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Abstract In this study, a new hybrid genetic teaching
learning- based optimization algorithm is proposed for wind-
thermal power systems. The proposed algorithm is applied
to a 19 bus 7336 MW Turkish-wind-thermal power system
under power flow and wind energy generation constraints
and three different loading conditions. Also, a conventional
genetic algorithm and teaching learning-based (TLBO) algo-
rithms were used to analyse the same power system for the
performance comparison. Two performance criteria which
are fuel cost and algorithm run time were utilized for com-
parison. The proposed algorithm combines the specialties
of conventional genetic and TLBO algorithms to reach the
global and local minimum points effectively. The simula-
tion results show that the proposed algorithm developed in
this study performs better than the conventional optimiza-
tion algorithms with respect to the fuel cost and algorithm
run time for wind-thermal power systems.
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1 Introduction

The performance of a power flow system is related to some
main conditions such as system constraints and the efficiency
of executed optimal power flow (OPF) analysis algorithms.
System constraints depend on the physical system devices
which cannot be changed easily. The efficiency of power flow
algorithms has progressed over the years. Power flow analy-
sis is an important problem for the power systems to supply
the electrical energy with good quality. Themain goals of the
OPF are to obtain the minimum fuel cost, minimum power
loss and minimum algorithm run time. The most commonly
considered objective function is total cost of generation [1].
Also, the OPF algorithm should be in accordance with some
other important specialties such as less pollution for the envi-
ronment and chemical reactions [2].

The variety in electrical power systems has increased over
the years. Many new forms of electrical energy generation
such as wind or solar energy have added to the conventional
power systems in most countries of the world and global
energy demand is set to grow by 37% by 2040 in central
scenario [3]. More advanced OPF algorithms to the different
characteristics of these energy generation units should be to
maintain the technical requirements and proper operation of
an interconnected power system.

In the past years, a number of studies have been done
about the first OPF algorithms such as Newton Raphson, Fast
Decoupled Flow in different interconnected power systems
[4,5]. Also, a great number of conventional algorithms have
been suggested in the literature based on the conventional [6–
12] and hybrid power flow techniques [13–19] but there is no
research on solving theOPFproblemby the proposedmethod
on a hybrid energy generation system used in this study.

Genetic algorithm is an evolutionary and effective algo-
rithm to reach the solutions of global minimum points. It is
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first invented by John Holland in the early 1970s [20]. How-
ever, GA has some convergence problems in optimization to
arrive to the solutions of the local points.

TLBO is a new algorithm and was developed by Rao et
al. [21]. It is a social-based algorithm which is based on
interaction between a teacher and students in a class. Teacher
is considered the most informed person and gives knowledge
to his class.

Mostly, when evolutionary algorithms become weaker,
working with other optimization methods can give better
results. The power of evolutional algorithm is to determine
the nearest points in the solution space. However, stan-
dard evolutional algorithms are weak in determining the
fine tuning of candidate solutions. Hence, success of the
algorithm will rise using a local optimization method on
the results which are determined by evolutional algorithms.
Based on the behaviours’ overall performance in this envi-
ronment, genetic and other operators are applied to improve
the performance of the population of behaviours [22]. Hybrid
algorithms are composed of two or more standard algorithms
to combine the successful way of each algorithm.

The electrical energy system analysed in this paper is
composed of 7336 MW thermal and wind energy produc-
tion system in Turkey. These thermal sources are the biggest
ones in the Country. According to wind energy installations
and wind potentials in Turkey, 11 newwind bus [23] is added
to the standard system and a thermal and wind power system
are composed.

As new forms of renewable energy sources added to
the conventional energy generation system, increasing algo-
rithm run time becomes an important problem for the whole
interconnected power system. Therefore, a new energy dis-
patching and optimization algorithm for conventional and
renewable energy generation sources should be developed.

In this paper, a difference value (dv) and amultiplier value
(mv) are chosen in GA part of the proposed algorithm and a
student and a variable number are chosen in TLBO algorithm
to improve the whole system performance. The comparison
of the proposed algorithm, the standard TLBO algorithm and
the standard genetic algorithm on the hybrid energy system,
the proposed algorithm suggests that algorithm runtime with
the proposed algorithm are better than the rest.

