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doses needs to be evaluated for human use along with biocompatibility and efficiency
depending on surface modifications.
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widely explored silica based nanomaterials due to large surface
areas and specific pore volumes owing to ordered pore struc-

1 Introduction

The inorganic nanoparticles such as quantum dots (QDs), gold
nanoparticles (GNPs), magnetite (Fe;O,) nanomaterials have
many advantageous features such as luminescent properties with
a controllable wavelength, unique surface plasmon resonance
properties or high magnetization in the presence of an exter-
nal magnetic field. Another class of inorganic nanoparticles are
silica-based nanomaterials that can be investigated in two major
groups: solid lipid nanoparticles (SNPs) and mesoporous silica
nanoparticles (MSNs) [1]. Mesoporous silica nanoparticles are
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tures, which enable drug loading. Furthermore, drug release
rates can be regulated by editing the size of mesopores 2, 3].
MSNs, such as 2D hexagonal MCM-41 (Mobile Crystalline Ma-
terial) and 3D cubic SBA-15 (Santa Barbara Amorphous) are
silica-based porous materials with hundreds of empty channels,
so called mesopores with a narrow size distribution in the range
of 2-50 nm. Mesopores are appropriate supports for drug deliv-
ery and biomedical applications due to their high chemical and
thermal stability [4]. Their drug adsorption and release rates
mainly depend on the textural and structural properties of the
host-matrix [5] and can be regulated to maximize cellular up-
take [6]. The approximate drug loading dose of conventional
MSNs is about 200-300 mg which accounts for 600 mg drug/g
silica [7].

First drug loaded into mesopores was isoprofen packed in
MCM-41 exhibiting a sustained drug release performance with
improved loading ratio [8]. Thereafter, biomedical studies on
MSNs have grown rapidly and their development as a drug
carrier has engendered in three generations [9, 10]. The first
generation was introduced for the sustained release with many

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://orcid.org/0000-0003-4509-2212
http://crossmark.crossref.org/dialog/?doi=10.1002%2Felsc.201800038&domain=pdf&date_stamp=2018-06-13

Engineering
~inLife Sciences
www.els-journal.com

challenges such as large particle sizes, irregular morphologies,
several aggregations, cell level evaluations and in vivo applica-
tions. In conjunction with the fast development of synthetic
chemistry, the second generation MSNs were constituted nano-
sized and uniform spherical morphology, tunable pore/particle
sizes and compositions. Generation II MSNs have been con-
structed with various structures and morphologies such as hol-
low nanostructures, janus MSNs, yolk shell nanorattles (a special
kind of core-shell nanostructure) and organic—inorganic hybrid
mesoporous silica. In addition, MSNs integrated with compre-
hensive functionalities have been presented as generation III,
which were designed and fabricated in a more complex manner
in regards to surface chemistry and synthesis approaches. The
surface modifications are based on the silanol groups (Si-OH)
on the outer or inner mesoporous surfaces with various types
of functional groups. The functional groups can be biological
recognition ligands, peptides, aptamers, antibodies, nanovalves
to control release profiles (e.g., stimuli responsive release, on-
demand release), genes for synergistically overcoming multidrug
resistance (MDR) of cancer cells, biocompatible functional poly-
mers/materials for improving blood circulation time and fluores-
cent agents for bioimaging. Consequently, the latest generation
MSNis explore a wide variety of synthetic strategies for function-
alization of inorganic nanoparticles with organic molecules and
macromolecules.

