 e () - ()]

- (||an (
0+ -

X
nd

-G
(n%)—f(‘—;‘)\})

<2-n2‘1~ X X _|_2-nz‘1~ —X —X

=73 O n3 ni’ " e |’
——— ~———
n times n times

which tends to zero as g — oo for all x € X. So we can conclude that Q(x) = Q' (x)
for all x € X. This proves the uniqueness of Q.

Corollary 10.4. Let p > 2 and 0 be positive real numbers, and letf : X — Y be a
mapping such that

IDf ey ) <0 [P (10.18)
j=1
forall xi,...,x, € X. Then there exists a unique quadratic mapping Q : X — Y
satisfying (10.6) and
20

IF () +f(=x) = Q)| =

P
7|1l

forall x € X.

Proof. Define ¢(x1,...,x,) = 0 Z;:l [|x;]1”, and apply Theorem 10.3 to get the
desired result.

Theorem 10.5. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.12) such that

o0
Gr,....x) =Y n Tpx. ... .nx,) < oo (10.19)
j=0



144 C. Park et al.

forall x1,...,x, € X. Then there exists a unique quadratic mapping Q : X — Y
satisfying (10.6) and
1 1.
£ + /(=0 = QW) < —@(x.... 0+ —f(=x....—)  (1020)
n ~—— n N———
n times n times
forall x € X.

Proof. Tt follows from (10.16) that

1 1
= —390()6,---,)6) + —3g0(—x,...,—x)
n ~—— n ~————

n times n times

et~ et

for all x € X. So

m—1

1 . .
<> )

j=l

1 1 "
ﬁg("lx) - nﬂg(n' x)

n times

m—1 1

+ Z (. -y 02D
J=l n times

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (10.19)

and (10.21) that the sequence {nlﬂg(nkx)} is Cauchy for all x € X. Since Y is

complete, the sequence {nlwg(nkx)} converges. So one can define the mapping
Q:X—Yby

1 X
Q) = lim ﬁg(n x)

forall x € X.
By (10.12) and (10.19),

I1DQ(x1, ... xa)l
: 1 k k
= kl_l)rgo ﬁHDg(n X1y oo X)) ||
1
< lim —(@(n*x;, ..., n*x%,) + o(=nfx;, ..., —nfx,)) =0
k—00 n2k
for all x1,...,x, € X. So DQ(xy,...,x,) = 0. Since g is even, the mapping Q is

even. By Lemma 10.2, the mapping Q : X — Y is quadratic. Moreover, letting [ = 0
and passing the limit m — oo in (10.21), we get (10.20). So there exists a quadratic
mapping Q : X — Y satisfying (10.6) and (10.20). The rest of the proof is similar
to the proof of Theorem 10.3.
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Corollary 10.6. Let p < 2 and 0 be positive real numbers, and let f : X — Y be a
mapping satisfying (10.18). Then there exists a unique quadratic mapping Q : X —
Y satisfying (10.6) and

1"

lF () +f(=x) — QW) =

n?* —n?
forall x € X.

Proof. Define ¢(xy,...,x,) = 0> ', ||x|”, and apply Theorem 10.5 to get the
desired result.

10.3 On the Stability of a Cauchy Additive-Quadratic
Functional Equation Associated with Inner
Product Spaces

Throughout this section, assume that V and W are real vector spaces and that n is a
fixed integer greater than 1.

One can generalize the functional equation (10.7) to the functional equa-
tion (10.3).

We investigate the quadratic functional equation (10.3).

Lemma 10.7. If a mapping f : V — W satisfies

nf (Zx,) + Zf nx; — ij
i=1 i=1 j=1

n2 +n " n2 —n "
= — ;f(xi) +—— ;f(—xi) (10.22)

forall xi,...,x, €V, then the mapping f : V — W satisfies the Cauchy additive-
quadratic functional equation (10.7).

Proof. The proof is similar to the proof of Lemma 10.2.

For a given mapping f : X — Y, we define

Cf(xls ce fxn) L= l’lf (Zx’) + Zf nx; — ij
i=1 i=1 j=1

2 n 2 . n
Sy e - Y e
i=1 i=1

forall x,...,x, € X.
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Now we prove the Hyers—Ulam stability of the quadratic functional equation
Cf(x1,...,x,) = 0in real Banach spaces.

Theorem 10.8. Letf : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.11) and

ICf (x1, - s x) || < @(xq, .. uXn) (10.23)
forall xi,...,x, € X. Then there exists a unique quadratic mapping Q : X — Y
satisfying (10.22) and
1. 1.
1) + (=) = QO < 5 @(x. ... x) + —5G(—x..... )
n N—_—— n ~——
n times n times
forall x € X.
Proof. Letting x; = --- = x, = xin (10.23), we get
3+ n? n —n?
nf (nx) — f(x) — f(—0) || < p(x,...,x) (10.24)
2 2 ~——
n times

for all x € X. Replacing x by —x in (10.24), we get

n3—i—n2 n—

I’l2
nf (=) = = (=) = S ()

<o(—x,...,—X) (10.25)

n times

for all x € X. Let g(x) := f(x) + f(—x) for all x € X. It follows from (10.24)
and (10.25) that

||ng (nx) —n’g(x) || <o, ....x) +@(—x,...,—x) (10.26)
N—— — N—
n times n times
for all x € X. The rest of the proof is the same as in the proof of Theorem 10.3.

Corollary 10.9. Let p > 2 and 0 be positive real numbers, and letf : X — Y be a
mapping such that

ICFCer. - x)l <6 Il (10.27)
=1
forall x1,...,x, € X. Then there exists a unique quadratic mapping Q : X — Y
satisfying (10.22) and
26 »
If () +f(=x) = Q)| = ALl
n’ —n

forall x € X.



10 Inner Product Spaces and Quadratic Functional Equations 147

Proof. Define ¢(xy,...,x,) = 0> ', ||x|”, and apply Theorem 10.8 to get the
desired result.

Theorem 10.10. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.19) and (10.23). Then there exists
a unique quadratic mapping Q : X — Y satisfying (10.22) and

1 1
If (x) +f(—=x) = Q)| < ;@(t’-_,/x) + ;@(&’-,_/—X)

n times n times
forall x € X.
Proof. It follows from (10.26) that
1 1 1
() — 5gmn)| < o0, 0) + —p(=x,....,—x)
n n N— — n N—
n times n times

for all x € X. The rest of the proof is similar to the proofs of Theorems 10.3 and 10.8.

Corollary 10.11. Letp < 2 and 0 be positive real numbers, and letf : X — Y be a
mapping satisfying (10.27). Then there exists a unique quadratic mapping Q : X —
Y satisfying (10.22) and

20

nz —np

[1x[[”

IF (o) +f(=x) = Q)| =

forall x € X.

Proof. Define ¢(x1,...,x,) = 0 Z]'f:l |Ixj]|?, and apply Theorem 10.10 to get the
desired result.

Theorem 10.12. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.23) and

o
: X1 Xn
Wi, = Yo (S ) < 10.28
(1, ) ; o 5) <0 (10.28)
for all x1,...,x, € X. Then there exists a unique Cauchy additive mapping
A X — Y satisfying (10.22) and
1 1
If() —f(=x) —A@)| = S¥(x,....x) + S¥(=x,...,—x)
n —— n ———
n times n times

forall x € X.
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Proof. Let h(x) := f(x) —f(—x) for all x € X. Then £ is odd. It follows from (10.24)
and (10.25) that

[nh (nx) = *h(x)| < @(x,....%) + @(—x. ..., —x) (10.29)
——— —_——
n times n times
for all x € X. The rest of the proof is similar to the proof of Theorem 10.3.

Corollary 10.13. Let p > 1 and 0 be positive real numbers, and let f : X — Y be
a mapping satisfying (10.27). Then there exists a unique Cauchy additive mapping
A X — Y satisfying (10.22) and

lf () =f(=x) =AM <

x| P
—— |l

forall x € X.

Proof. Define ¢(x,...,x,) = 0 ZJ’":] Ixj]|?, and apply Theorem 10.12 to get the
desired result.

Theorem 10.14. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.23) such that

o0
U(xy,...,x,) = Zn_-i(p(nixl, o xy) < 00 (10.30)
j=0
for all xi,...,x, € X. Then there exists a unique Cauchy additive mapping

A : X — Y satisfying (10.22) and

1 1
If(x) =f(=x) —A@)|| = 5¥(x,....0) + S¥(=x,...,—x)
n N—— n ~——

n times n times

forall x € X.
Proof. It follows from (10.29) that

for all x € X. The rest of the proof is similar to the proof of Theorem 10.3.

1 1 1
h(x) = —h(nx)|| = < @(x,...,x) + S@(=x,...,—x)
n n N—— n ———

n times n times

Corollary 10.15. Let p < 1 and 0 be positive real numbers, and let f : X — Y be
a mapping satisfying (10.27). Then there exists a unique Cauchy additive mapping
A : X — Y satisfying (10.22) and

lf () =f(=x) =AW <

x|1P
—

forall x € X.
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Proof. Define ¢(x1,...,x,) = 0> ', ||xj||, and apply Theorem 10.14 to get the
desired result.

Note that
ad X1 X, > X1 X,
o (5.2 =Y e (22,
20 (G ig) S Lo (G
]:1 .]=]
Combining Theorems 10.8 and 10.12, we obtain the following result.

Theorem 10.16. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.11) and (10.23). Then there exists
a unique Cauchy additive mapping A : X — Y satisfying (10.22) and a unique
quadratic mapping Q : X — Y satisfying (10.22) such that

1 1
[2/(x) —A) = QW) = 5¢(x.....%) + Z@(=x,...,—x)
n —— n ———

n times n times

+—=Y(x,...,x) + =¥ (—x,...,—X)
n2 N— — i’lz N e’

n times n times

for all x € X, where ¢ and W are defined in (10.11) and (10.28), respectively.

Corollary 10.17. Letp > 2 and 0 be positive real numbers, and letf : X — Y be a
mapping satisfying (10.27). Then there exists a unique Cauchy additive mapping
A : X — Y satisfying (10.22) and a unique quadratic mapping Q : X — Y
satisfying (10.22) such that

+

2 2
1270 = A0 = QW = (7 + o ) 6l

forall x € X.

Proof. Define ¢(x1,...,x,) = 0> ', ||xj||, and apply Theorem 10.16 to get the
desired result.

Note that

o o
Zn_zj(p(nixl, coomxy) < Zn_jga(rtjxl, 10Xy,

j=0 j=0
Combining Theorems 10.10 and 10.14, we obtain the following result.

Theorem 10.18. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying (10.23) and (10.30). Then there exist
a unique Cauchy additive mapping A : X — Y satisfying (10.22) and a unique
quadratic mapping Q : X — Y satisfying (10.22) such that
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1 . 1.
”2f(-x) —A()C) - Q(X)| =< _3(;0()67 e 7-x) + _3(;0(_)67 LR _-x)
n N——— n N — ——
n times n times
+—=Y(x,...,x) + =¥ (—x,...,—X)
n2 N— — i’lz N e’
n times n times
forall x € X, where ¢ and ¥ are defined in (10.19) and (10.30), respectively.

Corollary 10.19. Let p < 1 and 0 be positive real numbers, and let f : X — Y be
a mapping satisfying (10.27). Then there exist a unique Cauchy additive mapping
A : X — Y satisfying (10.22) and a unique quadratic mapping Q : X — Y
satisfying (10.22) such that

2

n—nf

2
1270 = A0 = QW = (2 + o ) 6l
n —n

forall x € X.

Proof. Define ¢(x1,...,x,) = 0 Z;‘Zl |Ixj]|?, and apply Theorem 10.18 to get the
desired result.
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Chapter 11
Fuzzy Partial Metric Spaces

Fariha Jumaa Amer

Abstract We define fuzzy partial metric space by following the development of
fuzzy metric space. The concept of partial metric is investigated to generalize
metric space. In particular, the self-distance for any point need not be equal to zero.
The main part of this research concentrates on how the idea of fuzzy partial metric
space can be defined by following the same idea in the development of fuzzy metric
space. We will bring together the necessary basic concepts to generalize the fuzzy
metric spaces and their topological properties into fuzzy partial metric spaces, under
the bewildering axiom that the self-distance of any point need not to be zero.

11.1 Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965, and since then there has
been tremendous interest in the subject due to its diverse applications ranging from
engineering and computer science to social behavior studies. Partial metric spaces
were originally developed by Mattews [6] to provide mechanism generalizing metric
space theories. Many authors have introduced the concepts of fuzzy metric in
different ways (see [1, 2, 5]). In particular, George and Veeramani [3] generalized the
concept of probabilistic metric space given by Menger [7]. George and Veeramani
[3] modified the concept of fuzzy metric space introduced by Kramosiland and
Michalek [4] and obtained a Housdorff and first countable topology on this modified
fuzzy metric space, (X, 1) is a Hausdorff first countable topological space.

In this paper we will define fuzzy partial metric space by the following the
development of fuzzy metric space.

Definition 11.1 (See [9]). Fuzzy sets are considered with respect to a nonempty set
X of elements of interest. The essential idea is that each element x € X is assigned a
membership grade u(x) taking values in [0, 1], with u(x) = O corresponding to non-
membership 0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership.
And he gave a binary operation * : [0, 1] x [0, 1] — [0, 1] is a continuous #-norm, if

FJ. Amer (04)
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([0, 1], %) is an Abelian (topological) monoid with the unit 1 such thata * b < ¢ * d
whenever a < c and b < d for all a,b,c,d € [0,1]. Two typical examples of
continuous #-norm are a * b = ab and a * b = Min(a, b) for all a, b € [0, 1]

Definition 11.2. A metric on a set space X is a function d : X x X — R with the
following properties:

(i) d(x,y) > 0 for all x,y € X; equality holds if and only if x =y,
(i) d(x,y) = d(y,x) forall x,y € X,
(iii) d(x,y) +d(y,z) = d(x,7) for all x,y, z € X (the triangle inequality).

We call d(x, y) the distance between x and y , and we call pair (X, d) consisting
of the set X and the metric d, a metric space.

Definition 11.3. Let be (X, d) a metric space. For x € X and € > 0 define the open
ball of radius € centered at x to be the set

By(x,e) =y € X|d(x,y) <e,
and define the closed ball of radius € centered at x to be the set

By(x.€) =y € X[d(x.y) < e.

Theorem 11.4. Every metric space is Hausdorff.

Definition 11.5 (See [6]). A partial metric space is a pair (X,p : X x X — R)
such that

(i) px.x) <p(x,y),
@ii) if p(x,x) = p(y,y) = p(x,y), then x =y,
(iii) p(x,y) = p(,x),
(iv) p(x,2) < p(x,y) +p(y,z) —p(y,y) forallx,y, z € X.

Note that the self-distance of any point need not be zero, hence the idea of
generalizing metrics so that a metric on a non-empty set X is precisely a partial
metric p on X such that for any x € X, p(x,x) = 0.

Similar to the case of metric space, a partial metric space p on X.

Definition 11.6. Let (X, p) be a partial metric space. For any x € X and € > 0, we
define, respectively, the open and closed ball for the partial metric p by setting

B.(x) =yeX:py <e,

B.(x) =yeX:pxy) <e.
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Example 11.7 (See [8]). Consider the function p : R~ x R~ — R™ defined by
p(x,y) = —min{x, y} for any x,y € X. The pair (R, p) is a partial metric space for
which p is called the usual partial metric on R™, and where the self-distance for any
point x € R™ is its absolute value. Indeed, for any x,y,z € R™,

1. min {x, y} < x, so p(x,y) > p(x,x) = —

2. Suppose that p(x,x) = p(x,y) = p(y, ), it then follows that —x = —y, hence
X =y.

. It is obvious that p(x,y) = p(y, x).

4. One verifies that

(O8]

min{x, z}min{x, y} + min{y, z} — min{y, y}
by considering the cases y < x < z,x <y < zand x < z < y; hence

p(x,2) <px,y) +p(.2) —p(,y).

The open balls are of the form B.(x) = y € R~ : —min{x, y} < € = (—¢, 0) with
x > —e otherwise, if x < —¢, then p(x,x) = —x > € and B.(x) = ¢. Suppose
that y € B.(x), then —min{x, y} < € which implies that min{x, y} > ¢, hence
y > —€.

Definition 11.8. A sequence (x,) in a partial metric space (X, p) converges to x €
X, and one writes lim x, = x if for any € > 0 such that x € B.(x), there exists
n—00

N > 1 so that for any n > N, x,, € B.(x).

Proposition 11.9. Suppose that (x,,) is a sequence in a partial metric space (X, p)
and x € X. Then x, — x if and only if lim,—cop(x,, x) = p(x, Xx).

Definition 11.10 (See [8]). A sequence (x,) in a partial metric space (X,p) is a
Cauchy sequence if it is a Cauchy sequence in the induced metric space (X, p,,).
A partial metric space is said to be complete if its induced metric space is complete.

Lemma 11.11 (See [8]). Suppose that (x,) is a sequence in a partial metric space
(X,p). Then (x,) is a Cauchy sequence if and only if . lim p(x,, x;) exists.
Jn—>00

The concept of partial metric spaces is investigated to generalize metric spaces.
In particular, the self-distance for any point need not be equal to zero. This idea
of nonzero self-distance is motivated by experience from computer science, and
this is a relatively new field and has vast application potentials in the study of
computer domains and semantics. Moreover, there have been different approaches
in this area when it comes to applying the developing mathematical concepts to
computer science.
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11.2 Fuzzy Metric Space

Many authors have introduced the concepts of fuzzy metric in different ways (see
[1, 2, 4]). In particular, George and Veeramani [3] generalized the concept of
probabilistic metric space given by Menger [7].

We shall recall some different definitions of fuzzy metric space which were given
by different authors and the topology in such space as well as the open ball and
closed ball that are related to this topology. In addition, we will mention some
properties of fuzzy metric space.

Definition 11.12 (See [3]). A 3-tuple (X, M, ) is said to be a fuzzy metric space
if X is a nonempty set, * is a continuous ¢-norm, and M is a fuzzy set, M : X x
X x [0, 00) — [0, 1] is a mapping (called fuzzy metric) which satisfies the following
properties: for every x,y,z € X and t,s > 0,

(i) M(x,y,t) >0,
(i) M(x,y,t) = 1 ifand only if x =y,
(iii)) M(x,y,t) = M(y,x, 1),
(iv) M(x,y, 1) * M(y,z,8) = M(x,z,t + 5),
(v) M(x,y,.) :[0,00) — [0, 1] is continuous. If (X, M, ) is a fuzzy metric space,
we will say that M is a fuzzy metric on X.

t
In metric space (X, d) if we define a x b = ab and M(x,y,t) = —————, then
t+d(x,y)

(X, M, %) is a fuzzy metric space. We call this M as the standard fuzzy metric space
induced by d. Even if we take a x b = min(a, b), (X, M, %) will be a fuzzy metric
space.

Definition 11.13 (See [3]). Let (X, M, *) be a fuzzy metric space. We define open
ball B(x, r,t) for t > 0 with center x € X and radius r, 0 < r < 1, as B(x, r,1) =
yeEX:Mx,y,t)>1—r.

Definition 11.14 (See [3]). Let (X, M, ) be a fuzzy metric space defined by
t={ACX:x€A & 3r,t>0,0<r<1, suchthat B(x,r,t) CA}.

Then t is a topology on X.

And every fuzzy metric M on X generates a topology 13 on X which has a base
the family of sets of the form B,(r,f) : x € X,r € (0,1),7 > 0, where

B.(x,r,ty=yeX: :M(x,y,t)>1—r

is a neighborhood of x € X for all r € (0,1) and r > 0, (X, M, %) is a Hausdorff
first countable topological space. Moreover, if (X, d) is a metric space, then the
topology generated by d coincides with the topology M, generated by the induced
fuzzy metric My. If (X, M, %) is a fuzzy metric space and 7 is the topology induced
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by the fuzzy metric then for a sequence (x,) in X, (x,) converges to x in X if and
only if M(x,, x, t) tends to 1 as n tends to oo for ¢ > 0.

Definition 11.15 (See [3]). A sequence (x,) in a fuzzy metric space (X, M, %) is
said to be a Cauchy sequence if for each €,0 < € < 1 and ¢ > 0, there exists no € N
such that M (x,, x,;,,t) > 1 — € for all n,m > ny.

Definition 11.16 (See [3]). A fuzzy metric space is said to be complete if every
Cauchy sequence is convergent.

The induced metric space (X, M, %) is complete if and only if the metric (X, d) is

t
complete where M(x,y,t) = ————— forallx,y € X and ¢ € (0, 00).
t+d(x,y)
Definition 11.17. Let (X, M, %) and (X;, M>, *) be the given fuzzy metric spaces.
For (x1,x2), (1, y2) € X1 x X5, t > 0, if we define

M((x1,x2), 01,¥2), 1) = My (x1, 1, 1) * My (x2,¥2, 1),

then M is a fuzzy metric on X; x X;. Further if X; and X, are complete fuzzy metric
spaces, then the product space X; x X, is also a complete fuzzy metric space.

11.3 Main Result

We explained the definition of metric space and partial metric space, and we have
noted that a partial metric space is generalizing of metric space. In this chapter we
will give the concept of fuzzy partial metric space which is generalizing of fuzzy
metric space.

Definition 11.18. Let p be partial metric space, the triple (X, M,, *) is said to be a
fuzzy partial metric space if X is a nonempty set, * is a continuous f-norm and M, is
a fuzzy set on X x X x (0, 00) satisfying the following conditions, for all x, y, z € X,
s,t>0:

(i) Mpy(x,y,0) =0,
(i) Mp(x.y. 1) = My(y,x,1),
(i) M,(x,y,t) * My (y,2,5) < My(x,z,t + ),
(iv) M,(x,y,t) < 1forallt > 0and M,(x,y,t) = 1if and only if p(x,y) =0,
(V) My(x,y,.) : [0,00) — [0, 1] is continuous,

where M,,(x,y,t) = If (X, M), *) is a fuzzy partial metric space, we will

. Frpey)
say that M), is a fuzzy partial metric on X.
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Definition 11.19. In a partial metric space (X,p) the 3-tuple (X, M,, *x) where

t
M,(x,y,t) = ——
! t+pxy)
called the standard fuzzy metric induced by p.

and a * b = ab is a fuzzy partial metric space. This M, is

Example 11.20. Let X = R~ and (X, p) be a partial metric space. Let p(x,y) =

—min{x, y}, x,y € R™. Denote a * b = ab for all a,b € [0, 1] and let M, be fuzzy
t

sets on X x X x (0, oo) defined as follows: M, (x, y,f) = ————. Then the triple

1+ px.y)
(X, M), %) is a fuzzy partial metric space where the self-distance for any point is its

absolute value.

Proof. Itis clear that 0 < M, (x,y, ) < 1 because p(x,y) > 0.

. 0
W Mpxy. 0 =570 =
(ii)
' t
M, = =
(X, y, 1) t+pk,y)  t+ (—min{x,y})
4 (—min{y,x}) 1+ p(y.x)
= M,(y,x,1).
(iii)
t N
My (x,y, 1) * Mpy(y,z,5) = t+p(x,y) * s+p(,2)
t+px,y) s +p(y,2)
t+s
<
Tt py) + 5 +p(2)
t+s

t+ s+ (—min{x. y}) + (—min{y. z})’
Since —min{x, z} < —min{x, y} + —min{y, z} — —min{y, y},

1 1
—min{x, 7} = —min{x, y} + —min{y, z} — min{y, y}’
t+s
(t + s + (—min{x, z})
t+s
t+s+px,z)
= My(x,z,t + ).

My(x,y,t) * My(y,2,5) <
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Thus

My(x,y,t) * My (y,z,5) < Mp(x,2,t+5).

(iv) Mp(x,y,t) = 1if and only if p(x,y) = 0.

Example 11.21. Let X = R™ and (X, p) be a partial metric space. Let p(x,y) =

max{x,y}, x,y € R”. Denote a x b = ab for all a,b € [0, 1] and let M, be fuzzy
t

sets on X X X x (0, oo) defined as follows: M, (x,y,t) = ————— . Then the triple

. o £+ p(x,3) o
(X, M,, %) is a fuzzy partial metric space where the self-distance for any point is its

value itself.

Example 11.22. Let P, denote the power set of the natural numbers w = N* =
N {0} different from zero, with the subset ordering. The function p : P, x P, —
[0, 1] such that p(x,y) = 1 — > 27" forany x,y € P, is a partial metric on P,,.

(n€xNy)
Denoted ax b = ab for all a, b € [0, 1] and let M), be fuzzy sets on P, X P, x (0, 00)
t
defined as follows: M, (x,y,t) = —————. Then the triple (X, M,, *) is a fuzzy
_ _ 1+ p(x,y)
partial metric space.
()
M,( 0) 0 0 0
x, R = = = .
pinY O+plry) O0+1— Y 2
(n€xNy)
(i)
t t
M,(x,y,1) = =
b t + p('x’ y) t + (1 - Z(nExﬂy) 2_”)
t
= — =M,(y,x,t
t+pox) " 0%
(iii)
M, (x, v, 1) % M, (3, 2, 5) f
‘x7 bl b Z’ S ==
PR DR T+ py) s+ p0.2)
_ t S
t+p(x.y) s +p(.2)
t+s
<
t+px,y)+s+pQ,2)
t+s

(n€xNy) (nexNy)

t+s+0— Y o2r4l— Y TO
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Letx,y, z € P, . Using the property of sets, one has that
xNy)UyNz =@&NynNzUynxuUz).

Thus, we get

Yooy Y 2= 3 27 Y oo

(n€xNy) (n€yNz) (n€xNzNy) n€yN(xUz)
Consequently,
p(x.y) +p(v.2) = pxNzy) +pl.xUz)
> p(x,2) + p(y.y)

Hence,

p(x,2) < p(x,y) +p(y.2) —p(y,y)
for any x,y,z € P,. Then

t+s
t+s+pxy) +p»,2—p0»,y)
t+s
S—
t+s+px,z)

My(x,y,t) *x M,(y,z,5) <

=M,(x,z,t+5)

(iv) Mp(x,y,t) = 1 if and only if p(x,y) = 0. It is clear that 1 < M, (x,y,1) < 0,
that is

p—>[0,1]=1<

- <o.
t+px,y)

Definition 11.23. Let (X, M,, ) be a fuzzy partial metric space. We define open
ball B(x, r, t) for t > 0 with center x € X and radius r, 0 < r < 1,

Bx,r,ty ={ye X : M,(x,y,t) > 1—r}.
Definition 11.24. Let (X, M), *) be a fuzzy partial metric space. Define
t={ACX:x€A & 3r,t>0,0<r<1, suchthat B(x,r,r) C A}.

Then 7 is a topology on X.

Definition 11.25. A sequence (x,) in a fuzzy partial metric space (X, M,, *) is said
to be a Cauchy sequence if for each €, 0 < € < 1 and t > 0, there exists ny € N
such that My, (x,,, X, ) > 1 — € for all n,m > ny.
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Definition 11.26. A fuzzy partial metric space is said to be complete if every
Cauchy sequence is convergent.

Definition 11.27. Let (X, M,

»*) and (X»,M,,,*) be the given fuzzy partial

metric spaces. For (x1, x2), (y1,y2) € X1 X Xp,t > 0, if we define

M, ((x1,x2), (1, ¥2), 1) = My, (x1, Y1, 1) * Mp, (X2, 2, 1),

then M, is a fuzzy partial metric space on X; x Xj.

11.4 Conclusion

In
or

this research we introduced a new concept for fuzzy partial metric space in
der to understand the intricacies involved in incorporating fuzziness in terms of

partial metric space, whose classical mathematics requires that all mathematical
notions must be exact, otherwise precise reasoning would be impossible. That

is,

mathematical tools may not be successfully used. But there is a need for a

mathematical apparatus to describe the vague notions to overcome the obstacles

in

R

—

modeling and such an apparatus is provided by fuzzy set theory.
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Chapter 12
Bounded and Unbounded Fundamental
Solutions in MAC Models

Igor Neygebauer

Abstract Many linear partial differential equations in mathematical physics have
the fundamental solutions with singularities. This does not correspond to the real
physical situation. The additional terms were introduced into the classical equations
using the constitutive laws for internal body interactions and so the MAC models
were created. This paper analyzes the boundedness of the fundamental solutions of
some MAC models with local internal body forces. The 1D, 2D, and 3D steady
state problems are considered. The mechanical models are an elastic string, heat
conduction, membrane, plate, linear isotropic elasticity. The Fourier transform is
used. The new strength criteria is given. It is shown that the displacements under
applied force are finite for membrane, plate and in 2D and 3D elasticity. The
bending stresses are finite in plate. The stresses are zero in elasticity problem at
the point of applied force but the new strength criteria is working in this case too.
The temperatures are finite in case of 2D and 3D point source of heat flux.

12.1 Introduction

The steady state models for the linear elastic string, beam, membrane, plate,
elasticity, and heat conduction are taken into consideration [7]. These models are
widely used to consider many applied and theoretical problems. We are interested
in a test problem when the continuum model occupies an infinite domain and only
one force or a heat source is applied at one point only. The solutions of such kind of
problems are called in mathematics the fundamental solutions of the correspondent
differential equation. Unfortunately all classical fundamental solutions of the above
problems do not satisfy the natural physical behavior of that solutions. That natural
behavior can be described first of all as the boundedness of the solutions in the
whole domain of consideration and the tendency to zero at the infinity.
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We will generalize the classical models in order to obtain the physically correct
fundamental solutions. The method to get the generalized model is just inserting the
constitutive laws for internal body forces or fluxes into the classical model. These
new equations will be called the MAC (method of additional conditions) models
[6, 8]. The analysis of fundamental solutions of that equations will be of interest and
the point singularities especially. If the constitutive law for internal body interactions
is chosen, then the solution of the generalized problem can be found. That solutions
are not presented in this paper but they can be the purpose of the next paper.

This paper describes how the models can be tested. The main tool of testing is
the Fourier transform [4]. The Fourier transform can be applied because the awaiting
solution should have the physical behavior. If the stated problem is physically well,
then the obtained solution will be well too. If the stated problem is not physically
correct, then the fundamental solution will create singularities, or it will destroy the
tendency to zero at infinity, or the solution is not physically awaited.

The problem is stated as following: Find the constitutive law for the internal
body forces or heat fluxes which is presented using operator B in the linear steady
state problems for the elastic string, beam, membrane, plate, heat conduction, and
isotropic elasticity. The equation is

Lu+ Bu =6, (12.1)

where L is the classical differential operator, § is the Dirac § function, u is the
transversal displacement in the string, beam, membrane, plate problems, or it is
the temperature in the heat conduction problem, or it is a displacement vector in the
elasticity problem. The § function is a vector in the last case and this vector has one
component § function and other component or components are zero. The solution
of Eq. (12.1) should satisfy the conditions:

[u(0)] < oo, (12.2)
u(x) # 0, for any x, (12.3)
u(x) — 0 as |x| — oo. (12.4)

It is well known that there are no solutions of the stated problem in case
B = 0 which satisfy the conditions (12.2)—(12.4). The operator B could be
suggested in many different forms. It can be local and nonlocal, linear and nonlinear,
deterministic and stochastic [1]. There can be used classical or fractional derivatives
and integrals. This paper considers local deterministic linear ordinary differential
operator.
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12.2 String

12.2.1 Differential Equation of the Problem

The equation of one-dimensional steady state problem of the string is taken in the
form [2, 9-11]
d’u

T
dx?

+4'(0) +¢°(x) =0, (12.5)
where T is the tension applied to the string, x is a Cartesian coordinate of a cross-
section, —oo < x < 400, u is the transversal displacement of a cross-section,
¢'(x), ¢°(x) are the density of the transversal internal and external body forces per
unit length correspondingly. Equation (12.5) can be written in the form

2

d .
5 =P+, (12.6)

where

=T = -

q‘(x) .

; (12.7)

The following constitutive laws for the internal body forces will be considered

q =0
qi = —cu. (12.8)
c>0.

It will be shown that the law (12.8) only is physically acceptable.

12.2.2 String: Case 1

The fundamental solution for classical string problem satisfies the following
equations:

d*u _

-5 =80, (12.9)

and

u(x) - 0
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as x — —oo and x — +00. §(x) is the 6 function. Because it is supposed that the
Fourier transform of the function u(x) should exist in case of physical solution, then
the Fourier transform can be applied to this function

U(s) = u(x)e" ™ dx. (12.10)

+00
7
2
—0o0
If the Fourier transform is applied to Eq. (12.9), then the following algebraic
equation will be obtained

—sU =1 (12.11)
and then the solution of Eq. (12.11) gives
1
U@s) = —. (12.12)
S

The inverse Fourier transform of the function (12.12) is

+o00
u(x) = \/;27 / U(s)e™ds. (12.13)
Then
+o00
1 1

Equation (12.14) shows that the obtained solution is not bounded and it means that
the model of a string should be improved. The generalized or the MAC model can
be developed introducing the constitutive law for internal body forces.

12.2.3 String: Case 2

Let us consider the following law for internal body forces

q'(x) = —cu(x),
where ¢ > 0 is a material constant which should be determined experimentally. Let

c

k =
T
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Then Eq. (12.5) will take the form
d’u
a2

The fundamental solution for the stated string problem satisfies the following
equation:

—ku = p*(x),

d*u

T~ hu=80). (12.15)

and
u(x) - 0

asx — —oo and x — +o0. If the Fourier transform (12.10) is applied to Eq. (12.15),
then the following algebraic equation will be obtained

—sPU—kU =1 (12.16)
and then the solution of Eq. (12.16) gives

1

Uis) = ————. 12.17
(0) =57 (12.17)
The inverse Fourier transform (12.13) of Eq. (12.17) at x = 0O creates
0) = — / ( ) ds _1 arctan ( ) |+ T
u = — =_ [
sk 2k vk (122kl8)

Equation (12.18) shows that the obtained solution is bounded and it means that this
MAC model of a string could be used to get the physically accepted solution.

12.3 Beam

Consider an elastic beam [5]. The equation of steady state problem of the bending
of the beam with internal body forces could be written in the form

d*u ; .
EIﬁ =4q'(x) + ¢°(x), (12.19)
where El is the bending stiffness of the beam, x is the Cartesian coordinate of a
cross-section, —oo < x < +o00, u is the transversal displacement of a cross-section,
¢'(x) is the density of the transversal internal body forces per unit length, ¢°(x) is
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the density of the transversal external body forces per unit length. Equation (12.19)
can be written in the form

41/! )
Ty + .
where
P =T ey = T,

The following constitutive laws for the internal body forces were considered

q =0
q = —cu;
. d’u
i b—;
4 dx?
; d*u
q = bﬁ —cu. (12.20)
b>0,c>0.

It could be shown that the law (12.20) only is physically acceptable.

12.4 Membrane

Consider an elastic membrane [6]. The equation of steady state problem for the
membrane with internal body forces could be written in the form

Pw  Pw ; .
>t o5 tdy) +q(xy) =0, (12.21)
oxz  0y?

where the membrane lies in the plane (x,y) in its natural state, —oco < x <
00,—00 < y < 00, T is its tension per unit of length, w(x,y) is the transversal
displacement of the point (x,y) of the initially plane membrane, ¢'(x,y) is the
density of the transversal internal body forces per unit area, ¢°(x, y) is the density of
the transversal external body forces per unit area. The tension 7 is supposed to be
a constant in this statement of the problem. Equation (12.21) can be written in the
form

Pw 3w ; .
) + I =p'(x,y) +p°(x. ),
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where

q'(x.y)
T

q‘(x,y)
T

s pe(x,y) = -

Py =~
The following constitutive laws for the internal body forces were considered
i — 0,

= —cw;

= —aViw:

S
|

= —aV*'w — cw. (12.22)
where
a>0,c>0.

It could be shown that the law (12.22) only is physically acceptable.

12.5 Plate

Consider the bending of an elastic plate. The equation of steady state problem for
the plate with internal body forces could be written in the form [3, 12]

DV*w = ¢'(x,y) + ¢°(x,y). (12.23)

where the middle reference plane of the plate lies in the plane (x,y) in its natural
state, —00 < x < 00,—00 < y < 00, E is the Young modulus, v is the Poisson
ratio, & is the plate thickness, w(x, y) is the transversal displacement of the point
(x,y) of the initially plane reference plane, ¢(x, y) is the density of the transversal
internal body forces per unit area, ¢¢(x, y) is the density of the transversal external
body forces per unit area. The flexural rigidity

D ER’
T 12(1—v?)

is supposed to be a constant in this statement of the problem. Equation (12.23) can
be written in the form

DV*w = p/(x) + p*(x),
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where

q'(x.y) Py =L >y

i
x? == 9
pP'x,y) D D

The following constitutive laws for the internal body forces were considered
0
= —cw;

= pVw;

q
g

g

qi = aV6w;
qi = aVow + bV?w;
qi = aVw —cw;

qi = bV?w — cw;

g

"= aVow + bV?w — cw, (12.24)
where
a>0,b>0,c>0.

It could be shown that the law (12.24) only is physically acceptable. That case gives
the finite displacement and the finite bending moments under applied force. Then
the strength criteria for the finite stresses can be used.

12.6 Heat Conduction

Consider the 2D heat conduction problem. The equation of the steady state
problem is

92 02 ,
k(s + o5 ) +d @) + g rny) =0, (12.25)
ox2  0y?

where u(x, y) is the temperature of the point (x, y) of the plane, k is the coefficient
of thermal conduction, ¢'(x, y) is the rate of internal heat generation per unit volume
produced in the body, ¢°(x,y) is the rate of external heat generation per unit
volume. Equation (12.25) will coincide with the membrane equation (12.21) if the
parameter k and variable u will be replaced by the parameter T and the variable w
in the membrane equation. Then it could be concluded that the physically accepted
equation for the 2D steady state heat conduction problem is



12 Bounded and Unbounded Fundamental Solutions in MAC Models 171

aViu —kViu + cu = ¢¢,

where a > 0,c > 0 are physical constants of the heat conduction problem which
should be determined experimentally and the constitutive equation for the rate of
internal heat generation per unit volume produced in the body is taken in the form

q'(x,y) = —aVtu(x,y) — cu(x,y).

Consider now the 3D heat conduction problem. The equation of the steady state
problem is

Pu  Pu  Pu .
k e {(x,v.2) + ¢°(x,y.2) = 0, 12.26
(Mf+®f%w)+q@y@ q°(x,y,2) ( )

where u(x,y,z) is the temperature of the point (x,y,z) of the plane, k is the
coefficient of thermal conduction, qi (x,y, z) is the rate of internal heat generation per
unit volume produced in the body, ¢¢(x, y, z) is the rate of external heat generation
per unit volume. Equation (12.26) can be written in the form

Uy + Uy + Uzz = pi(x’y’ 2) +p°(x,y,2),
where

_q'(xy.2)

¢ xy.2)
P .

Pi(x,y.z) = .

px,y.2) =

The following constitutive laws for the rate of internal heat generation per unit
volume produced in the body were considered

q =0

qi = —cu;

q = —aViu

¢ = —aVtu —cu, (12.27)

where
a>0,c¢>0.

It could be shown that the law (12.27) only is physically acceptable in all 1D, 2D,
and 3D cases.
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12.7 Elasticity and 1D Elasticity

12.7.1 Differential Equation of the Problem

Consider a linear isotropic elastic body. The equation of the steady state problem
for the elastic body with internal body forces could be written in the form [6]

(A + Ve +uViu+dq +4q° =0, (12.28)

where dilatation e equals
e=divu

and u is the displacement vector with the Cartesian components u, v,w, X,V,z
are Cartesian components of the position vector of some point in the body, q' is
the internal body force per unit volume, q° is the external body force per unit
volume, A and u are Lame’s coefficients or Lame’s constants, V is the gradient,
V? is the Laplacian. Equation (12.28) can be written in the form

A+ wVdivu+uVu+q +q =0, (12.29)

The following constitutive laws for the internal body forces were considered

q =0

q = —cu;

qi = —aV4u;

qi = —aV*u— cu;

q = +bV%u —aViu — cu. (12.30)

It is supposed that a,b,c are positive constants. It could be shown that the
law (12.30) only is physically acceptable in all cases of 1D, 2D, 3D problems.