2 Optimal power flow (OPF)

In power system analysis and power control, OPF is used
to obtain the optimum values of energy dispatching para-
meters such as algorithm run time, fuel cost, power loss,
the best placement of capacitors. OPF is implemented an
optimization algorithm under some determined constraints.
These constraints are the limits of power devices used in

power systems. The algorithms used in OPF should obtain
the parameters as much as possible.

Algorithm run time is an elapsed time to arrive the best
values of parameters.Abetter algorithm should reach the best
solutions in a shorter time. Load dispatching centres decide
the load increase or decrease by OPF software according
to instantaneous system values such as frequency value and
maintenance of generator units. Also, these centres decide
which electric generation units will be in operation and how
much of electrical load should be decreased or increased for
electric quality. All of these decisions are made according to
the values obtained fromOPF algorithms. As new generation
units have added to the conventional energy system, algo-
rithm run time becomes much more important. The speed
and quality of electric energy depends on the speed of the
OPF algorithm. Because of these reasons, energy scheduling
is inevitable [24].

OPF is composed of two main stages such as determining
Hessianmatrix and calculation of fuel cost. Hessianmatrix is
calculated to obtain the node-voltage equations for a power
system, impedances are expressed in per unit on a common
MVA base and for simplicity resistances are neglected [24].
Since the nodal solution is based uponKirchoff’s current law,
impedances are converted to admittance as in Eq. 1,

yi j = 1

zi j
= 1

ri j + j xi j
(1)

Each power generating unit has a typical operating cost curve
which consists of ai , bi , ci and di parameters. These parame-
ters are related to heat rates of power generating units, which
are determined by turbine or generator producers. Depend-
ing on the heat efficiency of fuel type, incremental heat rate
in Btu/kWh -output power in MW curves for each thermal
power generator are plotted. These curves can be formulated
mathematically as quadratic equations defined by Eq. 14. ai ,
bi , ci thermal power parameters are determined from these
heat rate versus power curves. di is a parameter related to
the wind generators. d coefficient is calculated from propor-
tion of maximum generation of a wind turbine to rated power
value according to power curve of awind turbine curvewhich
is provided by wind turbine producers.

Total system load is calculated as Eq. 2,

L =
(∑ng

i=1
(Pgi ) +

∑nw

j=1
(w j ) (2)

Line losses for the real power transmission [25] are given by
Eq. 3,

PL =
∑nl

k=1
gk

[
V 2
i + V 2

j − 2Vi .Vj . cos
(
δi − δ j

)]
(3)

where gk is the conductance of a transmission line k con-
nected between ith and jth bus, nl is the total number of
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transmission lines, Vi,Vj ,δi , δ j are the voltage magnitudes
and phase angles of ith and jth bus, respectively.

OPF should be implemented under some constraints such
as equality and inequality constraints. Also, extra constraints
should be taken into consideration for the systems including
other renewable electrical energy sources such as wind or
solar.As equality constraints, generated and consumedpower
is defined in the Eqs. 4 and 5 [25],

Pload −
∑

Pgi −
∑

PL = 0 (4)

Qload −
∑

Qgi −
∑

QL = 0 (5)

where Pload and Qload is the active and reactive power
demanded by the system and

∑
Pgi and

∑
Qgi is the total

active and reactive power generated by all generators and∑
PL and

∑
QL are total active and reactive line losses,

respectively.
Inequality constraints can be classified into generator

constraints, transformer constraints and security constraints.
Generator constraints are minimum and maximum genera-
tor generation values. Here, the problem and also solution is
to determine the optimum power generation values between
minimum and maximum power limits and to determine the
total load demand for the generators.

The optimum power for ith generator is given by Eq. 6,

Pmin ≤ Pgi ≤ Pmax (6)

where Pmin is minimum value of ith generator, Pgi is
optimum generated power, Pmax is maximum value of ith
generator [25].

Generation constraints include generator voltages, gener-
ator active and reactive power generation limits.

