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ABSTRACT
Background/study context: Empirical lifespan data sets are often
studied with the best-fitted mathematical model for aging. Here, we
studied how experimental noises can influence the determination of the
best-fitted aging model. We investigated the influence of Gaussian
white noise in lifespan data sets on the fitting outcomes of two-
parameter Gompertz andWeibull mortality models, commonly adopted
in aging research.
Methods: To un-equivocally demonstrate the effect of Gaussian white
noises, we simulated lifespans based on Gompertz and Weibull models
with added white noises. To gauge the influence of white noise onmodel
fitting, we defined a single index, δLL, for the difference between the
maximal log-likelihoods of the Weibull and Gompertz model fittings. We
then applied the δLL approach using experimental replicative lifespan data
sets for the laboratory BY4741 and BY4742 wildtype reference strains.
Results: We systematically evaluated how Gaussian white noise can
influence the maximal likelihood-based comparison of the Gompertz
and Weibull models. Our comparative study showed that the Weibull
model is generally more tolerant to Gaussian white noise than the
Gompertz model. The effect of noise on model fitting is also sensitive
to model parameters.
Conclusion: Our study shows thatGaussianwhite noise can influence the
fitting of an aging model for yeast replicative lifespans. Given that yeast
replicative lifespans are hard to measure and are often pooled from
different experiments, our study highlights that interpretingmodel fitting
results should take experimental procedure variation into account, and
the best fitting model may not necessarily offer more biological insights.
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Background

Aging is defined as an increase in failure (mortality) rate over time. The budding yeast
S. cerevisiae has been considered the prototypic eukaryotic model for cellular aging
studies, as they are ideal to uncover many of the fundamental mechanism of eukaryotic
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lifespan regulation (Breitenbach, Jazwinski, & Laun, 2011; Gershon & Gershon, 2000;
Longo, Shadel, Kaeberlein, & Kennedy, 2012; Sinclair, Mills, & Guarente, 1998). Budding
yeast has proven to be an important organism for identifying conserved factors that
influence lifespan (Kaeberlein, 2010; Longo et al., 2012; Powers, Kaeberlein, Caldwell,
Kennedy, & Fields, 2006; Yiu et al., 2008).

There are two approaches for measuring lifespan in budding yeast. One is chronolo-
gical lifespan (CLS), which refers to the length of time that a mother yeast cell can stay
alive without dividing. Another is the replicative lifespan (RLS) of a cell, defined as the
number of generations a cell divides before death, which is a model for dividing cells. RLS
measurements based on individual cells are often subject to maximal likelihood analysis,
which is the focus of our study here.

The Gompertz and Weibull mortality models assume that the mortality rate increases
in different modes during aging. The mortality rate in biological aging typically increases
exponentially – this is known as the Gompertz model of aging (Boxenbaum, 1991;
Kennedy, Austriaco, & Guarente, 1994; Qin & Lu, 2006; Vaupel, 1986). In contrast, the
Weibull model assumes the mortality rate increase with a power function.

Previous studies have shown that the RLS of budding yeast follows the Gompertz
model of aging (Qin & Lu, 2006; Steffen, Kennedy, & Kaeberlein, 2009). The probability
density function (PDF) of the Gompertz model is defined as,

fR;G tð Þ ¼ ReGtexp
R
G

1� eGt
� �� �

where R is the rate parameter and G is the shape parameter.

Mortality rate, or failure rate, in machine aging typically follows a power law, or the
Weibull model of aging (Klein & Moeschberger, 2005; Wilson, 1993, 1994). The Weibull
model with a given PDF is defined as,

fθ;γ tð Þ ¼ γθγ tγ�1 exp �θtð Þγ

where θ is the scale and γ is the shape parameter.

The mortality model that best fits empirical observation is often considered to represent
the implicit causes of increasing mortality rate over time, and hence is usually preferred by
gerontologists (Juckett & Rosenberg, 1993; Ricklefs & Scheuerlein, 2002; Wilson, 1994). In
addition, the Gompertz and Weibull models are important to understanding the emergent
property of aging during early life (Qin, 2013). Although the Gompertz and Weibull
models are commonly used to interpret experimental results in aging research (Juckett &
Rosenberg, 1993; Ricklefs & Scheuerlein, 2002; Wilson, 1994), it is still unclear how
experimental variations may influence how we determine the best fitting model, and in
turn, influence our interpretation of the biological mechanism of aging (Lithgow, Driscoll,
& Phillips, 2017). To address this gap of knowledge, we used yeast replicative lifespan data
with added Gaussian white noise to simulate the effect of experimental variation on model
fitting. We performed maximum likelihood estimations on both aging models and com-
pared the differences between their maximum log-likelihood. Finally, we designed
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a systematical study in the parameter space to assess the uncertainty in empirical data
(Briggs et al., 2012; Kreutz, Raue, Kaschek, & Timmer, 2013).

