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Abstract This study focuses on the synthesis and

characterization of different generations (G0–G7) of

polyamidoamine (PAMAM) dendrimer-coated mag-

netic nanoparticles (DcMNPs). In this study, superpara-

magnetic iron oxide nanoparticles were synthesized by

co-precipitation method. The synthesized nanoparticles

were modified with aminopropyltrimethoxysilane for

dendrimer coating. Aminosilane-modified MNPs were

coated with PAMAM dendrimer. The characterization

of synthesized nanoparticles was performed by X-ray

diffraction, X-ray photoelectron spectroscopy (XPS),

Fourier transform infrared spectroscopy (FTIR), trans-

mission electron microscopy (TEM), dynamic light

scattering, and vibrating sample magnetometry (VSM)

analyses. TEM images demonstrated that the DcMNPs

have monodisperse size distribution with an average

particle diameter of 16 ± 5 nm. DcMNPs were found

to be superparamagnetic through VSM analysis. The

synthesis, aminosilane modification, and dendrimer

coating of iron oxide nanoparticles were validated by

FTIR and XPS analyses. Cellular internalization of

nanoparticles was studied by inverted light scattering

microscopy, and cytotoxicity was determined by XTT

analysis. Results demonstrated that the synthesized

DcMNPs, with their functional groups, symmetry

perfection, size distribution, improved magnetic prop-

erties, and nontoxic characteristics could be suitable

nanocarriers for targeted cancer therapy upon loading

with various anticancer agents.
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Abbreviations

MNPs Magnetic nanoparticles, magnetite, Fe3O4

DcMNPs Polyamidoamine (PAMAM) dendrimer-

coated magnetic nanoparticles (DcMNPs)

APTS Aminopropyltrimethoxysilane

XRD X-ray diffraction

FTIR Fourier transform infrared spectroscopy

TEM Transmission electron microscopy

DLS Dynamic light scattering

TGA Thermal gravimetric analysis

VSM Vibrating sample magnetometry

MS Saturated magnetization
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Introduction

Magnetic particles (microspheres, nanospheres, and

ferrofluids) are widely studied for their applications in

biology and medicine such as enzyme and protein

immobilization, magnetic resonance imaging (MRI),

RNA and DNA purification, magnetic cell separation,

and magnetically controlled delivery of anticancer

drugs, as well as hyperthermia (Matsunaga et al. 1999;

Bazylinski 1996; Taylor et al. 2000; Mornet et al.

2000; Reetz et al. 1998). These magnetic particles are

generally composed of magnetite (Fe3O4) core and a

polymeric shell where the drugs, nucleic acids, and

proteins are bound. The shells such as dendrimers,

dextran, PEG, and chitosan must be biocompatible,

and possess active groups which can be conjugated to

biomolecules such as proteins, enzymes, and drugs

(Arias et al. 2001; Shimomura et al. 2003; Tanyolaç

and Özdural 2000). Dendrimers are a relatively novel

class of polymers with a well-defined, three-dimen-

sional structure and are being used for modifying iron

oxide magnetic nanoparticles (MNPs). The buildup of

functional groups, symmetry perfection, nanosize, and

internal cavities on dendrimer-modified MNPs makes

them suitable for applications in gene therapy and

cancer therapy.

Dendrimer-modified MNPs are good nonviral syn-

thetic vectors and have the advantages of safety,

simplicity of use, and ease of mass production

compared with viral vectors which have inherent risk

in clinical applications. They are synthesized through

different cycles or ‘‘generations’’ by adding branched

monomers that react with the functional groups of the

core such as iron oxide nanoparticles after which the

free end groups of monomers can further react. Thus,

the number of terminal groups will increase after each

generation of the synthesis (Pan et al. 2007; Gao et al.