Generator voltage limits are defined as Eq. 7,

Vmin
Gi

≤ VGi ≤ Vmax
Gi

, 1 ≤ i ≤ NG (7)

where Vmin
Gi

is the generator minimum limits and Vmax
Gi

is the
generator maximum limits and NG is the number of genera-
tors [25].

Generator active power limits are defined as Eq. 8,

Pmin
Gi

≤ PGi ≤ Pmax
Gi

, 1 ≤ i ≤ NG (8)

where Pmin
Gi

and Pmax
Gi

are minimum and maximum active
power values of ith generator, respectively. NG is the number
of generators.

Generator reactive power limits are given by Eq. 9,

Qmin
Gi

≤ QGi ≤ Qmax
Gi

, 1 ≤ i ≤ NG (9)

where Qmin
Gi

and Qmax
Gi

are minimum and maximum reactive
power values of ith generator, respectively. NG is the number
of generators [26].

Interconnected power systems can include regulating
transformers at some branches. This regulation is imple-
mented by regulating transformer tap values which are taken
as 1 normally. Tap value limits are stated as Eq. 10,

Tmin
i ≤ Ti ≤ Tmax

i , 1 ≤ i ≤ NT (10)

where Tmin
i and Tmax

İ
are minimum and maximum tap val-

ues of ith transformer, respectively. NT is the number of tap
transformers [26].

Security constraints are voltage magnitudes at load bus
and these are defined as Eq. 11,

Vmin
Li

≤ VLi ≤ Vmax
Li

, 1 ≤ i ≤ NPQ (11)

where Vmin
Li

and Vmax
Li

are minimum andmaximum load volt-
ages of ith bus, respectively. NPQ is the number of active and
reactive bus [26].

Wind power constraints are wind generator constraint and
rated wind power from the ith wind-powered generator [27].
Wind generator constraints are powers at wind bus and these
are defined as Eq. 12,

Pi,min ≤ Pi ≤ Pi,max (12)

where Pi,min and Pi,max isminimumandmaximumgenerated
powers of ith wind turbine or ith wind field bus [27].

Rated wind power constraints are powers which are rated
wind power from the ith wind-power generator and are stated
as Eq. 13,

0 ≤ wi ≤ wr,i (13)

where wi scheduled wind power and wr,i rated wind power
from the ith wind-powered generator [27].

Vİ is an average wind speed which is determined annually
by performing wind speed measurements at different loca-
tions. According to its value, real generated wind power is
calculated using the power curve of a wind turbine. Vİ aver-
age wind speed values are taken from General Directorate of
Electric Power Resources Survey and Development Admin-
istration [28].

The fuel cost for conventional power systems can be
expressed as the sum of each generator cost in Eq. 14,

Fcostconv =
∑ng

i=1
(αi + βi Pgi + γi Pg

2
i )$/h (14)

where αi , βi and γi are the fuel cost coefficients and Pgi is
the active power for the ith generator and ng is the number
of generators in the system.
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If energy generation system has wind bus, total Fcost is
stated as Eq. 15 [29],

∑
Fcost = Fcostconv + (∑nw

i=1Cwi (wi )

+∑nw

i=1Cp,wi

(
Wi,av − wi

)

+∑nw

i=1Cr,w,i
(
wi−Wi,av

))
$/h (15)

where ng is the number of conventional generators, nw is
the number of wind generators, Pgi is the active power for
the ith generator, Wi,av is available wind power from the
ith wind-powered generator, Cwi is cost function for the ith
wind-power generator, Cp,wi is penalty cost function for not
using all available power from the ith wind-powered gen-
erator, Cr,w,i is required reserve cost function, relating to
uncertainty of wind power.

If the wind generators are not owned by the system oper-
ator, Cp,wi and Cr,w,ican be neglected and Fcost becomes as
Eq. 16 [29],

Fcost =
(∑ng

i=1

(
αi + βi Pgi + γi Pg

2
i +

∑nw

j
(d jw j )

))
$/h

(16)

where d j is direct cost coefficient for the ith wind genera-
tor and w j is scheduled wind power from jth wind-powered
generator and nw is the number of wind generators in the
system. For simplicity, we neglected the penalty and required
cost functions.