12.7.2 1D Elasticity: Case 4

Let us consider the following law for internal body forces

409 = a4 ) - cut,
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where a > 0,c > 0 are the material constants which should be determined
experimentally. Then Eq. (12.29) will take the form

d*u " d*u ‘()
—m— + — —nu = p°(x),
dx*  dx? p
where

a (&

m=/\+2,u’ n=A+2M‘

The fundamental solution for the stated beam problem satisfies the following
equation:

d*u  d’u
and the conditions
lu(0)] < oo,
u(x) # 0 for —oo < x < +00, (12.32)
u(x) - 0asx - —oo and x — +o0. (12.33)

If the Fourier transform is applied to Eq. (12.31), then the following algebraic
equation will be obtained

ms*U + s°U + nU = 1 (12.34)

and then the solution of Eq. (12.34) gives

1

Uls)=——— .
() ms* + 52 +n

(12.35)

The inverse Fourier transform of Eq. (12.35) at the point x = 0 creates

AR
0) = d
u(0) \/E/ms4+s2+ns
—00

+o00
- 1 / 1 d
— —ds
T N2 s2+n
—00

' arctan (2 (+°° ! \/? (12.36)
= ———arctan | — =—./=, :
27n Jn)l-o 2V n
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The estimation (12.36) shows that the obtained solution is bounded. The exact
solution of Eq. (12.31) can show that the conditions (12.32), (12.33) are fulfilled
too. And it means that this MAC model of the 1D elasticity can be used to get
the physically accepted solution. There are two more parameters with respect to
the classical model of elasticity and that could allow to accept the bigger set of
experimental data.

12.7.3 Strength Criteria in 1D Elasticity

Consider the density of the elastic energy in 1D elastic model considered in the
previous section “1D Elasticity: Case 4”. Then

0N 2 2
E= % |:a (%‘) + (A +2p) (%) + cuz} (12.37)

is the density of the elastic energy per unit length. The strength criteria could be
suggested in the following form

E < Ejim, (12.38)

where Ejip, is the maximum possible density of elastic energy in the body. It means
that if the value of E reaches the limit value Ejy;, then the material will change its
behavior from the elastic state to the plastic one for plastic materials or there could
be initiated a crack for the brittle materials. The energy in Eq. (12.37) consists of
two parts

E=E + E,

where

1 du\?
E, = E(A +2u) (E) (12.39)

is the classical elastic energy corresponding to the surface interactions, and

[ (au\

is the elastic energy corresponding to the internal body interactions. Consider the
density of the elastic energy (12.37) at the point x = 0. The finite value of u(0) can
be evaluated using (12.36). Then
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du

TO=-

i
Vi f v e s (12.41)
—0o0

Equation (12.41) shows that the classical elastic energy according to Eq. (12.39) is
zero at the point x = 0. Consider now

d2u \/‘ 400 2d
%0 =
dx? NG /oo ms4+s2+n / ms4+s2+n

Then

d*u ol < 2 e ds _ T 12.42
2O =Vy | w1~ Vo (12.42)
0

Equations (12.37), (12.42) show that the density of elastic energy E, corresponding
to internal body interactions is bounded and it could be used to determine the
strength of material under an applied force. The considered strength criteria (12.38)
can be applied in other cases for 1D elasticity. But that cases are not physically
accepted in cases of 2D and 3D elasticity which will be analyzed in the following
sections.

12.7.4 3D Elasticity: Case 5

Let us consider the following law for the internal body forces
q'(x.y,z) = bV%u—aVu(x,y,z) — cu

where ¢ > 0, b > 0, ¢ > 0 is a material constant which should be determined
experimentally. Consider the fundamental solution of the 3D elasticity problem
consisting of the following equations and additional conditions:
u=uxy7z2),v=vyz),w=wxyz),
bA U —al®u+ (A + p) (um + Uy + wxz)
+ulu—cu = P5§(0,0,0), (12.43)
bA3 Y —a®v + (A + ) (uxy + vy + wyz) 4+ phv—cv =0, (12.44)
bYW —al®w + (A + ) (e + vy + W) + pAW—cw =0, (12.45)
|u(0,0,0)| < 0o, |v(0,0,0)| < oo, |w(0,0,0)| < oo,
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u(x,y,z) > 0, v(x,y,z) > 0,
w(x,y,2) = 0 as x* ~|—y2 + 72 — 400,

8(x,y,z) is the § function. Because it is supposed that the Fourier transform of the
functions u(x, y, z), v(x,y,z), w(x,y,z) should exist in case of physical solution,
then the Fourier transform can be applied to these functions. If the Fourier transform
is applied to Eqgs. (12.43)—(12.45), then the obtained algebraic equations will be
solved and we get

u(0,0,0)

R? 4 yR* + fR® + B][(1 + «)R? + yR* + fR® 4 B]

/// ( + P> + aR® + yR* + fR® + B) dsdtdp
(2n)2 o

+o00
/d@/dgo / R2dR sin 0
(27t
0
» R?(sin? @ sin? ¢ + cos? 0) + aR*> + yR* + fR° + B
(@R? + yR* + fR® + )[(1 + )R? + yR* + fR® + f]

bid 27 +o00
(27z / [ / (aR? + yR“ +fR® + ﬂ)
2

(271)2 O/dQO/dqo

where the following change of variables was used

=" szdR < 400 (12.46)

o\_‘-é—

s =Rsinfcosp, t = Rsinfsing, p = Rcos 0,

v(0,0,0)

. P1 / / [ stdsdtdp
@) [@R? + yR* + fR® + BI[(1 + e)R? + yR* + fR® + f]
—0o0
=0. (12.47)
Similarly, we get

w(0,0,0) = 0. (12.48)
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Equations (12.46)—(12.48) show that the obtained solution is bounded and it means
that this model of the 3D elasticity satisfies the first strength criteria of the bounded
displacements. Let us check now the second strength criteria, which requires the
boundedness of the density of the elastic energy.

12.7.5 Strength Criteria in 3D Elasticity: Case 5

Consider the density of the elastic energy in 3D elastic model considered in
Sect. 12.7.4. Then

E = 0.50;¢;
+0.5b [ufm + uiyy + ufzz
+3 (uixy + ufryy + uixz + u?u + ufyz + u)z,zz) + 6u§yz]
+0.5b [v},, + v5,, + V2.,
+ 3 (v + vpy + Vo F UL F Uy 0p ) 4 605 ]

+0.5b [w2 + w2+ w?

po: Vyy 22z
+3 (Wix), + w)zcyy + W,%xz + wfu + W,\Z'yz + w)z,,z) + 6w§yz]

~+0.5a (u)zcx + 2u)20, + 2“;251 + 2u§z + uiy + ui)

+0.5a (vix + 2vfy + 2”;%1 + 2v§z + vyzy + vfz)

+0.5a (wix + ZWJZC’V + 2w)26Z + 2w§Z + wgy + wzzz)

+0.5¢(u® + v? + w). (12.49)

is the density of the elastic energy per unit volume, stress-components are o0y, strain-
components are e; and i, j = 1,2, 3. The strain-displacement relations are taken in

the form
1 aui " auj
egi==|—+—]).
Y 2 8xj axi

The stress—strain equation is
O'ij = Aemm&j + 2ueij.
The strength criteria could be suggested in the following form

E < Eyjn, (12.50)
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where Ej, is the maximum possible density of elastic energy in the body. It means
that if the value of E reaches the limit value Ej;, then the material will change its
behavior from the elastic state to the plastic one for plastic materials or there could
be initiated a crack for the brittle materials. The energy in (12.49) consists of two
parts

E=E + E,

where E is the classical elastic energy corresponding to the surface interactions, and
E; is the elastic energy corresponding to the internal body interactions. Consider the
density of the elastic energy (12.49) at the point x = 0,y = 0,z = 0. The finite
values of u(0,0,0), v(0,0,0), w(0,0,0) are evaluated by using (12.46)—(12.48).
We can easily obtain also that

E1(0,0,0) = 0, |E>(0,0,0)| < +00.

Then the strength criteria (12.50) can be used.
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Chapter 13
Schurer Generalization of g-Hybrid
Summation Integral Type Operators

Ilker Vural, Birol Altin, and Ismet Yiiksel

Abstract In this study, using the g-generalization of the well-known hybrid
summation integral type operators, we generalize these operators to Schurer type
operators. We give weighted approximation and obtain rate of convergence of these
operators.

13.1 Introduction

The well-known hybrid operators are defined as follows:

M) = 0= Y 50000 [ pracs OF D+ 0). (13.1)
k=1 0
where
k
Sn.k ()C) =e™ %

and

n+k—1 x*
Pnk(x) = r A+ 0rE

are, respectively, well-known Sz4sz and Baskakov basis functions. These operators
were studied in [8, 16]. Several interesting g-generalizations of certain summation
integral type operators were studied in [1, 7,9, 10, 14, 15, 17]. In this work, our goal
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is to give generalization to g-calculus of hybrid summation integral type operators.
Throughout the paper we will need the following notations and definitions which
can be founded in [2, 3, 11-13]: For n € N and a,b € R, the g-integer and the

g-factorial are defined by
Mlyg=1+qg+--+4""[0,=0
and
gt = ([l - [l n € N\{O}: [0],! = 1.

The g-binomial coefficients are given by

H S 7L G
v q_[v]q![n—v]q!’ - =

The g-derivative D,f of a function is given by

_ ) —f(gx)
(Dyf)(x) = —(1 o forx £ 0

and (D,f)(0) = f'(0) provided that f’(0) exists.

The two g-analogues of the exponential function are defined by

o

x" 1
ex = =
g ; ! T (= (=g
and
o0 xn
Ey=) " VP =1+ (1 -0
n=0 [ﬂ]q
where

o

I+aP=[]0+d .

j=1
The improper g-Jackson integral is defined as

o0/A

[ roaa=a-0 s (4) %40
0

ne€z

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

(13.7)

(13.8)
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The g-Gamma function and the g-Beta function are defined as

00 /A(1—¢q)
I,(u) = K(A, u) / e tdyx (13.9)
0
and
7 I, )
u v
B,(u,v) = K(A, dx=-"1"1 13.10
J(0.v) = K u)/ = T o) (13.10)
where
Au l u
K(A,u) = (1+ ) (1+4),™
+
and

(@+b)y=]]@+q"b).

J=1

In particular, for u € Z, K(A, u) = ¢"“~1/2 and K(A,0) = 1.

13.2 Schurer Generalization of g-Hybrid Summation
Integral Type Operators

In [5], Dinlemez et al. give a generalization to g-calculus of hybrid summation
integral type operators and they obtain approximation properties of these operators.
In this study we give a Schurer type generalization of these operators. Let k,p €
N, n € N\ {0}, A > 0 and f be a real valued continuous function defined on the
interval [0, 00). Using the formulas and the notations between (13.2) and (13.10),
we introduce g-hybrid summation integral Schurer type linear positive operators for
O0<g=<las

o0
MER(f.x) =[n+p—11,> st ()

00/A

[n+plt+
q q
X 0[ Pupi—1(Df (—[n+p]q : )dqr (13.11)
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—[n+plyx o
*e f<m+pb+ﬂ)

where
—[n+plx
ke 4
80 = (I +pl, )
(k]!
and
P = [”“’“‘— 1] X
n,p.k k . (] _I_x)Z"l‘P"rk

If we write p = 0 in (13.11), then the operators M,(ff ) are reduced to hybrid
summation integral type operators given in [5].

In this context, let us start to give the following lemma for the Korovkin test
functions.

Lemma 13.1. Let e, (t) =", m =0, 1,2. We get

(i) M&E) (e, x) = 1,

(ii)
[n + p]? o
(a.) — q
Maga @) = o s s p—2, T, B
(iii)
4
M}%g) (e2,x) = 2[n hl P]q X’
q*(n+plg+B) n+p-3l,n+p-2],
[2]q[n +P]¢31
@ ([n+ply + B [n+p—3],In+p—2],
2[n + pl
qln+p—2], (In+pl, + B)

a?

(In+pl, +B)



13 g-Hybrid Summation Integral Type Operators

Proof. Using (13.9) and (13.10), we can obtain the estimate

oo/A

/ pZ,p,k—l (t)rrnd(lt
0

00/A 14
- _ n+p+k—1-"4
k—1 . (1+ 1), P

_[n+p+k=2B,(k+mn+p—m-— 1)g<=n
k—1],![n+p—1],'K(A. k + m)
m+k—1],n+p—m— 2]q!q{—(k+m)(k+m—1)+2k(k—1)}/2
N n+p— 1],k —1],!

then, for m = 0, we get

MEH) (eo. x)

00/A

o0
=h+p-1], Z ey / Pl (Ddgt + aardr
k=1 0

o

k
n—+ X
_ e—[n+p]qu { P]'q ) e
= W
_ il
=1,

which completes the proof of (/). By a direct computation

M,gf;f} (e1,x)

00/A

ot [n+pl,t+a
AR FE (s )

o
[n+p], + B
[n+pl,
(n+pl, +B)[n+p-2],

+ e—[n-i-p]qx

k
i M D2l

P [k—1],!

183

. (13.12)
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(421,29 st il
Tt +ﬁ§: [K],! gt

o

—[n+pl,x
TR S
[n+pl,+ B

Then we get

Mr(LO;JIZ) (61 ) X)

2
B [n+ p], x o
g(In+pl,+B)n+p—2],
o

MTEY Y
_ [+ pl; x Lo
g(n+pl,+B)n+p—-2, +pl,+8

e—[n+p]qu‘[]”+P]qx

which gives proof of (ii). Using the equality
[y = [slg + ¢'ln—sl;, 0 < s <n, (13.13)
we yield

Mr(LapIZ) (82 ’ x)

o0/A

i+ plyi+ )’
=[h+p-1], anpk(x) /pnpk_l()(m> dyt

2
—[n+plx o
+e
(M+pb+ﬁ)

M+p—ﬂm+ﬂ
(In+pl, +

oo/A

: Z npk(x)[pnpk l(t)tdt

00/A
2 [n+p =1, +pl, &

2 Z "I’k(x) /pnpk l(t)t

([n+p]q+ﬁ) k=1

hntp-1], &,
([n+p] +/3) k;snpk(x)

oo/A

2
—[n4plx o
<[ oo ()
q
0
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Then we get

[n + pl, R
(047l + B I +p—3,In+p—-2],
2], [n +pl;
¢ (In+pl,+B) In+p =3, In+p=2,
2[n+p]§a
q(in+pl, +B) 1 +p-2],

2

.
(In+pl, +B)

M,(f;,é) (e2,x) =

X

which gives proof of (iii).
To obtain our main result we need computing second moment

Lemma 13.2. Let g € (0,1), p € N and n > 3. Then we have the following

inequality

2(1—¢%) 512(@ 4+ B+ D*[n +pl,
q* g*ln+p—=3Jn+p-2|,

0[2

.
(ln+pl, + B)

MER (1 —x)%.x) < (

)x(x+ 1)

Proof. From linearity of M,(f;,'fgq) operators and Lemma 13.1, we can write the second
moment as

M@P (1 —x)%, x) = M@P (%5 x) — 22xM %P (1 x) + *MEP) (15 )

n.p.q np.q n.p.q n.p.q
B § [n + plg
(Pl + B I+ p—3), [+ p -2,
2[n + pl; 2

X

q(In+plg+B)n+p—2, 1
+§ [21,[n + pl;
@ (In+plg+B) [n+p—3,In+p-2,
2[n + plie B 20
q(n+plg+B)’In+p-2, +pl+p

X

o?

e,
(ln+pl, +B)
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and hence
MER (£ —x)%,x)
- { [n+ pli
"+l +B) I+ p=3,In+p-2],
2[n + pl;
T e P2,
2]l + pl
@ (In+plg+B) In+p—3l,In+p-2,
2[n —i—p]ga
g(n+ply+B)’In+p-2,
2 2
—m x(x+1) + m.
Then we get
MEB (1 — %), %)

<

(im0l (14+4%) = 26 [n+p=313 | +24*B [n-+pl, [n-+p=3], ln-+p-2],
{ g* ([n+ply+B)” [+p=3], In+p-2],
q'B* In+p-31, In+p—2], +q 2], In+pl, +24° [n+pl; [n+p-3],
g* (In+ply+8)” In+p=3], In+p-2),

x(x+1)

o2

.
([n +pl, + B)
From (13.13) we have

MR (1= )%, %)
B [n+p-31; |¢"*+4"°—2¢°|
B { g* (n+plg+B)” Intp=3], In+p-2],
(1+4*) {4° In+p=31] B3], +64° [n-+p=3]2 32 +44 [n-+p=3), 31} + 313}
g* (In+ply+P)” n+p=3), [n+p-2],
2(n+pl, (B +a+1)
g (n+ply + B) [n+p =31, [n+p -2,

a2

.
(ln+pl, +B)

+

x(x+1)



13 g-Hybrid Summation Integral Type Operators 187
which implies

MEP) (£ — x)7, x)

_ (2(1 —¢)  512(e+ B+ 1D)n+pl,
-\ ¢ g*ln +p = 3lgln +p -2,

o2

+—.
(In+pl, + B)

)x(x+ 1)

And the proof of the Lemma is now finished.

Corollary 13.3. Let (g,) be a sequence in (0, 1) and let g, — 1 as n — oo, Then
lim M@P) ((+ — x)?,x) = 0 for each p € N.
n—>0o0

n.p.qn

13.3 Direct Results

Now, we need some definitions of elementary function spaces B[0,oc0) and
C3[0, 00). B[0, o0) is the space of all bounded functions from [0, co) to R. B[0, c0)
is a normed space with the norm

I£llz = sup{lf(x)] : x € [0, 00)}.

Cp[0, 00) consists of all continuous functions in B[0, co). We denote first modulus
of continuity on finite interval [0, b], b > 0

wpp(f.8) = sup lf(x 4+ h) —f(x)]. (13.14)
0<h<8x€[0,5]

The well-known Peetre’s K-functional is defined by
K (f.8) = inf{|lf —gllz + 88", : g€ W} . 8>0
where
W2, = {g € Cp[0.00) : g’ " € Cp[0,00)}.
In [4, p. 177, Theorem 2.4], there exists a positive constant C such that

K>(f. 8) < Can(f, V/8) (13.15)
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where

wr(f,V8) = sup  sup [f(x + 2h) = 2f(x + h) — f(x)] .

0<h<A/8 *€[0,00)

The weighted Korovkin-type theorems were firstly proved by Gadzhiev in [6]. We
give some results similar to Gadzhiev’s theorems in weighted spaces. Let p(x) =
1 4+ x*. B,[0,00) denotes the set of all functions f, from [0, 00) to R, satisfying
growth condition |f(x)| < Nyp(x), where Ny is a constant depending only on f.
B,[0, 00) is a normed space with the norm

il = sup{ V(( ;' X € R} .

C,[0,00) denotes the subspace of all continuous functions in B,[0,c0) and

C* [0, oo) denotes the subspace of all functions f € C,[0, co) for which hm lfixil
|x|—>00 px

exists finitely.
The following lemma is routine and its proof is omitted.

Lemma 13.4. Let

—(a.B)
M, ,q (%) = M,(,";,g)(f,x)

_f [n+ p] n o (13.16)
q(n+pl,+B)n+p—2, h+pl,+8)
+f (x).

Then the following assertions are hold:

Q) anq(l x)=1,

(ii) M,(lap? (t,x) = x,

(iif) anq( —x,x) =0

Lemma 13.5. Let g € (0,1), p € Nand n > 3. Then, for every x € [0, 00) and
f" € Cpl0, 00) we have the inequality

i —se| =35 1,

where

whro (20— 514(a+ﬁ+1)2[n+p]q)
8n17q()_ ( 7 6]4[”+P—3]q[n+p—2]q x(x+1)

Ol2

.
(ln+pl, + B)
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Proof. Using Taylor’s expansion
t
1O =F0) + =27 @ + [ @
and from Lemma 13.4, we obtain
t
—(.B) (Ot B) .
ML o0 =00 =305 | [ - Goducx

Then, using Lemma 13.1 and the inequality

(t— X)z

[ (0 — wf"(Wdu| < If"]la
we get

Mot (.0 = 10|

t
< M5 / (t = w)f"(u)du. x

[rt+p]2
tl([n+p]q+ﬁ)[n+p 2g [”+”]q+/3

_ [n+plgx o _ 11
(q([n+p]q+ﬁ)[n+p—2]q t ol 78 ”)f ()l

Ilf ||BM<a B ((t — x)%, x)

2 np.q
7l (( oty 1)x
2 q(n+pl,+B)n+p-2],

L« 2
[n+pl,+8)

which implies

P20 0 — £ )|
_ s § (2(1—q3) 512(a+B+1)?n+pl

2

e
(In+pl, +B)*

2 ¢ 4 [”+P_3]q[n+l7_2]q) xrDE
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”f”"B { [n =+ p]gxz B [n + p]2 2 2
2 2(n+pl, +B)’ In+p-272 aln+pl,+B)[n+p- 2]

T S ln-+7] ) [ —2 2
[n+p], +B \ ¢ ([n+p], +B) n+p-2], [n+p), +8

- (2(1—q3) 514(a+B+1)*[n+pl,
- q* q*[n+p=3l4[n+p-2],

2

o Z
—([nmq +,3)2} 1711 5-

) x(x+1)+

And the proof of the lemma is now completed.

Theorem 13.6. Let (q,) C (0, 1) be a sequence such that q,, — 1 as n — co. Then
foreveryn > 3, x € [0,00) and f € Cg|0, 00) we have the inequality

M) (F,x) —f(x)| < 3Can (f 8t (x)) +w (. 050 (x))

where

[n+ p
(aﬂ) = e _1
0 (qn (in+pl, +B) ln+p-1, )x

I
[n+pl, +B8

Proof. Using (13.16) for any g € W2, we obtain the equality
M©@B)
Mo (. 0) = F )]
(.B) ——(@.p)
= i (= 8.0 = (F = @) + Myl (8. = 80|

[ﬂ+p](zmx o B
- }f(q(["+qun+ﬂ)[n+p—2L,,, + [n+p]q,,+ﬁ) f@)-

From Lemma 13.5, we get

\MB) (F.x) — £ (x)

<3If —glls + 852 ) ¢

. [+ pl;, x L o
gn(n+pl, +B)In+p—-2, [+pl, +B ‘
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By equality (13.14) we have
M) (7.2 — 10| < 3117~ glly + 5% @) ],
+w (.l ().

Now taking infimum over g € W2, on the right side of the above inequality and
using the inequality (13.16), we get the desired result.

Theorem 13.7. Let (q,) C (0, 1) be a sequence such that q,, — 1 as n — oo. Then
f € C3[0, 00), we have

; (a.B) _ —
nll)nc;lo ||Mn(,);),qn (f) f”P - O'
Proof. From Lemma 13.1, it is obvious that ||M,($;gl (e0) — eoll, = 0. Since

[n +P]§n i a
gn(n+pl,, +B)n+p-2,  [+pl, +B

—x| < (x+ Do(1)

and fixlz is positive and bounded from above for each x > 0, we obtain
@) (o) xt1
1M, (e — el = 5 —o().
And then

Jim IMEP) (e1) —erl, = 0.

Similarly, for every n > 3, we write

M5 (e2) = ell,
4
[n+ pl, 2
2
_ o |Gl 4 B) =3, In+p =2,
x€[0,00) 14+ x2
[2g, [n-+7);, . 2ntpl,

@ (I + plgy+8)” n+p=31,, In+p=21,  guln+p—2],, (In+ply+B)°
142
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2

e
N (In+pl,, +)°
14+ x2
l+x+22
< sup ——o(1),

ref0o0) 1422
we get

Jim IMEP) (e3) — s, = 0.

Thus, from Gadzhiev’s theorem in [6], we obtain the desired result.

Lemma 13.8. Let f € C,[0,00),(gn) C (0, 1) be a sequence such that g, — 1 as
n — 00 and wyo p+1)(f, 8) be its modulus of continuity on the finite interval [0, b+1],
b > 0. Then for every n > 3, there exists a constant C > 0 such that the inequality
holds

IMEE) (. x) = £ )l cpo.e

<c { b+ 1PECH) (b) + wops (f; Jewh @)} ,

where

i qr ayln+p—=3),In+p-2,,

Ol2

T
(In+pl, +B)

)b(b—i—l)

Proof. Letx € [0,b] and ¢t > b + 1. Since t — x > 1, we have

f(1) —fO)] < Nf2+ (1 —x+x)* + x)
< 3N¢(1 + b)*(t — %)% (13.17)
Letx € [0,b],t < b+ 1 and § > 0. Then, we have

|t —x

() — ()] < (1 + T') s (fs8). (13.18)

Due to (13.17) and (13.18), we can write

£ — @] < 3N (1 + Bt — )" + (1 + ”;—’“') Oosi11(F8).
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Then, using Cauchy—Schwarz’s inequality and Lemma 13.2, we get

M) (%) = f ()|

n.psqn

<3N (14 b°MEP) (1 —x).x)
o 1 @p) ) 1/2
+a)[0,b+1](fs 8) 1 + g (Mn,p,q,, ((t —.X) ,X))

<3N (1 + b)°E%P) (x)

1 1/2
ronm (i) 145 6550

where
2(1 = ¢° 512(a + B+ 1)*[n +
i - (M8, SHepe e,
qn 6In[n—|—p_3]qn[n—i_p_z]t]n
o2
+t—.
Choosing,
2. g(@p)
8 T g"llv);)»qn (b)
2(1—¢° 512 1)2
_ (4%) 4 @+ B+ Dt 2l )y
qn qn[n +p - 3]fln [n’ +p - 2]‘7n
o2

t——
(ln+pl, +B)
and C = max{3Ny, 2}. We reach the proof of Lemma.
Theorem 13.9. Lety > 0, (¢,) C (0, 1) be a sequence such that g, — 1 asn — oo
andf € C;‘ [0, 00). Then, we have

s -

lim su
n—00 x>€ 14+ x2ty

Proof. Fory > 0,f € C;[0,00) and b > 1 the following inequality is satisfied

M) — ) M550 .0 — £ )
< S
+ x*Tv

sup
x>0 1+ x>t 0<x<b
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o 00 1)
sup

b<x 1 + x2+7
< |mlo ) 1| clo.6]

o 00 1)
sup

b<x 1+ X2ty
|| '(lo;ffh (f) f” Cl[0,p]

+ M550 =11,

Using Lemma 13.8 and Theorem 13.7, we complete the proof of Theorem 13.9.
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Chapter 14
Approximation by g-Baskakov-Durrmeyer
Type Operators of Two Variables

Ismet Yiiksel, Ulkii Dinlemez, and Birol Altin

Abstract In this study, we investigate approximation properties of g-Baskakov—
Durrmeyer type operators with two variables. We give a Voronovskaja type theorem
for these operators. In addition, we obtain the rate of convergence for these
operators.

14.1 Introduction

In their paper [5], Aral and Gupta introduced a new class of operators named
g-Baskakov-Durrmeyer type operators of one variable which are defined as

o0/A

o0
Dif:ix) =[n—1],> pl, / Pl () d,t. (14.1)
k=0 4
where
q _|n+k-1 % Xk
Pre?) [ k } (U4 2y
These type of operators were studied in [4, 6, 14, 19]. For ¢ = 1, these

operators are reduced to Baskakov—Durrmeyer type operators introduced in [18]
and the approximation of these operators was studied in [13, 21]. We generalize
these operators to two variables operators. Now we give necessary notations and
definitions. Let D = {(x,y) € R?: 0 <x, 0 <y}, C(D) be the set of real valued
continuous functions on D and

C,(D) = {f € C(D) : [f((x,y)| < Ny (1 + x° +y2) for some Ny € R+}
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and

f(xy) .
Cc*(D e C,(D e t
p( ) =f ( ) V)_)&oo)1+x2+y exists

with the norm [|f||, = sup H“I’;i)lz . Let us introduce two variables of Baskakov—
0<x, 0<y

Durrmeyer operators Mj : C(D) — C(D) as follows: for f € C(D) and
(x,y), (s,1) € D,

00/A 00/A

MA(f: (x.y) = [n— 117 Y b, ,(x.y) / [ bl (s Df (s, 0)dysdyt,  (14.2)
0 0

k,IeN

where

bZ.k,l(x, y) = PZ,k (X)PZ,Z()’).

Approximation functions of one or two variables by certain positive linear operators
in weighted spaces can be found in [2, 8-10, 12, 15-17, 22-26]. In all undefined
terminology concerning approximation theory we will adhere to [6].

14.2 Generalization of g-Baskakov—Durrmeyer
Type Operators

In this section, we give some classical approximation properties of these operators.
We use the following notations, for brevity,

eij(s,t) = s't ey j(s,t) = s' + ¢ and F, 4 (k) = K, [k +1],...[k+m],

fori,j, k,m € N.
We give the following lemma to obtain a relation between the operators M
in (14.1) and DY in (14.2).

Lemma 14.1. Forn > 1 4+ max {i, j}, we have the equation
M(ey; (x,)) = Di(s’; )DI(F: y).
Proof. By Fubini’s Theorem, we may write that

M (ej; (x.y))

00/A 00 /A

=[n—1] Zb ax, y)f / bl (s, Deji(s, 1)dysdyt,
0 0

k,leN
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oo/A ki K
n+k—1] g2

=[n— 1]5 Z Py P, () / [ ] )
kJeN 4 k g 19

o0/A 2
/|:n+l—1:| gz dt
X —_—
n+l4 ’
) l q(l + 1)

which gives

M (ej; (x,y))
00/A i 2
— i g n—1 A
= DZ(S ,x) [n - l]qpn,O(x) / [ 0 ] (1 + l)ndqt
0 K !
00/A

0y = [ [1]
0

2
1 Higs
————dt+---
n+1"4
, o

= DI(s'; x)DL(¥; y).

The equations (i)—(iii) in the following lemma follow from the paper in [5].
Lemma 14.2. The following statements hold for n > 5:

(i) Mi(ego; (x,y)) =1,

(ii)
. _ Foa(mx 1

Mz(el()s (-xls-XZ)) - qu().q (l’l — 2) qFO’q (ﬂ — 2) s
(iii)

) _ ks [2]3 Foq ()

M(ex; (x1,x2)) = OF, (n— 3)x FF1q(n— 3)x
(2],
+q3F1’q (n —_ 3) ’

(iv)

M (es30; (x,))

_ F2,q (I’l)

Fl,q (}’l) )
= —""—"-X
qleZ,q (}’l - 4)

+ {51, + gl21;} mx
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+ iR, + Ry q9Ff,°;"<i"1 n" q6F[22,]qq([i]q_ B
)
M (es0: (x,))
- #((:)_S)x“ + {7, +q[5], + °[21;} #&xs
+ 1161, (181, + a[2) + 222 4], + ¢*12],} WF;_(()_S)
[n],

+ {151, (122 141, + ¢ 2,) + 4" 2], 131, }

2], 3], [4],
q10F3,q (n - 5) -

qFs, (n—5)"

Proof. We obtain the estimate

00/A 00/A

/ / D0 (P ()emn(s. Dean(s. 1)dysdyi
0 0

k+m]![n—m=2] [l +v],![n—v—-2],!
(In— 11,1 K1, 14,

—(ktm) ktm+ 1=+ v+ D42+
2

X q (14.3)
Then taking into account Lemma 14.1 and (14.3), we have
M (e30; (x,y)) = Di(s*; 0)Di(1;)
. S k=17 ¢oB,(k+4,n—4)
— q n - 4 A
=[n— l]q an,k(x) [ k } g3 G+4)/2
k=0 q
> n +k—1 R=n—12 Fp , (k+ 1)
= Z[ ] g 2 —I— (14.4)
k=0 k q Faq(m)

Replacing the following equation in (14.4),

Fog(k+1) = Foy (k—2) + {[S]q +q [2]3} Fig(k—1)

+ {41421 + (2]} K]y + 21, 131, -
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we get
M(eso; (x.))

Fay (n) i |:n +k— 1i| R=Tk—12 Xk

Fz_q (l’l — 4) pt k—3 (1 + x)Z‘i‘k
Fiq(n)
5 2o ———
+{[ ]q+Q[ ]q} Fp,(n—4)
o0 k
n+k—1 K2—5k—16 X
x Z |: :| q ’ n+k
= k—2 . (1 +x)
[n],

+ {141,217 + ¢° 121, Fro(i—4)
q

oo k
n+k—1 K2=3k—16 X
XZ[ :|q : n+k
P k—1 . (1+x)q
L 2,0, i[n—i—k—l} o
q

Frq(n—4) & k (1 4 x)pte’

as desired (iv). Using similar steps and the following equation
Fz4(k+1)
= F3q(k—3) + {7, + q[5], + ¢’[2];} F2,, (k- 2)
{161, (151, + 4 [212) + 28 [4), + 6°Lly} ¢’ Frq (= 1)

+ {151, (122 141, + ¢ 21,) + ¢ 121, 131, ¢° K
+ 121, B3, 14,

one can prove (v) easily.

The following theorem gives us the Baskakov type theorem (see [7] ) to get the
uniform approximation to the functions in C; (D) by the sequence of the positive
linear operators M{.

Theorem 14.3. Let 0 < g, < 1, (g,) — 1 as n — o0 and f be belong to C;‘ (D).
Then

tim || a3 () — ], = 0
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if and only if the following statements are satisfied:
() lim ”MZ” (€00) — €00 ”p =0,
n—>oQo
(i) tim [[Mg (e10) = exo],, =0,
n—>00
(iii) Lim Mg (eor) —eor |, = 0,
n—>oo
(iv) l_i)m ||M,‘{" (e20 + e2) — (e20 + €02) ”p =0.
n—>0o0

Proof. The necessity part is trivial. The sufficient part needs proof. Let
D,={(xy) eR*:0<x<a,0=<y<a}.

(x,y) € Do, r > a, and f € C;(D). Choose & > 0. Since f is uniformly continuous

on D,, r > a, there exists some § > 0 such that \/(s —x)+(r—y)*<$§ implies

[f(x,y) = f(s.0)] <e. (14.5)

On the other hand, if \/(s —x)*> + (r—y)* > § for (s, 1) € D, we have

(=0 + (t—y)’
52

f(s, ) —f(x,y)| <My for some N; > 0. (14.6)
Combining (14.5) and (14.6) we get

(s =)+ (—y)°
82 ’

[f(s,0) = f(x,y)| < e+ N, (14.7)

If we apply the positive operators M to the equation

f(S, t) = (f _f(xv y)eoo)(s, t) +f(-xv y)»
then we obtain the following inequality:
M (f: () = f(x.9)]

= | M (f —f(x. y)eoo + £ (x. ¥)eoo: (x.3) —f(x. )|
< M (If = £ (e, ¥)ecol s (5, 9)) + IIf 1], [ M (eoo: (x,3) = D] . (14.8)

Again applying the operators M to (14.7), (14.8) and from Lemma 14.2, we get
M (F: (2, 9) = f(x. )]

<e+ 28@ {Mj{" ((x -5 (x, y))
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+ M ((y -7 (x, y))} + If1l, [M" (e00; (x. 7)) = eoo(x, )|

2Kf F] q (n) 2F().q (I’l) 2 2
— = sqn _ “qn 1
T { (qsm.q,, =3 @og -2 )T
212 Fo., (1) 2 2]
+ - an 10,9 _ (x + y) + 3—c1n )
P g, m—=3)  qulFog, (n—2) g F1.4, (n—3)

Hence the proof of theorem is completed.

We need Bohman—Korovkin’s Theorem in [1, 3, 20] for giving our following
Remark 14.5.

Theorem 14.4 (Bohman-Korovkin). Let K be a compact Hausdorff topological
space which contains at least two distinct points and let 2m functions fi,f>, ..., fm
ai,az,...,ay in C(K,R) be such that

P(x.y) =Y £(0a(y) = 0. Y(x.y) €K,
j=1
and P(x,y) = 0 ifand only if x = y.

If (H,), H, : C(K,R) — C(K,R), is a sequence of linear positive operators
such that H,(f;) — fj, n — oo,j = 1,...,m, then we have H,(f) — f, for each
f € C(K,R).

Remark 14.5. If we take C(D,) instead of C’; (D) in the hypothesis of Theo-
rem 14.3, then we obtain alternative proof of Theorem 14.3 by means of Bohman—
Korovkin’s result. Indeed, take K = D,, fi = eq, o = €10, f3 = eot1, fu = e,
a) = exn,ay = —2ey9, a3 = —2ep; and ay = ego, P((x.y). (5, 1)) = (x—5)*+(y—1)*.

14.3 Voronovskaja-Type Theorem

Let us define the moment functions V;; by
Vi(s,t) = (s —x)' (t—yY, i,j e N.
By simple calculations, the following lemma can be obtained easily.
Lemma 14.6. For each (x1,x;) € D andn > 5, the following equations are hold:
(i)
(2], x N 1
quO,q(n - 2) CIFo,q(” - 2) '

M} (Vio; (x,y)) =
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(ii)
MI(Viy; (x,y))
B 1 2Ly 2,4y 1
_(Fo,q(n—2)) < ¢ ¢ 7))
(ii)
M} (Vao; (x,))
_ Fl.q(n) _ 2F0.q(n) ) 2
- (q6Fl.q(n -3) qZFO,q(n -2) )
PR 2 2,
" (qanm =3) " qFog(n— 2)) PR, n—3)
(iv)

M (Vao; (x,))

_ (Fz,q(n) — 4¢°F24(W)Foq(n — 5) + 6¢"F1 4 (n)Fy 4(n — 5)
q20F3,t/(n - 5)

—4g'8F (M) F24(n — 5) + ¢*°F3 4(n — 5) ) x4
CIZOF.%,q(n - 5)

({mq +q15), + ¢ 21} Fay () — 44* {[5), + g LI F1,00F (0 —9)
+ 19
q F3.q (n _ 5)

N 69" [2I; Fo g (0)F1 4(n — 5) — 4" F2 4(n — 5) B
qlgqu(n - 5)

{161, (131, + g 1212) + ¢ 22141, + ¢* (21, } Fi o)
" 47— )

—4g® (2 14, + @ 21,) Foy)Foy(n = 5) + 64" 21, Fryn =5\
q17F3.q(n - 5) g

{151, (1202 141, + & 21,) + ¢ 21, 31, Fo ) = 46° 2], 3], Fog(n —5)
- giEry(n—5) g

21, 31, [4],
q'Fs4(n)
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On the other hand, by means of the following equality
[n+m], = [m], + q"[nly, (14.9)

one can rearrange some terms, in MI(Vy; (x,y)) and MI(Va;(x,y)) in
Lemma 14.6, as

(6]3 + qé) FO.q(n —-3)+ [2]q[3]q )

M (Vo (x,y) =

qéFl,q(n - 3)
(4 + ¢°) Foq(n—3) + [213[31qx
qSFl.q(n -3)
2],
@F14(n—3) (14.10)

and

MI(Vaos (x,y))

(((Fogn=9) 01— ¢ +9) (1 =g+ — ¢ + 4
B ¢*°F3 4(n —5)

+ (Fou(n—9)"¢"" (1 +¢)

20+~ + ' — ¢ +¢° — 44" +5¢° = 54" + 64" — 3¢' +3¢")
q20F3,q(n - 5)

+ Foq(n—5)¢’ (g+ 1)

, % 3g+7¢% + 9¢° + 13¢* + 15¢° + 17¢° + 15¢7 + 13¢® + 15¢° + 13¢"°
q20F3,q(n_5)

+ 13¢'2 4 149" 4+ 8¢" + 99" +3¢'° + 34" + 1 [S]q[7]q[8]q[6]q) 4
X
q*°F3 4(n —5) q*°F3 4(n—5)

N (Fou(n—5))" (1 = 9> ¢'8(1 + ¢*)
419F3.q(" —5)

(Zq_5q3_7q4_6q5_6q6_5q7_q8+6q9+2q10+q“ +1)
qlgF’a'.q(n —5)

+ (Fou(n—5))* ¢ 3

(5¢ + 144> + 274 + 41¢* + 51¢° + 56¢° + 55¢7 + 484° + 434¢°)
q19F3.q(” —5)

+ Foq(n—5q {

+ 46q10+47qll +43q12+37q13+28q14+17q15+7q16+3q17+1
q]9F3,q(n - 5)

1514[61a(71, (171, + 128 +4131,)
" ¢ Fs g —5) *
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{161, (181, + g 22) + ¢ 21 14, + ¢* 2, Fr.o0)
+ ql7F3,q(n_5)

—aq® (1213 1, + ¢ 21,) Fo.g)Fog(n = 5) + 64" 21, Lo =5\
* qTFs 4(n1—5) "

.\ ({[SL, (2141, + ¢ 21,) + & 21, B3l Fogn) — 40° 21, B3l Foq(n = 5))
X

q14F3.q(n —5)
(21, 31, [4],
s, () (14.11)
Using Lemma 14.6 and [n], = 1:33, we can give the following corollary.