2005; Acharya et al. 2009). Many commercial small

molecule drugs with anticancer, anti-inflammatory,

and antimicrobial activities have been successfully

associated with dendrimers such as poly(amidoamine)

(PAMAM), poly(propyleneimine), and poly (ethe-

rhydroxylamine), either via physical interactions or

through chemical bonding (Svenson 2009). Dendri-

mers offer well-defined nanoscale architecture, mul-

tivalency, and structural versatility, leading to their

emergence as a promising class of nanobiomaterials

(Lee et al. 2005). One class of the dendrimers,

PAMAM dendrimers, have been utilized as carriers

of antiviral or anticancer agents and in vivo imaging

molecules (Svenson and Tomalia 2005; Esfand and

Tomalia 2001; Duncan and Izzo 2005). When PA-

MAM dendrimers are used as drug carriers, they can

enhance the biodistribution of drugs and possibly take

advantage of enhanced permeation and retention

effect for targeting tumors (Sato et al. 2001; Malik

et al. 2000; Matsumura and Maeda 1986). In addition,

it was demonstrated that the dendrimer surfaces can be

modified with ligands to target specific tissues and

tumors, thus capable of active receptor targeting

(Kukowska-Latallo et al. 2005). The dendritic carriers

should eventually release the drugs loaded onto them

in a well-defined and favorable rate. The release rates

are dependent on the type of chemical bond between

the drug and its carrier as well as the nanoscale

structure of the dendrimer conjugate and steric effects.

Several dendrimers have been investigated as drug

carriers for various cancer drugs (Malik et al. 1999;

Zhuo et al. 1999; Gurdag et al. 2006; Lee et al. 2006).

PAMAM dendrimers are hydrophilic, biocompatible,

monodisperse, and cascade-branched macromolecules

with highly flexible surface chemistry that facilitates

functionalization (Stiriba et al. 2002; Shukla et al.

2005; Hong et al. 2004; Thomas et al. 2004). They can

be used as uniform scaffolds carrying multiple copies

of biologically relevant molecules without interfering

with the components’ functions (Esfand and Tomalia

2001; Majoros et al. 2003). The PAMAM coating

reduces magnetite agglomeration, and the increased

cationic contribution will be useful for generating a

colloidal suspension with increased surface area (Liu

et al. 2011). PAMAM dendrimers can introduce a

dense outer amine shell through a cascade-type

generation (Tomalia et al. 1985). The terminal amine

groups of PAMAM dendrimers can be modified and

linked with various biomolecules such as drugs,

vitamins (folic acid, biotin etc.), antibodies, and

imaging agents (Takeda et al.2003; Shukoor et al.

2007; Menjoge et al. 2010). In general, dendrimers

possess empty internal cavities and can encapsulate

different drug molecules (Hansson and Edfeldt 2005;

Du et al. 2000). It was well established that the

conjugation of special targeting moieties to dendri-

mers can lead to preferential distribution of the cargo

in the targeted tissue or cells.

In this study, various generations of dendrimer-

coated magnetic nanopartices were synthesized and

they were characterized by XRD, FTIR, TEM, VSM,
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XPS, and DLS analyses. Cellular internalization and

cytotoxic properties of the nanoparticles were also

reported. The results demonstrated that the synthe-

sized nanoparticles could be promising carriers for

anticancer agents in targeted cancer therapy.

Experimental

Materials

Ferric chloride hexahydrate (FeCl36H2O), ferrous

chloride tetrahydrate (FeCl24H2O), 32 % ammonia

solution (NH3), 3-aminopropyltrimethoxysilane (NH2

(CH2)3–Si–(OCH3)3, APTS), methyl acrylate, metha-

nol, ethanol, and ethylenediamine were purchased

from Sigma Aldrich.

Preparation of magnetic nanoparticles

The MNPs (Fe3O4) were prepared with a minor

modification of co-precipitation method. 1.6133 g

FeCl24H2O and 2.6279 g FeCl36H2O (Fe2
?, Fe3

? =

1:2) were dissolved in 150 ml of distilled water under

nitrogen environment, and 35 ml of ammonia solution

was added slowly with vigorous stirring mechanically

at 2000 rpm for 2 h. During the reaction, temperature

was kept at 90 �C. The black precipitate was washed

five times with distilled water and five times with

ethanol using magnetic separation. The obtained iron

oxide nanoparticles were dispersed in ethanol at 5 g l-1

(Pan et al. 2007; Gao et al. 2005, Unsoy et al. 2012).