3 Thermal-wind-powered Turkish energy
generation system of 19 Bus

For a local analysis, the proposed algorithm has been tested
on a part of Turkish electrical network. In addition to 8
conventional thermal sources, 11 new wind-powered power
generation units are added and totally 19 bus energy genera-
tion system has been arranged.Wind generators are supposed
as not owned by the system operator so Cp,wi and Cr,w,i in
Eq. 15 are neglected. All of those 19 energy generation plants
are located in Aegean and Marmara regions which have the
biggest thermal and wind-powered energy generation units.
The system has electric power generation capacity of 1503
MW at minimum and 7689.05 MW at maximum. Bus num-
bers, power plant names, fuel types of power plants, α, β, γ ,
d fuel cost coefficients, Vi average wind speeds, minimum
and maximum power generation limits and scheduled power
values for each power plant are given in Table 1.

Some wind fields such as Kuyucak and Soma are com-
posed of different capacity and different number of wind
turbines. For example, Sayalar power plant (bus 16) is com-
posed of 0.9 and 2 MW wind turbines. In this study, all of

these units are taken as a separate generation bus. So, total
number of bus is 23 separately.

Selected power plants have used up natural gas, fuel oil,
coal and wind as energy source.

Each power plant has fuel cost coefficients. Thermal
power plants have three fuel cost coefficients as α, β, γ .
Wind-powered plants have only d fuel cost coefficient and
α, β, γ coefficients are taken as 0 value [28]. d coefficient
is calculated from proportion of maximum generation of a
wind turbine to rated power value according to power curve
of a wind turbine curve which is provided by wind turbine
producers. d is generally taken as 1 value [28]. α, β, γ coef-
ficients are states heat rates of thermal power plants and are
calculated from power curve of the power plant [30].

Pimin , Pimax and Psch
imax are the bus power values. Switch-

ing off a thermal power plant has very high cost; therefore,
thermal power plants have to be operated at a minimum
power value constantly. Pimin for wind generation is taken
as 0 value. Pimax is a turbine maximum value. Psch

imax is a
power value which is expected power generation. In this
study, it is accepted as maximum power generation for ther-
mal plants. For wind-powered electrical generation, Psch

imax
has been calculated according to average wind speed and the
power curves of wind turbines [31,32].

4 Used methods

In this study, Genetic Teaching Learning-Based Optimiza-
tion (G-TLBO) Algorithm is proposed for conventional and
wind-thermal power systems. The proposed algorithm is
combined of conventional TLBO Algorithm and conven-
tional GA. TLBO algorithm and GA are used for comparison
to the proposed algorithm in terms of algorithm run time and
fuel cost.

The effectiveness of three algorithms is compared on a
part of Turkish electrical system which consists of totally
19 thermal and wind-powered bus. In some active or reac-
tive power calculations, line losses can be neglected to see
the efficiency of studied algorithm [33,34]. This study also
neglects the reactive line losses.

4.1 TLBO algorithm

TLBO algorithm is a social-based optimization algorithm
which depends on interaction between students and teachers
in a class. The learning capacity of students is related to abil-
ity of teacher. Teacher tries to increase the level of students.
At every step of algorithm, successful students are elected
and the best students have been determined.

TLBOalgorithmhas three parameterswhich is the number
of students, number of classes and iteration number. TLBO
algorithmhas twophase, these are teacher and learner phases.
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At teacher phase of the algorithm, students learn from the
teacher by imitating.A teacher gives the information between
students and tries to increase the average of his class. Teacher
is the most experienced and the most informed person so the
best student can learn as much as the teacher.

Between teacher and student’s learning capacity, there is
an average difference called difference mean and it is defined
as Eq. 17,

Difference_Mean j,i = ri
(
X j,kbest,i − T f M j,i

)
(17)

where ri is a random number between 0 and 1, X j,kbest,i is
the result of teacher (the best result) and T f is teaching factor
between 1 and 2.
T f is defined as Eq. 18,

T f = round [1 + rand (0, 1) {1, 2}] (18)

If difference mean is better than present result, Eq. 17 is
arranged as Eq. 19,

X ′
j,k,i = X j,k,i + Difference_Mean j,k,i (19)

where X ′
j,k,i is the best function result accepted.