Although, inorganic nanoparticles are highly stable and mul-
tifunctional, their biodegradability and biocompatibility have
been disputed. Furthermore, burst release of active ingredients
from the matrix is one of the major disadvantages of MSN lim-
iting their use in clinical applications where controlled release
is required. On the other hand, organic carriers are known for
their high biocompatibility and biodegradability, but low sta-
bility and single functionality. The advancements in material
science and drug delivery systems catalysed the fabrication of
organic-inorganic hybrid nanoparticles which combine desir-
able properties of organic and inorganic materials to overcome
the weaknesses of MSNs [11-14]. Hybridization of organic and
inorganic components can lead to multi-functionality and en-
hanced material properties [15]. The hybrid nanoparticles have
significant properties of both inorganic and organic moieties
and in addition they can be modified through the combina-
tion of functional elements. Also surface modification with the
targeting moieties provides specific targeted imaging and thera-
peutic properties [1]. Hybridized mesoporous nanoparticles can
be synthesized via hydrolysis and condensation of organic and
inorganic precursors under acidic or basic conditions result-
ing in monodisperse nanoparticles and tailored for internaliza-
tion of various drugs [16, 17]. These particles may have various
morphologies such as stellate [18], ellipsoidal, spherical [19],
octopus [20] and walnut kernel-like [21]. It would have been in-
teresting to investigate the effects of these morphologies on drug
loading efficiency, release kinetics, cellular uptake, subcellular
localization, and cytotoxicity. Hybrid mesoporous materials are
reported to act as host matrices for a wide range of drugs via
weak interactions [8]. The internal surfaces of mesopores can
be functionalized to improve drug and carrier interaction. For
instance, trimethylsilyl groups were incorporated inside the pore
surfaces to enhance loading of hydrophobic drug molecules on
to MSNs [18,22].
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This review article focuses on the advancements in meso-
porous silica based organic-inorganic hybrid nanoparticles de-
veloped as drug carriers targeting cancer cells. Brief introduc-
tion to the state-of-the-art in both passive and active targeting
methods are presented. Particularly, therapeutic, diagnostic and
theranostic applications are discussed critically with emphases
on triggered and ligand conjugated organic-inorganic hybrid
mesoporous silica nanomaterials.

2 Drug targeting to cancer cells
2.1 Passive targeting

Passive targeting is a kind of drug delivery strategy facilitated by
nanoparticle fabrication techniques. The change in size, shape,
charge and stiffness of the materials to enhance tissue accu-
mulation, adhesion, cellular uptake of nanoparticles and drugs
are part of the strategy [23]. The polymeric drug carrier par-
ticles have more advantages than administration of free drugs
like increased circulation time in the body because free drugs
can be detected by the reticuloendothelial system (RES) and
eliminated. Some anticancer drugs like camptothecin and dox-
orubicin (DOX) are effective in chemotherapy but the appli-
cations in humans were limited due to the poor water solubil-
ity of the drug. Therefore, a suitable solution for hydrophobic
drug molecules is of prime importance [24]. For instance, sili-
cone oxide-deposited DOX-loaded stearic acid-grafted-chitosan
nanoparticles were compared with stearic acid-g-chitosan poly-
meric micelles. The results showed that the nanoparticles have a
more rapid drug release rate in vitro than the micelles and they
could easily penetrate into the cells due to higher specific surface
area obtained by their mesoporous structure [25] which, not
only serve as unique drug reservoirs but also have a part in mul-
tiphasic release systems. In another study, drug delivery system
using DOX loaded mesoporous silica nanoparticle composite
nanofibers was fabricated which can release anti-tumor drugs in
two phases (burst release in the early stage and sustained release
at a later stage) to reduce local recurrence of breast-conserving
therapy [26]. The drug entrapped within MSNs must first be
released at a solution state, then from polymeric fibers to the
surrounding medium.

Polymeric particles may also be prone to delay or prevent
recognition properties due to RES [24]. Many types of genera-
tion II MSNs were synthesized with various structures and sur-
face morphologies that could be used for targeted drug carrier
systems passively through surface modifications with functional
polymers. For example, poly(ethylene glycol) (PEG) can signif-
icantly enhance the circulation time due to its excellent protein
repellent properties [27]. The polyethyleneimine-polyethylene
glycol (PEI-PEG) decoration on the surface of the nanoparticles
was reported to decrease RES uptake and resulted in the reten-
tion of about 8% of the administered particle dose at tumor
site [28]. Polyvinylpyrrolidone (PVP) is another type of poly-
mer for functionalization of nanocarriers. In one of the studies,
PVP was used as a protecting polymer adsorbed on the surface
of silica microspheres and NaOH was employed as an etching
agent. Mesopores were created in the silica microspheres owing
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Table 1. Passively targeted drug delivery or fluorescent imaging with organic-inorganic hybrid silica nanosystems