Preparation of APTS-coated magnetic

nanoparticles

Surface modification of Fe3O4 was performed with

3-aminopropyltrimethoxysilane (APTS). Ethanol

(125 ml) was added into the 25 ml of Fe3O4-ethanol

solution (5 g l-1) and sonicated with ultrasonicator

(Bandelin Sonopuls ultrasonic homogenizer

HD 2200) for 30 min, and 10 ml APTS was added

to the mixture at the 20th min of sonication. Then, the

mixture was stirred with mechanical stirrer at room

temperature for 15 h. The resulting black precipitate

was separated by magnetic decantation and washing

with methanol for several times. The obtained nano-

particles modified with APTS are called G0 generation

(Pan et al. 2007; Gao et al. 2005).

Surface coating using PAMAM dendrimer

Surface coating of G0 generation of nanoparticles

was carried out with PAMAM dendrimer through

Michael reaction. Methyl acrylate/methanol solution

(20 %, v/v) was added (200 ml) to the obtained G0

generation, and the suspension was sonicated in an

ultrasonic water bath at room temperature for 7 h.

After ultrasonication, nanoparticles were eluted by

magnetic decantation and washed with methanol.

Ethylenediamine methanol solution (50 %, v/v) was

added (40 ml), and suspension was sonicated for 3 h.

The particles were washed with methanol. The

stepwise growth of dendrimers was repeated, until

the preferred number of generation (G1–G7) was

achieved using the methyl acrylate and ethylenedi-

amine (Fig. 1). The product was then washed three

times with 25 ml methanol and five times with 25 ml

water by magnetic decantation (Pan et al. 2007; Gao

et al. 2005).

Cellular internalization of dendrimer-coated

magnetic nanoparticles

The internalization of dendrimer-coated iron oxide

nanoparticles were shown by light and confocal

microscopy. The nanoparticles were incubated with

breast cancer MCF-7 cell lines in 6 well plates. After

24 h incubation, the medium was removed from the

plates and the plates were washed with PBS for

several times so that all free DcMNPs were removed

from the environment. Their photographs were taken

under an inverted optical microscope to determine

cellular internalizations of DcMNPs (Wuang et al.

2007; Mahmoudi et al. 2009). In addition,

G4DcMNPs were conjugated with fluorescein isothi-

ocyanate (FITC) in EDC/NHS solution which were

applied onto the MCF-7 cells. The conjugation

process was carried out using the surface activation

method by EDC–NHS chemistry (Acharya et al.

2009). 20 mg EDC and 4.6 mg NHS were dissolved

in 2 ml of PBS (pH 5.8) followed by the addition of

100 ll of FITC in the suspension. After 2 h,

5 mg ml-1 of G4DcMNPs was added to the above

solution and left to remain at 4 �C under continuous

magnetic stirring for over night. Then, product was

washed three times with PBS by magnetic decanta-

tion. The resultant FITC-conjugated MNPs were

visualized by confocal microscopy.
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Cytotoxicity of dendrimer-coated magnetic

nanoparticles

MCF-7 cells were grown in 75-ml culture flasks in

RPMI/1640 medium supplemented with 10 % FBS,

and 0.2 % gentamycin solution at 37 �C under 5 %

CO2. The cells were subcultured 2–3 times per week

with 0.25 % trypsin–EDTA. Antiproliferative effects

of dendrimer-coated nanoparticles on MCF-7 cells

were evaluated by means of the Cell Proliferation

Kit (Biological Industries) according to manufac-

turer’s instructions. Assay was a colorimetric test

based on the reduction tetrazolium salt, XTT, to

colored formazan products by mitochondria of live

cells. Then, XTT reagent was added, and soluble

product was measured at 500 nm with an Spectromax

340, 96-well plate reader (Molecular Devices, USA).