After teacher’s phase, all best function values are kept to
use at student’s phase.

At student phase, students learn the knowledge by inter-
acting and by discussing between them. If a student is more
knowledgeable, the other is updating himself by interaction.

P and Q are the random students, X ′
total−P,iand X ′

total−Q,i
are given as Eq. 20,

X ′
total−P,i �= X ′

total−Q,i (20)

where X ′
total−P,i and X ′

total−Q,i are updated values of
X total−P,i and X total−Q,i

If X ′
total−P,i > X ′

total−Q,i , X
′′
j,P,i is obtained as Eq. 21,

X ′′
j,P,i = X ′

j,P,i + ri (X
′
j,P,i − X ′

j,Q,i ) (21)

and if X ′
total−Q,i > X ′

total−P,i , X
′′
j,P,i is calculated as Eq. 22,

X ′′
j,P,i = X ′

j,P,i + ri (X
′
j,Q,i − X ′

j,P,i ) (22)

X ′′
j,P,i is accepted as the best function value [35].

4.2 Genetic algorithm (GA)

The idea in GA is to evolve a population of candidate solu-
tions to a given problem, using operators inspired by natural
genetic variation and natural selection [36].

Given a clearly defined problem to be solved and a bit
string representation for candidate solutions, a simple GA
works as follows:

1. Start with a randomly generated population of n (l-bit)
chromosomes (candidate solutions to a problem).

2. Calculate the fitness f (x) of each chromosome x in the
population.

3. Repeat the following steps until n offspring have been
created:

a. Select a pair of parent chromosomes from the cur-
rent population, the probability of selection being an
increasing function of fitness. Selection is done “with
replacement,” meaning that the same chromosome can
be selected more than once to become a parent.

b. With probability pc (the “crossover probability” or
“crossover rate”), cross over the pair at a
randomly chosen point (chosenwith uniformprobability)
to form two offspring. If no crossover takes place, form
two offspring that are exact copies of their respective
parents.

c. Mutate the two offspring at each locus with probability
pm (the mutation probability or mutation rate), and place
the resulting chromosomes in the new population. If n
is odd, one new population member can be discarded at
random.

4. Replace the current population with the new population.
5. Go to step 2 [36].

4.3 Proposed (G-TLBO) algorithm

The proposed algorithm has a hybrid structure which is com-
posed of conventional genetic and TLBO algorithms. Two
distinguished specialties of our proposed algorithm are fast
selecting of the best students by GA determining a specific
difference value (dv) to reach the optimum power value
or the best fuel cost. Standard TLBO algorithm needs the
best students at the beginning of the algorithm at each itera-
tion. GA selects the best students for TLBO algorithm using
chromosome coding, roulette, crossover, penalty and tour-
nament stages and dv value determined by user. GA works
quicker thanTLBOalgorithm in selection of the best students
because of its efficiency at reaching the global minimum
points. The main reason to use the GA in the proposed algo-
rithm is to determine the intermediate power values as much
as possible for the TLBO algorithm so total algorithm run
time decreases substantially.

The proposed algorithm uses difference value (dv) to
obtain the best power generation value between minimum
and maximum power constraints. Difference value (dv) is
an absolute value of difference between total power and
demanded load and it is calculated in Eq. 23,

dv = abs (Total power − load) (23)
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GA detects dv value and executes it for each attempt to obtain
the best fuel cost result. GA adds and subtracts the difference
value (dv) from minimum and maximum power values for
each bus. GA arrives to a best optimum power value quickly

Fig. 1 Fuel costs by conventional GA under 25% loading-1834 MW
power demand

Fig. 2 Fuel costs by conventional TLBO algorithm under 25%
loading-1834 MW power demand

Fig. 3 Genetic section of the proposed algorithm under 25% loading-
1834 MW power demand

Fig. 4 TLBO algorithm section of the proposed algorithm under 25%
loading-1834 MW power demand

rather than TLBO algorithm. That obtainedGbest value using
GA is students of TLBO algorithm.

Determining the difference value (dv) is as equation 24
and 25,

If dv is high from Pmax − Pmin, dv = Pmax − Pmin (24)

If dv is below minimum Pmax, dv = mv ∗ Pmin (25)

where mv is multiplier value and from experiences it can be
between 1 and 50.

dv difference value is selected according to findings of GA
automatically so the best Fcost values are obtained at every
attempt.