Corollary 14.7. Let 0 < g, < 1 and (g,) — 1 as n — oo. Then we have

lim [n], M"(Vio; (x,y)) = 2x + 1,
n—>00 n

lim [n], M (Vao; (x,y)) = 2x(x + 1),
n—>oo

lim [n], M@ (Vi1;(x,y)) = 0,
n—oo
lim [n]2, M (Vag; (x,3)) = 122°(x + 1)

n—>oo

Let us denote the space of functions having continuous partial derivatives up to
order 2 on D, by C?(D). We now give a Voronovskaja type theorem for M? operators.

Theorem 14.8. Let0 < g, < 1 and (q,) — 1 asn — oo . Suppose that f € C*(D).
Then for each (x,y) in D, we have

im_[n],, (M2 (f: (x.) = £(x.)

= (2x + Dfi(x,y) + 2y + Df(x,y)
+ 20 (x + 1) fir () + 2y 0 + 1) £ (%, y).

Proof. Let (x,y) be a fixed point in D and f € C?(D). By Taylor formula for f
we get

f(s,0) = fx,y) + £, 9)Vio(s, ) + (6, 9) Voi (s, 1)
S V(5.0 (5 = 07+ fy (6 3)Vin (5,0
+ %fyy(x’ YVoa(s, 1)

+ ¥ ((s,0); (5, ) v (Vao + Voa) (s, 1). (14.12)
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From the symmetric properties M2, M (e;;; (x,y) = M (e,-j; (v, x)), Lemma 14.6,
[, = t_Zf and applying the operators M to Eq. (14.12), we write

nllrgo 1], M (7 (e 9) = f(x,)]

= fr(x,y) nll>nolo {[n]q,, M (Vio; (x,))}

+ Tim £,0c,3) {[nl,, M (Vor: (x. )
+ %fm(x, W) Jim {nly, M (Vao: (3, 1)]
+ (e y) lim {fn,, M (Vi (x.3))]
() lim (T, M3 (Vo: (2.}

+ tim {nl,, M2 (V. 0V Voo + Vo ()} (14.13)

Coupled with lim M? (¥2; (x,y)) = 0 and Corollary 14.7 yield
n—>oo

tim [al,, M2 (¥ y/Vao + Vou: (x.3)) = 0. (14.14)

n—>o0

The proof of the theorem is completed by combining Corollary 14.7, (14.12)—
(14.14).

14.4 Rate of Convergence

Full modulus of continuity of f € C(D,) is denoted by w(f;d) and defined as
follows:

W(f;8) = max { F(s.1) = fr.9)] - (s.1). (x.y) € D,

and \/(s —x)? 4 (t—y)* <8} . (14.15)
Partial modulus of continuity with respect to x and y is given by

w!(f;8) := max max_ lf((xl?)’)) —f((x2. )] (14.16)

0=y=al|x;—x2

and

w?(f;8) := max max_ lf((y y) =f(y2))l (14.17)

0=<x=<a|y;—
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respectively. We shall need some well-known properties of full and partial modulus
of continuity in [11]:

w(f; A8) < (1 + A) w(f;8)

for any A > 0 and girr(l) w(f;8) = 0.
—>
The following theorem gives us the rate of convergence of the sequence of linear
positive operators (M?) to f, by means of partial and full modulus of continuity.

Theorem 14.9. Let 0 < g < 1. For f € C(D,), the following inequalities are
satisfied

3(a+1)
M50 =l e,y < ‘@W( m)

and
4(a+1)
M (f) — <dw|fi ———— .
M5~ e, = (f g Fo.q(n—Z))
Proof. Let (x,y) € D,. We write
M2 (F: (x.y) = f(x.y)]|
00/A 00 /A
<=1 ) [ [ B0l — el dsd
k,leNy 0 0
00/A 00/A
<1 Y bt [ [ Bt
k€N 0 0

X ‘1 + |55_ il W (f, 8n1) dgsdyt

n,1
00/A 00/A
+n—1]; szk,(xy)/ f b, (s.1)
k,leNy
|t —yl
x 1+ 5 w(f, 8,2) dgsdyt. (14.18)

n,2

Using the inequality (a+b)P < 2= (a? 4 bP), forp > 1, (14.16), (14.17), Cauchy—
Schwarz inequality and (14.10) in (14.18), we obtain
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|MY(f: (x.y) — f(x.y)]

1
<241+ STMZ (Vao; (x,y))% w(f', 8.1)
n,1
1
24 1 M (Voo y»} W(f. 8,2). (14.19)
n2

From (14.10), one can write the following inequality:

8 (x4 1)
M (Vao: (x,y)) < ————=. (14.20)
qéFO.q (n—2)
By (14.19) and (14.20), we obtain
|MZ (f; (x, ) — f(x, y)| < Aw(f,8n1) + 4w(f, 8,2). (14.21)
2 2 . . ..
where 6, = % and §8,, = %. Using the above inequalities

and (14.15), we get

M2 (F: (x,)) = f(x.y)]|
<[n— 1]2 Z bz,k_z(xvy)

k,leNy
00/A 00/A
x / / B (t0s) |14 YOIy (75,) st
0 0
< 4w (f,d,), (14.22)

where

8 {(x 1 4O+ 1)2}
CIGFO,q (n - 2)

n —

Finally, taking supremum on (x,y) € D, at (14.21) and (14.22), we get the desired
results.

The class of the functions f in C(D,) satisfying the following relation
w(f;6) < M&%, forall § > 0,

is called a Lipschitz class and denoted by Lipy (o) for M > 0 and 0 < o < 1. The
following Corollary is routine and its proof is omitted.
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Corollary 14.10. Letf € C(D,). If f € Lipy (@), for 0 < a < 1, then the following
inequality

||MZ(f) _f”C(Da) < 4Ms;

holds, where M > 0 and §,, are given in the above theorem.
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Chapter 15

Blow Up of Solutions of Second Order
Semilinear Parabolic Equations Under
Robin Boundary Conditions

Jamila Kalantarova and Mustafa Polat

Abstract We considered initial boundary value problems for semilinear heat
equation with a nonlinear source term under the Robin boundary conditions.
Sufficient conditions for the finite-time blow up of solutions with negative initial
energy and arbitrary positive initial energy are obtained.

15.1 Introduction

We study the following initial boundary value problem

U — Au=f@u) + h(x,1), xR, t>0, (15.1)
ad
a—u—i—vu:O, Xx€dR, >0, (15.2)
n
u(x,0) = up(x), xe€ 82, (15.3)

where §2 is a bounded domain in RV with smooth boundary 952, v is a given
non-zero number, ug, i, f(+) are given sufficiently smooth functions for which the
problem (15.1)—(15.3) has a local in time classical solution (for results on local
solvability of the problem (15.1)—(15.3), we refer to [3, 5]). We assume also that

h e L*(0, 00; L2(£2)) N L%°(0, 00; L*(£2)), (15.4)

and the nonlinear term satisfies the condition

fls)s =2(1 + a)F(s), F(s)= /Sf(t) dt, forall s € R. (15.5)
0
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Our main goal is to show that under these conditions solutions of the prob-
lem (15.1)—(15.3) corresponding to a wide class of initial data blow-up in a finite
time. The problem of blow-up of solutions of nonlinear parabolic equations under
Robin boundary conditions have been considered in [1, 6, 7]. In [6, 7], using the
energy method the authors established blow-up of solutions and obtained a lower
bound of blow-up time for the solutions of the problem (15.1)—(15.3) with Aa(x, ) =
0, essentially employing positiveness of the coefficient v and the initial function
up(x). In [1] similar results are obtained for a quasilinear parabolic equation.

In this note, by using the concavity method of Levine [4], we will derive sufficient
conditions for the finite-time blow-up of solutions of the problem (15.1)—(15.3)
regardless of the sign of v and the initial functions u((x) under the Robin boundary
conditions. We also showed that solutions of initial boundary value problems for the
semilinear heat equations under Robin boundary conditions with v > 0 may blow
up in a finite time even when the initial energy is arbitrary positive number.

In what follows we use the following inequalities:

(a) The Cauchy inequality “with &”
2, 1oy
ab < ea” + —b", (15.6)
4e

which is valid for each a, b > 0 and ¢ > 0, and
(b) the following version of the Poincaré inequality (see, e.g., [2] Chap. )

/ vido < e/ |Vv|?dx + C(e)/ v2dx, (15.7)
a2 2 2

which is valid for each function u from the Sobolev space H'!(£2), where
2 € R" is a bounded domain with boundary 92, € > 0 is an arbitrary positive
number, C(¢) > 0 depends on €.

Our main result will be established by using the concavity method based on the
following lemma.

Lemma 15.1 (see [4]). Suppose that Y (¢) is a positive, twice differentiable function
satisfying the inequality

' OW (@) — (1 +a)[¥' ) >0, forallt >0,
with
w(0) >0, ¥'(0)>0.

Then there exist t; > 0 such that W (t) tends to infinity as

_ v(0)
t—>1 <h=——"—.
OlllI//(O)
In what follows we will use the following abbreviations (-,-) and || - || for the

inner product and the norm of L?(£2).
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15.2 Blow-Up of Solutions

First we find sufficient conditions of finite-time blow-up of solutions of the
problem (15.1)—(15.3) when v € R \ {0} and the corresponding initial energy is
negative.

Theorem 15.2. Suppose that the conditions (15.4) and (15.5) are satisfied and the
initial function ug satisfies

— | Vuol|> —v | uf(x)do +2 | F(uo(x))dx
Jrive]

= PIERA PR
- o) do( + 1)

I fa+2 —1 )
= C 1 , 15.8
+5 (505 v + 1) ol (158)

where C(|v|™Y) is the constant in the Poincaré inequality (15.7) with € = |v|™},

o
H, = / V()| di and Hy = sup [1h(0)]].
/ teRt

1
Then there exists t; < t, .= o such that
o

I
8

t
lim / lu(s)|Pds
=1
0

Suppose that u(x, t) is a local strong solution of the problem (15.1)—(15.3). It is
clear that the function v(x, r) = e ™u(x, t), m > 0 satisfies the equation

mv + v; = Av + e "'f("v) + e " h(x, 1), x € 2,1 > 0, (15.9)

the boundary condition

9
a—v+vv=0, xedR, >0, (15.10)
n

and the initial condition

v(x,0) = up(x), x € 2. (15.11)
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Our aim now is to find sufficient conditions for blow-up of solutions of the
problem (15.9)—(15.11). It is obvious that blow-up of v implies the blow-up of u.

Proof. Assume v(x, t) is a solution of the problem (15.9)—(15.11). Multiplying the

Eq. (15.9) by v, and integrating over £2 and using (15.10) we obtain

d|m 1 v
LS+ 5190l + 2 [ oo |+ o?
82
= e_m’/f(em’v)v,dx—}—e_m’fhvtdx.
2 2

It is easy to see that
d mt mt mt mt
EF(e v) = f(e"v)(e"v, + me™v).
Plugging the expression
—mt mt —2mt d mt —mt mt
e MM =e EF(e v) —me "f(e"v)v

into (15.12) we obtain

d|m , 1 v

1 = v/ 2 = Zd

S Sl 4 SIV0lP + 5 [ oo
EI)

d
+ [lve))? —e_zm’E/F(em’v)dx
o)

+ me*””/f(em’v)vdx = ef”"/hv,dx.
2

2

Since

dt
2

d d
e_zm’—fF(em’v)dx = e_zm’/F(e’"'v)dx
2

+ 2me™2m / F(e"v)dx,
2

(15.12)

(15.13)
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we have

d | m 1 v o "
S0+ 3190l 43 [ oo — e [ Feemiyas
982 2

+ lv|? +me_m’[f(e””v)vdx—2me_2m’/F(em’v)dx
2 2

= e_’”’/hv,dx. (15.14)
2

By using the condition (15.5) we see that
e ) = e (€)™ v > 2(a + 1)e M F (™). (15.15)

Employing (15.15) and the Cauchy inequality with ¢ we deduce from (15.14) the
following inequality

d[m 1 v
— | =v|*+ =|IVv|* + —/ v2do — e_zm’/ F(e””v)dxi|
dt |:2 2 2 Joo 0

+ |lvI® + 2mae_2m’/ F(e"v)dx
2
2 1 2 —2mt
< etllvl” + —|lAll7e™™™.
481

From this inequality we obtain

d 1
-2 - givor =% [ o+ [ Feo]
dr| 2 2 2 Joo o
1
> 2mo —ﬂ||v||2 — —|IVv|? - K/ v2do + e_zm’/ F("v)dx
2 2 2 Jye 2
+ ma |:m||v||2 + ||[Vv|> + v/ vzdo}
00
1 _
+ (L= eD) v > = —IlAlI>e™"".
481

So we obtained the inequalities

d
Eg(t) > 2maé(t) + ma | m||v|)* + |Vv|? 4+ v / v2do

82

1 _
+ (1 —ep)llv* = 4—||h||2e ., (15.16)
€]
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where
1
M) = —Z|? = = |Vo|? = 3/ v2do + e_z'"’/ F(e™v)dx. (15.17)
2 2 2 Jhe Q
By using Poincare inequality (15.7) with € = |v|~! in (15.16) we get
d 2
60 2 2ma& @) + (1 —e)llvi]
- 1 —om
+ma(m—v|C(lv[")v]? ~ 4—81|Ih||26 g

First choosing m > |v|C(Jv|™'), and then integrating the obtained differential
inequality we obtain the estimate

t
E(1) = &) + (1 — &)™ / lvs(s)17e " ds
0

2
1
— / () || 2e~ 2@+ Ve gs, (15.18)
481
0

Let us consider the function
t
w(t) = / [lv(s)|*ds + co,
0
where ¢ is a nonnegative parameter to be specified below. It is clear that
2 ' 2
() = v = 2/ (v(s). vs(5))ds + [luo]|
0

and ¥”(¢t) = 2(v, v,). By using Eq. (15.9) and the inequality (15.15) we obtain the
following lower estimate for the function ¥” (¢):

(1) = 2/ v[—mv + Av 4+ e"f(e"v) + e " h(x, 1) ] dx
Q

A%

—2m|jv|)* = 2||Vv|? —2v/ vido
a2

+ 4o + l)e_zm’/ F(e"v)dx + 2™ (h, v)
2
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v

m 1
=4(a+1) [—5 lv)* — 3 [Vo? — 5/39 vido

+ e_z””/ F(em’v)dx]
2
+ 2ma ||v|* + 20 |Vl ?

+ 200 / v2do + 2™ (h,v).
a2
Employing the inequality
2051)/ v2do > —2a|Vv|? = 2aC(v|"H|v|?

a2
which follows from (15.7) and the inequality

—mt 2 1 —2mt 2

2e " (h.v) Z —eof|v]" = —e™ " A
2

with some €, > 0, we deduce from (15.19) the estimate

V(1) = 4o + D)E) + (2am —2av|C(Iv] ") — &) ||v]?

1 —2m
——e " [lh(D)]*.
€2

217

(15.19)

Finally we choose here €, = 2o and m = |v|C(Jv|~!) + 1 (remember that already

it is assumed that m > |[v|C(|v|™")) we get

(1) = 4o+ DE@) — %e‘zmt ()| .

Thus employing the estimate (15.18) of &'(¢), from the last inequality, we obtain the

following estimate

V(1) > 4+ 1)(1—e) / llvs($)1* ds + co
0

+4(a+1) 5(0)—&/ h(s)|* ds
0

1 —2m
—— e h@)|)? — 4(a + D)(1 — €))co.
20
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Let us choose €] = L. Then
2+ 1)
€1 _ g
4((x+1)(1—5)—4(2 +1),

and we note that if

2 * 2 1 2
60 = (24 2) [T d+ s s o)

o+2
— = o
2@+ 1"
then
o t
W) > 4 (5 + 1) UO vy ()12 ds + coi| .
Therefore

PO (t) — (o1 + 1) (¥

=4(% 1) [/0 ||Us(S)||2dS+CO/O ||v(s>||2ds+co}

—4 (% + 1) Uot(v(s), vs(s))ds + %||Mo||2:|2-

Finally we choose ¢y = %||u0||2. Then due to the Schwarz inequality we deduce
from (15.20) the desired inequality ¥ (1)¥ (1) — (% + 1)(¥'(1))* > 0. The statement

of the theorem follows from Lemma 15.1.

Remark 15.3. If h(x,t) = h(x) € L?, v > 0 and in addition to (15.5)

(15.20)

F(s) = Dols|’ — Dy, VseR (15.21)

holds for some Dy > 0, D; > 0, and p > 2, then blow-up result can be obtained
employing the standard energy equalities for solutions of the problem (15.1)—(15.3):

1d

@) = [ Vull® = v / Pdo + (F(u).u) + () (1522)
2dt PY9)

and

d
60 = ]|, (15.23)
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where
1
610 = 519l =3 [ wldo + ¢@. 1)+ o,
2 2 Jo

In fact the following proposition holds:

Proposition 15.4. If the nonlinear term f (-) satisfies the conditions (15.5), (15.21),
v > 0 and the initial function satisfies the condition

&(0) — 4aD;|2] > 0, (15.24)

then the solution of the problem (15.1)—(15.3) blows up in a finite time.
Proof. Utilizing the conditions (15.5) and (15.21) we obtain from (15.22) the

inequality
d
—wmanz—mvwnW—zv/ o + 4@ + D)(Fw). 1)
dt a2
~+ 2(h, u)
— 48(1) + da(F(u), 1)

> 4&,(1) + 4aDy / |ux, 1)|Pdx — 4aDy|82]. (15.25)
2

Due to the inequality E(r) > E(0) which follows from (15.23), and the con-
dition (15.24) we obtain from (15.25) the following differential inequality for
W (r) = u@l*:

W'(1) > Kol (0]7,
where
_p=2 _p
Ky = [2|7 2 (4aDy|£2])"2. (15.26)

Integrating (15.26) we see that

2—p
2 .

() — oo as t — (p — 2)[2Ko] ' [¥(0)]

Remark 15.5. We would like also to note that a result on blow-up of solutions to
a class of semilinear parabolic equations under the Robin boundary condition can
be obtained by using the so-called method of eigenfunctions. In fact the following
proposition holds true:

Proposition 15.6. Suppose that up(x) > 0, Vx € £2, v > 0, the source term
h(x,t) = h(x) € L*(2) depends only on x € £2, the nonlinear term is a convex,
continuous function that satisfies also the conditions:

f(lzl)—)t]u—ho>0, Yu > ay >0,
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with

—_——— < 00, (15.27)
') f(?']) _Aln_h()

where hy = [, h(X)Y1(X)dx, a9 = [, uo(x)Y1(x), A1 > 0 is the eigenvalue
corresponding to the normalized principal eigenfunction V| (x) of the problem

9
“AY =AY, xe 3—‘/’+vw=0, xR,
n

Then the solution of the problem (15.1)—(15.3) blows up in a finite time.

In fact multiplying the equation (15.1) by |, and then integrating it over £2 and
using the boundary condition (15.2) we get

[utwldx+X1/ ulﬂldx=/lf(u)1ﬂ1dx+/ hudx. (15.28)
2 o) 2 2

Due to the Jensen inequality for integrals we have (we refer to [2])

/Qf(u)l//ldx >f (/;2 ulﬁldx) .

Thus from (15.28) we get the following differential inequality for the function

E@t) = [ u(x, )y (x)dx:
E'(t) = f(E(1)) — ME(t) — ho.

Integrating this inequality and using the condition (15.27) we obtain the desired
result.

15.3 Blow Up When the Initial Energy is Positive

In this short section we will use again a concavity technique to prove the finite-time
blow-up of solutions to the following problem

u,—Au=f(u), xe€2 t>0, (15.29)
9
8—”+vu=o, X€dR >0, (15.30)
n

u(x,0) = up(x), xe £2. (15.31)
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Theorem 15.7. Assume that
f(s)s —2(1 + @)F(s) > —Dy, Vs€R, (15.32)

where o > 0, v > 0, and Dy are given numbers, and
F(s) = [, f(t)dx. Suppose also that

1 v
pla ol > 401 +a)| 1Vl + 3 [ iddr = . 0] + il
982

(i) (15.33)

ap ’

[uzdxfa() (/ u2dx+/ |Vu|2dx). (15.34)
2 082 2

Then the corresponding local solution of the problem (15.29)—(15.31) blows up in a
finite time.

where (o, v) = and ay is a constant of the Poincaré inequality

Proof. Consider the function

v = [ o e
Employing Eq. (15.29) and the condition (15.32) we obtain
() = 2(u, u) = 2(u, Au + f(u))
> —2||Vul> —2v /a.o Wdo + 4(1 + a)(F(u), 1) — 2|2|Dy. (15.35)

Multiplication of (15.29) by u, in L?(£2) gives

d[1 v
||Mt||2 + 7 |:§||Vu||2 + 3 /(;Q w’do — (F(u), 1)i| =0

Integrating the last equality over the interval (0, 7) we obtain

E(t) := %||Vu||2 + %/m wdo — (F(u), 1) = E(0) — /0, lur (T)||?dr.  (15.36)

Employing (15.36) in (15.35) we get

Vv

1
w(t) > 4(1 ——||Vu? -
(1) = (+a)[ 2|I ull 5

/ uldo + (F(u), 1)]
a2

— D, || 4 2«||Vul* + ozv/ Wdo
a0
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= a||Vu|® + av / w’do — 4(1 + a)E(0)
AR
t
+40 +0) [ u(lde - D12,
0
Using (15.34) for the last two terms in the mid-line we arrive
t
v — Mo] + 4(1 + a)[ [l (7)||*dz, (15.37)
0
where My = 4(1+a)E(0) + Dy |$2], u(a,v) = O‘(la—j“) It follows from (15.37) that

C W0~ M) = i) (V0 ).

Mo

where M| = @)

Using (15.32) we obtain the inequality:
'(t) > My + @V (W(0) — M) .
Hence ¥/ (t) — oo as t — oo. Since (15.33) holds we deduce from (15.37) that
t
(1) > 4(1 + Ol)/ u(t)|dx.
0

Therefore thanks to the equality

2 [ e + fual? = 90
and the Schwarz inequality we have
WO () — (1 + ) ([W/(t)]z -~ ||u0||2> > 0. (15.38)
It follows from (15.38) that

Voo -(1+3) [POL = 3 [P0 =20+ 0¥ Ollul® + Jul*.
(15.39)

Since W/ (t) — oo as t — 00, there exists Ty > 0 such that

(04
3 [ OF =20+ ¥ Ollwl” + Juoll* = 0. Vi = Ty,
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Therefore we deduce from (15.38) the inequality
W ()W (1) — (1 + %) [W' O] >0, Vi>T,

Thus we can use the Levine’s lemma and get the desired result.

Example 15.8. Consider the 1D version of the problem with f(u) = u® and 2 =
(0, L), i.e. the following problem

U — iy = u>, x € (0,L),
—u,(0,1) + vu(0,1) =0, u,(L,t) +vu(l,f) =0, t>0,
u(x, 0) = uo(x),

where ug(x) = Af(x), x € [0, L], r > 0, A will be specified below and f : R — R*
is a continuously differentiable function such that

0 < M, ff(X) <M, VX e [O,L]
In this case
L 2 L
E(0) = A2 B /0 (f7(x))%dx 4+ vfA(L) + vf?(0) — % /O f“(x)dx} )

Let us choose here

A2=2 /0 L(f/(x))Zaix/ [0 ’ FHx)dx.
Then

E(0) = 2%v [f2(L) +/*(0)]

It is clear that if M, is large enough then the initial energy E(0) is large enough.
Finally we see that in this case the condition (15.33) is satisfied when

8ao(1 + a)vM?
a(l+v)M;
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Chapter 16
Functional Inequalities in Fuzzy Normed Spaces

Jung Rye Lee, Reza Saadati, and Dong Yun Shin

Abstract In this paper, we investigate the following functional inequalities

If () +f0) +f @1 = If(x+y+ 2

(o3

in fuzzy normed vector spaces, and prove the Hyers—Ulam stability of the above
functional inequalities in fuzzy Banach spaces in the spirit of the Th. M. Rassias’
stability approach.

and

IF () +/fO) + 2/ @) <

16.1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of
Ulam [26] concerning the stability of group homomorphisms. Hyers [10] gave
a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Th. M. Rassias [24] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Th. M. Rassias theorem was obtained by Gavruta
[7] by replacing the unbounded Cauchy difference by a general control function in
the spirit of the Th. M. Rassias’ approach.
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During the last two decades a number of papers and research monographs have
been published on various generalizations and applications of the Hyers—Ulam
stability to a number of functional equations and mappings (see [11, 18-22]).

Gilanyi [8] showed that if f satisfies the functional inequality

12/(e) + 2f () = fx = = If & + D) (16.1)

then f satisfies the Jordan—von Neumann functional equation

2f(x) +2f(y) = f(x +y) + f(x —y).

See also [25]. Fechner [5] and Gildnyi [9] proved the Hyers—Ulam stability of
the functional inequality (16.1). Park et al. [23] investigated the Cauchy additive
functional inequality

If )+ +/ @I < Ifx+y+ 2 (16.2)

and the Cauchy-Jensen additive functional inequality

2f (% + z) H (16.3)

and proved the Hyers—Ulam stability of the functional inequalities (16.2) and (16.3)
in Banach spaces.

Katsaras [12] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [6, 14, 27]. In particular, Bag and
Samanta [2], following Cheng and Mordeson [4], gave an idea of fuzzy norm in
such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [13]. They established a decomposition theorem of a fuzzy norm into a family
of crisp norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 15, 17] to investigate
a fuzzy version of the Hyers—Ulam stability for the Cauchy functional inequal-
ity (16.2) and the Cauchy—Jensen functional inequality (16.3) in the fuzzy normed
vector space setting.

IFC) +50) + 2/ @) =

Definition 16.1 (See [2, 15-17]). Let X be a real vector space. A function N : X x
R — [0, 1] is called a fuzzy norm on X if for all x,y € X and all 5,7 € R,

(N1) N(x,f) =0fort <0;
(N2) x=0ifand only if N(x,7) = 1 for all t > 0;

(Ns) N(cx.t) = N (x, I_ZI) if e 0

(Ns) N(x+y,s+1) = min{N(x,s), N(y.0)};
(Ns5) N(x,-) is a non-decreasing function of R and lim,—, o, N(x,7) = 1;
(Ng) forx # 0, N(x, -) is continuous on R.
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The pair (X, N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are
given in [15, 17].

Definition 16.2 ([2, 15-17]). Let (X,N) be a fuzzy normed vector space.

A sequence {x,} in X is said to be convergent or converge if there exists an x € X

such that lim N(x, —x,f) = 1 for all + > 0. In this case, x is called the limit of the
n—>od

sequence {x,} and we denote it by N — lim x, = x.
n—>oQo

Definition 16.3 (See[2, 15, 17]). Let (X,N) be a fuzzy normed vector space.
A sequence {x,} in X is called Cauchy if for each & > 0 and each ¢t > 0 there exists
an ny € N such that for all n > ny and all p > 0, we have N(x,4, —x,,1) > 1 —¢.

It is well known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X and Y
is continuous at a point xy € X if for each sequence {x,} converging to x¢ in X, then
the sequence {f(x,)} converges to f(xo). If f : X — Y is continuous at each x € X,
then f : X — Y is said to be continuous on X (see [3]).

In this paper, we investigate the functional inequalities (16.2) and (16.3) in
fuzzy normed vector spaces, and prove the Hyers—Ulam stability of the functional
inequalities (16.2) and (16.3) in fuzzy Banach spaces.

Throughout this paper, assume that X is a vector space and that (Y, N) is a fuzzy
Banach space.

16.2 Hyers—-Ulam Stability of Functional Inequalities
in Fuzzy Normed Vector Spaces

In this section, we investigate the functional inequalities (16.2) and (16.3) in
fuzzy normed vector spaces, and prove the Hyers—Ulam stability of the functional
inequalities (16.2) and (16.3) in fuzzy Banach spaces.

Lemma 16.4. Let (Z,N) be a fuzzy normed vector space. Let f : X — Z be a
mapping such that

N(EW +£0) +7@.0 = N (fcty+2). %) (16.4)

forallx,y,z € Xandallt > 0. Then f is Cauchy additive, i.e., f(x+y) = f(x)+f ()
forall x,y € X.
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Proof. Lettingx =y =z = 01n (16.4), we get

0.0 = (0.5 2 (01 )

for all # > 0. By (Ns5) and (Ng), N(f(0),1) = 1 for all ¢+ > 0. It follows from (N;)
that f(0) = 0. Letting y = —x and z = 0 in (16.4), we get

NG@ + 70,0 = N (70), 5) =N (0.2) =1

for all 7 > 0. It follows from (N) that f(x) + f(—x) = 0 forall x € X . So
f(=x) =—f)
for all x € X. Letting z = —x — y in (16.4), we get
N(f(x) +f0) —fx+y).0) = NFQ@) +10) +f(=x—y).1)
- ¥(0.5) =v(0.5) =
forall x,y € X and all £ > 0. By (),
NGF@) +f0) —fx+y).0) =1
forall x,y € X and all > 0. It follows from (N,) that
fx+y) =7 +70)

for all x,y € X, as desired.

Lemma 16.5. Let (Z,N) be a fuzzy normed vector space. Let f : X — Z be a
mapping such that

+ 2
NG +F0) + 2.0 = N (2f ()% ; z) | gt) (165)
forall x,y,z € X and all t > 0. Then f is Cauchy additive, i.e.,

fa+y) =fx)+50)

forall x,y € X.
Proof. Lettingx =y =z = 01n (16.5), we get

V0.0 =N (101, 1) = 8 (200, 31) =¥ (50, 5)
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for all + > 0. By (Ns5) and (Ng), N(f(0),7) = 1 for all ¢+ > 0. It follows from (V)
that £(0) = 0. Letting y = —x and z = 0 in (16.5), we get

NI +10.0 =8 (20, 50) = (0.51) = 1
for all ¢ > 0. It follows from (N) that f(x) + f(—x) = 0 for all x € X. So

f(=) =—f(»)

for all x € X. Letting z = —*3* in (16.5), we get

NG + () - f(”y) (f(x)+f(v)+2f(

>N (2f(0), %t) (0, %

for all x,y € X and all ¢ > 0. By (V,),

N (f(x) L FO) —of (%) ,t) _

for all x,y € X and all ¢ > 0. It follows from (N,) that

)
)e

of (”y) — £ +£0)

for all x,y € X. Since f(0) = 0,

f(x+y)—2f( ) — £ +£0)

for all x,y € X, as desired.

Now we prove the Hyers—Ulam stability of the Cauchy functional inequal-
ity (16.2) in fuzzy Banach spaces.

Theorem 16.6. Let ¢ : X> — [0, 00) be a function such that

o0
Plx.y.2) =Y 27"p(2"x, 2"y, 2"7) < 00 (16.6)

n=0

forall x,y,z € X. Let f : X — Y be an odd mapping such that

Jim N(fC) + 7 () +£(2), tp(x,y,2) = 1 (16.7)
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uniformly on X*. Then

L) = N — lim L2

n—oo QN

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N @) + ) +f(2).8¢(x.y.2) = (16.8)

forall x,y,z € X, then

N (f(X) — L), g@(x, X, —ZX)) >

for all x € X. Furthermore, the additive mapping L : X — Y is a unique mapping
such that

r]—lglo N(f(x) — L(x), tp(x, x, —2x)) = 1 (16.9)

uniformly on X.

Proof. Since f is an odd mapping, f(—x) = —f(x) for all x € X and f(0) = 0. Given
e > 0, by (16.7), we can find some #;, > 0 such that

N(F@) +f) +f (@) te(x,y.2) =1 —¢ (16.10)

for all t > #y. By induction on n, we show that

n—1
N (2"f(x) —f(2"x),t Z 2 k=1 2k x, 2Kx, —2k+1x)> >1—c¢ (16.11)
k=0

forall t > 1y, all x € X and all n € N. Letting y = x and z = —2x in (16.10), we get
NQ2f(x) = f(2x), to(x,x, —2x)) = 1 —¢

for all x € X and all # > #. So we get (16.11) for n = 1. Assume that (16.11) holds
forn € N. Then

N (2’”rl F@) = Q2. 1) 2" (25, 2, —2k+'x))

k=0

n—1
> min N (2”“ f(x) —2f(2"x). 1o Z 2"k p(2"x, 2"x, —2"+1x)) ,

k=0
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NQf(©2"x) — 2" x), top(2"x, 2"x, —2”+1x))}
>min{l —¢g, 1 —¢} =1—¢.

This completes the induction argument. Letting t+ = ¢, and replacing n and x by p
and 2"x in (16.11), respectively, we get

2 2rx) 1 R
N (f(znx) _ f(2n+pX)’ znip Z 2ﬁ—k—1¢(2n+kx, otky _2n+k+1x)
k=0

>1—¢ (16.12)

for all integers n > 0, p > 0. It follows from (16.6) and the equality

p—1
Z 27n7k71¢(2n+kx, 2n+kx’ _2n+k+lx)
k=0
1 n+p—1
=3 Z 2 %2k x, 2kx, =2t 1x)
k=n

that for a given § > 0 there is an ny € N such that

n+p—1
1
5" > 2 p2kx, 2k, =2 ) < 8

k=n

for all n > ngy and p > 0. Now we deduce from (16.12) that

N (f(z"x) _fery 5)

on on+p

p—1

n n+
=N (f(2 x)  f@7Px) 1o 3 kel gy, gy _2n+k+lx))
k=0

on ont+p 7 ontp

>1—c¢

n

for each n > ng and all p > 0. Thus the sequence

J(2"x)

) } is Cauchy in Y. Since

Y is a fuzzy Banach space, the sequence } converges to some L(x) € Y. So

we can define a mapping L : X — Y by

L(x) := N — lim f(2”x)’

n—oo 2N
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namely, for each r > 0 and x € X,

lim N (f "%
2}1

n—>oo

—L(x),t) =1.

Letx,y,z€ X. Fixt>0and 0 < ¢ < 1. Since
lim 27"@(2"x,2"y,2"z) = 0,

n—>o00

there is an n; > ng such that

n

2"t
top(2"x,2"%y,2"7) < e

for all n > n;. Hence for each n > n;, we have
N@LG) + L) + L@, 1) = min (N (L) = 277", ).
N (L0) =277 @), L) N (L) 27 @), ).
N(L(x+y +2) =27f2"(x +y+2), 1—t6) ,
V(@ oy @ —rew —rera. 5.
N (L(x+y +2), %)} .

The first four terms on the right-hand side of the above inequality tend to 1 as
n — oo, and the fifth term is greater than

N(fQ2"(x+y+2) —f(2"%) —f(2"y) —f(2"2), top(2"x, 2"y, 2"7)),
which is greater than or equal to 1 — ¢. Thus
t
N(LG) + LO) + L(z), ) > min {N (L(x +y+2), 5) - s}
forallt >0and 0 < e < 1. So
t
N(LO) +L0) + L&), = N (Lc+y +2), 5)
forallz > 0, or

N(Lx)+LYy)+ L@),H)>1—¢
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for all # > 0. For the former case, the mapping L : X — Y is Cauchy additive, by
Lemma 16.4. For the latter case,

N(L(x) + L(y) + L(z).1) = 1

forall r > 0. So N(3L(x),t) = 1 for all > 0 and for all x € X. By (V,), L(x) = 0
for all x € X. Thus the mapping L : X — Y is Cauchy additive, i.e.,

L(x +y) = L(x) + L(y)

for all x, y € X. Now let for some positive § and « (16.8) hold. Let

n—1

on(x.y.2) 1= Y 27" 1p(2kx, 28y, 22)
k=0

forall x,y,z € X. Let x € X. By the same reasoning as in the beginning of the proof,
one can deduce from (16.8) that

n—1
N (Z”f(x) —f(2").8 Y 2" p(2kx, 2%, —2k+1x)) >« (16.13)
k=0

for all positive integers n. Let r > 0. We have

N(f(x) — L(x), §¢,(x,x,—2x) + 1)

> min {N (f(x) =i (izx)  Son(x, x, —2x))
N (f(zzx) — L), t)} (16.14)

Combining (16.13) and (16.14) and the fact that

lim N (@ —L(x),t) =1,

n—oo
we observe that
N(f(x) — L(x), 8¢, (x,x,—2x) + 1) > «

for large enough n € N. Thanks to the continuity of the function N(f(x) — L(x), -),
we see that

N (f(x) — L(x), g@(x,x, —2x) + t) > .
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Letting t — 0, we conclude that

N (f(x) — L(x), g(,?)(x,x, —2x)) > a.

To end the proof, it remains to prove the uniqueness assertion. Let 7" be another
additive mapping satisfying (16.9). Fix ¢ > 0. Given ¢ > 0, by (16.9) for L and 7,
we can find some ¢ > 0 such that

N (f(x) — L(x), %(Z)(x, X, —2x)) >1—e¢,

N (f(x) —T(x), %(ﬁ(x, X, —2x)) >1—¢

for all x € X and all # > ;. Fix some x € X and find some integer n such that

o0
1Y 2 ¥ (24, 2, —24F ) < %

k=n

for all n > nyg. Since

o0
> 27Fp(2kx, 2%, 2 )
k=n

o0

1
_ 5 Z 2—(k—n)(p(2k—n (znx)’ 2k—n (2”)() , 2k—n (_2n+ l)C))

k=n

1 00
= i Z 2_m(p(2m (Z”x), Zm(2"x), 2m(_2n+1x))

m=0

1
= i(ﬁ(Z"x, 2"x, —2"+1x),
we have

N(L(x) = T(x), )

> min %N (f(2"x) — L), f) N (T(x) RACEON f)}
o 2 )

= min{N(f(2"x) — L(2"x), 2" "'¢), N(T(2"x) — f(2"x),2" "' ¢)}

> min

o0
N (f(Z”x) — L(2"%). 2"t Y 27Fp(2"x. 2x, —2k+1x)) ,

k=n
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N (T(2”x) —f(2"x), 2", Z 27 (2% x, 2k, —2k+1x))§

k=n
= min{N(f(2"x) — L(2"x), to@(2"x, 2"x, =2"1x)),
N(T(2"x) — f(2"x). 1o@(2"x, 2"x, =2"" %))}
>1—e.
It follows that
N(L(x) —T(x),c) =1
for all ¢ > 0. Thus L(x) = T(x) for all x € X.

Corollary 16.7. Let 8 > 0 and let p be a real number with 0 < p < 1. Let
f : X — Y be an odd mapping such that

Jim NG + 7)) + £ @), 0" + Iy [” + [lzl17) = 1 (16.15)

uniformly on X3. Then

Lo = N— lim L (ZZX)

—>00

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N @) + ) + 1), 80" + [IylI” + 1zI") = «
forall x,y,z € X, then

zp
* senxnp) >a

N (f(x) L.

for all x € X. Furthermore, the additive mapping L : X — Y is a unique mapping
such that

240
1 — Pl —
tim ¥ (70 - 200, 32 2 = 1

uniformly on X.

Proof. Define
@, y.2) = O(Ixll” + lIylI” + llzlI”)

and apply Theorem 16.6 to get the result.
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Similarly, we can obtain the following. We will omit the proofs.

Theorem 16.8. Let ¢ : X3 — [0, 00) be a function such that

o0
Gr.y.2) =Y 2" (2i 21 23) < o0 (16.16)

n=1

forall x,y,z € X. Let f : X — Y be an odd mapping satisfying (16.7). Then

i i 1 (3)

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N +f0) +f(2).80(x.y.2)) = @

forall x,y,z € X, then

N(Kﬂ—M@é@@&—MOEa

for all x € X. Furthermore, the additive mapping L : X — Y is a unique mapping
such that

11_1)1& N(f(x) — L(x), t¢(x, x, —2x)) = 1

uniformly on X.