Treated cells/ Drug molecules or Structure/hybrid type Ref.
animals imaging agent
Hep-G2 mice Docetaxel PEGylated mesoporous silica nanorattle [27]
MCF-7/MDR DOX and siRNA Mesoporous silica nanoparticles were [28]
mice functionalized by PEI-PEG copolymer
A549 DOX Stearic acid-grafted chitosan (CS-SA) core and [25]
SiO; shell
HeLa DOX and fluorescein Fluorescent and cross-linked organic— [36]
inorganic hybrid mesoporous
poly-(cyclotriphosphazene-co-fluorescein )
‘PCTPF nanoshells
HeLa Ibuprofen Fluorescent poly(p-phenylenevinylene) (PPV) [34]
MDA-MB-231 DOX PLLA-(MSN/DOX)-DOX composite [26]
mice electrospun nanofibers
A549 Rhodamine B Combined a fluorescent inorganic silica core [24]
with a biocompatible polymer shell
HeLa DOX Luminescent YVO4:Eu*>* nanocrystals [29]

integrated mesoporous silica nanoparticles

to the protective nature of PVP and inhomogeneous etching [29].
The surface modifications of recent organic-inorganic silica hy-
brids with polymers are mostly based on PEG [27], PEI [28],
PVP [29], chitosan [25] and poly-L-lactic acid (PLLA) [26] for
drug targeting to cancer cell (Table 1).

Mengand co-worker [28] prepared MSNs functionalized with
PEI-PEG copolymer carrier to overcome DOX resistance in the
MDR human breast cancer xenograft by co-delivering DOX and
siRNA that targets the P-glycoproteins (P-gp) drug exporter.
MDR is one of the main obstacles in effective chemothera-
peutic treatment of cancer, where pump and non-pump drug
resistances are reported as two major mechanisms. P-gp and
MRP-1 (MDR-associated protein-1) are pump-related gene
products existing at the cellular and the nuclear membranes
and pumps anticancer drugs to the extracellular matrix while
drug-induced expression of Bcl-2 protein is responsible for the
activation of anti-apoptotic cellular defence as major mech-
anism in nonpump resistance [30, 31]. Many studies have
shown that co-delivery of Bcl-2 siRNA with chemotherapeu-
tic drugs by functionalised MSNs downregulates the Bcl-2 pro-
tein expression, which in turn could induce remarkable cell
apoptosis [32,33].

Co-delivery of DOX and siRNA by the PEI-PEG copolymer
functionalised MSN nanocarriers resulted in synergistic inhi-
bition of tumor growth in a MDR tumor xenograft model in
vivo compared with free DOX and the carrier loaded with ei-
ther drug or siRNA alone [28]. Another approach for func-
tionalization of mesoporous silica nanoparticles is the forma-
tion of core-shell structure. An example for this approach is
poly(p-phenylenevinylene) (PPV) functionalized MSNs which
were further coated with a layer of mesoporous silica shell to
form the core-shell structure. The PPV serve as a fluorescent
polymer and the developed fluorescence MSNs with or with-
out core-shell structures were reported to improve the capa-
bilities of drug loading, sustained drug release and cancer cell
bioimaging [34].
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2.2 Active targeting

During the last decade, surface-functionalized, end-capped
MSNs have been designed for controlled anticancer drug de-
livery due to their low toxicity, high surface area and large
accessible pore volumes which are suitable for loading drug
molecules [35,36]. These systems have the capability of releasing
the cargo only at the desired location by responding to certain
external stimuli or specific ligand matching which was referred
as active targeting [23,37]. Among stimuli response properties,
pH changes represent an effective strategy especially for cancer
therapy since the extracellular pH in tumour tissue is slightly
lower than in normal tissue [35]. Consequently, active target-
ing can not only be achieved by stimuli responsive mesoporous
silica nanoparticles that can respond to changes in pH [38-41],
temperature [42,43], magnetism [44, 45], chemicals [46], en-
zymes [47], redox [48] or light [38,49-52], but also associated
with receptor recognition reactions. We discussed these active
targeting strategies based on the organic-inorganic hybrid meso-
porous silica nanocarriers for the therapeutic and diagnostic
approaches in the next sections.