To illustrate the basic principles of model fitting, we simulated random lifespans based
on Gompertz and Weibull probability distributions using the inverse transform method
(Fishman & Concepts, 1996; Jodrá, 2009; Luc, 1986; Schmeiser & Devroye, 1988). Because
an analytical approach to compare maximum likelihood fitting was not available, we
adopted a numerical approach. We developed a simple measurement δLL based on the log-
likelihood difference between the Weibull and Gompertz models. Overall, our study
suggests that experimental variations should be considered when distinguishing between
models of aging, i.e. the best fitting model may not necessarily offer more biological
insights.

Materials and Methods

Sample Preparation and Simulation

Our overall workflow is shown in Figure 1. To identify the effect of additive Gaussian
noises N 0; σ2ð Þ with a known variance σ2 on lifespan data, we compared lifespan samples
drawn from the Gompertz and Weibull probability distributions. We used the maximum
likelihood technique for the parameter estimations of both models.

An analytical approach of the estimation of parameters requires an explicit formula for
the maximum likelihood investigation (El-Gohary, Alshamrani, & Al-Otaibi, 2013; Garg,
Rao, & Redmond, 1970; Pletcher, 1999; Scholz, 2006). Usually, such formulas are not
available because the equations of log-likelihood functions do not reveal a unique solution
and, in general, cannot be solved analytically (Lenart, 2012; Odell, Anderson, &
D’Agostino, 1992; Rockette, Antle, & Klimko, 1974). The numerical technique of max-
imum likelihood can be used to estimate parameters, predictions, or validation of numer-
ical parameter values which are in one-dimensional space. In this study, we assigned
specific numeric values to each unknown parameter based on the empirical parameters of
simulations. A list of key variables is summarized in Table 1.

We generated Gompertz and Weibull random numbers as simulated lifespans using the
inverse transform method (Fishman & Concepts, 1996; Jodrá, 2009), which can be found
through the cumulative distribution function of the Gompertz distribution,

FR;G tð Þ ¼ 1� exp
R
G

1� eGt
� �� �

Figure 1. Overview of the computational research.
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where R is the rate parameter and G is the shape parameter. We then simulated the
Gompertz random lifespan, the Gompertz signals, using the inverse cumulative distribu-
tion function as follows:.

½FR;G tð Þ��1 ¼ log 1� G
R log 1� Uð Þ� �� �
G

Here, U represents uniformly distributed random numbers that take values in the (0,1)
interval using the runif() function of R stats package (R Development Core Team, 2015).
We took a fixed number representing the population size of unique lifespan data through-
out our simulations. The cumulative distribution of the Weibull distribution is,

Fθ;γ tð Þ ¼ 1� exp �θtð Þγ

where θ is the scale and γ is the shape parameter. We can simulate the Weibull lifespan, or
Weibull signals, using the inverse cumulative distribution function as follows:.

½Fθ;γ tð Þ��1 ¼ θ �log 1� Uð Þð Þ�γ

First, we asked how sensitive Gompertz signals are to Gaussian noises. In other words,
if simulated biological lifespans are drawn from Gompertz distributions with additive
white noise, how often does the Gompertz model give the best maximum likelihood
estimate (MLE) compared to the Weibull model? We simulated the R, G parameters
and Gaussian noise scale η for situations that may arise in actual empirical data. We then
validated the equivalency of the simulated lifespan and experimental data sets based on
their means and standard deviations.

The lifespan tG defined by Gompertz signals with added white noise is given by

tG ¼ Gompertz signalsþ N 0; sd Gompertz signalsð Þð Þη; (1)

where η represents noise scale to simplify notations in the numerical simulations. Here, the
Gaussian noise term is explicitly defined asGaussian noisetG ¼ N 0; sd Gompertz signalsð Þð Þη.
The Gompertz signals were random numbers drawn from Gompertz distributions. We took

Table 1. Summary of key symbols and variables.
t Time measured in days

f f(t) probability density function (PDF) of time (t)
F−1 [F(t)]−1 the inverse probability distributions function of time (t)
R Gompertz model rate parameter
G Gompertz model shape parameter
θ Weibull model scale parameter
γ Weibull model shape parameter
η noise scale
N Population size of mother yeast cells in RLS
tG Gompertz generated lifespan of a yeast population
tW Weibull generated lifespan of a yeast population
L L(R, G|ti) likelihood function of Gompertz PDF