Corollary 16.9. Let 6 > 0 and let p be a real number withp > 1. Letf : X - Y
be an odd mapping satisfying (16.15). Then

L(x) := N — lim 2"f (i)
n—>00 n

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N (x) + ) + @, 80" + IylI” + [1z]”) = «
forall x,y,z € X, then

2042
V(o - 2. 32000 =
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for all x € X. Furthermore, the additive mapping L : X — Y is a unique mapping
such that

2P 42
| I
Jim () = L0, 5220017 ) = 1

uniformly on X.

Proof. Define ¢(x,y,z) := 0(||x||” + ||y||” + ||z||”) and apply Theorem 16.8 to get
the result.

Finally, we prove the Hyers—Ulam stability of the Cauchy—Jensen functional
inequality (16.3) in fuzzy Banach spaces.

Theorem 16.10. Let ¢ : X> — [0, 00) be a function satisfying (16.6). Let f : X —
Y be an odd mapping such that

Jim N(f(x) + ) + 2/ (), 19 (x, y,2) = 1 (16.17)

uniformly on X3. Then

L) = N — lim L&Y

n—oo 2N

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N({FX) + @) + 2f(2), 0¢0(x,y,2)) > « (16.18)

forall x,y,z € X, then

N (f(x) — L(x), g@(O, —2x, x)) >

for all x € X. Furthermore, the additive mapping L : X — Y is a unique mapping
such that

tgnoloN(f(x) — L(x),t¢(0, —2x,x)) =1 (16.19)

uniformly on X.

Proof. Since f is an odd mapping, f(—x) = —f(x) for all x € X and f(0) = 0. Given
e > 0, by (16.17), we can find some ¢y > 0 such that

N({fx) +f0) +2f(2). to(x,y,2)) > 1 —¢ (16.20)



238 J.R. Lee et al.

for all t > #y. By induction on n, we show that
n—1
N (2”1‘(x) —f(z”x),tz 2 kg0, =25y, 2kx)> >1—c¢ (16.21)
k=0

forall > 1y, allx € X, and all n € N. Letting x = 0,y = —2x and z = x in (16.20),
we get

NQf(x) = f(2%), 190, =2x,x)) = 1 — ¢

for all x € X and all ¢ > #y. So we get (16.21) for n = 1. Assume that (16.21) holds
forn € N. Then

N <2n+lf(x) _f(2n+lx), tz 2:1—k(p(07 _2k+1x, 2kx)>

k=0

> min

n—1
N <2"+1 @) = 2f(2"0). 10 Y 2" (0. =2 1x, ka)) :

k=0
NQf(2"x) — f(2"x), top(0, =2 x, 2”x))}
>min{l —¢g,1—¢} =1—¢.

This completes the induction argument. Letting ¢ = #; and replacing n and x by p
and 2"x in (16.21), respectively, we get

n n+p ’ on+p
2 2 T

on 2"+P pl
N (f( ) _f@7x) 1 32k lg(0, 2 I, 2"+kx)) (16.22)
>1-—¢

for all integers n > 0, p > 0. It follows from (16.6) and the equality

p—1 n+p—1
Zz—n—k—lw(o, gkl ontky) 3 Z 27 (0, =2 1x, 2% x)
=0 k=n

that for a given § > 0 there is an ny € N such that

n+p—1
1
EO Z 27 (0, =21y, 2x) < §

k=n
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for all n > ny and p > 0. Now we deduce from (16.22) that

v (12 _f@n )

on on+p

on on+p 2n+p

SN (f(z”x) _f(2"+”x) fo Zzﬂ k=10, —pmHeH gtk ))

>1-—c¢

for each n > ngp and all p > 0. Thus the sequence {f 2 x)} is Cauchy in Y. Since Y

is a fuzzy Banach space, the sequence {f (gzx)

can define a mapping L : X — Y by

} converges to some L(x) € Y. So we

L(x) := N — lim @

n—>oo 2

namely, for each# > O and x € X,

lim N (f @9 _ 1, z) -1

n—00 n
Letx,y,z€ X.Fixt>0and 0 < ¢ < 1. Since
lim 27"¢(2"x,2"y,2"z) = 0,
n—o0

there is an n; > ny such that

n

top(2"x,2"y,2"7) < —t
@(27x, ,
0 y 12

for all n > ny. Hence for each n > n;, we have
NLE + LG) + 2L, 1) = min IV (L@ — 277", %) ,
N (L(y) =277 2%), 1—t6) N (2L(z) —27"f(2"2), 1_t6) ,
x+y —n+1 nf X +y t
W () (7 (5 49)) )
2"t
(2f ( ( Z)) —f(2"x) = f(2") — f(2"2), E) ,
+

(52 3)

N
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The first four terms on the right-hand side of the above inequality tend to 1 as
n — oo, and the fifth term is greater than

x+
v (o (2 (52 +2)) e —rem -y e 2 29).
which is greater than or equal to 1 — ¢. Thus

N(L(x) + L(y) + 2L(z), ) > min %N (2L (’% + z) , %z) - g}

forallt >0and 0 < e < 1. So
x4+ 2
N(L(x) + L(y) + 2L(z),t) = N (ZL (Ty + z) §t)
forallz > 0, or

N(L(x) + L(y) + 2L(z),1) > 1 — ¢

for all > 0. For the former case, the mapping L : X — Y is Cauchy additive, by
Lemma 16.5. For the latter case,

N(L(x) + L(y) + 2L(2),1) = 1

forall t > 0. So N(4L(x),t) = 1 for all t > 0 and for all x € X. By (N;), L(x) =0
for all x € X. Thus the mapping L : X — Y is Cauchy additive, i.e.,

L(x+y) = L(x) + L(y)

for all x, y € X. Now let for some positive § and « (16.18) hold. Let

n—1

¢n(x.y.2) 1= )27 (24, 2, 2%2)
k=0

forall x,y,z € X. Let x € X. By the same reasoning as in the beginning of the proof,
one can deduce from (16.18) that

n—1
N (Z"f(x) —f(2"x), 8 Z 2"kl 0, —2F iy, ka)) > o (16.23)

k=0
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for all positive integers n. Let # > 0. We have

N(f(x) — L(x), 6, (0, —2x,x) + f) < min {N (f(x) _f(i:x) ,6¢0,(0, —2x, x))

(f (zzx) L), )} (16.24)

Combining (16.23) and (16.24) and the fact that lim, oo N({52 —L(x),1) = 1, we
observe that

N({f(x) — L(x), 8¢,(0, —2x,x) + 1) > «

for large enough n € N. Thanks to the continuity of the function N(f(x) — L(x), ),
we see that

(f(x) L(x). ¢(o o) +r)

Letting t — 0, we conclude that

N(f(x) L. 390, 2x, x))

To end the proof, it remains to prove the uniqueness assertion. Let 7' be another
additive mapping satisfying (16.19). Fix ¢ > 0. Given ¢ > 0, by (16.19) for L and
T, we can find some fy > 0 such that

N (0 = L0 560,20 = 1=,

N(f(x) T(x), tgo(O —2x, x)) >1—¢

for all x € X and all # > f. Fix some x € X and find some integer ng such that

o0
1Y 2750, —21x, 250) < %
k=n

for all n > ny. Since

o0 o0
1
> 275 (0. =2%x, 24x) = > > 27k g0, 27 (=2 x), 247 (2"))
k=n k=n
o0

1
=5 2.2 "e(0.2" (= 2"t 1y), 2™ (2"x))
m=0

1
= 5@(0,—2"“)@ 2"x),
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we have

N(L(x) = T(x), c)

> min %N (f(2"x) — L), f) N (T(x) VACEON E)}
2 2 » 2

= min{N(f(2"x) — L(2"x),2"""¢), N(T(2"x) = f(2"x), 2" '¢)}

> min

N (f(2"x) — L(2"%). 2"t Yy 27F (0, —2"F 1, 2kx)) ,

k=n

N (T(Z”x) —f(2"%).2"% Y 27 (0, -2 x, ka)) }

k=n
= min{N(f(2"x) — L(2"x), 10 (0, —2""'x, 2"x)),
N(T(2"x) — f(2"x), to@(0, —2" 1 x, 2"x))}

>1—e.
It follows that
N(L(x)—T(x),c)=1
for all ¢ > 0. Thus L(x) = T(x) for all x € X.

Corollary 16.11. Let 6 > 0 and let p be a real number with 0 < p < 1. Let
f : X — Y be an odd mapping such that

Jim N(f () + 7 () + 2f @), 0 ([lxll” + Iy [” + [Iz1”) = 1 (16.25)

uniformly on X3. Then

lim L&)
— lim
n—00 n

L(x):=N

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N(F() + /() + 2 (@), 80(Ix[1” + [IyI” + [1z]1”) = «

forall x,y,z € X, then

1 2r
- senxnp) _

w(rw -z >

forall x € X.
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Furthermore, the additive mapping L : X — Y is a unique mapping such that

1+2°

tim ¥ (1)~ L9, 3 220l ) = 1

uniformly on X.
Proof. Define

@(x.y.2) = O(Ix[1” + [[y[I” + llz1”)
and apply Theorem 16.10 to get the result.

Similarly, we can obtain the following results. We will omit the proofs.

Theorem 16.12. Let ¢ : X> — [0, 00) be a function satisfying (16.16). Let f : X —
Y be an odd mapping satisfying (16.17). Then

i i 1 (3)

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N(f(x) +f() + 2f(2). ¢(x,y.2)) = «
forallx,y,z € X, then

N (f(x) — L(x), §¢(0, —2x, x)) > o

forall x € X.
Furthermore, the additive mapping L : X — Y is a unique mapping such that

r]—lglo N(f(x) — L(x),t¢(0, —2x,x)) = 1

uniformly on X.

Corollary 16.13. Let 6 > 0 and let p be a real number withp > 1. Letf : X — Y
be an odd mapping satisfying (16.25). Then

o= i 71(3)

exists for each x € X and defines a Cauchy additive mapping L : X — Y such that
if for some § > 0, > 0

N((x) + 1) + 2 (@), 80(Ix[1” + [IyI” + [1z]1”) = «
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forall x,y,z € X, then

Qw L. ww@

forall x € X.
Furthermore, the additive mapping L : X — Y is a unique mapping such that

Jim (70— Lo, 352001 ) = 1

uniformly on X.

Proof. Define
p(x.y,2) = O(Ix[I” + [IylI” + llzl1”)

and apply Theorem 16.12 to get the result.
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Chapter 17
Principal Vectors of Matrix-Valued
Difference Operators

Yelda Aygar and Murat Olgun

Abstract In this paper, we investigate the principal vectors corresponding to the
eigenvalues and the spectral singularities of matrix-valued difference operator and
get some properties of these vectors.

17.1 Introduction

Spectral theory of self-adjoint difference operators is well-known in literature
[1-3, 5]. Spectral analysis of nonselfadjoint Sturm—Liouville and difference oper-
ators with continuous and point spectrum was investigated in [10]. In [10], the
author proved that the spectrum of a nonselfadjoint Sturm-Liouville operator
consists of continuous spectrum, eigenvalues and spectral singularities. The spectral
singularities are poles of the kernel of the resolvent and are also imbedded in
the continuous spectrum, but they are not eigenvalues. The effect of spectral
singularities in the spectral expansion of Sturm-Liouville operators in terms of
the principal vectors was considered in [9]. Some problems of spectral theory of
difference and differential operators with matrix coefficients were also investigated
in [4, 6, 11, 13, 14]. Furthermore, a lot of mathematicians studied about princi-
pal vectors of differential and difference operators with scalar coefficients, also
principal vectors of differential operators with matrix coefficients [7, 8, 12]. But
principal vectors of matrix difference operators have not been investigated yet.
Let us introduce the Hilbert space £,(N, C™) consisting of all vector sequences
Yy = {Yutnen, (0 € C™), such that [|y,||3, < oo with the inner product (y,z) =
> (Vs Za)cm, where C™ is m-dimensional (m < oo) Euclidean space, ||.||cn
and (.,.)c» denote norm and inner product in C™, respectively. Let L denote the
difference operator of second-order generated in £,(N, C™) by matrix difference
expression

(b’)n = Ay 1Yn—1 + Bpyn + Apyn+1, neN,
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and the boundary condition yo = 0, where A,, n € N U {0} and B,, n € N are
linear operators (matrices) acting in C”. Throughout the paper, we will assume that
detA, # 0, A, = A}, (n € NU {0}) and B, = B}, where * denotes the adjoint
operator. In [14], it is proved that the operator L has a finite number of eigenvalues
and spectral singularities with finite multiplicities under the condition

sup {e” ([l = Ay|l + IBal)} < 00, &> 0, (17.1)
neN
where I denotes identity matrix and ||.|| shows the matrix norm in C”. The aim

of this paper is to extend some results of paper [14] by using principal vectors
corresponding to the eigenvalues and spectral singularities of the operator L. The
paper is organized as follows: Sect.17.2 contains some information about Jost
solution and spectral properties of L which are given in [14]. We will get main
results by using these information in the next section. In Sect. 17.3, we get principal
vectors corresponding to eigenvalues and spectral singularities of L, and give some
properties of these vectors.

17.2 Jost Solution and Spectral Properties of L

Related to the operator L, consider the equation
(Iy)n = Ayn, neN. (17.2)

Assume (17.1). Then the Jost solution of (17.2) is given in [14], as
o0
Fo(z) = T,e™ [1 +> Knme”"z:| , neNU{0}, (17.3)
m=1

for A = 2coszandz € Cy := {z € C: Imz > 0}. Also we can write T, and K,,,,
in terms of A,, and B,, as

o0 o0
T, =[]4," Kn=->_ T,'B,T,
p=n p=n+1
oo o0
Kp = Z T\ - AT, — Z T 'B,T,Kp1. (17.4)
p=n+1 p=n+1

[ 0o
Kn.m+2 = Kn+1.m + Z Tp_l(I_Ai)TPKP-H,m - Z Tp_lBPTPKP.m+17

p=n—1 p=n—1



17 Matrix Difference Equations 249
where n € N U {0} and m € N. Moreover, K, satisfies

1Kl =C > (I =Apll + [1B,) . (17.5)
p=n+14]

where | 7 | is the integer part of 5 and C > 0 is a constant. T, and K,,, n € NU {0},

and m € N are absolutely convergent. Analogously to the Sturm-Liouville equation,
the solution F(z) := {F,(z)},enu{oy and the function

o0
Fo(z) = To |:1 + Z K()meimz]

m=1

are called the Jost solution and Jost function of (17.2), respectively [14]. Also
in [14], the author found asymptotic behavior and analytical properties of F, and
showed o.(L) = [-2,2], where o.(L) is continuous spectrum of L. Let us define
f(z) = detFy(z), z € C,. Then the function f is analytic in C, continuous in C
and f(z) = f(z + 27). If we define the semi-strips

POZ{Z€C+IOSR€Z§27T}
and P = Py U [0, 27], we get

0d(L) ={A: X =2cosz, z€ Py, f(z) =0}

os(L) ={A: A =2cosz, z€[0,2n], f(z) = 0}\{0}, (17.6)

by using the definition of eigenvalues and the spectral singularities of nonselfadjoint
operators [14], where 04(L) and og(L) denote the set of eigenvalues and spectral
singularities of L, respectively.

Definition 17.1. The multiplicity of a zero of F in P is called the multiplicity of the
corresponding eigenvalue or spectral singularity of L.

It has been shown in [14] that the operator L has a finite number of zeros in P
with finite multiplicities under the condition (17.1).
17.3 Principal Functions of L
Let us define the functions

A
E,(A) :=F, (arccos E) , neN
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BA) :=f (arccos %) .

(A + m)
—

and

Using (17.3) and
arccos — = —iln
we get that

E, (A) =T,

g nm

() s )

forn € N. Since A = 2 cos z maps the semi-strip Py to the domain A := C\ [-2, 2],
the functions E,(A) and B(A) are analytic in A, and continuous up to the interval
[—2,2]. Using (17.4), we can write

oa(L) = {A € A:B(A) =0}
os(L) = {4 € [-2,2] : B(A) = 0} \{0}.

Therefore the function B has a finite number of zeros in A and [-2,2], and
each of them is of a finite multiplicity. Let A1, A5, ..., Ay and Agyq, Agpa,..., A,
denote the zeros of B in A and in [—2,2] with multiplicities my, m,, ..., m, and
Mgy, Mg42, . . . , My, TESPECtively.

Definition 17.2. Let 1, be an eigenvalue of L. If the vectors y©@, y() . y®
satisfy the equation

O —Aoy(o) =0 (17.7)
R, — Ay —y¥ D =0 k=1,2,....5; neN, '

then the vector y(© is called the eigenvector corresponding to the eigenvalue A = A,
of L. The vectors y, y® ...y are called the associated vectors corresponding
to Ag. The eigenvector and the associated vectors corresponding to A are called the
principal vectors of the eigenvalue A = A¢. The principal vectors of the spectral
singularities of L are defined similarly.

Now, we define the matrix-functions for A = 2cosz,z € P

UO() = = { km} ,
A=2

(k=01,....m—1; j=12,....5)
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and

k dk
U0 = g | B
A=A
(k=0,1,....m—1; j=s+1,54+2,...,v).

If y(A) = {y,(1)},en is a solution of (17.2), then

dk dk
(m)y(” = {(m)y"“’%m

satisfies

dx dx dx
Ani W)’n—l(/\) + B, Wyn(k) + A, W)’nﬂ(k)

k k—1

d
=A—w(1 A). 17.

Using (17.8) and the definition of U’ () fork = 0,1,....mj— 1;j = 1,2,...,
s,s+1,...,v, we obtain

(0O %), — LU () =0,
(U9 Gy), = UL A - UE () =0

Last equations show that U® (A;) are the principal vectors of eigenvalues of L for
k=0,1,...,m—1;j=1,2,...,sand UV (})) are the principal vectors of spectral
singularities of Lfork = 0,1,...,mj—1;j=s+1,s+2,...,v

Theorem 17.3. Assume (17.1). Then for k = 0,1,...,mj —landj = 1,2,..,,
5, UP () € L(N,C™), but UP(A)) ¢ 6(N,C™) for k = 0,1,...,m; — 1 and
j=s+1,s4+2,...,v

Proof. Since E, (1) = F,(arccos %), we can write

& £
—FE, (A —F, . €N,
{ i )} - ,; { ar (Z)} - "
where A; = 2coszj, z; € P,j = 1,2,...,v and C,, is a constant depending on ;.
Using the definition of F,(z), we get
d o0
{ leF (Z)é = T,e"™ { (in) + Z(l(n + m))pKnmeiij}
=y m=1
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., v. Consider the principal vectors U,(,k) (A),k =0,
., s corresponding to the eigenvalues A; = 2 cos z; of

1
L,

for all n € N and j
1,...,m;—1andj
L, then we get

2, ..
2,..

k k 00
{ %En ()L)} = Z C, 7"]1ginzj |:(l'n)1’ + Z(l(n + m))pKnmeimz,-i|§
A=A p=0 m=1
and
1] o0
U(k)()kj) = k_ Z G, |:Tneinzj <(in)P 4 Z(l(n + m))pKllmeiij):| (17.9)
C =0 m=1

fork=0,1,...,mj—1landj=1,2,...,s. Since Imz; > O forj = 0,1,...,s, we
obtain

00 1 k 2
Z @ Z Canemzj (in)?
n=1 7 p=0

2
oo k

1 e
< G | 2 2 GolITlle e

n=1 p=0
00 2
EH{Ze_”Ime (I+n+n*+--+1)
n=1

2
o0
<Hp+1)> (Z e—"lmffn/’) < 00, (17.10)

n=1
where H is a constant. Now, we define the function

o0

k
1 . ‘
&(d) =5 D C T Y (i(n + m) Kye™ (17.11)
| &

m=1
forj=1,2,...,s. Using (17.5), we can also write

k o)

8@ < SICTAE™™ 3 b+ Kol
p=0 m=1

o0
< Tl Col S 1Kl

m=1
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oo
N Tulle™™|C1| Y~ (n+ m)|| Ky [le™™™
m=1

o0
o ITalle™™ Gl 3004 m) Ko™

m=1

(] k
CITulle™™ [ 33 [ Kumlle™™ (0 + my?

=
m=1 p=0
< V‘Cé_ﬂmq,
where C = max{|Col, |C1],...,|Ck|} and

o0 k
A C=CIT [ DD 1Kumlle™™ (n + m)?

m=1 p=0

Then, we get forj = 1,2, ..., s that

o0 o0
YN lga@IP <Y - e < o (17.12)
n=1

n=1

It follows from (17.10) and (17.12) that U’ (4)) € £(N,C") for k = 0,1,...,
mj—landj=1,2,...,s Now, we will use the equation like (17.9) for the principal
vectors corresponding to the spectral singularities of L for A; = 2cosz; and j =
s+ 1,s+2,...,v. Then we have

k 00
1 - -
U ) = 751 2_ GollTalle™ <(,-n)p+§ (in+im>"||1<nm||e””zf) (17.13)
=

m=1
fork=0,1,...,mj—landj=s+1,5s+2,...,v. Since Imz; = 0 for the spectral
singularities, j = s + 1,5 + 2,...,v of L, we get that

2
k

l & oo

S I ey | = oo (17.14)
n=1 [ p=0

Also, if we define the function ¢ as

k
1,(2) = Z C,(in + im)’ Knme™3
p=0
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then using (17.1) and (17.5), we obtain

k (o]

@I < D 1G] Y I+ mPP [ K|

p=0 m=1

<Z|C,,|Zcm+m)f’ > (= Adll + 1Bl

p=0 k=n+2]

k o)
=Y 1GI Y Cn+my
p=0 m=1

x Y exp(—ek) exp (ek)(|[I — Acll + | Bel))
k=n+%]

k oo
=G Y+ myexp (=2 (n+m)

p=0m=1

= Cjexp (—%n) i Xk:(n —+ m)? exp <—Zm)

m=1 p=0
Aexp (~n)
=Aexp(—-n),
P{™%
where
Ci=CC > exp(ek)(Il — Acll + [IBel)
k=n+|12]
and

ook
A=C Z Z(n + m)? exp (—Zm)

m=1 p=0

Therefore, we can write

2
k oo

o0
% Z T, e Z Z(in + im)’ Knme™
" n=1

p=0m=1

N‘|._‘

i IT,1>C1 exp (—%m) (17.15)
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Since
1 & e
i ; I 7,1C; exp (—Em) < 00,

we find
UP (L) ¢ £:(N,C™)

fork=20,1,...,mj—landj=s+ 1,5+ 2,...,v by using (17.14) and (17.15).
This completes the proof.

Let us introduce Hilbert spaces,

Hy(N,C") := gy = uben = (L4 D yll” < 00§

neN
and
H_y(N,C") o= % u={udoe Y (1 + In) P < oo}
neN

fork =0,1,2,... with the norms

Iylz =@+ ) yal?

neN

and

el =D+ 1) a7

neN

respectively. Therefore, Hy(N, C") = £,(N, C™) and

Hip1(N) S Hi(N,C™) S £,(N,C™)
CH_ (N.C") S H 44y(N.C"), k=1.2,...

Theorem 17.4. U (1) € H ((N,C™) fork = 0.1,....mj— landj = s + 1,
s+2,...,v.
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Proof. Using (17.13), we obtain

2

0 1 k
S+ w0 | LS p ey
n=1 t p=0

o0
<Ki Y (L+m) 2601?44 i),

n=1

where K| = (EllTnH%)z. Since
A4+n+n 4+ +n? < (k+ 1)*n+ D>,

we can write

0o 1 k 2
Z(l + n)—Z(k+1) E Z Canemq (li’l)p
n=1 =0
o0
<Ki(k+1) (1+m)72 < oo (17.16)

n=1

Also, we easily get

o] 1 k (o] 2
> (14 )2 o D CTue™ Y (im + im) Kye™
n=1 p=0 m=1
> £
<D (1 4 n) 20+ {—- }< : 17.17
<DY 0 e [ <o (7.1
where D is a constant. It follows from (17.16) and (17.17) that
UM (L) € Hip1 (N, C™)
fork=0,1,....mj—landj=s+1,s+2,...,v.
If we choose my = max{mj4, ms42, ..., m,}, then the following result can be

given using Theorem 17.4.

Remark 17.5. U,(,k)()tj) € H,,(N,C") fork = 0,1,....mj—1landj = s + 1,
s+2,...,v.
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Chapter 18
Some Extensions of Preinvexity
for Stochastic Processes

Nurgiil Okur Bekar, Hande Giinay Akdemir, and imdat Iscan

Abstract In this paper, we introduce some important extensions of preinvexity
for stochastic processes, and investigate mutual relation of main preinvex stochas-
tic processes. Besides, we obtain a Kuhn-type result and well-known Hermite—
Hadamard integral type inequality for strongly preinvex stochastic processes.

18.1 Introduction

The well-known Hermite—Hadamard integral inequality

b
f(““’) fblfa/f(x)dxfw (18.1)

2

is used to provide estimations of the mean value of a continuous convex function f :
[a, b] — R. In probabilistic point of view, (18.1) gives a lower bound and an upper
bound for E[f(X)] where X is uniformly distributed over the interval [a, b] [5]. In
recent years, there has been an extensive interest in providing inequalities involving
variety of convexity extensions.

A stochastic process {X(f) : t € I} is a parameterized collection of random
variables defined on a common probability space (£2,, P). Its parameter ¢ is
considered to be time. Then X (¢), which can also be shown as X (¢, ) for w € £2, is
considered to be state or position of the process at time ¢. For any fixed outcome w
of sample space §2, the deterministic mapping t — X(#,w) denotes a realization,
trajectory, or sample path of the process. For any particular ¢ € I the mapping
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depends w alone, i.e., then we obtain a random variable. It can be said that X (¢, ®)
changes in time in a random manner. We restrict our attention to continuous time
stochastic processes, i.e., index setis I = [0, 00).

There are various ways to define stochastic monotonicity and convexity for
stochastic processes, and it is of great importance in optimization, especially in
optimal designs, and also useful for numerical approximations when there exist
probabilistic quantities [15]. Temporal and spatiotemporal stochastic convexity was
defined in [16] and [17], respectively, for discrete time stochastic processes with
illustrative examples. Convexity notions in sample path sense can also be found in
[4], and the references therein. Time stochastic s-convexity was taken into account
in [6] by using order preserving functions of majorizations.

In [13] Nikodem proposed convex stochastic processes and gave some properties
which are also known for classical convex functions. Kotrys [8] extended the
classical Hermite-Hadamard inequality to convex stochastic processes. Strongly
convex stochastic processes was also proposed by Kotrys in [9]. Bekar et al. [2]
studied on strongly GA-convex functions and stochastic processes.

Jensen-convex, A-convex, Wright-convex stochastic processes were introduced
in [18, 19]. Two of the significant generalizations of convexity are invex and prein-
vex functions introduced by Ben-Israel and Mond [3] and Hanson [7], respectively.
Akdemir et al. [1] considered preinvex stochastic processes which is a class of the
generalized convex stochastic processes, and provided related well-known Hermite—
Hadamard integral inequality for the preinvex stochastic process of X(z,w) with
respect to 7, as follows:

¥ (2u + n(v, u) 7 )
2

u+n(v,u) X ¥
X(t, -)dt < M
n(v, u) 2

u

=

(a.e.), (18.2)

where a given vector function 7 : I x I — R”, I is a non-empty closed subset of R”".

Our goal in this paper are to establish an important extension of preinvex
stochastic processes, to investigate some characteristics of them. The remainder of
this article is organized as follows. Section 18.2 contains brief basic definitions
which will be required for our further considerations. In Sect. 18.3, we propose
mutual relation of main preinvex stochastic processes. Also, we present strongly
preinvex stochastic processes, and obtain a Kuhn type result and Hermite—Hadamard
type inequality for strongly preinvex stochastic processes in Sect. 18.4.

18.2 Preliminary Discussions

In this section we recall some basic definitions and notions about invex sets,
preinvex, invex and strongly preinvex functions, additionally on continuity concepts
and differentiability for stochastic processes, mean-square integral of a stochastic
process.
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Definition 18.1. A non-empty closed subset / of R” is said to be invex set with
respect to the given vector function 1 : I x I — R"(or n-invex, or n-connected set)
if u+ An(v,u)elforallu,velandA €|0,1].

Clearly, any convex set is an invex set with respect to n(v,u) = v — u.
Geometrically, endpoints belonging to the set and line segment joining the endpoints
are contained in a convex set. Convex sets cannot be disconnected, but invex sets can
be disconnected. Definition 18.1 essentially says that there is a path starting from a
point u which is contained in I. We do not require that the point v should be the one
of endpoints of the path [14].

Definition 18.2. Let /I C R” be an invex set with respect to n : I x I — R". Then
the function (not necessarily differentiable) f : I — R is said to be preinvex with
respect to 7 if

Jflu+An,w) < (1 =A)f(u) + Af(v) (18.3)

for each u,v € I and A € [0, 1].

Any convex function is preinvex with respect to (v, u) = v —u, but the converse
is not necessarily true.

Definition 18.3. For a differentiable function f : R” — R is said to be invex if
there exists a vector function 7 : R” x R* — R” such that

f @) = f) = [Vf )] n(x, u) (18.4)

for all x,u € R".

Any differentiable preinvex function is also an invex function [3]. An invex
function may not be preinvex, f(x) = exp(x) is a counterexample, it is invex with
respect to n(x, u) = —1, but not preinvex with respect to same 7.

Mohan and Neogy [12] proved that an invex function is also preinvex under the
following Condition C.

Condition C. Let n : I x I — R" It is told that the function n satisfies
Condition C if

(CD) n(u,u+ An(v,u)) = —An(v,u),
(C2) n(w,u+ An(v,u)) = (1 —)n(v,u),

forallu,v € Iand A € [0, 1].

Additionally, note that from Condition C, we have
77(“ + Azn(lh M), u—+ Alr’(vv M)) = (AZ - /\1)77(”» M) (185)

for all u,v € I and A, A, € [0, 1]. See [11] for more detail on preinvex and invex
functions.
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Definition 18.4. Let / € R” be an invex set with respect to 1 : I x I — R". Then
the function f : I — R is called strongly preinvex with modulus ¢ > 0 on [ if

flu+ ) < (1= Df @) + Af (v) = cA(1 = 1)n* (v, u) (18.6)

forall u,v € I'and A € [0, 1].

Obviously, every strongly preinvex function is preinvex.
Throughout this paper, we assume that I C [0, co) is a n-invex interval and the
function 7 satisfies Condition C unless stated otherwise.

18.3 Mutual Relation of Main Preinvex Stochastic Processes

In this section, we give inter-preinvex stochastic processes relation. Let’s remember
concepts related to preinvexity for stochastic processes in [1, 9].

Definition 18.5 (See [9]). A real-valued stochastic process {X(¢)|t € I} is said
to be

(i) continuous in probability in I if
P — limX(t,-) = X(to,-)
=1y

(where P — lim denotes limit in probability), or equivalently

lim P{X (1) = X(to, )| > £} = 0
—>1o

for any arbitrary small enough ¢ > O and all #y € I.
(ii) mean-square continuous (or continuous in quadratic mean) in I if

lim E[(X(1) — X(19))*] = 0

such that E[X(¢)?] < oo, for all £y € I.
(i) mean-square differentiable in I if it is mean square continuous and there exists
a process X', )( “speed” of the process) such that

i [(M _x/(to)ﬂ o
1—1o t—to

Different types of continuity concepts can be defined for stochastic processes.
Surely (everywhere) and almost surely (almost everywhere or sample path) con-
vergences are rarely used in applications due to restrictive requirement, that is, as
t — to, X(t, w) has to approach X(#y, w) for each outcome w € S C 2. For further
reading on stochastic calculus, reader may refer to [20].
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Definition 18.6 (See [1]). Let X : I x £ — R be a stochastic process (not
necessarily mean-square differentiable) on 1. X(z, -) is called preinvex with respect
to n if

Xw+An(,u),) < (1 -=M)Xu,-)+ AX (v, )(a.e.) (18.7)
forallu,v € I'and A € [0, 1].

For a preinvex stochastic process, the inequality (18.7) holds almost everywhere
on £2, i.e., almost every sample path of X will be a preinvex function. In the
inequality (18.7), if A is fixed number in (0, 1), then X is called A-preinvex stochastic

process, and mid-preinvex (Jensen-preinvex) stochastic process for A = —.

If we choose 1(v,u) = v — u, then preinvex X(t,-) is also a convex stochastic
process, that is, class of convex stochastic processes is contained by the class of
preinvex stochastic processes. Now, let us denote by

e P—the set of all preinvex stochastic processes,
e P,—the set of all A-preinvex stochastic processes,
e P 1 —the set of all mid-preinvex stochastic processes,

. Pf—the set of all mid-preinvex stochastic processes by assuming the function 7

2
satisfies Condition C.

Theorem 18.7. P C P, C PS.
2

Proof. If X € P, then X satisfies (18.7) for a fixed A € (0, 1), so the first inclusion
can be proven trivially. As regards the second one, let A € (0, 1) be a fixed number
and X € P,. If we take

A+1
A=u+ Ln(v, u)

2

and
A

B=u+ —n(v,u)

2

for u, v € (a, b), then using Condition C, we get

A+1
A+ An(B,A) =u+ Tn(v,u)

A A+1
+An (u + En(v, u), u + Tn(v, u))

A+1 1
u+ Tn(v,u) + A (—En(v,u))

1
=u+ En(v, u).
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Thus using definition of A-preinvexity, we get
1
X (u + 0. u), ) =X(A+An(B.A).")
= (1=21)X(A,) + AX(B,")
A+1
=(1-1)X (u + %n(v,u),-)
A
+AX (u + En(v, u), )
A+1 A+1

(1-1) ((1 _ %) X, ) + %X(v, -))

+A ((1 — %) X(u, )+ %X(v, -))

_ KX

IA

which ends the proof.

18.4 Strongly Preinvex Stochastic Processes and Related
Well-Known Results for Them

In this section we propose an important extension of preinvexity for stochastic
processes which is called strongly preinvexity. Moreover, we obtain a Kuhn type
result and Hermite-Hadamard inequality for these processes.

Definition 18.8. Let C : 2 — R denote a positive random variable, X : I x 2 — R
be a stochastic process. X : I x §2 — R is called strongly preinvex with modulus
C(:), if the following inequality is satisfied
X+ An(v,u),-)
<(1=M)Xu, )+ AX(@w,) = COA(1 = )n*(v,u) (ae) (18.8)

forallu,v € I'and A € [0, 1].

Note that, if (18.8) holds for a fixed number A € (0, 1), then we describe that the
process is strongly A-preinvex with modulus C(-). Assuming that (18.8) holds only

for A = > then X : I x 2 — Ris called strongly mid-preinvex with modulus C(-) :

X (2u + Z(U,u)7.) < X(M, ) —;X(U, ) _ ?T)Z(U,M) (a.e.).
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Obviously, for a strongly preinvex stochastic process, it can be immediately
found that X is A-preinvex for a fixed number A € (0, 1), and also mid-preinvex

1
for A = 3 from Definition 18.8.

Lemma 18.9. Let [u,u + n(v,u)] C I. A stochastic process X : I x 2 — R is
strongly A-preinvex (strongly preinvex, respectively) with modulus C(-) if and only
if the stochastic process

Y:[uu+n,u]x2 —->R
defined by
Y(1,7) = X(1,7) = CO) (1, u)

is A-preinvex (preinvex, respectively).
Proof. In the first part of the proof, let’s assume that X is strongly A-preinvex and
Y(t,) = X(t,-) — C(-)n*(t,u). Then for t = u + An(v, u), we get
Y(u+ An(v,u),-)

= X(u + An(v,u),-) = CON(u + An(v, u), u)

= X(u+ An(v,u),) = COA* 0 (v, u)

<(1-MX(u,-)+ rAX(v,-)

—COAMA =11 (v, u) = COOA* (v, u)

=1 =MX-)+AX(v,-) — COA (v, u)

= A[X(v,) = COP (v, w)] + (1 = ) [X(u, ) = COP (e, w)]

=AY(v,)+ (1 —-1)Y(u, )(a.e.),

and so Y(t,-) is A-preinvex. The proof of the second part is similar, so we omit it.

18.4.1 A Kuhn-Type Result for Strongly Preinvex
Stochastic Processes

The classical result due to Kuhn states in [10] that if f : I — R fulfills for some fixed
A € (0,1) and forall u,v € I, f is a A-convex function then f is also mid-convex.
Furthermore, Skowronski proved in [18] that a A-convex stochastic process is also
mid-convex.

Now, we prove the counterparts of these facts for strongly A-preinvex stochastic
processes in following theorem.
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Theorem 18.10. Let A € (0, 1) be a fixed number and X : I x £2 — R be a strongly
A-preinvex stochastic process with modulus C(-). Then X is strongly mid-preinvex
stochastic process with modulus C(-).

Proof. Assume that X is strongly A-preinvex stochastic process with modulus C(.),
then Lemma 18.9 yields that the process

Y(tv ) = X(t7 ') - C(')nz(tv M)

is A-preinvex. By Theorem 18.7, Y is also mid-preinvex stochastic process by
assuming the function 7 satisfies Condition C, which means that

(a.e.).

v (2u + n(v,u),.) _ Y(u,") + Y(v,)
2 - 2

2 b
Considering the definition of Y (z, -) for t = u—|—+(vu) , we have

2u + (v, u) 5 (2u+n(v,u)
(e ) (25

_ X)) = COP’(wu) + X(v.) = CON*(v.1)
- 2

(a.e.).

Finally, using Condition C, and n(u,u) = O for all u € I, we can easily obtain that
X is strongly mid-preinvex stochastic process with modulus C(-).

18.4.2 Hermite-Hadamard Inequality for Strongly Preinvex
Stochastic Processes

Now, we would like to prove Hermite-Hadamard type inequality for strongly
preinvex stochastic processes. Let’s start some essential definitions.

Definition 18.11 (See [9]). Let X : I x £2 — R be a stochastic process with
E[X(1)?] < oo forallt € I. Let

[a,p]Cla=ty <t <---<t,=b
be a partition of [a, b] and O, € [f—, t;] arbitrarily for k = 1,...,n. A random

variable Y : £2 — R is called mean-square integral of the process X(¢) on [a, b] if
the following identity holds:

B 2
lim E (ZX(@k)(tk —tiy) — Y) =0. (18.9)

k=1
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Then we can write

b

/ X(t,)dt = Y() (a.e.).

a
Mean square integral operator is increasing, that is,

b b

/X(r, dt < /Z(r, dt (a.e.)

a a

where X(¢,-) < Z(t,-) (a.e.) in [a, b].

Definition 18.12 (See [1]). Let X : I x 2 — R be a mean square differentiable
stochastic process. Then X(, -) is called invex with respect to n if

X(t,+) — X(to, ") = X'(to, )n(t, o) (a.e.) (18.10)

forall ¢, 19 € I.

If X is a mean square differentiable stochastic process, then it is also mean square
continuous by Definition 18.5. Mean square continuity guarantees continuity in
probability, as t — fy, for any small enough ¢ > 0 and all # € I.

For a preinvex stochastic process, from now on, let us assume that 7 is skew-
symmetric, i.e., n(t,ty) = —n(ty,t) for all t,1y € intl, and n(t,1) > 0 for such
t=t.

Now, in order to establish our argument, we consider the following lemma.

Lemma 18.13. [f stochastic process X : I X §2 — R has the form

X(1,)) = COn’(t,u)
where C(-) is random variable such that E[C?] < oo, and [u,u + n(v,u)] C I, then

u+n(v,u) 3
X(1,-) dt = C(-)@ (a.c.). (18.11)

u

Proof. By dividing the interval [u,u + 1(v,u)] into n subintervals and choosing
endpoints of the subintervals as points in the partition, we yield

n 2
E (ZX(@k) = 1) — c"s(”’”))

k=1 3

- 2
=F (Z CT’2(@/{9 u) . (tk _ tk_l) . Cn3(v’ u)>

k=1 3
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— E[CY (Z ” (u " Sn(v,u),u) th—)— " (’;’”))
k=1

2
) (MDD 0

If n — oo, then the above expression tends to zero, because of the definition of the
Riemann integral. This completes the proof.