2.2.1 Therapeutic or diagnostic approach

2.2.1.1  Stimuli responsive organic-inorganic hybrid silica nano-
materials.  Stimuli responsive organic-inorganic hybrid silica
nanocarriers doped with chemotherapeutic drugs or imaging
agents for therapeutic or bioimaging purposes are provided in
Table 2. The pH sensing functions are of prime importance in
MSN-based triggered-release nanocarriers. In one of the studies,
fluorescent organic/inorganic hybrid MSNs were prepared with
controllable redox-responsive release of rhodamine B as a model
drug [53]. Indeed, many of hybrid materials prepared for con-
trolled drug release on tumor location were often based on pH
or glutathione (GSH) level changes because of acidic pH (5.0)

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 2. Stimuli responsive or ligand conjugated organic-inorganic hybrid silicas for therapeutic or diagnostic purposes

Target cell/animal Therapy or imaging agent

Nanoparticle/bioconjugate type and Ref.
triggering factors

Stimuli responsive organic-inorganic hybrid silicas

A549 DOX -
- Rhodamine B
- Rhodamine 6G
KB-V1 DOX and siRNA -
Ligand conjugated organic-inorganic hybrid silica nanomaterials
U87 MG HEK 293 DOX
HCT116 mice 5-Fluorouracil -
HeLa HEK 293 DiI® and DiO®) as -
model drugs
HeLa MCF-7 Camptothecin

Organic-inorganic hybrid mesoporous [55]
nanoparticles with pH- and GSH-
responsiveness

Fluorescent pH-sensing organic/inorganic [53]
hybrid mesoporous silica nanoparticles

Mesoporous SiO; films, functionalized with [52]

high quantities of azochromophores as
photodriven nanoimpellers

PEI coated mesoporous silica nanoparticles [30]

GNPs@RGD peptide-capped MSNs [59]

MSN-P(OEGMA® -co- RGD peptide [89]

Folic acid-conjugated and [90]
PEI-functionalized MSNs

Tumor homing and penetrating peptide [91]

(tLyP-1) functionalized MSN's

¥poly(oligo(ethylene glycol)monomethyl ether methacrylate).
)1, 1’-dioctadecyl-3,3,3)3 -tetramethindocarbocyanine perchlorate.
93,3-dioctadecyloxacarbocyanine perchlorate.

and high GSH concentration levels (2—10 mM) on tumour in-
tracellular environment compared with normal tissues [54]. In
another study, DOX hydrochloride was released by responding to
acidic tumour intracellular environment [55]. A dynamic cross-
linked supramolecular network of poly(glycidyl methacrylate)s
(PGMAs) derivative chains was constructed on mesoporous sil-
ica nanoparticles via disulfide bond and ion-dipole interactions
between cucurbiturils and protonated diamines in the polymer
chains, where this network was employed as a pH and GSH
dual stimuli-responsive nanovalve. Disulfide bonds between
PGMA chains and MSNs endowed the hybrid material GSH
responsiveness.

Another approach to deliver drugs to specific locations is
to control the drug release by light due to its non-invasive na-
ture. Mesoporous silica nanoparticles have large hollow interiors
that serve as large reservoirs for enhanced drug-loading capac-
ity and demonstrate special structure—property relationships for
nanomedicine [56]. The first organic—inorganic hybrid hollow
mesoporous organosilica-based nanovehicles (HMOVs) were
synthesised as nanocarriers. HMOVs with phenylene-bridged
silsesquioxane frameworks have been employed as excellent nano
co-delivery platforms for efficient intracellular transport of gene-
silencing agent namely the P-gp and anticancer drugs. The
co-delivery of P-gp associated short hairpin RNA and DOX
enhanced chemotherapeutic efficiency due to higher intracel-
lular DOX concentration [57]. Not only the hollow structure of
HMOVs was found to be responsible for the high cargo-loading
capacity, but also its phenylene-bridged framework acted as pH-
responsive drug release.