L(θ, γ|ti) likelihood function of Weibull PDF
LL LL(R, G|ti) log-likelihood function of Gompertz PDF

LL(θ, γ|ti) log-likelihood function of Weibull PDF
δ δLLG difference of log-likelihood values of Weibull and Gompertz models of tG

δLLW difference of log-likelihood values of Weibull and Gompertz models of tW
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a total of 2000 random numbers from the inverse of the cumulative distribution functions of
each model. Lifespans were generated by varying G between the [0.05,0.25] range, R between
[0.001,0.04] and noise scale (i.e. η) between [0,3]. We then fit each lifespan data set with both
models. Parameter estimations were done using the maximum likelihood estimation method,
and the MLEs of Gompertz andWeibull models were compared by calculating the difference
of their maximum likelihoods (detailed below).

Secondly, we examined how sensitive the Weibull model is to Gaussian white noises.
Akin to the aforementioned Gompertz model study, we simulated the Weibull random
lifespan with added white noise. We simulated the γ, θ parameters, and noise scale η and
estimated the model parameters. The simulated lifespan tW composed of Weibull signals
and white noise is given by

tW ¼ Weibull signalsþ N 0; sd Weibull signalsð Þð Þη (2)

where η is used as a noise scale, the Weibull signals are random numbers drawn from the
Weibull distribution, and the Gaussian noise term is defined as N 0; sd Weibullsignalsð Þð Þη.
We let γ vary between [1,30], θ between [25, 30] and noise scale η between [0,3]. We
compared MLEs of Gompertz and Weibull model fitting results.

Thirdly, for comparison, we asked how sensitive the Gaussian distribution is to white
noise. These Gaussian lifespans were generated using the same population size for a mean
varying between [5, 50] and for the noise (i.e. standard deviation) ranging between [1, 5].
We again fit each lifespan data set with both Gompertz and Weibull models, and
compared their maximum likelihoods.

Finally, we used lifespan measurements of wild type yeast laboratory strains as empiri-
cal data sets to demonstrate the implications of our simulation studies.

Definition of the Delta Log-Likelihood (δLL)

Once we fit the simulated lifespan data with the Gompertz and Weibull aging models, we
calculated the difference between the maximum log-likelihood of these two models. The
log-likelihood function of the Gompertz for the given PDF is as follows:.

log L R;Gjtið Þð Þ ¼ LL R;Gjtið Þ ¼
XN

i¼1
log fR;G tið Þ� �

LL R;Gjtið Þ ¼
XN

i¼1
½log Rð Þ þ G ti þ log

R
G
þ 1� eG ti
� �� 	

�

We obtained the log-likelihood function of the Weibull distribution as.

log L θ; γjtið Þð Þ ¼ LL θ; γjtið Þ ¼
XN

i¼1
log fθ;γ tið Þ� �

LL θ; γjtið Þ ¼
XN

i¼1
½log γθγð Þ þ γ� 1ð Þ logðtiÞ � θ tið Þγ�

We used an optimization procedure in R to obtain the MLEs of R and G (or θ and γ).
There are other approaches to evaluate model fittings such as AIC (Akaike Information

Criterion) and likelihood ratio tests. Our approach is principally similar to AIC. In fact,
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a difference of AIC ¼ 2 � δLL. However, for our purposes, δLL is a direct measurement.
The likelihood ratio test is not used as it requires nested models and here Gompertz and
Weibull aging models are non-nested.

For Gompertz simulated lifespan tG, we define δLLG, the difference of maximum like-
lihood of the two model fittings, as

δLLG ¼ max LL W; tGð Þg �maxfLL G; tGð Þf g;

where tG is a randomly generated lifespan using the Gompertz distribution with added
Gaussian noise as defined in Equation (1).

Analogously, for Weibull simulated lifespan tW, the difference of maximum likelihood
between model fittings is,

δLLW ¼ max LL W; tWð Þf g �max LL G; tWð Þf g

where tW is randomly a generated lifespan using the Weibull distribution with added
Gaussian noise as defined in Equation (2)