Results

Synthesis of magnetic nanoparticles

Temperature of the reaction system and ammonia

addition rates are two important factors that influence

the synthesis of MNPs. In order to synthesize nano-

sized, crystalline, bare iron oxide particles, these

two parameters were tested. Iron oxide nanoparticles

synthesized at different temperatures between 20

and 90 �C. XRD results demonstrated that the

nanoparticles with preferred crystalline structure were

obtained at 90 �C. The time of ammonia addition was

also optimized. When the ammonia was added very

slowly, smaller nanocrystals were synthesized, so that

the size can be adjusted.

Aminosilane modification of nanoparticles

Optimizing sonication time during aminosilane mod-

ification improves magnetic properties and size dis-

tribution. Bare nanoparticles were modified with

APTS to prepare them for dendrimer coating. The

sonication time was optimized to obtain DcMNPs with

desired size and shape. The magnetic properties of

APTS-modified nanoparticles were improved when

the time of sonication was increased from 10 to

30 min, and APTS was added to the reaction at the

20th min of sonication. Optimizations in aminosilane

modification method decreased the agglomeration of

nanoparticles, resulted in the synthesis of DcMNPs

with desired size distribution, and improved magnetic

properties.

X-ray diffraction analysis (XRD)

Bare iron oxide nanoparticles synthesized at different

temperatures between 20 and 90 �C, and X-ray

powder diffraction analyses of synthesized nanopar-

ticles were performed to identify the crystal structure.

It was observed that the highest crystalline structure

Fig. 1 Stepwise modification of iron oxide nanoparticles with APTS, dendrimer-coating processes
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was achieved at 90 �C. Up to 50 �C, the synthesized

iron oxide nanoparticles show amorphous or noncrys-

talline solid characteristics. At temperatures greater

than 50 �C, the nanoparticles started to show crystal-

line characteristics. XRD pattern of Fe3O4 nanoparti-

cles synthesized at 90 �C appeared with diffraction

peaks of (220), (311), (400), (422), (511), (440), and

(533), which are the characteristic peaks of the

magnetite crystal having a cubic spinal structure.

Coating of nanoparticles with PAMAM dendrimers

G5–G7 did not change the characteristic XRD pattern

(Fig. 2).

Fourier transform-infrared spectroscopy (FT-IR)

FTIR results related to bare MNP, MNP-APTS, and

G1–G7 generation of dendrimer-modified MNPs are

given in Fig. 3.

The presence of Fe3O4 core could be identified by

the strong stretching absorption band between 408 and

673 cm-1, which correspond to the Fe–O bond of

nanoparticles (Julian et al. 1991).

IR analysis of aminosilane, methanol, and methyl-

acrylate were seperately performed (data not shown).

Considering magnetite (Fe3O4) Fe–O group bond

observed at 570 cm-1 which corresponds to intrinsic

stretching vibration of the metal at tetrahedral site

(Fetetra–O). The vibration of NH2 group is at around

3410 cm-1. The stretching vibration of Si–O–Fe is

at 950 cm-1, which shifts to about 1050 cm-1 for G7

nanoparticles because of the presence of highly

electronegative –CO–NH2 groups. C–H bonds present

in methylacrylate, aminosilanes, and methanol, and

the related bonds, can be seen at 2840, 3910, and

3010 cm-1, respectively. Vibration of –CO–NH–

bonds were observed at 1450, 1490, 1530, and

1620 cm-1. O–H bonds related to alcohols were at

3200–3600 cm-1 [32]. FT-IR spectra is compatible

with the stepwise dendrimer modification process.

Transmission electron microscopy analysis (TEM)

It is known that the size distribution smaller than

30 nm is the characteristics of superparamagnetic iron

oxide nanoparticles. On analyzing the TEM results

(Fig. 4), it was understood that the sizes of obtained

bare iron oxide MNPs were 8 ± 5 nm. This shows that

the synthesized MNPs are potentially superparamag-

netic. However; in order to confirm this, vibrating

sample magnetometer analysis was done.

TEM image of aminosilane-modified nanoparticles

demonstrated that the size distribution of aminosilane-

modified MNPs was more uniform. The size change

was around 1 nm after modification with aminosilane

which was observable on the surface of nanoparticles.