2.2.1.2  Ligand conjugated organic-inorganic hybrid silica nano-
materials. Despite the notable success of external and internal
stimuli responsive organic-inorganic hybrid silica nanoparticles,
more specific applications were required in cancer therapy such

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

as ligand conjugating strategy as active targeting in order to im-
prove the specificity of nanoparticles towards tumor cells. For
instance, traditional MSN drug release systems were not able to
distinguish inflammatory tissues, resulting in damage of both in-
flammatory and healthy tissues [58]. Thus, researchers searched
for alternatives to improve the delivery efficiency and cancer spe-
cificrecognition and focused on active targeting ligands, peptides
and antibodies that recognize particular receptors in target cells
with subsequent uptake through receptor-mediated endocytosis.
An example is functionalized MSNs showing sensitivity to pH by
a-amide- B-carboxyl unsaturated bond and further end-capped
with functional RGD peptide-coated gold nanoparticles (GNPs).
Hereby, bioactive surface of the GNPs-peptide-capped MSNs fa-
cilitated the binding to &, 85 integrin overexpressed U87 MG can-
cer cells. On the contrary, limited internalization was observed
in a,B; integrin negative HEK 293 cells [59]. As majority of
the publications related to ligand conjugated organic-inorganic
hybrid silica nanomaterials are designed for both therapeutic
and imaging purposes, these will be discussed in the following
section.

2.2.2 Theranostic approach
Theranostics describes the co-delivery of therapeutic and imag-
ing agents in a single formulation [60] where drug delivery can
all be integrated into one functionalized nanoparticle [61]. There
have been many platforms that combine imaging and therapy
for optimization of efficacy and safety of therapeutics such as
nanocarriers related to light, magnetism, and sound [62].
Ligand-conjugated organic-inorganic hybrid silica nanopar-
ticles with triggered mechanisms and stimuli responsive coun-
terparts for theranostic purposes are summarised in Tables 3
and 4, respectively. Various ligands that can specifically bind
to receptors overexpressed in cancer cells were utilized for the
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Figure 1. Two types of NIR-triggered core-shell type nanoshells; mesoporous silica core encapsulated with drug, fluorescent agent or
photothermal therapy agent covered with an NIR responsive shell and an additional outer mesoporous silica shell functionalized for
targeted delivery (A), NIR responsive core such as copper, graphene nanosheets and gold derivatives coated with mesoporous silica shell

as a drug reservoir and functionalized surface (B).

design of targeted drug delivery systems [63]. The differential
expressions of receptor proteins, residing in cytosol, organelles
or membrane are used as molecular markers. An example is the
human epidermal growth factor receptor HER2 which is overex-
pressed in ~30 % of breast cancers and used as a marker to target
breast cancer cells [64]. Overexpressed or specifically expressed
receptors in various cancer tissues and cells are reported in litera-
ture [65-70]. As receptor-ligand interactions are highly specific,
this mechanism is applied for active targeting of nanocarriers or
nanoconjugates [71].

As for stimuli responsive systems, especially Near-Infrared
(NIR) triggered multifunctional organic-inorganic hybrid silica
nanoparticles are commonly used as cancer theranostics. NIR-
triggered organic-inorganic hybrid silica drug carriers include
mainly two components; NIR absorption agents and a drug-
containing silica (mostly mesoporous) moiety, which can enable
a synergistic treatment for cancer cells via dual effects of pho-
tothermal ablation and chemotherapy [72]. Photothermal ther-
apy (PTT) employs near-infrared (NIR) laser photo-absorbers
to generate heat upon NIR laser irradiation. Indocyanine green
(ICG) is one of the fluorescent dyes used for PTT, which absorbs
NIR and converts light to heat in order to form localized hyper-
thermia in the cancerous tissue. Although ultraviolet (UV) and
visible (Vis) lights have been used as exogenous stimuli to trigger
drug release, concerns about high toxicity to healthy tissues and
low penetration depth (~10 mm) due to strong scattering abil-
ity of skin and soft tissues have limited their applications. NIR
light triggered drug delivery systems offered some advantages
such as deeper penetration, lower scattering and minimal dam-
age [73]. Gold nanorods (GNRs) as cores of nanoshells [74],
gold layers in core-shell nanoplatforms, gold nanocages [75],
graphene nanosheets [76], graphitic [77] / semi-graphitic car-
bon cores [63] and CuS nanoparticles [78,79] and some other
copper compounds [80] are the mostly studied NIR-absorbing
agents in NIR-triggered hybrid silica nanocarriers.