Data and Analysis Codes

Simulation, fitting and analysis were conducted in the R statistical environment. Sample
codes of simulated data and analysis of empirical data can be found at https://github.com/
emineguven/modelComparison2018. Maximum likelihood estimations were performed
using the flexsurvreg() functions in the flexsurv package (Jackson, 2016). The parameter
search spaces for generating Gompertz random lifespan data were shape parameter, G =
[0.05, 0.08, 0.1, 0.12, 0.15, 0.17, 0.2, 0.25], rate parameter, R = [0.001, 0.002, 0.003, 0.005,
0.01, 0.02, 0.03, 0.04], and noise scale, η = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2, 3]. As
a result, we had |G|x|R|x|η| = 704 simulations in total with the Gompertz random lifespans
data set. In the second set of simulations, we generated Weibull random lifespan data
using the following parameter search spaces: shape parameter γ = [1, 2, 3, 4, 5, 6, 10, 15,
30], scale parameter θ = [25; 26; 27; 28; 29; 30; 35; 40; 50], and noise scale η = [0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0]. As a result, we had γ xj jθ xj jηj j ¼
704 simulations in total with the Weibull random lifespans data set. To generate the
Gaussian random lifespan, the parameter search space used were mean μ = [5, 10, 15, 20,
35, 40, 50] and standard deviation σ = [1, 2, 3, 4, 5], resulting in | μ |x | σ| =35 simulations
in total. RLS of wildtype BY472 strain were generously shared by the Kaeberlein group
(personal communication). The RLS of the BY4742 strain was measured in 2108 experi-
ments, and the RLS of BY4741 wild type strain was measured in 381 experiments.

Results

Effect of Gaussian Noise on Simulated Lifespans

Sensitivity of the Gompertz model to white noises was examined using the difference of
maximum log-likelihoods between Weibull and Gompertz models fitted to Gompertz
signals with additive Gaussian noises (Figure 2). Because there were three parameters,
we iteratively fixed one parameter and varied the other two, as presented in three rows of
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heatmaps in Figure 2. In each row, the fixed parameter was gradually increased to cover
a range of possible yeast replicative lifespans. Red cells representing negative δLL values
indicated that the Gompertz model fits better than the Weibull model in those parameter
sets, whereas blue cells representing positive δLL values indicated that the Weibull model is
a better fit. Recalling that Gaussian noise is N(0,sd(Gompertz signals))η, increasing scale η
values represent increasing levels of white noise. Blue cells occur more frequently with
higher η values from left to right in the top row, and from top to bottom in the second and
third rows. Hence, we conclude that the Weibull model generally fits lifespan tG better
than the Gompertz model as white noise increases. The Gompertz model’s sensitivity to
noise also depends on the R and G parameters.

Likewise, the Weibull model’s sensitivity to white noise data was examined using δLL =
max {LL(W, tW)} – max{LL(G, tW)} values (Figure 3). Again, there were three parameters
to consider, and we iteratively varied them as depicted in Figure 2 above. The Weibull
simulated lifespan tW can tolerate η up to 1 ~ 1.5, whereas the Gompertz lifespan tG often
loses its Gompertz signal feature when η is in the range of 1 ~ 1.5, as shown in Figure 2.
Hence, the results show that the Weibull model is generally more tolerant to white noises
than the Gompertz model.

To further examine the Weibull model’s tolerance to white noise, we fit the Gaussian
random lifespan tΦ with both the Weibull and Gompertz models. In this case, we only
needed to vary the mean and standard deviation of the Gaussian distribution for the
parameter space. We calculated δLL = max {LL(W, tΦ)} – max{LL(G, tΦ)}, as presented in
Figure 4.

Figure 2. Comparison of Gompertz and Weilbull models by δLL values using simulated Gompertz
signals with Gaussian white noises (tG). Here, parameters for simulation runs are G = [0.05, 0.08, 0.1,
0.12, 0.15, 0.17, 0.2, 0.25], R = [0.001, 0.002, 0.003, 0.005, 0.01, 0.02, 0.03, 0.04], and noise scale η = [0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2, 3].
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All of the calculated δLL are positive, indicating the Weibull model is always a better fit
to Gaussian random lifespans than the Gompertz model.

Overall, the Weibull model fits the lifespan data of Gompertz signals with added
Gaussian noise better than the Gompertz model, as the Weibull signals can tolerate higher
levels of noise than Gompertz signals.

Figure 3. Comparison of Gompertz and Weibull models by δLL values using simulated Weibull signals
with Gaussian white noises (tW). The parameter ranges of simulation runs are shape parameter γ = [1, 2,
3, 4, 5, 6, 10, 15, 30], scale parameter θ = [25; 26; 27; 28; 29; 30; 35; 40; 50], and noise scale η =
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0].