Theorem 18.14. Let the stochastic process X : I x §2 — R be a strongly preinvex
with modulus C(-.) and mean-square continuous in the interval I. Then we obtain
Hermite—Hadamard type inequality for any u,v € I, as follows:

2u + n(v, u) ce ,

(/227 ) 4+ 222

( 2 ’ 12 v,
u+n(v,u)

1
X(t,-)dt

n(v,u)

=
X(u,-) + X(v,- C(
< M _ ﬁnz(v,u) (a.e.).
2 6
Proof. The process X is strongly preinvex with modulus C(.), the process
Y(t,.) = X(t,.) — C()n*(t,u)

is preinvex by Lemma 18.9. Using (18.2), we get

2 1 u+n(v,u)
y u—l—ﬂ(v,u),_ < / Y(t,-) dt
2 nw.u) Jy

Y(u,) +Y(v,-)
2

(a.e.).

2 )
Considering the definition of Y(z,.) for t = u—i—+(vu), we have

¥ (2u + Z(v,u)’.) oy (2u + Z(v,u)’u)

u+n(v,u)

(X(1,) = CC)n* (1, ) dt

=

(v, u)

u

_ X)) = COPwu) + X)) = CON’ (v, u)
=< 2 .
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Furthermore, using Lemma 18.13 and taking into account Condition C and
n(u,u) = 0 forall u € I, we get

X (—2” i Z(U’”), ) ~ %nz(v, )
{ u+n(v,u) C()
)2
< o) X(t,-)dt — Tn (v, u)
RTRESTRRE SR

Consequently, after some rearrangement, we obtain Hermite—-Hadamard type
inequality for the process X.

18.5 Conclusion

In this paper, we propose strongly preinvex stochastic processes. We also obtain
a Kuhn-type result and Hermite—Hadamard type inequality for strongly preinvex
stochastic processes under some suitable conditions. Preinvexity concepts are
particularly interesting from optimization viewpoint, since it provides a broader
setting to study the mathematical programming problems.

As special cases, one can obtain several new and correct versions of the
previously known results for various classes of these stochastic processes. Applying
this type inequalities for stochastic processes is another promising direction for
future research.
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Chapter 19
On One Boundary-Value Problem with Two
Nonlocal Conditions for a Parabolic Equation

Olga Danilkina

Abstract This work is concerned with a boundary-value problem for a parabolic
equation with nonlocal integral conditions of the second kind. Existence and
uniqueness of a generalized solution are proved.

19.1 Introduction

In recent years, nonlocal problems for PDEs have received a great deal of attention
as a convenient way of description of different physical phenomena. These problems
arise in a wide variety of applications, including heat conduction, processes in
liquid plasma, dynamics of ground waters, thermo-elasticity and some technological
processes.

In this paper, our main interest lies in the field of nonlocal problems with integral
conditions that generalizes the discrete case. We mention the first papers in this
area [6, 14] devoted to problems for parabolic equations. Then these results were
extended [2, 7-11, 13, 16, 26, 28, 29]. For papers related to nonlocal problems for
other evolution equations, we refer the reader to [1, 3-5, 12, 17, 19-25, 27].

In [25], the author studied two problems for the hyperbolic equation

U — Uy + (X, u = f(x, 1)
with the initial condition
u(x,0) = ¢(x),  u(x,0) = Y(x)

and two types of nonlocal conditions.
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Case 1 :

1

/Ki(x)u(x, HNdx=0, i=1,2.
0

Case 2 -

l

u(0,1) — / Ki(x, Hu(x, 1) dx = 0,
0
1

uy(l, 1) — / K> (x, Hu(x, ) dx = 0.

0

0. Danilkina

Motivated by the ideas of Pulkina [25], in this paper we extend the results of
Pulkina [25] to a special class of boundary-value problems with nonlocal integral
conditions for parabolic equations. The proof of the main result is based on the

method of energy estimates and the Faedo—Galerkin approximations.

19.2 Preliminaries

In the cylinder Q7 = {(x,7): x € (0,1), t € (0, T)} we consider the problem for the

equation
U = Uyy + c(x, Hu
with the initial condition

u(x,0) = ¢(x)

and the nonlocal conditions

1 l

u(0,1) = | Ki(x, Hue(x, 1) dx + | My(x, H)u(x, t) dx,
/ /
! !

u(l,t) = /Kz(x, Huy(x, 1) dx + /Mz(x, Hu(x, 1) dx.
0

0

(19.1)

(19.2)

(19.3)

(19.4)



19  On One Boundary-Value Problem 273

In this paper, we shall assume that the following assumptions are satisfied.

(A1) ¢(x,1) € C(Qr), ¢(x) € C'[0,1]; _
(A2) Kl(xs t)» KZ(x’ t)v Ml(x’ t)v MZ(x’ t) € CI(QT)

We note that presence of partial derivatives on the right-hand side of the nonlocal
conditions (19.3), (19.4) can cause difficulties in constructing of a priori estimates.
Therefore, to avoid this we integrate by parts in (19.3), (19.4) and obtain

l

u(0,1) = Ky (I, Hu(l, 1) — K1(0, H)u(0, t) + /Rl(x, Hu(x, t) dx, (19.5)
0
I

u(l,t) = K (1, Hu(l, ) — K5 (0, H)u(0, 1) + /Rz(x, Hu(x, 1) dx, (19.6)
0

where Rl ()C, t) = Ml (xv t) - (Kl ()C, t))x’ RZ(xv t) = MZ(-x’ Z‘) - (KZ(xv t))x~

Let Wzl’O(QT) be the usual Sobolev space. We define the space V,(Q7) which

consists of elements of WZI’O(QT) with the norm

1
|ul* = ess sup /uz(x,t)dt—i—/ui(x, t)dxdt.

0<1<T
or

Definition 19.1. A function u(x, 1) € V,(Qr) is said to be a generalized solution
to the problem (19.1), (19.2), (19.5), (19.6) provided for any function n(x,) €
W) (Qr), n(x,T) = 0, the following integral identity holds:

/ (—un; + uny — cun) dxdt
Or
i T

- / (07 (x, 0) dx + / (K2 (0.97(0. 1) — Kx (0, yn(l, 1) (0. ) dr

0 0

T
+/(K2(l, n, 1) — K (L, )n(0, 1) u(l, t) dt
0
+/(R1(x, Hn(l, 1) — R2(0,5)n(0, 1)) u(x, t) dx dt. (19.7)
Oor

Lemma 19.2. Let a function u(x,t) be a solution to the problem (19.1), (19.2),
(19.5), (19.6). Then the following identity holds:



274

l

1
Efuz(x,r)dx—}—/ufdxdt:

0 Or

fora.e. t €[0,T].

0. Danilkina

1 1
5[ (p2(x)dx+/cu2dxdt
0

or
+/K2(l, (1, 1) dt—/K1 (L, Hu(0, Hyu(l, 1) dt
0 0

+fK1(O, Nu? (0, t)dt—[Kz(O, Hu(0, tu(l, 1) dt

0 0

+ / Ri(x, Hyu(x, 1) dxu(l, t) dt
or

- / Ry (x, u(x, t) dxu(0, t) dt
Or

Proof. Let a function u(x,7) € W,(Q,) and satisfy the integral identity (19.7) for
all functions n(x, 1) € W, (Qr), n(x,T) = 0. For an arbitrary 7 € [0, T], we take

Nt = {

u(x, 1), 0 <t<r,
0, <t<T.

After integration by parts in (19.7) we obtain

l

1
§/u2(x,r)dx+/ufdxdt=

0 0

1

1
E[(pz(x)dx—i—/cuzdxdt

0 Or

+ 0/ K> (1, 0y (1, 1) dt — O/ K1 (L, £)u(0, f)u(l, 1) dt

T T

+/K1(O, Nu? (0, t)dt—[Kz(O, Hu(0, tyu(l, 1) dt

0 0

+ / Ri(x, yu(x, 1) dxu(l, 1) dt
Q'[

- / Ry (x, u(x, t) dxu(0, t) dt.

QT

(19.8)
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We shall prove that a function u(x,t) € V,(Qr) also satisfies (19.8). To this aim
consider a sequence v™(x,t) € W21 (Qr) which satisfies the identity (19.7) and
hence, (19.8), that is

! !
1 1
3 f (v™?(x, 7) dx + / () dxdt = 3 / @2(x) dx + f c(v™)* dx dt
0 0O 0 [0

T

+ / K>(1, ) (v™)*(1, t) dt

0

—/K1 (1, Hv™ (0, H)v™ (1, 1) dt
0

T

+ / K1(0,1)(v™)*(0, 1) dt

0

— / K>(0,5)v™(0,0)v™ (I, 1) dt
0

+ / Ry (x, t)v™ (x, £) dxv™(l, t) dt
0.

- / Ry (x, £)v™ (x, ) dx v™ (0, t) dt.
O
(19.9)

Note that W} (Q,) is dense in VZI‘O(QT) [15] and hence, in V,(Q7). Therefore, there
exists a function u* € V,(Qr) such that [v™ — u*|p, — 0 as m — oo:

!
ess sup /(v”‘ —u*) dx + /(v’” —u*)2dxdt — 0.
0<t<T
0 Or

It implies that v"'(x,#) — u™* strongly in L,(0,1) and v}*(x,f) — u} strongly
in L,(Qr). We also note that v — u™ in Ly(Qr). Our next aim is to estimate
terms on the right-hand side of (19.9). The assumptions (A1), (A2) imply that there
exist positive numbers ¢y, k, such that |c(x,?)| < ¢, |K2(x,1)| < ko. Applying
e-inequality [18]

I
V] o = / (evf + C(e)v?) dx
0
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we obtain

T

/ K (L)1, 1) dt| < ky / ("(1,1))* dt
0

0
< kae| [V []* + ko Cel 0"
< H (I71P + ["1P) (19.10)
where H; = max{k,¢, k,C,}. Similarly, we derive the estimates

T

/Kl(o, D" (0,0)*di| < Hy (|01 + [[v"]?) (19.11)
0
/ (K1 (1) + K2(0,0)0™ (0, )" (1, 1) de| < Ha (I[P + [l"[P). (19.12)
0

To obtain an estimate for the term

/ Ri(x, )v™ (x, ) dxv™ (1, t) dt,
[

we use Young’s inequality and the Cauchy—Schwartz inequality and then

/ Ry (x, )v™ (x, £) dxv™ (I, t) dt
QT

l T
<3 / (0" (1, )2 dt + % / (0" (x, 1)) dx dt.
0 Qf
Similarly,

/R1 (x, V" (x 1) dxv™ (1, 1) dt| < Hy ([0 + [[v™] ) (19.13)

T

and

/Rz(x, NV (x, 1) dx v (0, 1) dt| < Hs (||v2]]> + [[v"]%) (19.14)

T
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where the constants H;, i = 2,3,4,5 do not depend on m. Furthermore, we note
that

/c(v’")zdxdt < cr|[v™|2. (19.15)
QT
Therefore, using strong convergence v”(x,t) — wu* and the estimates (19.10)-
(19.15) we pass to the limit as m — oo in and obtain (19.8) for u(x, t) € V,(QOr).
Lemma 19.3. Let a function u(x,t) be a solution to the problem (19.1), (19.2),
(19.5), (19.6). Then there exists H > 0 such that |u|p, < H.

Proof. By Lemma 19.2, the solution u(x, f) satisfies the integral identity (19.8). We
shall estimate the right-hand side of (19.8). Note that for g/, &, > 0

l

u?(0,1) < / (e102 + C(en?) dx, (1, 1)
0
1

< / (ezui + C(sz)u2) dx

0

and hence,

i
[u(0, Hu(l, 1)| < / (e1 + Sz)uf + (C(ey) + C(Sz))uz) dx
0

NI'—‘

Therefore,

T T T

!
/K2(1 Nut(l, 1) dt| < kzsf/u dxdt+k2C5//u2dxdt, (19.16)
0 0 0 0

0
/ (Ki(1,t) + K2(0, 1)) u(0, t)u(l, 1)

ki + k
< (1—;—2)(81 +82)/u§dxdt+

O

ke + k
M(cgl +C.,) [ u? dx dt.

Oc



278 0. Danilkina

Moreover,
/ Ri(x, Hu(x, 1) dxu(l,t) dt
0«
1 2
E(rl +1Cy,) | (ulx,1))" dx dt
QT
82[ 2
+7 (uy(x, 1) dx dt
and

/ Ry(x, Hu(x, 1) dxu(0, 1) dt
QT

l(rz +1C,,) / (u(x, 1)) dx dt

QT

+%l /(ux(x, 1)? dx dt. (19.17)

N

From the estimates (19.16)—(19.17) and the integral identity (19.8) it follows that

1 l

1
/uz(x,t)dx+/u dxdt < 5/¢2(x)dx+P[u2dxdt.

0 Or Or
In particular,

i 1

1
/uz(x, T)dx < E/goz(x)dx—i—P/uzdxdt. (19.18)

0 0 QO
By Gronwall’s lemma we conclude that

l

[uz(x, 1) dxdt < H, fwz(x)dx, (19.19)
O 0
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and hence,

!
f u(x, 1) dxdt < H, / @*(x) dx. (19.20)
O 0

Therefore, from (19.19) and (19.20) we obtain

|ulg, < H.

19.3 The Main Result

In this section we shall prove existence and uniqueness theorem for the prob-
lem (19.1), (19.2), (19.5), (19.6).

Theorem 19.4. Let the conditions (A1)—(A2) hold and

(A3) Ki(£1,0), K2(§,0) =0,i=1,2,& =0, & =1, Ki(l,1) = K»2(0,1),

(A4) RI+R <1

Then there exists a unique generalized solution to the problem (19.1), (19.2),
(19.5), (19.6).

Proof. The proof of the theorem is organized as follows. First, to prove the existence
part we construct a sequence of Faedo—Galerkin approximations and show its
convergence to the solution of the problem. Second, we prove uniqueness of the
generalized solution. Let a system of functions {¢;(x)} € C'[0,[] be complete in
W, and

Li=j
(¢r, %‘)Lz(o,z) - { 0,i#].

We define for each N € N the approximate solution in the following form

N
WV (x, 1) = Z CkN(t)wk(x),

k=1

where the functions c,(f) are unknown for the moment. We shall consider ¢ ()
which are solutions to the Cauchy problem

l 1 1

/uﬁvfpidx—i—/uf(p{dx—/c(x,t)uNwidx

0 0 0
= K1(0, )" (0, 0)9i(0) — K1 (L, yu™ (1, 1)i(0)
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I I
+ /Rl(x, Hu dxp;(0) —/Rz(x, Hu dxp;()

0 0

— K> (0, 0)u™ (0, (1) + Ko (L, 0y (L, )i (D),

N (0) = (¢. ¢).

i =1, N. We write the Cauchy problem (19.21)—(19.22) such that
d N
N N _ TN
ZCi () + ;:] cp (DALi(t) =0, i=1,N,

where

l

1
Ari(t) = | o (0@ (x) dx — | c(x, ) (x)gi(x) dx
/ /

1

0. Danilkina

(19.21)

(19.22)

(19.23)

—i(0) (Kl (L, (D) — K (0, )i (0) + /Rl(xv Dy (x) dx)

0
1

+ i) (Kz(l» Her(l) — K2(0, )er(0) + /Rz(x’ D r(x) dx) .

0

We estimate the coefficients Ay ; as follows:

l 1

1 1
40 = 5 [Pt 5 [P

0

(=]

l 1

/%mw+ [d@m

0 0

+

N ol
N ol

l

+M@(mmmwwmm+%+%/dww)

0
I

r 1
+M@(bmmwwmm+§+5/%mw)

0
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The assumptions (A1)—(A2) imply that A;; are bounded. Therefore, the Cauchy
problem has a unique solution ¢} € C'(0,7) and all approximations u" (x, ) are
defined. The next aim is to show that the sequence {u™(x,f)} converges to the
solution to the problem (19.1), (19.2), (19.5), (19.6). To this aim we multiply
each (19.21) by ¢V (z), sum it up from i = 0 to i = N and integrate the result
with respect to ¢ from O to #; < T. Thus we obtain

1 l
1 2 1
u® (x, ll) dx+ (uf:’) dedt = = | @*(x)dx+ [ c(™)? dxdt
2 (s [l =g [ oace |
+ /Kz(l, D@ (1, 1))* dt
0
- / K\ (1, 0)u™ (0, t)u (1, 1) dt
0
+ [ K0 0,007 dr
0
— /Kz(o,t)u"’(o, D (1, 1) dt

0

+ / Ry (x, )™ (x, 1) dx ™ (1, 1) dt
O

— / Ry (x, t)uN(x, ) dx uN(O, 1) dt.
O

Therefore, from Lemmas 19.2 and 19.3 it follows that {uN | or < Const. It implies

that there exists a subsequence of {u" (x, #)} which converges weakly in L,(0, /) and
uniformly with respect to ¢ € [0, T] to some function u(x, 7) [18]. We shall prove
that this function u(x, r) satisfies the integral identity (19.7) from the definition of
a generalized solution to the problem (19.1), (19.2), (19.5), (19.6). To this end, we
multiply each (19.21) by a smooth function d;(¢), d;(T) = 0, sum it up fromi =1

to i = N, integrate with respect to 7 from O to 7 and denote oV = Z d;(t)pi(x).

i=1
As a result we obtain
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T
f (—(uN, V) + W, o) — (cu, @N/))
0

1

T |
— / ()" (x,0) dx + / Ry (x, ) (x, 1) dx @V (0, 1) dt
0 0 0

T 1 T
- / / Ry (x, ™ (x, £) dx @V (1, 1) dt — / K>(0, 1) (0, )@V (1, 1) dt
0 0 0
T T
+ / KLy (1, )@Y (1, 1) dt — / Ki(L,u (1, )@V (0, 1) dt
0 0
T
- / K10, )™ (1, 1)@V (0, 1) dt. (19.24)

0

Since V', @', &V € L,(Qr), the subsequence {uNn(x, 1)} converges weakly in
L,(Qr), so it is possible to pass to the limit in (19.24) as m — oo for any fixed oV
Thus, for any u(x, ) € V2(Qr) the following identity holds

/T (— @) + (. @) = (e, ™))
0

1 T 1
= [go(x)cDN/(x,O)dx—F//Rl(x, t)u(x,t)dx@N/(O,t)dt
0 00

T

T 1
- / / Ry (x, ulx, £) dx @V (I, 1) dt — / K>(0, Hu(0, Y@V (1, 1) dt
0 0 0
T T

+ / K (L tyu(l, @Y (1, 1) dt — / KL tyu(l, )@V (0, 1) dt

0 0

T
+ / K1 (0, u(l, HdN (0, £) dt. (19.25)
0

Denote @ = | Jsv_, @V The set @ is dense in WJ(Qr) and hence, there exists
a function @(x,7) € W1(Qr) that is the limit of the sequence oV Finally, we
conclude that the relation (19.25) holds for all functions ®(x,7) € Wi(Qr) and
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therefore, there exists the solution u(x,t) € V,(Qr) to the problem (19.1), (19.2),
(19.5), (19.6) in sense of Definition 19.1. Assume that there exist two different gen-
eralized solutions u; (x, 1), uy(x,t) € V2(Qr) to the problem (19.1), (19.2), (19.5),
(19.6). Then

u=u —uy € V2(Qr)

satisfies the following identity

/ (—un, + un, — cun) dxdt
Or

=/(R1(x, Hn(l, 1) — Ry(0,H)n(0,1)) u(x, t) dx dt
Or

T
+ [(Kl(o,t)n(o,t)—Kz(O, O, 1) u(0, 1) dt
0

T
+ / (K (L,on(, 1) — K11, H)n(0, 1)) u(l, t) dt. (19.26)
0
We take

0, b<t<T,

N, =1 ;
Ju(x,7)dt, 0 <1<b,
b

where b € [0, T] is arbitrary. Note that
n(x,1) € Wy(Qr), n(x,T) = 0

and since 7y = uy, S0 Ny € Lp(Qr). We substitute n(x, f) into (19.26) and express
u, u, in terms of 7. Then (19.26) becomes

/Q (=07 + N — enne) dxd
= [ 0100~ Ra0.00(0.0) ) e
b
+ fo (K1(0.5)n(0,1) — K»(0.0)n (L. 1)) n,(0., 1) dr

T
+ / (K (L, n(l, 1) — Ky (1, 0)n(0, 1) (1, t) dt. (19.27)
0
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Integrating by parts in (19.27) we obtain

1

[ni(x,O)dx—i—/r],zdxdt
0 Q
!

1
=3 —/c(x, 0)n*(x, O)dx—l—/ctnzdt

0 )

N =

+ /(—Rl(x, Hn(l, 1) + R2(0,1)n(0, 1)) n,(x, t) dx dt
Op

b
1 1
+§mm®#mm+5/mxam#mﬁm
0
1 1 b
+5m@m%@m+5/mxm»#@om
0

b
—mmmmmm&m—/mmnmmmmwm
0

b b
+ /Kl(l, Hn(l, 1),m(0, t)dt—/(Kg(O,t)),n(l, Hn0,t)dr. (19.28)
0

0
Under the assumptions (A1)-(A2) from (19.28) we obtain the following estimate

!
/nf(x,O)dx+/nt2dxdt§ (c1b+P1b2)/nfdxdt—i—Pz/nidxdt,
0 O [ O

where

k3 + 2ky4

Pi=2+4c+ , Py =221 + ksl + 3kul).
Since b > 0 is an arbitrary, so let b be such that 1 —c;b — Ch? > 0 and in particular,

5 1
l—Clb—Cb Z—.
2
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That is,

—cp + /e +2C
belov]),v=— T ——.

2C

Then for all b € [0, v]

1
1
/r}i(x,O)dx—i— E/nfdxdzspzfnidxdt. (19.29)
0 Op b
t
Define the function u(x,7) = [u(x, ) dt. Then n(x,7) = y(x,7) — y(x,b) for ¢ €

0
[0, b] and (19.29) can be represented as

1
1
[yi(x, b)dx + 3 /y,2 dxdt < P, /(y(x, 1) — y(x, b))fc dx dt,

0 O [
which implies that

1

/ Ya(x,b)dx < P, / ((x, 1) — y(x, b))? dx dt

0 )

1
<2P, [ y2(x, 1) dx dt + 2P2b / y2(x, b) dx.
0
O

1
In particular, for b < —— we obtain
4P,

l

/ y2(x,b) dx < 4P, / yi(x, 1) dxdt. (19.30)
0 Op

1
The estimate (19.30) is valid for all b € [0, b;], where by = min P Vo
p)

From (19.30), Gronwall’s lemma and the condition y,(x,0) = 0 we obtain that
y2(x,b) = 0 for all b € [0,b;]. And hence, 1,(x,7) = 0, € [0,b;]. Then
from (19.30) it follows that n,(x, ) = u(x,t) = 0, ¢t € [0, b;]. Likewise, we repeat
the above arguments and obtain u(x, ) = 0 for all 7 € [by, 2b;] and so on. Finally,
we conclude that u(x, f) = 0 in Qy that in turn implies uniqueness of the solution to
the problem (19.1), (19.2), (19.5), (19.6).
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Chapter 20
Neighborhoods of Analytic Functions Associated
with Fractional Derivative

Osman Altintas

Abstract In this paper we define a differential operator and introduce the sub-

classes Fj  (A,a,8) and K (A, 8,p) of functions which are analytic and

p-valent in the open unit disk. Also we derive coefficient bounds, distortion
inequalities, associated inclusion relation for (n, &)-neighborhoods of the classes,
which are defined by means of a certain non-homogeneous differential equation.

20.1 Introduction and Definitions

Let F (n, p) denote the class of functions f(z) normalized by

[e.o]

f@=2- > ad (@=0npeN={123_.}), (20.1)
k=n+p

which are analytic and p-valent in the unit disk
U={z:zeCand |7] < 1}.

The fractional derivative is defined as follows (see [8, 9]).

Definition 20.1. The fractional derivative of order § is defined by

L 4 JO 4 0<s<).

5 () = 4
b = r-sd) ¢

where f(z) is an analytic function in a simply connected region of the z-plane
containing the origin and the multiplicity of (z—é)‘; is removed by requiring
log(z — &) to be real when z — & > 0.
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Definition 20.2. Under the hypotheses of Definition 20.2, the fractional derivative
of order (n + §) is defined by

D”+‘gf(z) d—D‘gf(z) 0<d8<1,neNy=NU{0}).

Following the earlier investigation by Goodman [7] and Rusheweyh [10], we define
the (n, €)-neighborhoods of a function f4+% (z) when f € F(n,p) by

gEF(np) g =2 -2, , b and

& (g18) ,qt8) — % I (k+1
Nn’p(f '8 ) ( + ) k|ak—bk|§8
kmnp I (k—q—38+1)
p>qg+6, peN geNy=NU{0},0<6<1, zeU). (20.2)

So that obviously,

o0
g§EF(p) 8@ =2— Y b

N,» (h(qH), g(q+8)) = o0 Lk+1) = (20.3)
and Y klb| < e
k=ntp I (k—g—8+1)

where h(z) =2 (p € N, q € Ny).

We also let )] , (A, e, §) denote the subclass of F(n,p) consisting of functions
f(z) which satisfy the inequality

rp+1)

R
AT p-—g=56+1)

Zq+5_p [AZD;+q+8f (Z) + (1 — )L) DZ+5f (Z)]

(20.4)
where0 <A <1,0<a<1,0<d<l,g<n+p,g+a+8§<p,zel.

re+h p—q—&_i rk+1)

— T L L Ny A e $
Tp—q—6+1)° Fh—q_stn% " P>atd).

£ @ =
k=n+p

(20.5)

The various special cases of the class F (A, 0, 8) were considered by many
earlier researchers. For example, we have the following relationships with the class
which were studied in the earlier works:

(A, ,0) =T)(g. A, ) (see[2])

np

F) (a0 =T (0,A,a) (0<A<1,0<a<1)(see[l2])
”p(l @,0)=T7,(0,1,a) (0=<a <p)(see[9])

”1(1 a,0) =770, 1,a) (0<o <1)(see[ll]).
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The neighborhoods of certain subclasses of analytic functions were studied by
Altintas in [1] and by Altintas et al. in [3-6].

Finally, K7, (N, @, 8, jt) denote the subclass of the general class F (n, p) consist-
ing of functions f € F(n,p) satisfying the following non-homogeneous Cauchy—
Euler differential equation:

2d2+q+éw 51 d1+q+8w . dq-i-SW
T g P2+ Wyt () e
q+8g
=@—q—5+m0%ﬁ—8+u+uzﬁg, (20.6)

where w =f(z) € F(n,p),g =g (2) € Fl ,(A,a,8) and n > g —p + 6.

The main object of the present investigation is to derive coefficient bounds, dis-
tortion inequalities, and associated inclusion relation for the (n, &)-neighborhoods
of functions f € F(n,p) in both classes T}/ , (\, &, §) and K}/ , (N, &, 8, ).

20.2 Coefficient Bounds and Distortion Inequalities

We begin the following Lemmas.

Lemma 20.3. Let the function f (z) € F(n,p) be defined by (20.1). Then f (2) is in
the class F, , (A, ., 8) if only if

o0

rek+1
> ———— [+ Ak—g—5—D]g
o Tl—g=8+1)
r 1
'p+1)

0<A<1,0<é<1,0<ac< M+A(pp—g—6-1)],

rp—g—56+1)
peN, geN.

The result is sharp for the function f (z) given by

_{F(p+1)[1—l—)k(p—q—S—l)]—a}F(n—i—p—q—S—i—1) ntp

f== Tp—q-8+D[+Ar(+p—qg-8-DIT(ntp+1)

Proof. Using (20.4) we have

'+ o
F@_q_8+1ﬂl+A@—q—8—lﬂqu

- l+Atk—qg—8— )] aF98
2, Thg—s+n TAk-a=d=Dla
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By letting z — 1~ along the real axis, we arrive easily at the inequality (20.7).
Conversely, suppose that the inequality (20.7) holds true and let

zedu={z:zeCand |z] =1}.

Then we find
& (pr_(l; J_r 51 )+ 1)z4+5—f’ [AzD!T4Hf () + (1 = ) DTTF ()]
I'p+1)
_F(p—q—8+1) M+A(p—qg—38—-1)]
rp+1

S Fo—gsplltAP-a-s-Dl-a

Hence by the maximum modulus theorem we have f (z) € F}! , (4, &, §).

Lemma 20.4. Let the function f (z) given by (20.1) be in the class F}, , (A, §).
Then
> rk+1)
> a
'k—qg—356+1)

k=n+p

. e+ DA+Ap—g=5-D]-« (20.8)
TT(p—q—8+D[l+A(n+p—g—-5-1)] ‘

and

> I(k+1)
>

k
T(k—q=8+1) U

k=n++
T @+ D +A(p—g—5-D]-a}(+p)
T I'p—gq-8+D[1+A(n+p—q—58—-1]

(20.9)

Proof. By using Lemma 20.3, we find from (20.7) that

ad I (k+1)
l+A(n+p—g—-86—-1) ax
k;pr(k—q—aﬂ)
I(k+1)
= Faog sl AE-a-8-Dla
rp+1)

= Fo—gsspl TAP-a-s-Dl-e
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which is the first assertion (20.8). For the proof of second assertion, by appeal-
ing (20.7), we also have

rk+1)
AZF(k—q—8+1) U

k+1)
Th—q—56+1D™

S IEPYCVELESNDY

_ I'p+1)
“I'(p—gq—-656+1)

M+A(p—g—-56—-1)]—c. (20.10)
By using (20.8) in (20.10), we can get the assertion (20.9) of Lemma 20.4.
The distortion inequalities for functions in the classes
Fl,(A,a,8) and K, (A, 0,8, 1)

are given by the below theorem.

Theorem 20.5. Let a function f € F (n,p) be in the class F} , (A, ., §) then

Te+Dl+Ap—qg-5—D]-a} ' (n+p—q—-56+1), .+
F @I ="+ T(p—qg—"-b+D[I+A(ntp—g-03-—DT(tp+1) ™"
(20.11)
and
lf(z”z|Z|p_{F(p-i—1)[1+)L(p—q—8—1)]—oz}F(n+p—q—5+1) .

T—q—08+D[l+Atn+p—q-—08-DIT (ntp+1)
(20.12)

Proof. Assume that a function f(z) € F (n,p) is in the class F]! (A, a,§) then we
have

F@OI<kF+ > ad

k=n+p

and using (20.8) in Lemma 20.4, we have

e+ H+Ap—g-6-—D]-ajl'(n+p—g—5+1) 2t

If @I = |zl + F'p—q—8+D[l+A(n+p—g—8—DI T (n+p+1)

The assertion (20.12) of Theorem 20.5 can be proven by similarly.
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Theorem 20.6. Let a function f € F (n,p) be in the class K] , (A, a, 8, j1) then

If @I < Iz
Fe+D[l+A(p—g=-8—D]—-a} (n+p—qg—58+1)
Fp—q—8+D[1+A(n+p—g—8—DI T (n+p+1)

P—gq—8+Wp—g-—5+p+1)
' (n+tp—q—38+mp

(20.13)

and

If @ = |z
e+ DI +Ap—g-8-D]-} T (n+p—g—8+1)
F'p—qg—8+D[1+A(n+p—qg—8—DIT (n+p+1)
P—q=8+wWp—g=—8+pu+1) .4,
. |z
(n+p—q—35+np

(20.14)

Proof. Suppose that f (z) is in the class K, (A, «,8, ). Also let the function
g (2) € F, (A, a, §) occurring in the non-homogeneous differential equation (20.6)
be given as in the definition (20.2) with by > 0 (k=n+p,n+p+1,...). Then
we have from (20.6) that

_ =g+ p—g-—5+p+1)

_ b, (k = , I,...).
e S ¥ iy Sy o (k=n+p,n+p+ )
(20.15)
So that
o0
f@=2-7% a
k=n+p
o i (h—qg=8+Wp—g=8+p+, ,
i, k—q=8+pk—g=8+pn+1
and
—~ P—q—8+wWp—qg—8+pn+1)
Z S Zp+ Zl’l"rp b . (2016)
If @I = [z + 2| k;p(k_q_gw)(k_q_gwﬂ) k

Since g(z) € F},(A,a,8), the first assertion (20.8) of Lemma 20.4 yields the
following inequality:

{ro+Hl+A2(p—g—-8—D]—a} ' (n+p—qg—35+1)

F'p—g—8+DH[l+A(n+p—qg—-8—-D] T (n+p+1)°
(20.17)

|bi| <
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We have from (20.16) and (20.17),

If @ < |zl + [2]"*”
(Frp+Hl+A(p—g-8—-D]-a}l n+p—g—8+1)
"T'(p—q—-S8+1D)[1+A(n+p—qg—86—DIT(n+p+1)
p—q=S8+mwp—q-5+p+1
1

Z (20.18)
k_n+p(k qg—6+wytk—qg—56+u+1
and also note the following identity that
i 1
Pt k—g—6+puwtk—qg—86+unu+1)
_ Z 1 _ 1
k:n+p(k—q—5+,u) k—g—04+pn+1)
1
(20.19)

C(n+p—g—8+p

where @ € R\{-n—p,—n—p—1,...}. Using (20.19) in (20.18) we get the
assertion (20.13) of Theorem 20.6. The assertion (20.14) of Theorem 20.6 can be
proven by similarly.

20.3 Neighborhoods for the Classes FZ’I, (A,a,9)
and Kz,p (Aa o, 8a IL)

In this section, we determine inclusion relations for the classes Fj | (A, a,8) and
K, (A, a8, ) involving the (n, £)-neighborhoods defined by (20.2) and (20.3).

Theorem 20.7. Let a function f € F (n, p) be in the class Fl, (A, a,8) then
F!, (A8 CN, (h<q+s)’ g<q+s)) (20.20)

where h (z) is given by (20.3) and ¢ is the given by

_ e+ DHI+AP-g=86=-D]-aj+p)
Fp—q—-8+D[l+A(n+tp—q—35—1D] "

Proof. Assertion (20.20) would follow easily from the definition (20.3) with g (z)
replaced by f (z) and the assertion (20.9) of Lemma 20.4.
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Theorem 20.8. Let a function f € F (n,p) be in the class K}/, (A, a8, ) then
Ki, (A8, ) CN;, (g(q+8)’f(q+8))

where g () is given by (20.6) and ¢ is the given by

_ T p+tDA+Ap—g=8=-D]-ajin+pn+p—g=5+p)(p— q—5+ﬂ+2)]
rp—q—58+1D[1+A(n+p—q—86—D]n+p—q—5+nn

Proof. Suppose that f € K}l , (A, .8, j1). Then, upon substituting from (20.15) into
the following inequality:

> Ik+1
2. F@—F—511f”“_”|
k=n-+p q

oo

I k+1) rk+1)
kb ka
fkggprw—q—8+1)k+'§: Fk—qg-8+D ©

where a; > 0 and b, > 0, we obtain

> I'(k+1)
> k |bx — ar
L Tk—q=5+1)
<§3 rk+1)
_k_n+pF(k g—6+1)
> Frk+DH)p—-q—8+wp—q-—8+u+1
kby.
'Zgirm—¢w+nm—¢w+mm—¢w+u+nk
(20.21)

Since g (z) € FZ,p (A, «,§), the second assertion (20.9) of Lemma 20.4. yields that

re+b . e+ DI+2p—g=85-D]-a}(+p)
Fthk—qg—8+1) = Tp-—gq-9b+D[1+A(n+tp—q-58—1)]
(20.22)

Finally, by making use of (20.9) as well as (20.22) on the right-hand side of (20.21),
we find that

o0

I'k+1)
> ke |b — ay
S, Tk—q=8+1)

T+ DA+Ap—g=8-Dl—aj(n+p)
F'p—qg—56+1DH)[1+A(n+p—g—56—1)]
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- i P—q—8+m)pP—qg—38+pu+1)

i k—g—6+puw)tk—qg—56+pun+1

which by virtue of the identity (20.19) yields that

oo

rk+1)
Tk—q=5+1)
L+ DI+Ap—-g=8=-D]l-aj(r+p)
FTp—q—8+D[1+A(n+p—qg—35—1)

(n+(p—q—5+u)(p—q—5+u+2)) _,
' (n+p—qg—38+p

k |by — ax|

i

Thus, by definition (20.2) with g (z) interchanged by f (z),

fene (g(q+a> f<q+8>)
Y np ’ :

This completes the proof of Theorem 20.8.
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Chapter 21
Spectrums of Solvable Pantograph Type Delay
Differential Operators for First Order

Zameddin 1. Ismailov and Pembe Ipek

Abstract Based on Vishik’s method on the description of solvable extensions of a
densely defined operator all solvable extensions of the minimal operator generated
by some delay differential-operator expression for first order in the Hilbert space of
vector-functions at finite interval are described. Later on, the structure of spectrum
of these extensions is surveyed.

21.1 Introduction

The first work in the area of extension of linear densely defined operator in a Hilbert
space was studied by Neumann. In his paper [16], the self-adjoint extensions of
the linear densely defined having equal and nonzero deficiency indexes symmetric
operator in any Hilbert space have been described. But in the years of 1949 and
1952, the boundedly (compact, regular and normal) invertible extensions of any
linear operator with regular point zero in a Hilbert space have been established in
works by Vishik [14, 15]. Lastly, these results have been generalized to the nonlinear
operators and complete additive Hausdorff topological spaces in abstract terms in
works by Otelbayev, Kokebaev, and Shynybekov [6-8, 11]. In monograph [1] Dezin
gave a general method for the description of regular extensions for some classes of
linear differential operators in the Hilbert space of vector-functions in finite interval.

In 1985, all boundedly solvable extensions of a minimal operator generated
by linear parabolic and hyperbolic type differential expression for first order
with self-adjoint operator coefficient in the Hilbert space vector-functions at finite
interval in terms of boundary values were given, respectively, by Pivtorak [12] and
Ismailov [5].

In considered works the operator coefficients in differential expressions are self-
adjoint or bounded constant operators. Unfortunately, since delay type differential
expression has not been expressed with remarkable coefficient, theories mentioned
above are not applicable to this theory. On the other hand, in noted above works
spectral investigations have not been done.

Z.1. Ismailov  P. Ipek (P<)
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Note that the general theory of delay differential equations is given in many
books (see, for example, [3, 4]). Applications of this theory can be found in econ-
omy, biology, control theory, electrodynamics, chemistry, ecology, epidemiology,
tumor growth, neural networks, etc. (see [2, 10, 13]).

Let’s remember that an operator S : D(S) C H — H in Hilbert space H is called
solvable, if S is one-to-one, SD(S) = H and S~! € L(H).

The main goal of this work is to describe all solvable extensions of the
minimal operator generated by some delay differential expression for first order
with operator coefficients in the Hilbert space of vector-functions at finite interval
and investigate the structure of spectrum of these extensions. Finally, will be given
some applications.

21.2 Representation of Solvable Extensions

In Hilbert space of vector-functions L*(H, (0, 1)) consider the following pantograph
type delay differential-operator expression in form

) =u'(t) +A@u(at), 0 <a < 1 (21.1)

where

(1) H is a separable Hilbert space with inner product (-, )z and norm || - ||g;
(2) operator-function A( - ) : [0,1] — L(H) satisfies the condition ||A(?)||z €
Ly(0,1);

On the other hand, in the space L?(H, (0, 1)) the following differential expression
corresponding to (21.1) will be considered

m(u) = u'(t) (21.2)
By standard methods it can be defined minimal operator Ly(M,) and maximal
operator L(M) corresponding to (21.1) ((21.2)) in L*(H, (0, 1)).
Now define an operator P, in form
Pou(t) = u(at), u € L*(H, (0, 1)),
Py : L*(H,(0,1)) — L*(H, (0, 1))

Then (21.1) can be written in form

I(u) = u' (t) + A(1)Pou(1),
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In this case it is clear that

1 1 o
1 1
[ 1Pt = [ s = - [ luco < -l
0 0 0

that is,

1\1/2
1P| < (—)
o

Define an operator A, in L?>(H, (0, 1)) in form
Ay(t) = A()Py, t € [0,1]
In this case the following proposition is true.

Lemma 21.1. For any fixed s € [0, 1] the operator

t

exp —/Aa(x)dx , t€0,1]

s

is a linear bounded in L*(H, (0, 1)).