Dynamic light scattering analysis (DLS)

The average diameters of bare MNPs were found as

55 ± 15 nm in DLS measurements (Fig. 5a). The

average diameters of the dendrimer-coated MNPs

(G7DcMNP) were 45 ± 10 nm in DLS measurements

(Fig. 5b).

Zeta (f) potential analysis

The f potential values of bare MNPs were calculated

as -23.2 mV in PBS buffer pH 7.2. The f potentials of

Fig. 2 X-Ray powder diffraction of Fe3O4 and Fe3O4-APTS nanoparticles
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G5DcMNPs and G7DcMNPs were observed at ?15.1

and ?20.9 mV, respectively.

Vibrating sample magnetometer analysis (VSM)

The applied magnetic field was changed and magne-

tization properties of synthesized Fe3O4, aminosilane-

modified MNPs, and DcMNPs were measured at 25

and 37 �C. Magnetization curves of the MNPs, APTS-

modified MNPs, and DcMNPs at 37 �C are given in

Fig. 6. Magnetic materials showing a superparamagnetic

behavior have zero value of remanence and coercivity.

The remanence and coercivity observed in the hysteresis

loops of MNPs, APTS-coated MNPs, and DcMNPs both

at 25 and 37 �C were negligible. VSM results of bare

MNPs analyzed at 25 and 37 �C were obtained as 54.5

and 48.8 emu g-1 respectively.

In order to determine the magnetic characteristics

of synthesized nanoparticles, VSM analysis was done

at body temperature and room temperature. The

maximum magnetization were found to be 48.8,

61.4, 53.4, and 51.1 emu g-1 for MNP, APTS-coated

Fig. 3 FT-IR results related to MNP, MNP-APTS, and G1–G7 generations of dendrimer-modified magnetic nanoparticles

Fig. 4 The sizes of obtained G7 generation DcMNP were 16 ± 5 nm. The change of the size after dendrimer modification was around

8 nm
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MNP, DcMNPsG5, and DMMNsG7, respectively, at

37 �C. The maximum magnetizations at room tem-

perature were found to be 54.5, 56.5 and 49.5 emu g-1

for MNP, APTS-coated MNP and DMMNsG5, respec-

tively (data not shown) .

Thermal gravimetric analysis (TGA-FTIR)

The TGA curve of bare, aminosilane-modified and

dendrimer-coated MNPs (Fig. 7) shows that the

weight loss of bare MNPs over the temperature range

Fig. 5 Dynamic light scattering graphs of bare MNPs (a) and G7DcMNPs (b)

Fig. 6 Magnetization curve of the MNPs, APTS-modified MNPs, and DcMNP at 37 �C
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from 30 to 850 �C is about 3.5 % which might be

because of the loss of residual water in the sample. In

aminosilane-modified MNPs, the weight loss is about

5 % which reflects the amount of APTS at the surface

of nanoparticles (1.5 % aminosilane and 3.5 % water

loss in the sample). The fifth (G5DcMNP) and seventh

(G7DcMNP) generations of dendrimer-coated MNPs

had 22 and 27 % weight losses, respectively, indicat-

ing the amount of PAMAM dendrimer layers on the

surfaces of nanoparticles.

TGA analysis shows that there was an increase in

the organic content of MNPs when the growth of the

PAMAM dendrimer was increased to higher

generations.

X-ray photoelectron spectroscopy (XPS)

Qualitative and quantitative surface characterizations

of synthesized bare MNP, G0, G5, and G7 nanoparti-

cles have been done by X-ray photoelectron spectros-

copy (XPS). Figure 8 shows the general XPS scanning

spectra of bare MNP, G0, G5, and G7 nanoparticles.

The peaks obtained upon XPS analysis were belonging

to Si 2p (100.3 eV), C 1s (284.2 eV), N 1s (398.2 eV),

O 1s (528.5 eV), and Fe 2p (710.3 eV). N 1s and Si 2p

peaks belonging to nitrogen and silane were not

present in the spectrum of bare MNPs as expected.