In an attempt to discuss NIR-triggered silica nanocarriers
in more details, core-shell structure is regarded as a common
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denominator and these nanoconjugates are reviewed in two
groups. One of the groups is represented with a mesoporous sil-
ica core and NIR-responsive shell (Fig. 1A) is generally required
as an additional outer mesoporous silica shell [81] encapsulated
with drug, fluorescent agent or photothermal therapy agent. It
is worth to mention that surface PEGylation might be required
for higher stability and ligand conjugation [64,82]. An example
to the first group of nanoconjugates is gold nanoshells (AuNS)
with a dielectric core such as silica and a metallic gold layer which
shows~ million-fold greater absorption than conventional NIR
dye, ICG [83].

The other group has a metal core and mesoporous silica shell
structure (Fig. 1B) demonstrating many advantages in compar-
ison to carbon derivative or single metal particles [76,84-86].
As an example for single metal particles, GNRs with nonporous
structures exhibit low loading capacities and limited elasticity,
restricting their applications in drug delivery [86]. But they are
still in use due to single- and two-photon induced luminescence
and longitudinal plasmonic resonance that can be tuned to near
infrared wavelengths [87]. Hence, the drug-loaded mesoporous
silica coating on the surface of this type of NIR-converting agents
improved biocompatibility, drug loading and post modifica-
tion [77]. A mesoporous silica-coated graphene nanosheet (GS)
was conjugated with a peptide for glioma targeting. The results
showed that peptide conjugation enhanced cellular uptake in
human glioma cell line, whereas normal astrocyte cells were not
affected, indicating a selective therapeutic effect [76].

Another study focused on mesoporous silica coated graphitic
carbon nanospheres conjugated with HER2 receptor specific
SP13 peptide for DOX delivery with photothermal effect of
NIR responsive graphitic carbon core on the SK-BR-3 breast
carcinoma cells. The combined effect of nanocarrier system
with NIR was remarkable with significantly lower ICs, of DOX
(10.05 pg/mL) compared to that of free DOX (124.5 pug/mL)
[77]. A similar combined chemo-photothermal therapy was at-
tempted by the design of mesoporous silica encapsulated gold
nanorods. A549 human lung adenocarcinoma epithelial cells
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were incubated with the nanocarrier loaded with DOX and
a synergistic effect was reported with lower systematic tox-
icity [86]. The multifunctional hybrid nanocarriers can en-
hance cancer therapy by providing chemo- and photothermal
therapies while allowing fluorescence imaging for diagnostic
purposes.

3 Concluding remarks

In the mid to late 1970s, the concept of polymer-drug conjugates
or “nano-therapeutics” have initiated targeted or site-controlled
drug delivery systems in nanoscopic era. The discovery of three
key technologies, PEGylation, active targeting to specific cells
by ligands or other molecules conjugated to the drug delivery
system and passive targeting to solid tumors via the EPR ef-
fect stimulated the development of polymeric and nano-sized
carriers as practical clinical applications from late 1980s to the
present [88]. Although MSNs perform well in preclinical tests,
few clinical trials are performed and there are some comprehen-
sible and essential hurdles regarding scale up of its synthesis to
required dosage for acceptable pharmacokinetic and pharma-
codynamic profiles [2]. Herein, just a few of many topics were
scrutinized related to silica based mesoporous organic-inorganic
hybrid nanocarrier systems in order to present latest develop-
ments in passive and active targeted drug delivery for cancer
therapy. As our knowledge of material and biological sciences
advances, so our ability to design more complex and multifunc-
tional nano-structures will continue to grow and MSNs have a
promising future for innovative cancer treatments.

Practical application

This review highlights the most recent advances in the use
of silica based organic-inorganic hybrid drug carriers based
on cancer therapy with different therapeutic, diagnostic
and theranostic applications. Also their novel advantages
through drug loading abilities, shape/size modifications
and sophisticated functionalization processes were criti-
cally discussed in the light of technological developments.
Multifunctionalisation techniques such as coating, graft-
ing or capping allow specific responsiveness and homing
properties to these nanocarriers. Not only passive or ac-
tive targeting offer key technologies to tumor homing and
penetrating but also photothermal therapy serves as an in-
teresting tool for selective targeting of cancerous tissues.
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