Proof. Indeed, in this case

; 2
exp —/Aa(x)dx u(t)
s L2(H,(0,1))
1 ; 2
= [ fexe |- [ Au0as (0l
0 s L2(H,(0,1))

|u(t)||dt

IA
o _
[¢]
>
=
)
—
S
]
=
N
&

1
< / exp | 2 / 1Aa ()l | et 2,
0



302 Z.1. Ismailov and P. Ipek

which gives
p 2

exp | — / Ay (x)dx | u(®)

s L2(H,(0,1))

1 1
< / exp [ 2 / 1Aa @) | 1)1
0 0

1
—exp 2 [ 1P | TlE:g1 0
0

= exp (2(0‘)_1/2”A(x)”Ll(O.l)) ||u||12‘2(1.1_(0y1))~

Then for any fixed s € [0, 1] it is obtained that

t

exp —/Aa(x)dx <exp (@) "?[A® ,0.1))

s

fort € [0, 1].

Now let U(t, s), t,s € [0, 1], be the family of evolution operators corresponding
to the homogeneous differential equation

Ult,s)f + AU, 5)f =0, t,5 €0, 1]
UGs,s)f =f, f €H.

The operator U(t,s), t,s € [0,1] is a linear continuous, boundedly invertible in
H and

Ul (t,s) = U(s, 1), s,t €[0,1]
(for more detailed analysis of this concept, see [9]). Let us introduce the operator
Uz(t) := U(1,0)z(¢), U : L*(H,(0,1)) — L*(H, (0, 1)).
In this case it is easy to see that for the differentiable vector-function
z€L*(H,(0,1), z:[0,1] > H
satisfies the following relation:

I(Uz) = (Uz)'(t) + Au (1) Uz(1) = UZ (1) + (U, + Ax (1)) U)z(t) = Um(z).
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From this, U~'1(Uz) = m(z). Hence it is clear that if L is some extension of the
minimal operator Ly, thatis Ly C L C L, then

U'LoU=My, My CU'LU=M Cc M, U'LU = M.

For example, prove the validity of the last relation. It is known that

D(My) = W(H. (0. 1)), D(M) = WA (H. (0, 1)).

If u € D(M), then I(Uz) = Um(z) € L*(H, (0, 1)), that is Uu € D(L). From the last
relation M C U!'LU. On the contrary, if a vector-function u € D(L), then

m(U™ ') = U ' (v) € L*(H, (0, 1)),
that is, U"'v € D(M). From last relation it is obtained U™'L C MU™!, that is,

U™'LU c M.Hence, U"'LU = M.
Before of all prove the following claim.

Theorem 21.2. KerLy = {0} and R(Lo) # L*(H, (0, 1)).

Proof. Tt is sufficient to prove KerMy = {0} and R(M,) # L*(H, (0, 1)). Consider
the boundary value problem in form

Mou = /() =0, u € D(My)
u(0) = u(l) =0.

Then u(t) = f, f € H and u(1) = u(0) = f = 0. Hence KerM, = {0}. Now for
any f € L*>(H, (0, 1)) consider the following differential equation in a form

Mou(r) = f(1).

that is,

{ u'(t) =£(0),
u(0)=u(l)=0

From this for the general solution

u@®) =fo+ [ f(s)ds.
[

1

we have fy = 0 and [f(s)ds = 0. Consequently, for 2 € H and arbitrary f €
0

L*(H, (0,1)) we have
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1 !
(M. N2y = | (hf(@)udt = | h, | f()dt | = 0.
/ /

The last equation means that
H L R(Ly).
and from this
dimcokerm > dimH > 0

Now prove the following assertion on the description of solvable extension of
minimal operator Ly.

Theorem 21.3. Each solvable extension L of the minimal operator Ly in
L*(H, (0, 1)) is generated by the pantograph differential-operator expression (21.1)
and boundary condition

(K + E)u(0) = KU(0, Du(1), (21.3)

where K € L(H) and E is an identity operator in H. The operator K is determined
uniquely by the extension L, i.e. L = L.

On the contrary, the restriction of the maximal operator L to the linear manifold
of vector-functions satisfy the condition (21.3) for some bounded operator K € L(H)
is a solvable extension of the minimal operator Ly in the L*(H, (0, 1)).

Proof. Firstly, all solvable extensions M of the minimal operator M in L>(H, (0, 1))
in terms of boundary values are described. Consider the following so-called Cauchy
extension M,

M. = u/'(¢), u(0) =0,

M, :DM,) = {u € W)(H, (0,1)) : u(0) = 0}
C L*(H,(0,1)) — L*(H,(0,1))

of the minimal operator M. It is clear that M, is a solvable extension of M, and

M7 (1) = / FO)dr.f € L(H. (0.1)).
0

M L*(H, (0,1)) — L*(H, (0, 1)).

Now assume that M is a solvable extension of the minimal operator M in
L*(H, (0, 1)). In this case it is known that the domain of M can be written in direct
sum in form
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D(M) = D(Mo) & (M:' + K)V,

where V = KerM = H,K € L(H) [14, 15]. Therefore for each u(t) € D(M) it is
true that

u(t) = uo(t) + M 'f + Kf,up € D(My), f € H
That is, u(t) = uo(t) + tf + Kf, uo € D(My), f € H. Hence u(0) = Kf, u(1) =

f+ Kf = (K+ E)f.Hence u(0) = Kf, u(1) = f + Kf = (K + E)f and from these
relations it is obtained that

(K + E)u(0) = Ku(1) 21.4)

On the other hand, uniqueness of operator K € L(H) follows from [14]. Therefore,
M = Mk. This consequently, the validity of necessary part of this assertion it is
clear.

On the contrary, if Mk is an operator generated by differential expression (21.2)
and boundary condition (21.4), then Mk is bounded, boundedly invertible and

Mg'  L*(H,(0,1)) — L*(H, (0, 1)),

t 1
Mg'f(r) = / f(x)dx + K / f(x)dx, f € L*(H,(0, 1)).
0 0

Consequently, all solvable extensions of the minimal operator M, in L>(H, (0, 1))
are generated by differential expression (2.2) and boundary condition (2.4) with any
linear bounded operator K. Now consider the general case. For this in L?(H, (0, 1))
introduce an operator in the form

U:L*H,(0,1)) - L*(H,(0,1)),
(U2)(1) : = U(1.0)z(1),z € L*(H. (0, 1))

From the properties of the family of evolution operators U(t,s),t,s € [0, 1] it is
implied that an operator U is linear bounded and has a bounded inverse and

(U'2)(1) = U0.0)z(1).
On the other hand, from the relations
U'LoU =My, U'LU =M, U"'LU =M

it is implied that an operator U is a one-to-one between sets of solvable extensions
of minimal operators Loy and M, in L*(H, (0, 1)). The extension L of the minimal
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operator L is solvable in L*>(H, (0, 1)) if and only if the operator M =U""LUisan
extension of the minimal M in L?(H, (0, 1)). Then, u € D(L) if and only if

(K+ E)U(0,0)u(0) = KU(0, Du(1),
that is,
(K + E)u(0) = KU(0, Du(1).

This proves the validity of the claims of theorem.

Corollary 21.4. In particular the resolvent operator R)(Lg), A € p(Lg) of any
solvable extension Lk of the minimal operator Ly, generated by pantograph type
delay differential expression
W) =u'(t) +AQu(ar), 0 <a < 1,
with boundary condition
(K 4+ E)u(0) = KU(0, 1)u(1),
in L2(H, (0, 1)) is in form

Ry (Lg)f (1)
. 1 t
— U(1,0) |:(E +K(1 —el)) K / A=91(0, s)f (s)ds + / A9 p(0, s)f(s)dsi| ,
0 0

feL*(H,(0,1))
Corollary 21.5. Assume that for any t € (0, 1)
A(f) = A = const.

In this case, all solvable extensions of minimal operator Ly generated by the
following differential expression

) = u'(t) + Au(at), 0 < o < 1,
and boundary condition

(K + E)u(0) =K Y (_n—l')nA"u(a"), K € B(H),
n=0 '

in the Hilbert L*(H, (0, 1)) and vice versa.
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Corollary 21.6. All solvable extensions Lk of the minimal operator Ly generated
by pantograph type differential expression l(u) = u'(t) + u(ar), 0 < a < 1 are
described with boundary condition

(K + Eyu(0) = K|:u(1) - @ _ ”(;2) n ]

o (—1)
- KZO n!

in the Hilbert space L*(H, (0, 1)).

n

u(o™)

21.3 Spectrum of Solvable Extensions

In this section the structure of spectrum of solvable extensions of minimal operator
Lo in L*(H, (0, 1)) will be investigated. Firstly, prove the following fact.

Theorem 21.7. If L is a solvable extension of a minimal operator Ly and M =
U™'LU is corresponding solvable extension of a minimal operator My, then for the
spectrum of these extensions is true o (L) = o(M).

Proof. Consider a problem to the spectrum for a solvable extension Lk of a minimal
operator Ly generated by pantograph differential-operator expression (21.1), that is,
Lgu=Au+f, AeC, felL*H, (0,1)).

From this it is obtained that

(Lx —AE)u = f
or (UMxU™' —AE)u = f. Hence UMy — 1)(U~'u) = f. Therefore, the validity of
the theorem is clear.

Now prove the following result for the spectrum of solvable extension.

Theorem 21.8. If Lk is a solvable extension of the minimal operator Ly in the space
L*(H, (0, 1)), then spectrum of Lx has the form

U(LK)={/\E(C:/1=1n

u+1'
n

1
tiarg (i) + 2nmi, pe o(K)\0,—1}, ne Z! .
"
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Proof. Firstly, the spectrum of the solvable extension My = U~!'LgU of the
minimal operator M, in L*(H, (0, 1)) will be investigated. For this consider the
following problem for the spectrum, that is, Mxu = Au+f, A € C,f € L*(H, (0, 1)).
Then

W = du+f, (K + E)u(0) = Ku(1), A € C, f € L*(H,(0,1)), K € L(H).

It is clear that a general solution of the above differential equation in L>(H, (0, 1))
has the form

t

u) (1) = exp(At)fp + /exp(k(t —9$)f(s)ds, fo € H.

0
Therefore, from the boundary condition (K + E)u; (0) = Kuy (1) it is obtained that

1

(E4+ K1 —exp(M)))fo = K/ exp(A(1 — 5))f (s)ds. (21.5)
0

For A,, = 2mmi, m € 7Z from the last relation it is established that

1
= g / exp(An(l = ))f (s)ds. m € Z.
0

Consequently, in this case the resolvent operator of My is in the form

1
Roy, (M)f (1) = K exp(hnt) / exp(in(1 — 5))f(s)ds
0

1

+ / exp(Am(t — 5))f(s)ds, f e L*(H,(0,1)), m e Z.

0

On the other hand, it is clear that R;,, (Mx) € B((L*(H, (0, 1)), m € Z.1f A # 2mi,
m € Z, A € C, then using Eq. (21.5) we have

1
! - _ >
(K - WE)][() = 1= exp(A)K/CXP(A(I S))f(s)dS,f() (S H, f (S (L (H, (0, 1))
0
Therefore, A € o(Mk) if and only if

1
M:WGU(K)
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In this case since u # 0 and pu # —1,
1
exp) = L2 e oK),
7
and

Ay =1In

1 +1
s ‘+iarg(“—)+2nm’, nez
n 1

Later on, using the last relation and Theorem 21.7 the validity of the claim of
theorem is proved.

21.4 Applications

Example 21.9. Let

1
(H. || lla) = (C. |-, A@) = N 0,1

By Theorem 21.3, all solvable extensions L; of minimal operator L, generated by
, 1
l(u) = u'(t) + —tu(at),O <a<t,

i

in L2(0, 1) are described with (-) and boundary condition

|
1

(k4 Du(0) = kexp | — | —=Pqdt | u(l), ke C.
J

In addition, the resolvent operators of these extensions are in the form

‘ 1
Ry (Lp)f (1) = exp (— Padx)
[ %

1 K
x {(1 Tk( —exp(A))—l)k/exp ()\(1 )+ / \;}Padx)f(s)ds
0 0

\)

+ /exp ()L(t— s) + Of J;Padx)f(s)ds:| ,

0
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A € p(Ly), f € L*(0,1) and for k # 0,—1 spectrum of this extension Ly is in the
form,

k+1 k+1
o(ly)={AeC:A =1n’%‘ +iarg(%) + 2nri, n € 7}

Example 21.10. All solvable extensions of minimal operator generated by differen-
tial expression

du(t, x)

)L .
— 4 " sinxu(at, x),
o (at,x)

(n) =
1
xe(—l,l),0<t<1,A<—§,O<a<l,

in the Hilbert space L?((—1,1) x (0, 1)) are described by this /(-) and boundary
condition

(K + E)u(0,x) = KU(0, Du(1, x),
where K € B(L*(—1,1)) and U(t, ), t, s € [0, 1] is a solution of operator equation

Ul(t, s)f + t* sin(-) P, U(t, s)f = 0,
t,s €[0,1], UGs,s)f =f.f € L*(—1,1),

where Pyu(t) = u(at), P, : L*(0,1) — L*(0,1).
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Chapter 22
Non-commutative Geometry and Applications
to Physical Systems

Slimane Zaim

Abstract We obtain exact solutions of the 2D Schrodinger equation with the central
potentials V(r) = ar* +br~2 +cr~* and V(r) = ar~' 4 br—2 in a non-commutative
space up to the first order of noncommutativity parameter using the power-series
expansion method similar to the 2D Schrédinger equation with the singular even-
power and inverse-power potentials, respectively, in commutative space. We derive
the exact non-commutative energy levels and show that the energy is shifted to m
levels, as in the Zeeman effect.

22.1 Introduction

Non-commutative quantum mechanics is motivated by the natural extension of the
usual quantum mechanical commutation relations between position and momen-
tum, by imposing further commutation relations between position coordinates
themselves. As in usual quantum mechanics, the non-commutativity of position
coordinates immediately implies a set of uncertainty relations between position
coordinates analogous to the Heisenberg uncertainty relations between position and
momentum; namely:

[x, x"], = 0", (22.1)

where 0"V are the non-commutativity parameters of dimension of area that signify
the smallest area in space that can be probed in principle. We use the symbol *
in Eq. (22.1) to denote the product of the non-commutative structure. This idea is
similar to the physical meaning of the Plank constant in the relation [xi, pj] = ihé;,
which is known as the smallest phase-space in quantum mechanics.
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Our motivation is to study the effect of non-commutativity on the level of
quantum mechanics when space non-commutativity is accounted for. One can study
the physical consequences of this theory by making detailed analytical estimates for
measurable physical quantities and compare the results with experimental data to
find an upper bound on the 6 parameter. The most obvious natural phenomena to
use in hunting for non-commutative effects are simple quantum mechanics systems
with central potential, such as the hydrogen atom [1-3]. In the non-commutative
space one expects the degeneracy of the initial spectral line to be lifted, thus one
may say that non-commutativity plays the role of magnetic field.

It has recently been shown that the non-inertial motion of the atom also induces
corrections to the Lamb shift [4-7]. However, all the aforementioned studies are
concerned with flat space-time. Therefore, it remains interesting to see what happens
if the atom with central potential is placed in a non-commutative space rather than
a flat one.

Studies involving both exact and approximate solutions to the Schrodinger
equation with central potentials have received much attention in the literature
[8—40]. However two-dimensional Schrodinger equation which characterises the
relative planar motion of the electron and proton, by a single particle with a reduced
mass, can also be very fruitful. In fact this problem initially originated as purely
theoretical construction in which a 2D scenario plays the role of a toy model
for higher dimensional systems which are harder to deal with. But later this 2D
problem proved to have important applications in real physical situations such as
semiconductors. Subsequently this 2D problem received much attention with the
growing of the semiconductor technology and which led to the development of 2D
structures. The Runge—Lenz vector in the 2D case was first defined in [41], and the
solutions to the Schrodinger equation was obtained for 2D atomic physics problems
in [42].

Furthermore, it is clear from the Bohr model quantisation of angular momentum
that the latter is quantised in units of #, L = [h, where [ is an integer. In the
non-commutative space we can understand the maximum value +/4 and minimum
value —/A, by the model we use in this work, which depends on the interaction
between the noncommutativity and the dipole moment M of the form 6 - M. In
the two-dimensional space the non-commutative parameter takes two values |0|
and — |0|. Then the possible values of the dipole moment M in the 6 direction are
+My (My = £up6l) for each value of /, which reflects the physical reality of the
phenomenon.

In this work we present an important contribution to the non-commutative
approach to the Schrodinger equation with central potentials. Many interesting
quantum mechanical problems have been studied in non-commutative space and
the effect of the non-commutativity on observables was analysed [43-52].

Our goal is to solve the Schrodinger equation with singular even-power and
inverse-power potentials induced by the non-commutativity of space. We thus find
the exact non-commutative energy levels and that the non-commutativity effects are
similar to the Zeeman splitting in commutative space. In this work, we apply the
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power-series expansion method to study the solutions of the Schrodinger equation
in two dimensions for perturbation operator of pseudo-harmonic and the Kratzer
potentials. Instead of considering pseudo-harmonic and Kratzer potentials as per-
turbation operators it suffices to write them in non-commutative space which leads
to the same formulation as that of the perturbation operators. Similar applications in
atomic interaction potentials may be found in condensed matter physics such as the
quantum Hall effect and fractional statistics.

This paper is organised as follows. In Sect.22.2, we derive the deformed 2D
Schrédinger equation for a central potentials V (r) = ar? +br 2 +cr *and V (r) =
ar~' +br? in non-commutative space. We exactly solve the deformed Schrodinger
equation in closed form [39] and obtain the exact non-commutative energy levels.
Finally, Sect. 22.3 is devoted to a discussion.

22.2 Non-commutative Schrodinger Equation

In this section we study the exact solutions of the Schrodinger equation for the
potentials V(r) = ar’> + br2 4+ c¢r~* and V(r) = ar™' + br? in the non-
commutative space. The non-commutative model specified by Eq. (22.1) is defined
by a star-product, where the normal product between two functions is replaced by
the *-product:

(¢ * V) (x) = ¢ (x) exp (%9””%#3)v) V() =y -

In a canonical non-commutative space-space type, the non-commutative quan-
tum mechanics is described by the following equation:

H(p,x) » ¥ (x) = EV.

This equation reduces to the usual one described by Mezincescu [53]:

H (p.X) ¥ (x) = EVY,

where
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22.2.1 Exact Solution with the Potential
V(@) =ar* + br* + cr™

We can write the deformed potential V (r) = ar? 4+ br~? + cr~* in non-commutative
space up to & (©?) as:

b
V() = g@LZ +ar? +br 2+ (c + Z@LZ) [E geLzr_6,

which is similar to the singular even-power potential which was studied in [39].
The Schrédinger equation in a 2D non-commutative space in the presence of the
potential V (7) can be cast into:

19 0 1 3

(_Era_r -zt V(?)) v @ = Ey (). (22.2)

The solution to Eq. (22.2) in polar coordinates (7, ¢) takes the separable form [39]:
Y @) =R, () e
Then Eq. (22.2) reduces to the radial equation up to & (@2):

dleTl (?)
dr?

2 _
+ [E FV () — mr_21/4} Ry (7) =0, (22.3)

where
Vi) =ar* +br 2+ e+ dr®,

and

- b -
E=E—6—19m, ¢=c+ —-6m and d:EQm, d> 0.
2 4 2

Equation (22.3) is similar to the radial Schrédinger equation with singular even-
power potential [39]. To solve Eq. (22.2), we write the radial functions as [6, 12]:

Ry () = &l " g, 27, (22.4)
n=0

where

P () =22+ B2
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Substituting Eq. (22.4) into Eq. (22.3) and equating the coefficients of 7"+ to zero,
we obtain:

Ay + Buprnts + Coiolinis = 0, (22.5)
where
A, = E+a (1 +20 + 4n)
Buy1 = —b—2a/§—( 2—%) + (@ +2n) (=14 2n)
C,=B(3—20—4n)—¢,
and

@ =af=1d.

We can choose o and ,5 such that [39]:

o =—vaf =l

If ap # 0, then one obtains Cy = 0, a condition that forbids the existence of
the s energy levels (Jm| = 2/ + 1 in 2D, where [ is the eigenvalue of the angular
momentum and the eigenvalues of L, are denoted by m, there are (2/ 4 1) values of
m for a given [. However, as [ = n, we see that there are (2n + 1) values of m for
a given energy). This is in fact a particularity of the non-commutative Schrédinger
equation solution, which is not present in the ordinary Schrodinger framework [39].

Then we obtain:
- 3 n ¢ 3 47
Vv = — —_— = — s
Y- Y

where

N
v

However if a, # 0, with a,+1 = a,4+2 = --- = 0, then A, = 0, from which one
obtains the non-commutative energy eigenvalues exact up to & (@2):

By = ﬁ(4+2?+4n)+§9m, m| =1,2.3,.... (22.6)
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We have thus shown that the degeneracy with respect to the angular quantum
number m is removed since 8 may take two values being positive or negative,
(6 = £ |0)) and that non-commutativity here acts like a Lamb shift.

Now, we discuss the corresponding exact solution for n = 1. From Eq. (22.6) the
non-commutative energy splitting of the energy levels up to & (©?) is:

Eip=a@®+7)+56m

= Va|8+ —— +‘—l(z+i)9m

Ja) i

=¢5(8+1)+§(2+8)9m,

where

>
Il

We have shown that the non-commutative energy splitting is similar to the
Zeeman effects and removes the degeneracy with respect to m. Furthermore we
can say that the displacement of the energy levels is actually induced by the space
non-commutativity which plays the role of a magnetic field. The corresponding
eigenfunction is:

~ _1 2 T2 .
1//1 (;,) — (ao + ler2) rv—l/Ze 2(«/57’ +\/Er )etm(p’
where ay and a; can be calculated from Eq. (22.5) and the normalisation condition.
Following this method, we can obtain a class of exact solutions.

22.2.2 Exact Solution with the Potential V(r) = ar~! + br=>

The deformed potential V (r) = ar~' 4+ br~? in non-commutative space up to
0(0?)is:

V@A) =ar ' +br 2+ +dr (22.7)
where

~ b -
E:c—lem and d = -0m, d >0
2 4
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where the third term is the dipdle—dip6le interaction created by the noncommu-
tativity, the second term is similar to the interaction between an ion and a neutral
atom created by the non-commutativity. These interactions show us that the effect of
space non-commutativity on the interaction of a single-electron atom, for example,
is similar to that of a charged ion interacting with the atom on the one hand and on
the other hand interacting with the electron to create a dipole and with the nucleus
to create a second dipole.

The approach of the potential in Eq. (22.7) is similar to that for the inverse-power
potential in a commutative space. Thus we can take as solutions the eigenfunctions
from [40]:

R,,,(f’):hm(?)ef(;’), m=1,2,3,...
where
f(#) =Ar"+Br+Clogr, A<0 and B <0,

and

ho ) =[] (r=6")=> ar.

J=1 J=1

Then the radial Schrédinger Eq. (22.6) reduces to the following equation:

7 / h” + 2]’1/ ’ ~ m2 —1/4 N
[f 4 frp o Tm p wf +E—V(r)——r2 / :|Rm(r) =0.
We arrive at the equation [40]:
v H 2K f . mi—1/4
fo+fr4 - o :—E+V(r)——r2/ . (22.8)
Now using the fact that:
" " ,  2BC 2AB 2A-2AC A2
f+f " =B4+———F1- + —mm + —, (22.9)
r r2 r3 rt
and
=Y japr ™" and b, = "j(—1)ar (22.10)

j=1 j=1
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where
a, =1,

oy =—y 6", (22.11)

m
E :~m~m
Ap—3 = — 0;0;,

and so on, then Eqs. (22.8)—(22.10) lead to an algebraic equation where we equate
equivalent coefficients of r* between both sides of the equation, taking into account
Eq.(22.11), we find:

A’=d, E=-PB (22.12)
2A(1-C) =¢ (22.13)
a=2B(C+m), (22.14)
and
m
A=b+m’—1/4=C(C+2m—D+mm—1)-2B[A=) o"|. (2215
J=1
and

mVad+m+1+0Y o' +BY (o) =0,
=1 =1

m

(m—l)\/ézojm+2(m—1+C)Zajmo{" +BZajmoﬁZ(alm+o]:") =0,
j=1

J=<i J=i 1<k

(m—2) \/ZZGJ"J?+3(m—2~I—C) Z o/"0;"0}"

J<i Jj=i<k

m m
+B Z oo/ o} Z (o] + o, + o) =0,

J=i<k 1<g=<s

Moreover, multiplying Eq. (22.15) by B and using Eqs. (22.12)—(22.14) we find the
following algebraic equation for B as:

4 A—Zaj’” B> +2&B—a (P +2m) =0, (22.16)
j=1
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where
O=A+mQ2m+v)—m@m—1),

and

Equation (22.16) is solved by:

@+ \/(2)2+4<A—Z]’."=10j’”)a(17+2m)

4 (A -y ojm)

By =

14 \/ 4 (A= S o) iz
vm)

=

So the non-commutative energy spectrum up to & (@2) is given by:

2
(1 + \/ 44 (A= 2, o) “itm )
—&? R
16(4-X7 o)

E =

’

where

a? 2m
o 9m4—b (m2 + 7(1 +m(m+ 1))) + A +m@m+1)>.

We have thus shown that the non-commutativity effects are manifested in
energy levels, so that they are split into m levels, similarly to the effects of the
magnetic field. Thus we can say that the non-commutativity plays the role of the
magnetic field. It is also found that if the limit 8 — 0 is taken, then we recover
the results of the commutative case [40].

22.3 Conclusions

In this paper we started from a quantum particle with the central potentials
Vi)=arr +br > +cr ™ and V(r) = ar ' + br?

in a canonical non-commutative space. Using the Moyal product method, we have
derived the deformed Schrodinger equation, we showed that it is similar to the
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Schrodinger equation with singular even-power and inverse-power potentials in
commutative space. Using the power-series expansion method we solved it exactly
and we found that the non-commutative energy is shifted to m levels. The non-
commutativity acts here like a Lamb shift. This proves that the non-commutativity
has an effect similar to the Zeeman effects, where the non-commutativity leads the
role of the magnetic field. This method is simple in producing the exact bound-state
solutions for central potentials as perturbation operators in the non-commutativity
parameter.
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Chapter 23
The (s, f)-Generalized Jacobsthal Matrix
Sequences

Siikran Uygun and Kemal Uslu

Abstract In this study, we consider sequences named (s, t)-Jacobsthal, (s, 1)-
Jacobsthal-Lucas and defined generalized (s, f)-Jacobsthal integer sequences. After
that, by using these sequences, we define generalized (s,f)-Jacobsthal matrix
sequence in which it generalizes (s, f)-Jacobsthal matrix sequence, (s, f)-Jacobsthal—
Lucas matrix sequence at the same time. Finally we investigate some properties
of the sequence and present some important relationship among (s, f)-Jacobsthal
matrix sequence, (s, t)-Jacobsthal-Lucas matrix sequence and generalized (s, f)-
Jacobsthal matrix sequence.

23.1 Introduction

We can find a great deal of study on the different integer sequences in [1, 2, 8,9, 11].
Many properties of these sequences were deduced directly from elementary matrix
algebra. For example, Koken and Bozkurt [7] defined a Jacobsthal matrix of the
type nxn and using this matrix derived a lot of properties on Jacobsthal numbers. Of
course the most known integer sequence is made of Fibonacci numbers which are
very important because of golden section. So the authors are interested in Fibonacci
matrix sequences. Civciv and Turkmen, in [3, 4], defined (s, )-Fibonacci and (s, 1)-
Lucas matrix sequences by using (s, f)-Fibonacci and (s, )-Lucas sequences.

Jacobsthal and Jacobsthal-Lucas numbers are defined for n > 1 by recurrence
relations

Jnbt =Jn + 21, jo =0, j1 =1
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and
Cpt+1 =Cp + 2p—1, co =2, ¢1 =1,

respectively. Particular cases of these numbers were investigated earlier by Horadam
[5, 6]. Also Uslu and Uygun, in [10], defined (s, r)-Jacobsthal and (s, f)-Jacobsthal—-
Lucas matrix sequences by using (s,?)-Jacobsthal and (s,?)-Jacobsthal-Lucas
integer sequences.

In this study, we firstly define (s, f)-Jacobsthal and (s, #)-Jacobsthal-Lucas inte-
ger sequences, then by using these sequences, we also define (s, #)-Jacobsthal and
(s, f)-Jacobsthal-Lucas matrix sequences. After that, by using them, we establish
generalized (s, f)-Jacobsthal integer and matrix sequences. In the last of the study,
we investigate the relationships among each matrix sequences.

Additionally, in [10], the (s, f)-Jacobsthal and (s, r)-Jacobsthal-Lucas integer
sequences are defined recurrently by

Jn (5.0) = a1 (5.0 + 2002 (5.0, Gols. 1) = 0,/1(s,0) = 1)

Cn (8,8) = $Cuey (5,8) 4 2tCpp (5,0), (Co(s,0) =2, ¢i(s,1) =),

where s > 0, 1 # 0, 24+8>0,n>1 any integer.
Particular cases of previous definition are

e Ifs=1,1r=1/2 and}o(l, 1/2) =0, }1(1, 1/2) = 1, then we have the classic
Fibonacci sequence.

e Ifs=1,t=1/2and ¢y(1,1/2) = 2, ¢;(1,1/2) = 1, then we have the classic
Lucas sequence.

e Ifs=t=1 and}o(l, 1) =0, }1(1, 1) = 1, then we have the classic Jacobsthal
sequence.

e Ifs=r=1andco(1,1) =2, ¢;(1,1) = 1, then we have the classic Jacobsthal—
Lucas sequence.

Furthermore, in the following proposition, (s, ?)-Jacobsthal {J, (s,?)},cy and
(s, H)-Jacobsthal-Lucas {C, (s, 1)},cy matrix sequences are defined by carrying to
matrix theory (s, f)-Jacobsthal and (s, f)-Jacobsthal-Lucas integer sequences.

Proposition 23.1. Let us consider s > 0, t # 0 and s> + 8t > 0, n > 1 any integer,
the following properties are hold:

1. Jyg1 (s,1) = sJ,, (s, 1) + 28,1 (s, 1) with initial conditions

Jo (s,0) = ((1)(1)) and Jy (s,t) = (jé)

2. Cpyq (s,1) = 5C,, (s, 1) + 2tC,—; (5, t) with initial conditions

s 4 §2 + 4t 2s
C 1) = dC 1) =
0(s.9) (Zt —s) and C1 (5. ) ( st 4t)’
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3.

Jn (s,1) = (Jnjrl %,J" ) and C, (s,1) = (Cn+l 2¢, )
1

tjn 2Un— ten 2t8'11—l

s+ /52 + 8¢ s — /52 + 8t

rlzf andrzzf,

5. FormneZT,

Jn+m (S, t) = Jn (S, t) Jm (S, t) P
Jm (S, t) Cil-‘rl (S, t) = Cn+1 (Sv t) Jm (S, t) .

Throughout this paper, we will use the notation J,, instead of J, (s,¢) and C,
instead of C,, (s, 1).

Since there are certainly some new developments over these numbers and
matrices, we have aimed to define the generalized (s, f)-Jacobsthal integer sequence
and generalized (s, f)-Jacobsthal matrix sequence which are new generalizations of
them. Then, of course, it needs to investigate the relationship among this generalized
(s, 1)-Jacobsthal number sequence, (s,)-Jacobsthal and (s, f)-Jacobsthal-Lucas
integer sequences. Also, we investigate the relationships among the general-
ized (s, t)-Jacobsthal matrix sequence, (s, f)-Jacobsthal and (s, f)-Jacobsthal-Lucas
matrix sequences.

23.2 Main Results

Firstly, let us first consider the following definition of generalized (s, f)-Jacobsthal
number sequence which will be needed for the definition of generalized (s, f)-
Jacobsthal matrix sequence and relationships among them.

Definition 23.2. For any integer, n > 0, leta, b € R and 248 >0,5>0,t #0.
Then the generalized (s, f)-Jacobsthal integer sequence {G,(s, 1)},cy is defined by
the following equation:

Gut2 (5,1) = 5Guy (5,1) + 2tG, (5, 1) (23.1)

with initial conditions Gy (s,t) = a, G (s,t) = bs.

As previously, we will use G, instead of G, (s, 1).
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Definition 23.3. For any integer, n > 0,leta,b € R, s > 0, t # 0 and s2+8t>0.
Then the generalized (s, f)-Jacobsthal matrix sequence (R, (s,?)),ey is defined by
the following equation:

MRug2 (5,8) = sR,41 (s, 1) + 2R, (5,1) (23.2)

with initial conditions

bs 2a bs? + 2at 2bs
Ro (s,1) = (at (b—a)s) and N (s, 1) = ( bst 2at)'

By considering definitions 23.2 and 23.3, we obtain the following equalities:

« Fora=bh=1, Gy = jn+1,
R, = n+l1-

G,=2¢
e Fora=2,b=1, _." "
“ R, = Cp.

The following result gives us the nth general term of the matrix sequence given
in (23.2).

Theorem 23.4. For any integer n > 1, we have

Gn—H 2Gn
R, = . 23.
i ( 1Gy, 2th_1) (23.3)

Proof. Let us consider n = 1 in (23.3). Then we clearly have Gy = a, G; = bs,
G, = bs* + 2at and then

RN — G, 2Gy \ bs* + 2at 2bs
NG 26, ) T bst  2ar )’
As a next step of that, for n = 2, we also get

Jiy =

R — Gs 2G| _ bs® + 2ast + 2bst 2bs* + 4at
1G, 2tGy ) bs*t + 2ar? 2bst '

By iterating this procedure and considering induction steps, let us assume that the
equality in (23.3) holds for all n = k € Z™. To end up the proof, we have to show
that the case also holds for n = k + 1. Therefore, we get

E)?Hl = Ny + 21N

Gk+1 ZGk Gk 2Gk—l
= 2t
s ( tGy, 2tGy—, ) + (tGk_l ZIGk_z)



23 The (s, t)-Generalized Jacobsthal Matrix Sequences 329

stGy + 22Gy—, 25tGy—; + 412G

_ [ Gi+2 2Gi+
IGk.H 2tGy, ’

. ( SGr41 + 2tGy  25Gy + 4tGy— )

Hence the result.

Corollary 23.5. In the above theorem, if we choose suitable values on s,t,a and b,
then some special matrix sequences are obtained. For example, by taking a = 1,
b = 1, we obtain the (s, t)-Jacobsthal matrix:

E}{n — (}11/:+1 g}n )7
Jn 2]n—1

where },, is nth (s, t)-Jacobsthal number and by taking a = 2, b = 1, we obtain the
(s, t)-Jacobsthal-Lucas matrix:

D — 6'n-ﬁ-l 2&n
Jvn — A A E)
Cn 2Cn—1

where ¢, is nth (s, t)-Jacobsthal-Lucas number.

Let us consider the following theorem which will be needed for the results in this
section. In fact, by this theorem, it will be given a relationship among the sequences

(Guls D pers fia(s.0} _ and {e(s. 0 e

ne

Theorem 23.6. For any integer, n > 1, we have

1. G, = bs}n + 2(1[},1_1,
2. Gyy1 + 2tG,—) = bs@n + 2at€‘n_1.

Proof. To prove the existence of these equalities, we need to consider the sequence
given in (23.1) with its initial conditions.

1. If we consider the initial conditions G; = bs, G, = bs* + 2at, then it can be
clearly written as

Gy = bs = (bs) ], + (2at) Jo
and

Ga = bs® + 2at = (bs) j» + (2an) Ji,
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By keeping the (s, f)-Jacobsthal sequence and using same technique, we get
(bs) j3 + (2at) j,, which gives G5 in the statement of proposition. So, by iterating
this above all progresses, we obtain the general term as the form of bs},, + Zaﬁn_l
that implies G,, as required.

2. The replacing of (s, t)-Jacobsthal-Lucas initial conditions ¢ and ¢; in place of
(s, t)-Jacobsthal’s initial conditions in }o and}l above, we then get the equality

Gut1 + 221Gy = bsé,, + 2at€,,_1.

We will usually reveal the required relationships among

N (s, t)}nGN s (s, t)}nEN and {G,(s, t)}nEN

in the rest of this paper.
Theorem 23.7. For any integer, n > 1, we have

1. N, = bsJ, + 2at),—,
2. Ryg1 + 20,1 = bsC,, + 2atC,—

Proof. 1. If we consider the initial condition for

R — bs? + 2at 2bs
. bst 2at |’

it can be clearly written as

s2 10 bs* + 2at 2bs
9 = b 2at = .
! S(zo)Jr “ (01) ( bst 2at)

If we apply the same idea to

9N — bs® + 2ast + 2bst 2bs* + 4at
2 bs?*t + 2at? 2bst

then

bs* + 2t 2s s2
Ny =0> 2at
"2 s( st 2t)+ ¢ (zO)

[ bs® + 2ast + 2bst 2bst + dat
B bs*t + 2ar? 2bst ’

In fact these above re-written conditions contain the initial conditions Jy and J;
of (s, r)-Jacobsthal sequence. Therefore, by replacing these conditions on these
new N, and N,, then we obtain
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Ny = (bs)J; + (2ar) Jyp and N, = (bs) Jo + (2at) Jy,

respectively. By keeping the (s,f)-Jacobsthal sequence and using the same
technique, we get

(bs) J5 + (at) Ja,
which gives i3 in the statement of definition 23.3. So, by iterating this above all

progresses, we obtain the general term as the form of bsJ, + 2atJ,—; that implies
N, as required.

2. Replacing of (s, f)-Jacobsthal-Lucas initial conditions Cy and C; in place of
(s, t)-Jacobsthal’s initial conditions in Jyand J; above, we then get the equality

NRyt1 + 20,1 = bsC,, + 2atC,,—;.

Theorem 23.8. Form,n € N, we have
ERm-i-n =J, Ny (23.4)

Proof. To prove the equation in (23.4), let us follow the induction steps on m.

Form = 0,
9t A',,AH g}n bs 2a
" Hn 2tju—1 at(b—a)s

=( bSjus1 + 2atj, 2(a},1+1+(b—a;sz}n>)
Hajusr + (b= a)stjn) 20y + (b — a)ju—1)
R

N
ne

= ¢

Now, assuming that it is true for all positive integers m, that is,
5Rm—i—n = J, R

Therefore, we have to show that the case also holds for m + 1. If we use the property
of (23.2), then
Jnmm+1 = Jn(sg{m + 2ﬁ)’tm—l) = sJy R + 200, N1

= sRptn + 2tN4n—1 = Rttt

hence the result.

Theorem 23.9. Binet Formula enables us to state (s,t)-generalized Jacobsthal
numbers. It can be clearly obtained from the roots ry and r, of characteristic
equation of (23.1) as the form x> = sx + 2t, where



332 S. Uygun and K. Uslu

s+ /52 + 8¢ s — /52 + 8t

n=-——0—— n= 3

Then, the Binet Formula for the nth (s, t)-generalized Jacobsthal number is given by

Xr] —Yr;
G, =——= (23.5)
rn—n
where X = bs + 24 2‘” andY = bs + & 2“’
G, = bsj, + 2atj,—
P rn—l _ a1
= G,(s.1) = bs7—2 + 2ar-. 2
ry —r ry —n
(b + Zaf) (bs+ 2at)
- r—nr
_ Xr! —Yr]
ry—nr

Theorem 23.10. Fora,be R, neN, s> 0, t # 0and s2 4+ 8t > 0, we have
R1C, = Rygo + 20, (23.6)

Proof. We get
%,C, = bs? +2at 2bs C"A-H 2Acn
bst 2at tc, 2tcu—1

(bs Cpan + 2at Cpyy 2(bs Cpyy + 2at &) )
=N

t(bs ¢y + 2at ¢,) 2t(bs ¢, + 2at ¢,—1)

2G G 2G
n+3 n+2 n+1 n
2t
)+ ( tG, 2th_1)

tGpy2 2tGpi

n+2 + 2t Rn

Theorem 23.11. For m,n € N, the following equalities hold:

1. C,R% =N C,
2. Jmmn-f-l = SRn—{—b’m;
3. CuNpy1 = Ryt G
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Proof. Firstly, we can easily prove (1) by the equality of two sides of multiplying
of matrices

R,.C, = bs2+2at 2bs 8n+1 26‘,1
o bst 2at | "\ t¢&, 2t ¢,

(bs* + 2at) &,11 + 2bst &, 2((bs® + 2at) &, + 2bst ¢,_1)
t(bs Cpy1 + 2at ¢,) 2t(bs ¢, + 2at Cp—1)

bs(sCpt1 + 2t ¢,) + 2at ¢u1 2(bs(s ¢, + 2t Cp—y) + 2at ¢;,)
t(bs Cpy1 + 2at Ty 2t(bs ¢, + 2at ¢p—1) ’

Chr1 20y bs? + 2at 2bs
Cll'm = ~ A .
! ( tC, 2t Ch_y ) ( bst 2at

(bs® + 2at) ¢,41 + 2bst &, 2(bs Epy1 + 2at &)
t((bs* 4 2at)¢, + 2bste,_1) 2t(bs &, + 2at &,—1)

y bs(sCpy1 + 2t ¢,) + 2at ¢,q1 2(bs(s ¢, + 2t Cy—y) + 2at C,)
t(bs ¢,41 + 2at ¢,) 2t(bs ¢, + 2at ¢p—1) '

We can prove (2) from

JuNpr1 = JnWidy = Ju(bsty + 2atdo)J, = bsd i+t + 2at iy
= (bsJy + 2ato)t+n = M1 Jndm = Nyt 1dn.