(a) (b)

Figure 4. Comparison of Gompertz and Weibull models by δLL values using simulated Gaussian
lifespans. Parameter ranges are mean μ = [5, 10, 15, 20, 35, 40, 50], and standard deviation σ = [1,
2, 3, 4, 5].
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Experimental Data Analysis

The Kaeberlein group generously shared 2108 RLS experiments for BY4742 and 381
experiments for BY4741 (personal communication). In this case, we calculated δLL as:

δLL ¼ max LL W; tð Þg �maxfLL G; tð Þf g:

Most of the experimental RLS data sets were better fitted with the Weibull model than the
Gompertz model, as shown by the positive δLL values in Figure 5(a,b). We further visualized
the relationship between the parameter estimates for the Gompertz model and δLL values in
a three-dimensional scatter plot in Figure 5(c,d). The scatter plots show that the estimated
Gompertz parameters, G and R, were within the ranges of the simulation studies shown in
Figure 2. They also show that positive and negative δLL values inter-mingled in all ranges of
G and R parameters. More experimental RLS data sets were better fitted with the Weibull
model than with the Gompertz model. This does not necessarily suggest that the Weibull
model is mechanistically more insightful than the Gompertz model because we have shown

c d

WT BY4742

WT BY4741

Figure 5. Comparison of Gompertz and Weibull model using RLS experimental data sets for BY4741
and BY4742. (a) and (b) Distributions of the δLL values of the experimental data sets for BY4742 and
BY4741. (c) and (d) 3D scatter plots of the estimated G, R, and δLL values for wildtype BY4742 and
BY4741 yeast strains. Here, the shape parameter G and the rate parameter R of the Gompertz were
estimated from fitting experimental RLS data. The Weibull fitted better in most experimental data set
than the Gompertz model as indicated by the positive δLL in blue dots.
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the Weibull model is more tolerant to Gaussian noises. As suggested by Lithgow et al. (2017),
lifespan measurements are often noisy with experimental variations. Based on our simulation
studies, we argue that caution should be taken when determining which mortality model
better describes the biological nature of the aging process and more attention should be paid
to control the experimental variations during lifespan assays.

Discussion

In this study, we found that the Weibull model is generally more tolerant to Gaussian noise
than the Gompertz model based on two lines of evidence. First, the fitting of Weibull signals
increases as white noise increases, indicating Weibull signals are more tolerant to Gaussian
noises than Gompertz signals. Second, an intuitive understanding of the error-tolerant
property of the Weibull model may be achieved with the linear regression of Gaussian
lifespan data. Because the Weibull model indicates a linear correlation of log-transformed
mortality rate and log-transformed life span and the Gompertz model indicates a linear
correlation of log-transformed mortality rate and lifespan, experimental noise in lifespan
measurements would be suppressed in the log-log plot for the Weibull model.

The model organism S. cerevisiae has contributed significantly to the basic biology of
aging (Janssens & Veenhoff, 2016; López-Otín, Blasco, Partridge, Serrano, & Kroemer,
2013). When measured in years, reported Gompertz parameters of human aging, R = 0.01
and G = 0.1 ~0.15, are similar to the estimates in yeast RLS (Kirkwood, 2015). Hence,
though designed with yeast RLS in mind, this simulation study is relevant for the
Gompertz model fitting of human lifespans, as well.

Reproducibility in experimental aging research is a challenging task (Lithgow et al.,
2017). Sources of variations may include “subtle tinkering” in biology experiments, such as
the idiosyncratic techniques of individual researchers, and un-anticipated heterogeneity,
such as different modes of aging in some cohorts of worms. As suggested by our
simulation study, experimental variations of lifespan may influence the evaluation of
mortality models. The implication of our simulation study to the research community
can be seen in a recent study on the mortality model for nude mole-rats (Ruby, Smith, &
Buffenstein, 2018). Ruby and co-authors pooled over 3000 lifespan measurements of nude
mole-rats from historical data and found that age-specific mortality did not increase with
age. There may be substantial experimental variation among past experiments of nude
mole-rats, and these experimental noises may influence the model comparison between
constant mortality rate model and the Gompertzian models.

The Gompertz mortality model has left a significant impact on the biology of aging
(Kirkwood, 2015; Olshansky & Carnes, 1997). In comparison to non-parametric
approaches, the Gompertz model offers an appeal of a general “rule” for the biology of
aging. Deviations from the Gompertz model have been frequently observed in experi-
mental measurements of mortality rates, especially in late life, and many alternative aging
models have been proposed (Gavrilov & Gavrilova, 2001; Li, Yang, & Anderson, 2013;
Mueller & Rose, 1996; Vaupel, Manton, & Stallard, 1979; Witten, 1983). Alternative
methods are often adopted in part to improve fitting to empirical data (Juckett &
Rosenberg, 1993; Horiuchi and Wilmoth, 1998; Koopman et al., 2015; Wilson, 1993;
1994). Our study suggests that caution should be paid to the models’ sensitivity to noises
when empirical data are evaluated by different mortality models.
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