5 Simulation results

Simulations were performed using the conventional genetic
and TLBO algorithms and the proposed algorithm in terms of
algorithm run time and fuel cost. The algorithmswere applied
to a 19 bus thermal-wind-powered combined hybrid energy
generation system. The same power system parameters were
used in all algorithms for a comparison.

TLBO algorithm is applied with 10 students, 23 variables
(23 separate bus) and 1500 iterations. In genetic section,
crossover probability factor pc = 0.9, mutation probability
factor pm = 0, 2, resolution= 2 and mv = 44. The proposed
algorithm has 1500 iterations. Conventional GA has 500 and

Fig. 5 Fuel costs by GA for hybrid 19 bus system under 27.5%
loading-2017 MW power demand

Fig. 6 Fuel costs by TLBO algorithm under 27.5% loading-2017MW
power demand
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Fig. 7 Genetic section of the proposed algorithm under 27.5%
loading-2017 MW power demand

Fig. 8 TLBO algorithm section of the proposed algorithm under
27.5% loading-2017 MW power demand

Fig. 9 Fuel cost by GA under 30% loading-2201 MW power demand

Fig. 10 Fuel cost by TLBO algorithm under 30% loading-2201 MW
power demand

conventional TLBO algorithm has 1000 iterations because
of reaching of their optimum Fcost values in the proposed
algorithm. Total iteration number for the proposed algorithm

Fig. 11 Genetic section of the proposed algorithmunder 30% loading-
2201 MW power demand

Fig. 12 TLBOalgorithm section of the proposed algorithmunder 30%
loading-2201 MW power demand

is selected as 1500 to assess the time and cost efficiency of
compared algorithms sufficiently.

Three loading situations are taken into consideration.
These are 25, 27.5 and 30% loading, respectively. Conven-
tionalGA, TLBOalgorithm and the proposed algorithmwere
executed at each loading condition for totally 1500 iterations.

Two performance criteria were selected in the simula-
tions. The fuel cost graphs were first plotted with Matlab
2011b-Simulink software. Here, fuel costs versus iteration
numbers were compared against each other. Fuel costs
for different loading situations at analysing of conven-
tional GA, conventional TLBO algorithm and the GA and
TLBO sections of the proposed algorithm are shown in
Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Second, algorithm run
times versus iteration number for different loading conditions
are also calculated. The comparison results are provided in
Table 2.

Table 2 shows fuel costs and algorithm run time results
of three algorithms in terms of loading percentage or related
powers and calculations of fuel cost savings of the proposed
algorithm compared to other algorithms hourly and totally
for 40 years. GA has completed the process in a very short
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Fig. 13 Fuel cost results of
three algorithms under different
loadings or power demands
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Fig. 14 Fuel cost results of GA
and the proposed algorithm
under different loadings or
power demands

45000

50000

55000

60000

65000

%25-
1834
MW

%27.5-
2017
MW

%30-
2201
MW

Fcost in $/h 

Loadings-Powers Demanded in MW 

GA THE PROPOSED ALGORITHM

Fig. 15 Fuel cost results of
TLBO and the proposed
algorithm under 25% loading or
1834 MW power demand
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Fig. 16 Fuel cost results of
TLBO and the proposed
algorithm under 27.5% loading
or 2017 MW power demand
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Fig. 17 Fuel cost results of
TLBO and the proposed
algorithm under 30% loading or
2201 MW power demand
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Fig. 18 Algorithm run time
results of TLBO and the
proposed algorithm under
different loadings or power
demands
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Fig. 19 Hourly saving of the
proposed algorithm compared to
GA under different loadings
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Fig. 20 Hourly saving of the
proposed algorithm compared to
TLBO algorithm under different
loadings
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Fig. 21 Savings of the
proposed algorithm in 40 years
compared to GA under different
loadings
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Fig. 22 Savings of the
proposed algorithm in 40 years
compared to TLBO algorithm
under different loadings
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time but the fuel cost results obtained are worse than the best
fuel cost results calculated by conventional TLBO and the
proposed algorithms. Hence, in the proposed algorithm, GA
is only used to provide better power values to conventional
TLBO algorithm. GA provides the speed to the proposed
algorithm by its efficiency at global minimum points.