We can prove (3) from
Cmmn-i-l = CmSHlJn = Eﬁlcm-]n = 5HlJnCm = ERn—i—]Cm-

In the following result, as the same approximation with Theorem 23.10, we
will depict that there are also some other relations between {M,(s,)},cy and

(s, D)} pen-
Theorem 23.12. For m,n € N, the following equality holds:
N = N e
Proof. To prove the equation, let us follow induction steps on m. For m = 1, the
proof is clear by (23.4). Now, assuming that it is true for all positive integers m, that

is,

ym __ pm
R = R
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Therefore, we have to show that it is true for m + 1. If we multiply this mth step by
N,+1 on both sides, then

E}‘nm.;i_]l =Ny Jmnmn-i-l
By considering Eq. (23.4), we can write

Rk = N

and then, from Proposition 23.1, we obtain

Qtznill - g{’;H_ ! J(m+1)n s

which ends up the induction and the proof of theorem.
Corollary 23.13. Forn > 0, in the equation given in the above theorem

* by taking m = 1, we obtain
N2, = RiJay = RiNapgr
e bytakingm =2, a = 1 and b = 1, we obtain
Ty =J2 07 = Ji J7 = Jopga.
e bytakingm =2, a = 2 and b = 1, we obtain
Ci+1 = Csz,,.

Proposition 23.14. Fora,be R, ne N, s >0, t # 0 and s2 48t > 0, we have

L Gy, + 2th+1 = (b%5% + 2a%0)jongs + 2ast(2b — a)jau s,
2. G2+2 + Zth_H - bG2n+4 + 2 (a - b) tG2n+2,
3. Gon —]nGn-H + ZUn 1G.

Proof. For the proof of (1), we use the corollary
2
SRZ — Gn+2 2Gn+1
n+1 th-H zth
N2,
_ bs? + 2at 2bs ? jzﬁ“ %}2;1
bst 2at thn 2[].Zn—l '

The desired result is easily seen from the equality of the matrices of elements of the
indices (1, 1).
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For the proof of (2), we use the corollary

2
C - G2 2Gu4
ntl 1Gpy1 2tG,
= N1 Ront1

_( bs® + 2at 2bs Gont2 2Gout1
- bst  2at ) \tGay1 2tGay )

The desired result is easily seen from the equality of the matrices of elements of

the indices (1, 1).
For the proof of (3), we use the corollary

9N _ [ Gan+2 2Gon
T tG2n+1 2tG2n

= ERn-i—ljn
_ [ Gnt2 2Gups }n;‘rl 2AJAn
th-H 2th ljn 2'l‘jn—l .

The desired result is easily seen from the equality of the matrices of elements of the
indices (2, 2).

23.3 Conclusion

In the present paper we introduce the generalized (s, f)-Jacobsthal integer sequences,
whose entries are numbers G, satisfying the recurrence formula

Guta (s, 1) = 5G4 (s, 8) + 2tG,, (s, 1), s>0,t# 0,>+8>0,n>1,
and initial conditions
Go (s,t) = a, Gy (s,t) = bs.
In the case @ = b = 1, we define the (s, f)-Jacobsthal integer sequence, whose

entries are }n (s, t)-Jacobsthal numbers satisfying known recursive formula and
initial conditions

Jo(s,5) =0, ji(s, 1) = L.



336 S. Uygun and K. Uslu

After that by using these integer sequences we introduce the generalized (s, f)-
Jacobsthal matrix sequences, whose entries are matrices Ny satisfying the recurrence
formula

N1 = SR + 26Ny,
and initial conditions

bs 2a bs* + 2at 2bs
Mo (s.1) = (at (b—a)s) and I (s.1) = ( bst 2at)

and give some properties of the generalized (s, t)-Jacobsthal matrix sequences.
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Chapter 24

Domain Decomposition Approximation
Approach for an Elliptic Partial Differential
Equation

Tahira Nasreen Buttar and Naila Sajid

Abstract Domain Decomposition Methods present a strong and general class of
techniques for the approximate solution of partial differential equations. A non-
overlapping Domain Decomposition Method for the solution of Elliptic Partial
Differential Equation is formulated. This DDM involves to find solution of Dirichlet
and Neumann problem on each sub-domain, along with smoothing operation on the
interfaces of the sub-domains. Analysis of this iterative non-overlapping scheme is
made for an elliptic problem. At odd iteration levels, we enforce Dirichlet boundary
value among sub-domain problems at their interfaces, whereas at even iterative
levels are imposed Neumann boundary values. Fourier analysis is applied to show
the fast convergence rate of this DDM in case of constant coefficient and four
rectangular sub-domains.

24.1 Introduction

The idea of Domain Decomposition is very simple: it is to split a domain into
finite number of sub-domains. DDMs are usually applied to boundary value
problems (BVP). When the domain is decomposed into sub-domains, then the
BVP is applicable on each sub-domain separately with its respective boundary
conditions. The problems on each sub-domain are independent and matching
conditions on the interfaces are imposed which makes this method suitable for
parallel computing. There are techniques for splitting the domain into overlapping,
such as Schwarz alternating method and Additive Schwarz method. Many DDMs
can be analyzed and written as a special case of abstract additive Schwarz method.
Other DDMs are with non-overlapping sub-domains. In this type each pair of
adjacent sub-domains has intersection only on one interface, i.e. a curve or a line I".
Methods of Schur complement, Fictitious domain, Neumann—Dirichlet, Neumann—
Neumann, balancing domain decomposition (BDD) are non-overlapping DDMs.
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In engineering community, DDMs are much admired. These methods solve prob-
lems with deficiency of large RAM and save time of computation, as well as handle
the complications which arise from usage of the finite element method. Now-a-days,
large computer simulations are in concentrate of science and engineering. While
solving a PDE numerically, we get a system of algebraic equations, which can be
solved by direct (such as Gaussian elimination) or iterative methods which are based
on minimization of the iterated form of Ax — b. Iterative schemes like Gauss Seidel
and SOR are effective. To solve large system of algebraic equations efficiently,
both of the above methods are not suitable. Parallelization of sequential codes in
general can be very complicated in some cases. However, the most complicated
part of parallelization of the FEM is the parallelization of the solver of system of
algebraic equations. DDMs solve the problems by overcoming these deficiencies. A
non-overlapping DDM to obtain the numerical solution of an Elliptic PDE problem
is formulated. The proposed numerical scheme involves the solution of the problems
with Dirichlet condition as well as problems with Neumann boundary conditions
imposed on each sub-domain, by using smoothing process on the interfaces of the
sub-domains. Emphasis is given to formulation and implementation of this method

We have developed a modified domain decomposition scheme for solving
elliptic partial differential equation and applied it to solve Poisson equation for
different choices of relaxation parameters and grid sizes. We have used this iterative
DDM, for elliptic problems with non-overlapping decomposition of domain. The
conditions on boundary vary at even iteration (where Neumann boundary conditions
are applied) and at odd iterations (where we entertain Dirichlet boundary conditions)
among sub-domains and are interchanged at their interfaces. Let us consider a
domain D that is decomposed into a family of non-overlapping sub-domains
{N;,1 <i < N} with

D=|JD. DinD;=0. i #j.

l

If I; = dD; — dD, the interface I is defined so that I" and I are open.

The conditions at I' are phrased as transmission conditions, moreover, the
function and their derivatives which are traced along with their independent linear
combinations are termed »; which is outward normal to D;.

24.2 Derivation of the Modified Domain Decomposition
Scheme

The BVP selected here is the following:

Lw = f in D,
w = gon dD,
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where L is the operator defined by

L 09 ow
W= — Z g (GU(X)B—XI) + aO(X)W.

ij=1""

We introduce a generalized version of the scheme given in [1].
Let D be a polygon which is convex in R, d=1,2,3,..., having a boundary
D. Given f € L*(D) and g € H (D), we find w € H'(D) for which

Lw=fin D, w=g on aD.

A Domain Decomposition scheme is proposed for second order Elliptic problem.
The initial domain D is sub-divided into sub-domains D;, i = 1,2, 3,4, inside of
each subdomain the differential equation is satisfied. At every interface between
two adjacent sub-domains, the continuity of the solution and of its derivatives is
imposed. DDM is quite easy to formulate and can be applied to randomly chosen
decompositions. To ease the appropriate analysis, the domain D is divided into four
non-overlapping sub-domains D, D,, D3, and D, such that

D =Dy UD, UD;UDsy,
DiNDy,=0,D,ND; =0, DsN Dy =0,
0D, N oD # @, i =1,2,3,4

We denote the interfaces of the four sub-domains by

It = 0Dy N 0D,,
I, = 0D, 08D3,
I’s = 0D N 0Dy.

As the earlier research suggests that subject to appropriate regularity conditions, the
problem becomes equivalent to the four problems mentioned as under:

In Domain D;:

Lwy =f in Dy,
wy = gon dD;NAD,
w1 = wp On Fl,

8w1 n aW2 0 I
-_— _— = on .
dvl  Jv? !
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In Domain D,:

LW2 :fm Dz,
wy = gon dD; N aD,

- wi, on I
7 I ws, on Iy,
8W2 8W1 0 I
— 4+ —=0onIT7,
vz 2 !
8W2 3W3
— + — =0on /7.
vz = vl 2
In Domain D5:
LW3 :f in D3,

ws = gon dD; N aD,

Wa — wp, On Fz
7 | ws. on I3,
8W3 8W2
— + —==0on I3,
v v :
8W3 8W4
— + — =0on I3.
ovd vt 3
In Domain Dy:
LW4 = f in D4,

wg = gon dDy N ID,

wgq = wz on I3,

aW4 8W3
— + — = 0on I3,
ovt vl
where for n = 1,2,3,4, w, = w|p, and v" is the unit vector in direction of

outward normal to dD,. For this Domain Decomposition scheme, we assume
w e HO(D,) with w|op,nop = g n = 1,2,3,4. Fork = 0,1,2,3,...,
we get the sequence so constructed as (W *1) where wtt! € H(D,) with
W:(10)|aD,,naD =g, n=1,2,3,4, satisfying:

Y =finD,,

w§2k+l) = otw(IZk) +(1- a)wgk) on I,
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While

Lw§2k+l) = fin D;,

ity _ Jows? + (1 — o™, on I
w, - (2k) (2k)
aw,  + (1 —a)wy ', on I3,
L = £ in D,
@k+1) angk) + (11— oe)wgk), on I
W3 - (2k) (2k)
aw;  + (1 —a)w, ', on I3,

Y = fin Dy,

wfk—’_l) (Zk) + (- oe)w;Zk) on 3.

i = finD,,

8W(2k+2) 8 (2k+1) (2k+1)
311)1 = ﬂ ( IB) on F] )

Lw;2k+2) = fin D,

okt (k+
8W§2k+2) B ﬂﬁw, + (1 ,3) Bwévz . on F]

> = w(21<+ LD
dv B (1 -2 on D,

i = fin D;,

Qk+2) PRCERY PRCERY
ows _ ,B—W?U3 + (1 - ﬂ)—w?v3 ,on I,

—81)3 = 3W§2k+1) P 2%+1)
:3 903 +(1_ﬂ) 03 ,OIIF:;,

i = finD,,

2t 2t Qk+1)
4 4 3

= + (1 — on I3,

ov? p ov? (=5 ov4 ’

where o, € (0, 1) are the “relaxation parameters.”The choice of “relaxation
parameters” decides to assurance of convergence and to enhance its rate of
convergence. The parameters « and § depend upon the sub-domains selected
and the PDE under consideration. There is not any definite approach to estimate

11
the most suitable values for & and § but (5, 5) is observed as suitable pair of

values.
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- . w . . - .
Continuity of the variables w and — in this scheme is imposed on the interface

alternately at each iterative stage. Usinljg DDM, the applications for approximation
and numerical solution will be investigated for convergence while optimum value
of relaxation parameters o and B will be determined. Numerical result will be
displayed.

24.3 Analysis of the Proposed Domain Decomposition
Method

Here we discuss the formulated DD scheme for PDE problems on rectangular sub-
domains and analyze the error in each subdomain. We suppose the model problem:

—Aw+Aw=f on D= [—x,x]x[-1,1],

w = 0 on boundary dD, where x;,x, > 0 and A > 0. We tear the domain D into
four sub-domains

B —X
D] = | —X1, Tl] X [—1, 1],

[ —X
D, = 71,0] x [=1,1],

[ X
Dy = _0,52] x [=1,1],

D4 = -%,XQ:I X [—1, 1],

%, 0, % If at jth iteration the

solution of the DDM is defined by wf’j on each sub-domain D;, then it is simple to

so that the interfaces line I, = 1,2,3 are x = —

prove that the error functions Efj) accordingly defined by
() _ W .
E7 (x,y) = wx,y) —w;" (x,y) for (x,y) € D;

satisfy, for k = 0, 1,2, ..., the PDE problems:

In Domain D;:
— AEPTD L AP — 0 in Dy,
O — ¢ (o B0 E) on T,

E§2k+1) =0on 8D1 \F].
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In Domain D,:
_ AE;2k+1) n AE;2k+l) = 0in D,
E§2k+1) —c (05, E;Zk)’ E§2k)) on Iy,
E§2k+l) =0ondD, \ I
and
_ AE(zzk+1) n AE§2k+1) — 0 in Dy,
E§2k+1) —c (a, E§2k)’ Eng)> on I,
E;zkﬂ) =0onadD, \ I3.
In Domain Ds:
— ANEPHY L 2EPY = 0in Ds,
E§2k+l) —c (oc, Eng)’ E§2k)> on I,
Egzk—H) =0ondD; \ I}
and
_A E;2k+1) n AE§2k+l) — 0in D,
Eng+1) —c (05, E;Zk)’ Eizk)) on I,
EY*Y = 0on dD, \ I
In Domain Dy:
_ AEA(‘Zk+1) n AEka) = 0in Dy,
Ef‘2k+1) —c (oc, Efk)’ E§2k)> on I3,
Efkﬂ) = 0on dDy \ I3.
In Domain D;:

— AEPY L AP — 0in Dy,

GE+D) gE2HD gE2k+D
—— =p—=—.(1-p—2—] onT,
ox ox ox

E§2k+2) =0on 8D1 \ Fl.
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In Domain D,:

— AEPY 4 AEPP — 0in D,,

gE kD) 9 E(2k+1) 9E (2k+1)
= =B ,(1=8) onI7,

ox
E§2k+2) = 0on 8D2 \ Fl
and

— A BT 4 AEPTY = 0in D,

p E(2k+2) p E(2k+1) p E(2k+1)
23 =B ,(1=8) on I,
X

E;Zk—i_z) =0on 8D2 \ Fz.
In Domain D;:

— AESD L AEPTY = 0in Dy

(2k+2) (2k+1) (2k+1)
OE =<ﬂ8E (1_,3)3 ) on I3

0x
ES = 0ondD;\ I
and

_A E§2k+2) + AEg2k+2) =0in D,

EXD [ E(2k+1) 9 E(2k+1)
38 =8 (1-8) on I3
X

E§2k+2) =0ondD; \ I3.

In Domain Dy:

— AEPTD L AEPHY — 0in D,

(2k+2) (2k+1) (2k+1)
E E E
OEs = ,38 = ,(l—ﬁ)a : on I3,
0x 0x 0x

EZX*® = 00n 8Dy \ I,
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Now we set A; = A + (%m) and define the functions such as

Vi(y) = sin (%m(y + 1)) , wherey € (—1, 1),
sinh(v/A(—x — x1)

_ BV
Wi(x) = sinh(\/)t_i(—%)) , where x € ( X1, > ) R
sinh(v/4;(x)) x|
_— xe(——,0
ah(VED) =3)
Xi(x) = 1
Sinh(\/A—i(_E — X))
= 0,
sinh(v/i(—3)
inh(+/A;
. sin (\/;(x)) ’ c (0’ %)
Smh(«/ﬂ(; — X))
Vi) = N
Sinh(«/)t_i(—z — X))
dh(VE(D)
and
_ sinh(vVAi(x)) X2
Zi(x) = sinh(\/k_i(xz —x))’ where x € (E,xz).

It can be easily verified that the above listed functions V;(y), W;(x), X;(x), ¥;(x), and
Z;(x) are solutions of the following problems, respectively:

V() + (%nﬂ) Vi(y) = 0,
ye (=11, Vi(-=1) = V(1) =0,
—W, () + AW, = 0,

xe (-, %) Vi) =0, Wi (-3) =1,

—X; (x) + A Xi(x) = 0,

xe (——,0) X (—%) — 1, X,(0) = 1,

—Y, () + AYi(x) =0,

xe (o,)ﬁ), Yi(0) = 1, Y, ()2) -1,
2 2
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and
~Z; (x) + MiZi(x) = 0,

X2 X2 . : _
X € (5,)62), Z; (E) =1, Zi(xz) = 0.

Now, for the jth iteration, the error Ejl (x,y) can be expanded in each sub-domain in
terms of the V;, W,, X;, Y;, Z; as follows: The error functions in Dy, D,, D5, and D,
are defined respectively as follows:

o0
. - . xl
E(x.y) = Y a”Wi(x)Vi(y) on I, ie., atx = -5

i=1

= 1 0) . X
> b"Xi(x)Vi(y), on I, i.e., atx = -5
A i=1
Ey(x,y) =
0 .
> bg’)X,-(x)Vi(y), on >, ie,atx=0
i=1
= 0
> c}l Y;(x)Vi(y), on I;,ie,atx =0
, i=1
Ej(x,y) =
o0 P
> 8‘5’)Y,<(x)V,<(y), on [3,i.e.,atx = %
i=1

o0
i j . X2
E\(x,y) = 4_2 1 dl.(’)Z,-(x)V,-(y) on I3, ie., atx = >

(2k+1)’ b§2k+1), C§2k+l), and di(2k+l)

The coefficients g, of the series given in the

(2k+2)

L

. . . 2%+1
following are same as coefficients for expansions El( 1 and on [ for

k=0,1,2,3,...:

1
0 [ [l (2.5) @ (<2 i
—1

1
bW“)z/‘w#“(ﬁkﬁ4%1—wEW%—ﬁwﬂV@N%
_ 2 2

—1

1

B0 = [ [aE2 0.9+ (=B 9] Vo).
-1
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—_

et = / [«EP (0.3) + (1 = 0 ESY (0.9) | Vi,
AQk+1) [ k) (X2 (2k) (X2
C; = aF; Ey) + (1 —-a)E,; (Ey) Vi(y)dy,

y)] Vi(y)dy.

2k+1 [ 2k) (X2 2k) (X2
df )=/_aEf‘ )(E,y)—i-(l—ot)Eg )<E

As the Vi’s are orthogonal in L*(I.i=1,2,3), we get

2 [ <2k>w( )4 (- (-2)]

1

= [oa® + 1 -],

Qk+1) _ [ k) _)ﬂ) _ (26) 1)]
b b X,( >) + - W( :

= alek) +(1- oz)a,Qk) ,

D 'ai;?“xi ©0) + (1 — a)c Py, (0)]

— Olb(Zk)+(l )(2k) )

(0 = [ac®5,0) + (1 - 0)h™X; (0)]

= [ae® 1 (1 a)p™].

al(2k+1) _ [ A(Zk)Y (2 ) +(1— oz)d,Qk)Z,- <%)]

[ ~(2k) F (- oc)dek)],
d(2k+1) [ d(zk)z( )+(1 )A(zk)Yl]
[ d(zk)+(1 )A(2k>].

Now for even iterations:

1

2k+2 X1 aE(zw])(_i QEGHD (L
a®D =y, (—5)/ [ﬂ— + (1= ) =2— 22 | Vi(y)dy,
-1
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Q1) _y TH_u
B+ — (_ﬂ)/ ﬂ"EZ— +(1— ﬂ)u} Vi(y)dy,
R X1 B aE(2k+l) 0, 8E 0,
i = (<) [ [preion 1 1ty ”] Vi0)dy.

U2 X1 [ 4o 0, Lo RC
19 = (<) [ [6H0 )BT vy

r Qk+1), x (2k+1)
0 = (<5 [ [P0 1 - S v

X QEZTD oES Y
d§2k+2) S (_3)/ ﬂ# +({1-p) (2 »):| Vi(y)dy,
-1

where #;(x) = [tanh VA (x)] /A
BE) (%) _ o

2 =Y W (-3 Vi,

i=1

o0 . ,
36X, (=3) Vi),
aE(I)(_ ,y) =1
ax O L,
> bVX; (0) Vi),
i=1
o0 . ,
' Y- Y] (0) Vi(y).
IEY(0,,) |=1
0x B A0
; Y; (%) Vi),

E) (2, X
a—x” _ ;d A ( )V(y)
sinh («/)L_i(—x - xl))

i) = sinh (VAi(—%))

Differentiating,

, cosh (v/Ai(—x — x1)
W (x) = nl(l(\/_(—— ) ) (_\/A—')’

v (-2) = (V) o (5 (1),

2
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Now

sinh (\//X_,(x))
sinh (V2:(—%))

/. cosh (\/)L—,(x))
X0 = ) (Vai).

¥ (2) = () (V5 (1)

Xi(x) =

In the same way,

0= (V5) o (V5 (1))
0=~ (V) (45 ()

v (2) = (Vi) et (VA (2)).
%(3) =~ (Vi) em (VA (3))-

Using the orthogonally of the Vs in L> (I, i = 1,2,3.) we obtain that

a§2k+2) =1, (_%) I:ﬂa§2k+l)W; ( 2) +(1- ﬂ)b(2k+l)X ( le)]

426 [tanh (Vi (=3))]
' Vi

[ (= (Vai) eon (Vi (3))
= (V) (V1 (3)]
a§2k+2) _ [ﬁalgzkﬂ) (- ﬂ)b§2k+l)]
b(2k+2) — 1 (_%) [ﬂb(2k+l)X; (_%) (1= B)a (2k+1)W ( 1621)]

b(2k+2) [ﬁb(2k+l) (1— ﬂ)a,(-zkﬂ)],

S (——) 867X 0 + (1 = He* Y, 0],

b(2k+2) [,Bb (2k+1) pi + (1 — ﬂ)c§2k+l)i| 7
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[tanh (Vi (3))]
[tanh (Vi (=3))]

Cl(zk+2) = (%) [ﬂlekH)Yl/ ©) + (1 — ﬁ)i)lgk-i-l)x; (0)] ’
c§2k+2) _ [ﬂclgzkﬂ) (- ﬂ)];l(_zkﬂ)pi—l] ,
5,('2k+2) ” <3€22) [,B (2k+1)Y (Xz) +(1- ﬁ)d(2k+l)z (2)]

2
A(2k+2 A (2k+1 2k+1
e = [pe — (1= pa].

where p; = and

1

dfzk+2) S (3622) I:,Bd(Zk-H)Z ( ) . ﬁ)&§2k+1)Y; (%)] ’

JH+D _ [ﬁd(2k+1) —a- ﬂ)e(2k+l)] '

Example 24.1. The following BVP of Poisson equation is considered: v?w = f,
on |x| <1, |y| <1,w = g, on the boundary dD.

Solution. Using the technique derived in Sect. 24.2, we decompose the domain in
four sub-domains

r 1
D1=_—L—§ x [~1,—1],

M1
D, = _—5,0 x [-1,-1],

1
Ds; = 0,5 x [-1,1],

1
Dy = EJ]XFL”.

Initial guesses for the coefficients a;, b;, c¢;, and d; are taken along with appropriate
choice of & and . For f = 1 and g = 0 we have

Numerical result for the Example 24.1 with interfaces at x = —%, 0, % and the

total absolute errors are shown in Tables 24.1 and 24.2.

Table 24.1 Total error in
whole domain

Iteration | Error

—4
E = |E| + |Eo| + |Es| + L. 994> 107
|Es| @ = 0.45, B = 0.5, and 2. 1.50 x 10
grid size is 5 X £ 3. 2.8 x 1073
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Table 24.2 Total error in
whole domain

Iteration | Error

—5
E = |E| + |E| + |Es| + L 67> 107
|Es| & = 0.35, B = 0.65, 2. 1.8 % 10
and grid size is % X % 3. 5.0x 1076

24.4 Conclusion

A new domain decomposition scheme is developed for solving elliptic partial
differential equation and applied it to solve Poisson equation for different choices
of relaxation parameters and grid sizes.
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Chapter 25
Voronovskaja Type Approximation Theorem
for g-Szasz—Schurer Operators

Tuba Vedi and Mehmet Ali Ozarslan

Abstract In 2011, Ozarslan (Miscolc Math Notes, 12:225-235, 2011) introduced
the g-Szasz—Schurer operators and investigated their approximation properties.
In the present paper, we state the Voronovskaja-type asymptotic formula for
g-analogue of Szasz—Schurer operators.

25.1 Introduction

In the last decade, different types of Szasz operators were studied in [1, 6, 13], etc.
On the other hand, g-analogue of Szasz operators were investigated in [4, 5, 7, 8,
12, 18-21, 23-25, 30]. Also, many researchers investigate g-analogue of Bernstein
polynomials in [2, 3, 10, 17, 22, 27-29]. Particularly, Voronovskaja type theorem
was stated in [9, 14, 15, 20]. In 2011, g-Szasz—Schurer operators were introduced
by Ozarslan [26] as

, x €[0,00),

o 1 - K\ s n+pl 2
Suall 50 = p o 2 ()

where 0 < g < 1,f € C[0, 00) and E, ([n + p] x) was given in [26].
Before giving our results, let us give some definitions related to g-calculus. Let

k

¢ € R and the function f be calculated at the g-integers H Recall that the g-integer
n

of k e Ris [16]

(=4 /0-9. q#1
[k]q_ k, qzl,
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the g-factorial is defined by

K, k=11, [1],, k=1,2,3,...,
1

[k]q!z{ , k=0

and g-binomial coefficients are defined by

k . [n—k]q![k]q!
for n > 0, k > 0. On the other hand, g-integers satisfy the following well-known
property

[l =[s] +¢°[n—s]. (25.1)

Firstly, let us state the following lemma and corollary which were given in [26]:

Lemma 25.1. For fixed p € Ny and n € N, we have the following relation for
q-Szasz—Schurer operators

Sug (" x;p) = Mx Z (m) ;.Sn,q (;x:p). (25.2)

[, = \J)d Iy~

Corollary 25.2. Using (25.2) we have the following moments for the g-Szasz—
Schurer operators:

(i) Sug(Lixip) =1,

(i) Snq(t;x;p) = b [:]f]"x,
0 st = (£ P,
e[ e B

In this paper, we consider the following space:

E:= {f € C,[0,00) such that lim IS
x—>00 | + x2

exists ﬁnitely} .

Also before, Ozarslan gave the following corollary on the space E :
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Corollary 25.3 (See [26]). Let g := g, € (0,1) and fix p € Ny := NU{0}.
Then, for all f € E, {S,Lq (f;x;p)} converges uniformly to f on [0, b] if and only
if E)m gn =1

n—oo

25.2 Voronovskaja Type Theorem

Recently, Duman and Ozarslan gave the Voronovskaja type theorem in [11] for
Szasz—-Mirakjan type operators. In this section, we state our main result for g-
analogue of Szasz—Schurer operators. For proving our main theorem we need the
following:

Lemma 25.4. Using Lemma 25.1, for fixed p € Ny and n € N, we get the following
results:

(i)
Snq (1*:x: )=i [n+p]qx4+ o 2t [n+p]qx3
VP \ T, A, i, )\,

+( S )([n+p]qx)2+[n+p]qx
A AR AN [l
(il

Siq ((t — x)4 X, p)

Z([n—|-p]3 4[n+p]2 6[n+p]§_4[n+p]q+l)x4

S F L gl [,

§ ((i+ 2g + 1) [+ pl; G D [n+pl; 6[n+p]q)x3

¢ ¢ (]} [l [n;
2
+ ((3 + % + %) [n+f]q —4[n+f]q)x2 + [n+f]qx.
a ¢ q [n], [n], [,

Proof. By the help of Lemma 25.1 and Corollary 25.2 and linearity of the operators
we can obtain the desired result.

Lemma 25.5. Let (g,) be a sequence with0 < g, < 1, lim g, = 1 and lim g} =
n—>oo n—>oo
A. Then, for fixed p € Ny and n € N we have the following:

(@) nlggo [n]q,, Sn.q, ((t—x);x;p) = pAx,
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(@) lim [n], Suq, ((t —x)? ;x;p) =X
n—>oo

(i) 1im [1]2. Snq, ((r e ;x;p) =31 —A ¢ —12(1—A) P +32 +x
n—00 n

uniformly with respect to x € [0, c], (¢ > 0).

Proof. (i) By Corollary 25.2, we obtain the desired result directly with 0 < g, < 1,

lim g, = 1and lim g = A,
n—>0o0 n—>oo

Tim_ (1], Sw, ((1—):xp) = Tim [1], (ﬂ - 1) ]

n—00 [n]qn
= tim ([ +pl,, —[nl,,) x

1 1 _ p
= lim —qn( q")x

n—00 1 — Gn

= pAx.

(ii) If we take limit on both sides of [1],, Sy, ((t —x)7:x p) as n tends to infinity
and taking into account that 0 < ¢, < I, lim g, = 1 and lim ¢ = A, and also
n—oo n—>oo
using (25.1), we get
tim [1l,, Snq, (=37 x:p)

n—>oo

= lim [<[n +p]‘1n _ 2) [n]qu [}’l +p]qu + [n]qn:| X2 + nl_i)m [n]Qn [l’l +p]‘]nx

n—>00 qn [n]qn [n] qn 0 [I’l]2

n—>oo

2 2
+pl2 —2qy +pl, +quln
lim [n+pl,, — 2qx [n],, [n + pl,, + qu (1], 2ix
4n [n]qn

which gives
lim [n], Sng, ((t —x)? ;x;p)

lim (ﬂpl% + @ l,) = 2an o, (P, + 44 1,,) + an ) [

e qn 1],
i (O =20+ a0) O, + [, (21061, 05— 240 [P,,) + 1, L
n—>0o0 qn [n]qn
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(ii1) Now, let us prove our last results of the lemma in the following way:

11m [n] S ((t—x)4;x;p>

K[nm PR AT, AL P 1)x4

45 [nl;, a; [l qn [l;, [l,,

= lim [n]
n—odo

3 2,41\ [In+pl 2g, + 1) [n + pl; +
+((_+q+)[ Py, Qant Dlntply, | In p]q,,)x3

o q me g2 Inl), nl?,
3 3 1\ [n+pl n+p n+p
+<(—+—2+—5) 4""—4[ 3]‘1" x2+—[ 3]q"x ,
n G 4/ [nl, [n], [n],,

and hence

: 2 4. ..
n1_1>n;o [n]qn Sn,qn (([ - .X) 3 X p)

@y @b, [1],,

5 (( 3 2ge+ 1) [n+pl;, et D [n+pl, Ll er]qn)x3

4@ 4 [];, q* [nl;, (15,

2
+ lim [n)2, (((3 " 32 4 %) [n"r‘f]qn [+ pl,, )x2+ [n+§a]qn)x.
n—00 dn dn 9n [n] an [}’l] on [i’l] o

Now, again using (25.1) and re-arranging the above terms, we have

_ lim 2 ([n+p]3,, [+ pl;, ol +rl7, St o, +1)x4

nl_l)rgo [n]gn S ((t —x)* ;x;p)

|: ( 4p 4q3p+3 + 6q2p+5 _ 4qp+6 + qé) (1 _ qn)2
— lim n n n n n n

n—00 6 1—gq,

n

+ lim

o @ — 12677 pl, + 124077 [pl,, — 445 ), \ 1 -
n—00 qn 1 - qn
_(6lpl;, ¢ — 12407 [l + 643 p);,
+ llm n - n n
n—oo ql’l
4 — 4q3 1-q, o (1=
+ lim [Pl 4 [Pl . [pl,, (1 —qn) x4
n—>00 L—qy  n=o g (1-q))
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3q24+2gn+1
B3 (]} ¢ — 4 Qan+ 1)@ + 64,7\ 1 g,

A q; 1—q
3g2+2gn+1 p
_ 23 pl,, 4 — 4 (29 + D) 2[p),, 4 + 64, [P,
+ lim “ 3
n—oo qn
3¢2+2g,+1
(L a4 Qan + DI, | 1 — g
+ llm n 5 n
n—00 q; 1—gqy,
3g2+2g,+1
' T q;] [p]3" 1= gy 2 ; )
+ lim — - x +3x" 4+ x
n—>00 q; 1-— qr

Finally if 0 < g, < 1, lim g, = 1 and lim ¢}, = A, then we obtain the following
n—oo n—>od

result:

lim [n];n Sh.gn ((t —x)*x p)

n—>o0

=3(1-A>x*-12(1—A)° + 3% +1x,

whence the result.
Now, we can give the Voronovskaja type theorem for g-Szasz—Schurer operators.

Theorem 25.6. Let (g,) be a sequence with 0 < g, < 1, lim g, = 1 and
n—>oo

lim ¢ = A. For any f € E[0,00) such that f € E[0, c0) andf” € E[0,0).

n—>o00
Then, we have the following relation:

}220 [nl,, (Sng, f (¥ :x:p) —f (x))

2
= @pAx+f () ((1 —A) % n %x)

uniformly with respect to x € [0, c], (¢ > 0).

Proof. From the Taylor expansion for f, we get

/ 1 /7
fO=fO+f @C=x)+f @ — )’ + 61,0 (1—x)°,
where & (f,x) — 0 as t — x. Using the linearity of the operators S, ,,, we get

Sng (fsx:p) — f (x)
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:f/ (x) —[n +p]q"x—x
[,

l /" [I’l +p]qn . [I’l +p]q,, 2 [I’l +p]‘1n
+5f (x)([( b, 2) i, +1:|x +—[n]2 x)

qn
+ Sng, (8 (t,x) (t— x)2 ;x;p) .

Applying Cauchy—Schwarz inequality to the third term on the right-hand side, we
get

nlggo (], Sn.q (s (t,x) (1 —x):x; p)

[STE

1
. 3.
= (nll)IIolo Sn,q,, (82 (t’ X) ;X;p)) (nll>ngo [n]q” Sn,q,, ((t N X)4 > % p))
Since &2 (1, x) € E, we have by Corollary 25.3 that
i [1l,, Suq, (2 (6) (=27 :2:p) = 0

uniformly with respect to x € [0, ¢], (¢ > 0). Then, we have by Lemma 25.5 (i) and
(if) that

Jim [n],, (Sng, (f (0):x:p) = f (x)

=f @ Jim 1, (ﬂx —x)

[,

3t 0t (| (e -2) P 1| Pt

qn [n]qn a [I’l]qn
/ 4 x2 1
—f WpAx+ () ((1 S 5x)

uniformly with respect to x € [0, ¢], (c > 0). Hence, the proof is completed.

25.3 Concluding Remarks

Remark 25.7. If we choose p = 0 in Lemma 25.4, our results will be the same as
that of g-Szasz operators.
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Remark 25.8. According to chosen g,, we obtain the following Voronovskaja-type
results, respectively:
Letg, = 1— 1 wheng, - 1, lim ¢! =A = ¢!, we have

n—>oo

nlil‘;‘o [n],, (Sng, (f (1) :x:p) — f (x))
=f Wpex+f () ((1 —e™) g lx) .

Letqnzl—ﬁorqn =1— 1 wheng, — 1, lim q,=A =1, we get
n n—00

Jim [l (Sna, (70 59) ~F (9) = @pr+1 () 3
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Chapter 26

Approximation to Derivatives of Functions
by Linear Operators Acting on Weighted
Spaces by Power Series Method

Emre Tas and Tugba Yurdakadim

Abstract In this chapter, using power series method we study some Korovkin type
approximation theorems which deal with the problem of approximating a function
by means of a sequence of linear operators acting on weighted spaces.

26.1 Introduction

Much of the literature on approximation theory is focused on the classical approxi-
mation operators which tend to converge to value of functions being approximated
and ordinary test functions. Efendiev has studied some approximations to deriva-
tives of functions by means of a class of linear operators defined on various
weighted spaces. Kucuk and Duman [10] verify the same results using A-summation
process. Recent studies demonstrate that summability theory provides an important
contribution to improvement of the classical analysis. For example, many authors
have studied Korovkin type approximation theorems by using summability theory
[1, 6, 11]. In this chapter we study the Korovkin theory, using the power series
method, which deals with the problem of approximating derivatives of a function
by means of a sequence of linear operators acting on weighted spaces without using
the ordinary test functions. This chapter consists of three sections. The first section is
devoted to basic definitions and notations used in the chapter. In the second section,
we give some approximations to derivatives of function by means of a class of linear
operators defined on various weighted spaces by using the power series method. Our
motivation to this chapter is [3] and [8]. In the final section we give some concluding
remarks.
We first recall some notation and basic definitions used in this chapter.
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Throughout the chapter we use the following weighted spaces introduced by
Efendiev [8]. Let k be a nonnegative integer. By C¥'(R) we denote the space of
all functions having k-th continuous derivatives on R. Now, let M® (R) denote the
class of all linear operators mapping the set of functions f that are convex of order
(k—1)onRR,i.e.,f®(x) > 0holds for all x € R, into the set of all positive functions
on R. More precisely, for a fixed nonnegative integer k and a linear operator L,

L e M®(R) < L(f) > 0 for every function f satisfying f® > 0. (26.1)

If k = 0, then M©(R) stands for the class of all positive linear operators. Assume
that p is a weight function, i.e., p : R — R* = (0, +00) is a function such that
p(0) = 1; pis increasing on R and decreasing on R™; and lim,—, 4+ o0 p(x) = +00.
In this case, we consider the following weighted spaces:

Cg‘) R) = {f e CW(R) : for some positive my, [f(k) (x)| < mpp(x), x € R} ,

CHR) = {f € CY(R) : for some Iy, lim A =1
p 14 : 1 > ~+00 P(-x) (e
CHMR) ={feCYM®): lim 1w _ 0
? P koo p(x) ’
B,(R) = {g : R — R : for some positive n,, |g(x)| < myp(x), x € R} .

As usual, the weighted space B,(R) is endowed with the norm

lg()]
5 for g € B,(R).

lgll, := sup
x€R

If k = 0, then we write M(R), C,(R), C'p (R) and ép (R) instead of MO (R), C,(,O) (R),
ég)) (R) and CA'LO) (R), respectively.

26.2 Approximation Theorems by Power Series Methods

We first recall that the system of functions fy, f1, f2, - . ., fin continuous on an interval
[a, b] is called a Tschebyshev system of order m, or T-system, if any polynomial

P(x) = aofo(x) + a1fi (x) + -+ + awfin(x)

has not more than m zeros in this interval with the condition that the numbers ag,
ai, ..., ay are not all equal to zero.
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Let (p;) be real sequence with py > 0 and p; > 0 (j € N), and such that the
corresponding power series p(f) := 2720 p;¥ has radius of convergence R with
0 <R <oo.If, forall € (0,R),

1 & ,
Iim — xipit =L (26.2)
=R~ p(f) jg(; I

then we say that x = (x;) is convergent in the sense of power series method [9, 13].
Note that the power series method is regular if and only if

y
im 22— 0, for eachje N (26.3)
=R~ p(t)

holds [5].
Let {L;} be a sequence of positive linear operators from C, into B, such that for
every f € C,

1 & 4
sup — > |[|ILillc,—»,pjt < o0 (26.4)
re.R) P(1) ; INE B

holds. Also V, given by

VAW = —— 3 L) opyt
=0

which is a positive linear operator from C, into B, is well defined by (26.4).