In Fig. 13, TLBO and the proposed algorithms seem like
the same but there is a scale effect. In Fig. 14, fuel cost results
of GA and the proposed algorithm under different loadings
or power demands are given. For the scale effect in Fig. 13,
the fuel cost graphs of Figs. 15, 16, 17 were also drawn
between two algorithms separately to see the effectiveness
of the proposed algorithm on fuel cost, algorithm run time
and economic savings.

In Fig. 18, TLBO and the proposed algorithm run time
results are given. Here, GA result does not take into consid-
eration because GA fuel cost result is out of the optimization
aims and an unacceptable outcome economically. In Fig. 18,
the proposed algorithm supplies 68.75, 70.09, 72.74 s algo-
rithm run time saving according to TLBO algorithm for the
25, 27,5, 30% loading cases, respectively.

In Figs. 19, 20, 21, 22, the savings provided using the
proposed algorithm are shown hourly and for 40 years for
a comparison. In Fig. 19, the proposed algorithm supplies
2865.26 $, 3386.11 $, 5239.75 $ savings hourly according to
GA for the 25, 27.5, 30% loading cases, respectively.

In Fig. 20, the proposed algorithm supplies 4,41 $, 9,02 $,
0,82 $ savings hourly according to TLBO algorithm for the
25, 27.5, 30% loading cases, respectively.

In Fig. 21, the proposed algorithm supplies 1,003,987,104
$, 1,186,492,944 $, 1,836,008,400 $ savings in 40 years
according to GA for the 25, 27.5, 30% loading cases, respec-
tively.

In Fig. 22, the proposed algorithm supplies 1,545,264
$, 3,160,608 $, 287,328 $ savings in 40 years according
to TLBO algorithm for the 25, 27.5, 30% loading cases,
respectively.

Performance comparison of the proposed algorithm ver-
sus remaining indicates that the elapsed time with the
proposed algorithm has a quite shorter run time and bet-
ter results at fuel cost after multiple trials. The proposed
algorithm shows a better performance in wider intervals of
generator power values particularly. That is also suitable for
the frequency stability in interconnected electric power sys-
tems. Simulations have been repeated for many attempts and
a success has obtained for all. As iteration number is grad-
ually increased, fuel cost results converges to each other
by the algorithms but the proposed algorithm also shows
a great performance for the algorithm run time compari-
son.

The proposed algorithm seems to be more advantageous
than the others fulfilling the demand for 19 bus thermal wind-
powered hybrid energy generation system.

6 Conclusions

In this paper, a proposed hybrid genetic teaching learning-
based (G-TLBO) algorithm was applied and tested on a part
of Turkish electrical network which consists of wind- and
thermal-powered 19 bus active generation system under con-
straints.

In the proposed algorithm, genetic algorithm section has
a difference value (dv) between 10 and 1100 and a multi-
plier value mv between 1 and 50 to decrease the algorithm
run time and the fuel cost. GA and dv values are working
together to provide the best students to conventional TLBO
algorithm. The conventional genetic and TLBO algorithms
and dv difference value are working at a close interaction, so
that the whole algorithm performance was improved at fuel
cost and algorithm run time.

The proposed algorithm especially shows a great per-
formance in terms of algorithm run time at every loading
condition. It has been therefore shown that the proposed algo-
rithm is effective and provides significant improvement in
hybrid energy generation system performance. The proposed
method is also suitable for a large-scale energy generation
structures.

As the capacity of energygenerationunits has increasedby
adding new renewable energy sources to the interconnected
energy generation system, the proposed algorithm will gain
much more importance.

Additionally, countrieswhich have an installed power sys-
tem such as Turkey, as it can be seen from the Figs. 21 and 22
above, the proposed method provides great savings. There-
fore, the proposed method is suggested from this point of
view.

In conclusion, the proposed algorithm is recommended to
implement in power flow analysis and power flow control
applications in large- scale because of its fuel cost and time
efficiency.
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