Throughout the chapter, the operators fulfill conditions (26.3). The classical test
functions have been changed in the Korovkin theory [2, 4, 7, 12]. Now, following
Theorem 1 of [12], we obtain the following result at once.

Theorem 26.1. Let {Lj} be a sequence of positive linear operators from C(X,R)
into C(X, R) for which (26.4) holds. If f; € C(X,R)

lim |V, () — £l =0, i=0,1,2
t—R—
then for all f € C(X,R),

lim [V, (f)—fll =0

t—R

where X is a compact Hausdorff space.

We first consider the case of k = 0.
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Theorem 26.2. Let {Lj} be a sequence of operators from C,(R) into By(R)
satisfying (26.4), belong to the class M(R). Assume that the following conditions
hold:

@) {fo.fi} and {fy, f1, fo} are T-systems on R,

(i) gglw% =y £0,

(iv) limp— |Vi(f) —fil , = 0,i=0,1,2.
Then, for all f € ép(R), we have

Tim [[Vi(f) —£1], = 0.
Proof. Letf € C »(R) and define a function g on R as follows:

g(y) = mpf(y) — Lif(y), (26.5)

where my, and [; are certain constants as in the definitions of the weighted spaces.
Then, we easily observe that g € C,(IR). Now we first prove that

lim [[Vi(g) — gll, = 0.

Since {fy, f1}is T-system on R, we know from Lemma 2 of [8] that, for each a € R
satisfying f;(a) # 0, i=0,1, there exists a function @,(y) such that

®,(a) = 0and &,(y) > 0 fory < a,
and the function @, has the following form

2.(») = v@fo(y) + yi(@fi(y),

where |yo(a)| = fl(—a) and |y;(a)| = 1. In fact here we define
Jo(a)
_ | F(y), itF(y)>0fory<a
) = { —F(y), if F(y) <Ofory <a’
where
Fo) =950~ 0.

~ fola)
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Clearly here F(a) = 0 and F has no other root by {fy, f} being a T-system. On the
other hand, by (i) and (iif), we see for each i = 0, 1, that

o) fiO) (LJrlfz(y)l
e 1+ 60 \p(»  p»)

) — 0asy — Foo. (26.6)

Now using the fact that g € ép(R) and also considering (26.6) and (iii), for every
e > 0, there exists a positive number u, such that the conditions

lg)| < ep(y) (26.7)
iy < ep(y), i=0,1 (26.8)
p(y) < sof2(y) for a certain constant s, (26.9)

hold for all y with |y| > ug. By (26.7) and (26.9), we can write that
le)| < esofa(y), whenever |y| > ug (26.10)

and for a fixed a > u such that f;(a) # 0,i =0, 1,

M
le()| < —@,(y) whenever |y| < ug (26.11)
mg
where
M := max |g(y)| and m, := min @,(y). (26.12)
[y|<uo [yI<uo

So, combining (26.10) and (26.11), we get

12| < mﬂ¢>a(y) + esgfs(y) for all y € R. (26.13)

Now, by using the linearity and monotonicity of the operators L;, also considering
(26.13) and |y;(a)| = 1, we obtain

[Vi(g(y):x)| < Vi(lg)]:x)

mﬁv,(qsa(y);x) + esoVi(f2(y); x)

IA

@Vt + 1@V, i 0): )
+esoVi(fa(y); x)
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< m% @I Vi(h():x) =fo)| + [Vi(fi(y):x) —fi(0)][}

+mﬂ {r@fo@)| + [yi(@)fi(0)[}
+e [sol [Vi(2(¥): x) = 2(0)] + € [saf2(0)] .

Since |y;(a)| = 1, then we have

[Vi(g(y); %)
x| >uo p(x)
M ol s WO0R R VG0 i)
mg lx|>u0 p(x) lx|>u0 p(x)
+ 20 3 pua) sup Ly s 1101
myg x| >uq p(x) x| >uq p(x)
~+¢ |so| sup Vi(0):%) — o) + & so| sup lfz(x)|.
x| >uo ,O(.X) x| >ug ,O(X)
But by (26.6) and (iii), we get that
A© = 2 @) sup WOy up VO 1) up 1200
Mg W P suy P s P(X)

is finite for every ¢ > 0. Now let

M M
B(e) := max { M, —. & |s0|§ ,
m(l a

which is also finite for every ¢ > 0. Then we obtain

. 2 . . —_T.
qup ORI g S g 100X —£00)

|x|>uo /)(.X) i—0 [xXI>u0 'O(x)

which implies that

] 2
sup B0 < 460) +56) Y- Vi) - (6.14)
x|>uo i=0
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On the other hand, since

IVi(g) — gll, < sup [Vi(g():x) — g(x)| + sup M
? x| <uo p(x) Ix|> 10 o(x)
lg(x)|
+|)§|liu0 p(x)

it follows from (26.7) and (26.14) that

IVi(g) —gll, = & + A(e) + B [|Vi(8) = &l cf—ug.ua)

2
+ B@) Y Vi) — £,

i=0

1
holds for every ¢ > 0 where By = max ——. By (iv), we write immediately
X€[—ug,up] p(x)
that

Tim ViOh) = fill g = 0 = 0.1,2. (26.15)

Since {fy, fi, fo} is T-system and g € C[—up,uo], we get from (26.15) and
Theorem 26.1

ZEII?— IVi(g) — g”C[—uO,uo] = 0.

By (26.5), we have that

1 l 1 I,
Vi =11l = ‘ Vi(—g + ) — —g+ 1>
U 2 my - omp |,
Iy
= (&) —sll, + — Vi) =12l -
my,

which completes the proof.

Now, we consider the case k > 1. Let {L;} be a sequence of positive linear

operators from C, ® into B, such that for every f € C, ®

sup || || ®_, ptl <0 (26.16)
te(OR)P()Z e s

holds. Then V, which is constructed before, is a positive linear operator from C, ®
into B, and is well defined by (26.16).
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Theorem 26.3. Let {Lj} be a sequence of linear operators from C;()k) (R) into B,(R)

satisfying (26.16), belong to the class M® (R) andfy, fi, > be in C(pk). Assume further
that the following conditions hold:

(a) o(k), 1(k)} and {f ® ) l(k), z(k)} are T-systems on R,

(k)

() lim %zaizo,l,

x—>*o0 1 4 ‘f; )(x)‘

(k)
. ) (x) o

© Mm = ~me#o
(@) lim )v,(ﬁ) —fi(k)H —0,i=0,1,2

t—R— o

Then, for all f € C’gk) (R), we have
; _fl =
Tim Vi) — 79, =0.

Proof. We say thatf, g € C‘E,k) (R) are equivalent provided that f® (x) = g® (x) for
all x € R. We denote the equivalent classes of f € C‘gk) (R) by [f]. This means that

[11=da™*d¥,

where d* denotes the k-th derivative operator and d % denotes the k-th inverse

derivative operator. Thus by [C‘Lk) (R)] we denote the equivalent weighted spaces
of C’g‘) (R). Then for f € C'f)k) (R), consider
Vi([f) = vid™*d'f) =: v (@),
where f = ¥ € C,(R), and V;* is an operator such that V;* = V,d*. Observe
that V' is a positive linear operator from C,(R) to B,(R). Indeed, if ¥ > 0, i.e.,
f (®) > 0, then since each V, belongs to the class M ® (R), it follows from (26.1) that
Vi([f]D) = 0, i.e., V*(¥) > 0. Now, for every x € R, defining
W(x) = (). i=0.1.2,

it follows from (a)—(d) that {Wy, ¥, } and {¥y, ¥, ¥,} are T-systems on R,

Yi(x) :
im ———— = 0foreachi=0,1,
x—>xoo 1 + |Wh(x)]
¥ (x)
= 0
Moy = PO

V) ~£0| = tim Vi@ - wf, =0 i=0.1.2.

lim )
=R~



26 Approximation to Derivatives of Functions 371

Hence all the conditions of Theorem 26.2 are satisfied for the functions ¥, ¥, ¥,
and the positive linear operator V;*. Therefore, we immediately get

lim |viw) -w|, =0
or equivalently
i _fB) =
tEII?— HVt(f) fk “p =0

which completes the proof.
Finally, we have the following result.

Theorem 26.4. Assume that conditions (a), (b), and (d) of the above theorem hold.
Let py be a weight function. If

px)
x_)linoo o) 0 (26.17)
and
®
2 @ _ mp, £ 0 (26.18)

x—)lgao pl(x)
then for all f € C,()k) (R), we have

tim v, () —f®, =o0.

Proof. Letf € C(R). Since

< my for every x € R, we get

IF® ()|
p(x)

FO@l Y@ L e

m .
x>Eoo p1(x) T xotoo p(x) pr(x) T 7 y>too p1(x)

Then by (26.17), we easily obtain that

(k)
im 0 g
x—>+o00 p1(X)

which yields
felP®) c CH®).

Also observe that, by (26.17), condition (d) is satisfied for the weight function p;.
Hence the proof follows from Theorem 26.3 and condition (26.18) at once.
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26.3 Concluding Remarks

1
Inthecaseof R =1,p (¢) = 5 and forj > 0, p; = 1 the power series method

coincides with Abel method which is a sequence-to-function transformation.
1

In the case of R = oo, p (t) = €' and forj > 0, p; = 5 the power series method
J!

coincides with Borel method.

We can therefore give all of the theorems of this chapter for Abel and Borel

methods.
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Chapter 27
Generalized Iterated Fractional Representation
Formulae and Inequalities

George A. Anastassiou

Abstract Here we derive very general iterated fractional representation formulae.
Based on these we obtain a fractional Ostrowski type inequality, fractional Poincaré
type inequalities, fractional Opial type inequalities, and fractional Hilbert—Pachpatte
inequalities. All these inequalities are very general.

27.1 Background

We need

Definition 27.1 (See Also [10, p. 99]). The left and right fractional integrals,
respectively, of a function f with respect to given function g are defined as follows:

Leta,b € R,a < b, > 0. Here g € AC ([a, b]) (absolutely continuous
functions) and is strictly increasing, f € Lo ([a, b]). We set

(I44) ) = ﬁ [cw-so ¢ 0rod xza @

where I is the gamma function, clearly <Ig‘ - gf) (@) =0,1° +of = and

b
1
(l_ef) ) = @ / (M —g@) g Of(Wdr, x<b, (27.2)

clearly (I;f_;gf) (b) =0, I,?_;gf := f. When g is the identity function id, we get
that Iy, = Igy, and Ij” ., = I, the ordinary left and right Riemann—Liouville
fractional integrals, where
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(1% f) (x) = ﬁ / (x—0*""f(ndt, x>a, (27.3)

(I:Lf) (a) = 0 and

b

(s ()— / -0 f(dt, x<b, (27.4)

(I_f) (b) = 0.
Definition 27.2 (See [7]). Let « > 0, [¢] = n, [-] the ceiling of the number.

Again here g € AC ([a, b]) and strictly increasing. We assume that (f o g‘l)(") og €

Lo ([a, b]). We define the left generalized g-fractional derivative of f of order « as
follows:

(Dy.of) (@) o= / (60— )¢ (1) (Fog™)™ (g (1) d,

(27.5)
x> a. lfa ¢ N, by Anastassiou [5], we have that Dy, . f € C ([a, b]). We see that

(1;;+ag ((f 0g) "o g)) ) = (D) @), x = a. (27.6)

We set
Dly.of (x) = ((f og )" o g) ), 27.7)
DY, . f(x) =f(x), Vxelab]. (27.8)

When g = id, then

DY, f = D%, .uf = D%f. (27.9)

the usual left Caputo fractional derivative.

Definition 27.3 (See [7]). Here we assume that (f o g_l)(n)o g € L ([a, b]), where
N>n=/Ja]l,a >0,g € AC ([a, b]) and strictly increasing. We define the right
generalized g-fractional derivative of f of order « as follows:

(D5_.f) () = / (60— g (0 (Fog™)" (s (1) dh,

(27.10)
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all x € [a,b]. If @ ¢ N, by Anastassiou [6], we get that (Dz_;gf) € C([a,b]). We
see that

ne ((_1)" (fog™)" o g) W) = (Df_f) (), a<x<b. 27.11)
We set
Dy f (6) = (=1)" ((fo g "o g) ), 27.12)
D) . f(x)=f(x), Yxelab].
When g = id, then
D of (%) = Df (¥) = D_f, (27.13)

the usual right Caputo fractional derivative.

Set g ([a, b]) = [c,d], where ¢,d € R, i.e. g(a) = ¢, g(b) = d.
Denote by

D). =Dy Dy .. ...Dy_., (ntimes),n € N. (27.14)
Also denote by
I,’,‘ﬁ;g : Ig‘_ I" .Il‘f_;g (n times). (27.15)

We proved the following g-right generalized modified Taylor’s formula:

Theorem 27.4 (See [7]). Suppose that Fy, := D’lj"j;gf,fork =0,1,...,n+1, fulfill:
Frog ' € AC ([c,d]) and (Fk o g_l)/ o g € Ly ([a, b]), where 0 < a < 1. Then

)= Z (gl(f))(za +();))) (Dy-ef) (b) (27.16)
+m f (80) =g " g/ (1) (DIL)F) (0 ar

(g(b) —g(x)*
Z I (i +1)

(D) ()
T+ Dat)

(Di.f) (b) (27.17)

(g (b) — g (x))" D,

where VY, € [x,b], any x € [a, b].
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Denote by
Dy =Dy Datip - Dy (ntimes), n € N. (27.18)
Also denote by

% =10 0 2, (ntimes). (27.19)

a

We proved the following g-left generalized modified Taylor’s formula:

Theorem 27.5 (See [7]). Suppose that Fy, := Dk“ gf fork =0,1,... ,n+1, fulfill:
Frog ! € AC ([c,d]) and (Fk o g_l)/ o g € Ly ([a, b]), where 0 < o < 1. Then

(8 () — g (a))"
f()—Z a1 Pid) @

(n+Da—1 1 (n+1Da
—_— —g(t H\D Hdr (27.20
+F((+1))/(g() g )" (0 (Dr) @ 27.20)
(g —g@)™ 4
= D%, . 27.21
Z r (lOé + 1) ( a+,£f) (a) ( )
n+1)a
(o) (g () — g (@)™
'n+Da+1) ’
where V. € [a,x], any x € [a, b].
We give the useful
Corollary 27.6. Here all as in Theorem 27.4. Additionally we assume that
(D f) () =0, i=0.1,....n (27.22)

Then
1 b
10 = e | €O -2 0 (D)) an @123)

V x € [a, D].

Corollary 27.7. Here all as in Theorem 27.5. Additionally we assume that

(D) @ =0, i=0,1,....n (27.24)
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Then
_ 1 i (n+Da—1 7 (n+1)a
10 = oy | €0 —s 0 0 (D) O @125)

Y x € [a, D].

27.2 Main Results

We make
Remark 27.8. All here as in Corollary 27.7. We observe that

I (R

g(x)
< /( ) (g (x) _Z)(n+l)oz—1 ’((D((;i;)af) Og—l) (Z)‘ dz
gla

R R e

That is, (g (x) — z)@TVe! ((Dgﬁ:;)af) o g_1> () is integrable over [g (a) , g (x)].

Since g (¢) is monotone we get that (see [9])

(8() =g " g () ((DUr) )

is integrable on [a, x]. Therefore by Jia [9], it holds that [see (27.25)]

g(x)
1
fx) = Tt Do) / (g (x) — gy et (DE":;:,)”f) (67" (@)dz. (2727
g(a)

In particular, we have

Goe) 0 = gy [ 0= (Pl e @ e

gla)
(27.28)

where y = g (x).
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By assuming (n + 1) @ — 1 > 0 (equivalently o > nlﬁ) and using Theorem 7.7,
p- 117 of [1], we obtain

(ng—l)’(y) _ (g(J(rnlj-a])a) 4 (y — ) e= 2(<fof;)“f> og—l) @) dz.

(27.29)
If (n+ 1)@ —2 > 0 (equivalently o > 1) we get

(n+DHa—-—1D)((n+1Da-—2)

(o] -1 " =
(Fog™) O I+ Da)

: / (y—z)thes ((DST;;)"‘f) o g_l) () dz. (27.30)

g(a)

In general, if (n + 1) @ —m > 0 (equivalently o > n%), we get that there exists

o ﬁl<(n+1)a—j)
(Fog™) BN CEY)

.
- f (=" (DI ) 0 g7 ) @z (27.3D)

gla)

V y € [g(a),g(b)]. By Anastassiou [1, p. 388], we get that (fog_l)(m)

C([g (a), g (b)])- By (27.3) we have that

€

(n+Da=pr(n+Ha—m)

l:ls

Fog )™ o= NCERY))
(e (o) o 57)) 0
= (1 (s og™)) 0. @132
That is

(ros™)™ 0 = (K (Pl o67')) 00 (2733
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Vyéelg(a),g (b)), and
(Fog™)™ @) = (1t (D) og™)) g @), (27.39)
Y x € [a, b]. By Anastassiou [4], now we derive that
(Fos™)™ (g = (15" (DiF) ) 0. (27.35)
YV x € [a, b].

Let y > 0 with [y] = m < n+ 1, such that m < (n+ 1) o (equivalently,
a > ). We have that (case of y < m)

(Prr) 9 2 (2 (o) 8)) 0

(21.35) ( m—y y(n+Da—m {
2 (et (0eker)) @ (27.36)

(by the semigroup property of operators I, . o

+Da— +1
= (1 (DUr) ) 0.

e > 0,see[7])

We have proved that
(Plf) @ = (L (D27r)) @ (27.37)

V x € [a, b], which is continuous by Anastassiou [5].
We have established the following representation formula:
Theorem 27.9. All as in Corollary 27.7. Let y > 0 with [y] = m < n + 1, such

thatm < (n+ Da (ie. 1 = a > 25). Then

1
(Phisd) 00 = (11 Da—7)

: / (g () —g ()" ™7 g () (Dﬁ,'f;;)“f) (t)dt, (27.38)

V x € [a,b], and (DZ+;gf) e C ([, b)).

Similarly, we obtain the next representation formulae:
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Theorem 27.10. All as in Corollary 27.7. Let y > 0 with [y] = m, such that

vtm o < 1. Then
n+1

1
I'(n+1Da—2y)

(Di)-/i-, ) (x) =
: / (g () —g ()" (1) (Df,’f;;)“f) (6 dt, (27.39)

Y x € [a, D], and (Dii; ) € C([a, b)]).

Theorem 27.11. All as in Corollary 27.7. Let y > 0 with [y] = m, such that

2y~ o < 1. Then
n+1

\ B 1
(Dﬂi; )(x) T T(n+ Da—3y)

: / (8(x) = g )" g (1) (DY) (e, (27.40)

Y x € [a, b], and (Diﬂ_; ) € C([a, b)).

Theorem 27.12. All here as in Corollary 27.7. Let y > 0 with [y] = m, such that

w<a§1,k€N~Then
n+1

; B 1
<D“y+; >(x) T T((n+ Da—ky)

: / () —g @)™ (1) (D;'f;ﬁ;)“f) () dt, (27.41)

k
V x € [a,b], and (Dj+; ) e C([a, b)).
We make
Remark 27.13. All here as in Corollary 27.6. We observe that

g(b)

/ (=g @) (D)) 0 7") () dz
e
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()
< g/ =g (D) o) @[dz @742)
8x)

= H (D(11+1)af) og™! Hoo (g (b) — g (x) """ .

b= n+ 1o

That is, (z — g (x))" P! ((Dg:;)af) o g_1> (z) is integrable over [g (x), g (D)].

Since g (¢) is monotone we get that (see [9])

(80 =g ()" g (0 (D)) )

is integrable on [x, b]. Therefore by Jia [9], it holds that [see (27.23)]

4(t)
10 = e | G e (D) 06! @
gm (27.43)
In particular, we have
4(t)
(fog™) )= m / (z—y)rthe! ((Dﬁ,’ifg““f) o g") (2) dz,
’ (27.44)

where y = g (x).
By assuming (n + 1) &« — 1 > 0 (equivalently o > njr—l) and using [3], we obtain

vy D+ Da—1)
(Fog™) )= I+ Da)

8(0)
/ =32 ((Dfr) og™ ) @z (2745)

y

If (n+ 1)a —2 > 0 (equivalently o > ﬁ), we get

_ D@+ Da-D((n+Da—2)

—1 "
(Fog™) I'((n+ Da)

g(®)

: / =" (D)) og7) @de 27.46)
y
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In general, if (n + 1) @ —m > 0 (equivalently o > -25), we get that there exists

<—1)Mﬁ((n+ Da—J)
L

'n+ 1w
g(b)
/ (z — )t et ((D},”_f;)“f) o g_1> (Q)dz, (27.47)

(Fog™)" )=

Vyelg(a),g ()]

By Anastassiou [2], we get that (f o g_l)(m)

€ C([g(a).g(D)]). By (27.4) we

have that
. (—l)mjlj ((n+ D — )
(Fos™) ™ 0= r'(n+ Da)
T (ot Do —m) (B2 ((D)2r) 0 87') ) )
— (=" (1{‘{@9“*’" ((D,(,”_fg““f) o g_l)) ). (27.48)
We have proved that
(Fos™)™ 0= 0" (1 (D) eg™)) 0. @7.49)

Vyel[g(a),g(D)],and

(Fog™)™ @) = " (1 () o67')) (). (27.50)

Y x € [a,b].
By Anastassiou [4], now we derive that
_1\(m) m _
(Fos™)™ () = (=" (™ (D)r) ) (0. 27.51)
V x € [a, b].

Let y > O with [y] = m < n+ 1, such that m < (n+ 1)@ (equivalently,
o > -25). We have that (case of y < m)

(Dzzf;gf ) () =" (12"5;§ ((—1)'” (Fog™)™ o g)) ®  (27.52)
@151 (I;n__;g <(_1)2m I[(Jn_—l;-;)a—m (DZH_-I;-gl)a f))) )
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(by semigroup property of operators ;. g € >0, see [7])

= (B (o)) @ @53
We have proved that
(DZ_; gf) () = (Ilﬂ'if;)“‘y (Dg’if;)“f)) (), (27.54)

V x € [a, b], which is continuous by Anastassiou [6].
We have established the following representation formula:
Theorem 27.14. All as in Corollary 27.6. Let y > O with [y] = m < n + 1, such

thatm < (n+ Da (ie. 1 > a > 25). Then

1
(P @ = Famma=y

b
: / (g (1) — g ()" > g (1) (Dg’_f;)“f) (t)dt, (27.55)

V x € [a,b], and (DZ_;gf) e C ([a. b)).
We have the next very general representation formulae:

Theorem 27.15. All here as in Corollary 27.6. Let y > 0 with [y] = m, such that
W<a§l,keN.Then

2 _ 1
(Dby—séf) O = T Da—ky)

b
: / (g (1) — g (x)" =1 g/ (1) (D,g'zt;>af) () dr, (27.56)

V x € [a,b], and (DZ’L;gf) e C ([a, b]).
Proof. Similar to Theorem 27.14.
Next, we give a related fractional Ostrowski type inequality:

Theorem 27.16. Let g € AC ([a, b]) and strictly increasing, and 0 < o < 1, xy €
[a. b] be fixed. Assume that F," := Df ;gf,fork =0,1,....n+1, fulfill: F;° og7l e

X0—

AC (g (@) . (0)]). and (F 0g7") 0 g € Loo ([a.xo]), and (DE_f) (x0) = O,

i=1,...,n
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Similarly, we assume that G;* = Dk"‘+ gf fork=0,1,....n+ 1, fulfill: G°

g~ € AC([g (x0) . g (B)]), and (G 0 g™') 0g € Lo ([x0. b)), and (D’“+ gf) (x0) =
0,i=1,...,n
Then

b
s [ rwa-re

1
= b—a) ' (n+DHa+1)

-{@ao—g@wwﬁ“%b—mw

(n+1)a
DX0+;8 !

00, [x0.5]

+ (g (x0) — g (@) "™ (xo —

ther (27.57)

oo,[a.xo]} '

Proof. By (27.16), we obtain
£ &) —f (x0)

m/(g (1) —g(x))(n-‘rl)a e (1) (D(n-'rl)af) (1) d. (27.58)

Y x € [a, xo]. Hence it holds

If (x) —f (x0)]
- - (n+Da—1 s (n l)a
Fw+nm/@” £@) " (D51 0] d
[pGtr (r+ 1)

107 00,[a,xo] (g (XO) — 8 ()C))
= I'n+ Do) n+ 1o (27.59)
We have proved that
(2 (0) =) " 1 i
00 —f 00l = e PSR (27.60)

Y x € [a, xp]. Also, by (27.20), we obtain
£ &) —f (x0)

= rorm [ €= 0 (i) o (27.61)
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V x € [xo, b]. Hence

) —f ) < E0) =8 G |pute

F'(n+Da+1) x0+3g (27.62)

00, [xo.5]

Y x € [xo, b]. Next we see that

1 b
[ rwa-roo

b

< / (F () —f (x0)) dx
1 b

<o [ro-rela

X0 b
f F (0 — f (x0)] d + f £ —f(o)ldeb.  (27.63)

which gives

X0
1
< _ (n+1)ozd ‘D(n
= oo | [ —se | [pgte]
b
_ (n+1)a d ‘D(VH-I)O! 27.64
[ 6o =g eonas | o] @764
0
1
(n+1Da
< X a X
—(b—a)F((n+1)a+l){(g(0) g (@) (xo — foo‘[a,xo]
F (2 0) g ()" b~ xo) [ DT } , (27.65)
00,[x0.b]
proving the claim.
It follows a left fractional Poincaré type inequality:
Theorem 27.17. Here all as in Theorem 27.12. Let p,q > 1 : 117 + Ll; 1. We
further assume that (k € N)
k—1 k 1
lza>max(m+( )y kyat ) (27.66)
n+1 (n+1)gq
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386
Then
e |
H a+;gf lab]
b) — ((n+l)0(—ky—|)+l b 1
< (g (b) —g(a) v (b—a) | .
F'(n+Da—ky)(p((n+Da—ky —1)+ 1)»
” pl+De ) IH |
o q.18(a).g(b)]

Proof. We use (27.41). We observe that [12]

‘(Dﬁ; )(x)‘ STt ll)oc “ky)

[ @ —g @t | (i) o] @res)

(same reasoning as in Remark 27.8)

g(x)
1
— . (n+l)ot—ky—l‘ D(n+l)a —1 ‘
I'((n+1)a—ky) €@ -2 (“+8 )(g @)
gla)
| g(x) i
< _ p((n+1Da—ky—1) d 27.69
= Tt Da—ky) (g(x) —2) 2 (27.69)
(@)
1
g(b)
n o — q
| [ ) 6 o)
(@)

p((nt+Da—ky—1)+1

(g(x) — g (a))
I+ Da—ky)(p((n+1)a—ky—1)+1)7

() e
atig lg(a).g(b)]

Thus we have

— (p((r+Da—ky=D+D
(B) o = B0 -8 @) |
I+ 1a—kp) (p((n+ Da—ky —1) + 1)s

(n+1a —1
D ) H . 27.70
” atig q.[g(a).g()] ( )
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Therefore it holds
b _ (p((r+Da—ky=D+D2
/ ‘ . ) (x)‘qu - (g(x) —g(a) ’ (b—a) :
’ F'(n+Da—ky)!(p((n+)a—ky—1)+1)»

(n+1)a —1]?
D ) H , 27.71
H ( atig a.ls(@).g(®)] ( )

proving the claim.

It follows a right fractional Poincaré type inequality:

Theorem 27.18. Here all as in Theorem 27.15. Let p,qg > 1 : 117 + é 1. We
further assume that (k € N)
k—1 k 1
120{>max(m+( )y kya+ ) (27.72)
n+1 n+1gq
Then
- Dor—iy— 1+ L 1
|pt.] (g (B) =g @) "™ (b —a)s
4ol = T ((nt D — k) (o (0 + D —ky — 1) + 17
H (Dff) o g™ . (27.73)
4.[8(a).g(b)]

Proof. As similar to Theorem 27.17 is omitted.
Next comes a left fractional Opial type inequality:

Theorem 27.19. All here as in Theorem 27.12. Letp,q > 1 : %—i—é = 1. We further
assume that (k € N)

1 > a > max (m +n(’:11) Y (];”j’:)lq) (27.74)
Then
y
J () o) oo [((pE22r) 0 57t) o0
gla)

(_)7 —g (a))((n—i-l)oz—ky—l)-i—%7
20 M (1) o —ky) [(p ((n+- Do —ky — 1) +1) (p (i) & —ky — 1) +2)]7

q

/ (Pl 2r) o g™ ) o[ aw | (2775)
(a)

Vyelg(a,g®)]
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Proof. We use (27.41). We observe that

‘(Dii; )(x)‘ = I ((n+ ll)a—ky)

[ @ —g @t | (olr) o] @176)

(same reasoning as in Remark 27.8)

gx)
1

T T+ Da—ky) / (g ="t (DIEVY) (67! () d

gla)

1

. 2 ?
_ p((+Da—ky—1) d
Forve i | ] €09 :
(a)

1

g(x) q
( / (PUr) (& (Z))) ) 27.77)

(a)

p((n+l)ot—ky—1)+]

1 (g (x) — g (a)
F((n+Da=ky) (p((n+1)a—ky—1)+1)7

1

g(x) q
( / ‘ Dgf ;)" '(z)))qdz) . (27.78)

(a)
That is,

p((1+Da—ky—1)+1
P

)(Dﬁi; )(x)‘ < (g (x) — g (a) ]
Fr(n+Da—ky)(p((n+D)a—ky—1)+1)»

1

g(x) q
q
/ ‘ (DIEr) (¢! (z))‘ d | . (27.79)

(a)

Y x € [a,b]. Call y = g (x), then

x=g"(). (27.80)
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Hence it holds

(n+1a— ky D+1

‘(D]c?—/i-; )(—l(y))‘ (- g(a))
'(n+1)a— k)/)(p((n+1)oz—ky—l)+1)P

1

'(/KDET?U )(g_l (Z))‘ ) ; (27.81)

(a)

Vyelg(a),g ). Call

Q) = / ( Df{f ;“ g™ (z))‘ (27.82)
gla)
and
n(g(a)) =0.
Thus
() = ‘(Df{f ;)“f) (7! (y))‘q >0, (27.83)
and
(' 0)7 = ‘( a'f?“f) (g (y))) > 0, (27.84)
Vye[g(a),g(b)]. Consequently, we get
(D) (™ o) |(DL0F ) (57" )| (27.85)
( ( ))w
< ros (1o o ()7

r(n+Da—-ky)(p((n+Da—ky—1)+ 1)v
V w e [g(a),g(b)]. Then it holds

[y (D) (a7 )| (L) (57" O0)| e

g(a)

1
< (27.86)

I+ Da—ky)(p(n+1)a—ky —1)+1)»
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p((1+Da— kV D+l 1
/ (w— g (@) (n o) 7/ () dw

g(a)
1
< . (27.87)
'(m+Da—ky)(p((n+1Da—ky—1)+ 1)»
y p y q
[ w=g@reseay || [y man |
(a) (a)

which gives

p((n+Da—ky—1)42

_ 0 —g(@)
F(n+D)a—ky)[(p(r+Da—ky -1+ (p((n+)a—ky —1) +2)]%
(@)q (27.88)

—g (a))((n-l‘l)a—k)’—l)-i-%
251“ (m+D)a—ky)[(p(+D)a—ky—D+D)@p((n+D)a—ky—1) +2)]£

2

q

q
[‘ (Dlr) o g™ ) )| aw | (27.89)
(a)

Vye[g(a),g(b)],proving the claim.

Also we give a right fractional Opial type inequality:

Theorem 27.20. All here as in Theorem 27.15. Letp,q > 1 : % +1 = 1. We further

q
assume that (k € N)

(27.90)

k—1 k 1
12a>max(m+( )y kra+ )

n+1 "(n+1g

Then

/g(b) ‘((D,;};gf) o g_l) (W)‘ ‘((Dén_-i;-;)af) o g_l) (W)‘ dw
Y

_ (@ De—ky—1)+2
< - (gb)—y) P . (27.91)
24 I ((n+Da—kp) [(p((n+Da—ky—=1)+ D (p((n+Da—ky—1)+2)]?
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([ 1k

Vyelg(a),g®)]

Proof. Tt is omitted as similar to Theorem 27.19.

QD

Next we present a left fractional Hilbert—Pachpatte type inequality:

Theorem 27.21. Here i = 1,2. Let a;,b; € R, a; < b, 0 < «; < 1, and
g € C(la;, b;]) that are strictly increasing, f; : [a;,b] — R. Suppose that

Fi o= DE%. fi fork = 0.1,....m + L, fulfill (Fg 0 g7") € AC ([gi (a) . 8 (b))
and (F o g7") 0 g € Leo ([ai, bi]), and (Uaﬁ gﬁ) (@) =0,ji=0,1,....n. Let
yi > 0with [y;| =m, ki€ N, p,g>1: 1_7 + ;] = 1. We further assume

k—1)y k 1
1> @y > max (m‘ +ki-Dn kng+ ) (27.92)
n +1 (m+1g
and
kh—1)y, k |
1> o, > max (’"2 +tk—Dy kyp+ ) (27.93)
ny+1 (ny+1p
Then

g1(b1) g2(b2) " .
|( 0111 “f1)(g1_1(yl))H( a?:iz- szfz)(g;lb?))‘ dvid

|:(y1_gl(al))P(("l“‘l)“l_klV1_1)+1 (O [72({,2))4(("2+1)a2—k272—1)+1:| Y142
g1(a1) g2(az) p(p((ny +1)ag —kyy;—1)+1) q(q((m+1D)az—kpyp—1)+1)

(g1 (b1) — g1 (a1)) (g2 (b2) — g2 (a2))
T I ((m+Day—kiy) I' ((n2 + 1) az — kaya)

1

g1(b1)

/ (D) (e @)

1(a1)

82(b2) p

/ ‘( eren) (sy (Zz))‘ do | . (27.94)
\e2la)

Proof. As in the proof of Theorem 27.19, we obtain

(Db i) (e o)
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p((n1+1)d1 kyyr—1)+1

- 01— g1 (a1))
T D+ D — k) (p ((m + 1)05l —kyi— 1)+ )p

1

f ‘DETTQ“' (m))) dzi | . (27.95)
1(ar)

V vy € [g1 (a1), g1 (b1)]. Also we obtain

ky -1
(D30t2) (5 0)]
q((n+1)ay—kayp—1)+1

- (02 — &2 (@) a
T M (A Das—key) (@ (1 + D —kays — 1) + 1)

1

P

n P
[ ‘Dizf;“ 821(22))‘ o | (27.96)

2(az)

Yy, € [g2 (a2) , g2 (by)]. Multiplying (27.95) and (27.96), we get

(D7) (7 00)][(PE22) (65" 09)]
1
= T (n + Dot — k) T (12 + Dtz — ko)

()’1 — g (al))p((m+1)a1—k1y1—1)+1 ]1)
@((m+Dar—kiy1—1)+1)

()72 - (az))q((n2+1)a2—k2)'2—1)+1 é
(g((m+Day—ky,—1)+1)

Y1
| [ (oten) 6 @) a
\e1(01)
2

plmthe —1 p
' / ‘( ot 12 )(gz (Zz))‘ dz (27.97)
Qz(az)

(using Young’s inequality for a,b > 0, anq =5 4 ”)
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1
<
T I ((m+ Do —ky) I (o + 1)z —kys)

[( (1 = g1 )y ek )
pp((m+ Doy —kiy1— D+ 1)
( (2 — g3 (ay)) (2 Dar—kap2=D+1 :|
q(q((na+ Day—kyy, — 1) + 1)

Y1
([ [eesen) 5 ) dzl)
1lay

y2
( / ( ke ) (5" (Zz) dzZ (27.98)
g2(a2)
So far we have
Dt D _
(i) (1" 00)||(PE7,2) (837 0)
O1—g1 (@)1 Da —kiy =)+ (y2—g2(an))?((mFDe2—kaya—1)+1
2o +va k00 ) T\ T @+ be T
< 1
T I(m+Dar—ky) I (n+1) o —kayn)
1
n q
/ (oleos) (67" )| e
1(01)
y2 ?
n _ 14
’ [ ‘( ke ) (g5 (Zz))) do | . (27.99)
\gz(tlz)

The denominator in (27.99) can be zero only when y; = g; (a;) and y, = g3 (a).
Therefore we obtain

(b1) g2(b2)
e |( zkzl]yi glfl)(gl 01))” Zig ngz)(gz_l(yz))‘dwdyz

(1 =21 (ay)y? (1 FDa1—k1y1—D+1 (9= (ag)) (22 —kaya—1)+1
g1(a1) g2(a2) p(p((n +1)ap—kyyi—1)-+1) a(q((m+Daz—kyya—1)+1)
1
=
I'((m+ Dar—kiy) I (2 + 1) ar — kay)

81(01) i , '
' / (/ )(Dt(nl-:_&l’?al ) (gl_1 (Zl))| dZ1) dy;
g1(ay) gl(al)

(27.100)
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82(b2) 2 e ., %
( / ( / ( e f)(g;1 (zz))( dzZ) dyz)
g2(a2) 2(a2)

which gives

1
<
T+ Day—kiy) I (o + 1) oz — kays)

g1(b1) g1(b1) g q
/ (/ ‘( arllf;falf) (s (Zl))‘ le) dy,
gi(ar) giar)
/gz(bz) /gz(bz)
g2(a2) g2(a2)
_ (g1 (b1) — g1 (a1)) (g2 (b2) — g2 (a@2))
F ((l’l] —+ 1)061 — k] }/1) F ((}12 + 1)0[2 —_ kz]/z)

g1(b1) q
( [ ki) i eo) dm)
gi(a
/‘gz(bz)
g2(a2)

The theorem is proved.

1
p r
(Do) (6" @) de> dy: | @7.101)

<=

1
P

( AN )(gz’1 (22)) ’dez) : (27.102)

Finally we present a right fractional Hilbert—Pachpatte type inequality:

Theorem 27.22. Herei = 1,2. Let a;,b; € R, a; < b, 0 < o; < 1, and g; €
C ([ai, bi]) that are strictly increasing, f; : |a;, bi] — R. Suppose that Fr; 1= le(’oﬁ; o
forki =0,1,....n;+ 1, fulfill (Ff; 0 g7 ) € AC ([gi (@) , g (b)]) and (Fk[ o g 1)/o
gi € Lo ([ai, bi]), and ( b’“_’grf> (b)) = 0,j; = 0,1,...,n;. Let y; > 0 with
[vil=m, kieN, p,g>1: 1; + 5 = 1. We further assume

ki— 1)y k 1
1> a >max(m1+(l In king+ ) (27.103)
n +1 (ni+1)gq
and
k— 1)y, k |
1> & > max (m2+( 2= Dy koyop + ) (27.104)
ny + 1 (I’l2+1)p
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Then

g1(b1) g2(b2) . .
(D371 (7 00)[| (D272, 002) (657 02))|
|: (1 () =" T FDA RN DL () (5) =) (2 H D2 —har2 1) +1
g1(a1) g2(az) p(p((n1+1Da—kyy1—1)+1) a(a((m+1)aa—kpya—1)+1)

- (81 (b1) — g1 (a1)) (82 (b2) — g2 (a2))
- F ((I’l] + 1)0[1 —klj/]) F ((I’l2 + 1)0l2 —kz)/z)

g1(b1) q
/ (Dhtan) (67 @)z

gi(ar)
fgz(bz)
g2(az)

Proof. Tt is similar to Theorem 27.21, thus it is omitted.

}d)’ldyz

Q=

=

(Dher) (s (Zz)))dez) . (27.105)

Remark 27.23. Some examples for g follow:

gx)=¢", xela,b] CR,
g (x) = sinx,
g (x) = tanux,

where x € [—% + &, % —8],8 > (0 small.

Indeed, the above examples of g are strictly increasing and absolutely continuous
functions.

One can apply all of our results here for the above specific choices of g.
We choose to omit this lengthy job.
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