The regional XPS scans were also performed for the

quantitative analyses of various atoms (Si, N, C, O,

and Fe) found in nanoparticles. As seen in Fig. 8, there

was a decrease in the oxygen (O 1s) and iron (Fe 2p)

contents in G0, G5, and G7 nanoparticles due to the

increase in the thicknesses of PAMAM layers at the

surfaces of nanoparticles. The peaks of Si 2p

(100.3 eV) and Fe 2p (398.2 eV) were observed in

the nanoparticles after the aminosilane modification.

During the synthesis of each generation of dendrimer

at the surface of the nanoparticles, ramifying occurs,

which results in an exponential increase on the amount

of free surface atoms. The exponential increase of

nitrogen and carbon atoms were observed in XPS

spectra of G0, G5, and G7 nanoparticles. The amount of

nitrogen and carbon at the surface of G0, G5, and G7

dendrimer-coated nanoparticles were counted as 4.6,

6.9, and 10.7 % for nitrogen; and 18.6, 27.6, and

42.8 % for carbon, respectively (Table 1). These

results demonstrate that the PAMAM dendrimer

coating was achieved successfully.

Cellular internalization of dendrimer-coated

magnetic nanoparticles

It was demonstrated by inverted light microscopy that

while none of the bare MNPs was taken up by the cells,

most of the DcMNPs were internalized (at 37 �C, 2 h).

G4DcMNPs containing MCF-7 cells are shown in

Fig. 9. Moreover G4DcMNPs were conjugated with

FITC (fluorescein isothiocyanate). The resultant

FITC-conjugated MNPs were visualized by confocal

microscopy (Fig. 10).

The results are promising because nanoparticles

can be internalized into the cells even if they are

applied at low concentrations and cell viability was not

affected. Cellular internalization was carried out at

five different concentrations of DcMNPs.

Fig. 7 The TGA curve of bare, aminosilane-modified, and

dendrimer-coated MNPs

Fig. 8 General XPS scanning spectrum belonging to the

surfaces of bare MNP, G0, G5, and ve G7 nanoparticles
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Cytotoxicity of dendrimer-coated nanoparticles

Cytotoxicity of DcMNPs was investigated by XTT

cell proliferation assay. Survival rates indicated that

there is no significant cytotoxic effect of the nanopar-

ticles on MCF-7 cells.

Discussion

In this study, bare iron oxide nanoparticles were

synthesized and coated with PAMAM to obtain

different generations (G1–G7) of DcMNPs. Different

parameters were optimized to synthesize DcMNPs

with desired properties suitable for biomedical appli-

cations and drug delivery.

Bare nanoparticles were synthesized at different

temperatures and different rates of ammonia addition.

X-ray diffraction analysis proved that the synthesized

MNPs at 90 �C were corresponding to the character-

istics of pure magnetite crystal (Fe3O4) having a cubic

spinel structure (Fig. 2).

In the FT-IR spectrum of synthesized MNPs (Fig. 3),

Fe–O bond was observed at 570 cm-1 belonging to

magnetite (Fe3O4). The stretching vibrations of Si–O–

Fe and –CO–NH– bonds were observed at 980 and

1620 cm-1 after aminosilane modification. In dendri-

mer-coated MNPs; stretching vibration of Si–O-Fe

shifts to left side around 1020 cm-1 for G7 nanoparticles

because of the presence of highly electronegative -CO-

NH2 groups. The new bonds of –CO–NH– were

observed after synthesis of each dendrimer generations.

Additional peaks were observed for vibrations of –CO–

NH– in G1DcMNP at 1720 cm-1, G2DcMNP at

1530 cm-1, and G3DcMNP at 1450 cm-1 (Julian

et al. 1991). FT-IR spectra of magnetite, aminosilane-

modified magnetite, and different generations of den-

drimer-coated magnetite nanoparticles were compatible

with the stepwise aminosilane modification and dendri-

mer-coating processes.

The particle sizes of iron oxide nanoparticles and

dendrimer-coated nanoparticles visualized by TEM

were in the range 3–13 and 11–21 nm, respectively

(Fig. 4). The size change of G1DcMNP was around

8 nm after coating with PAMAM dendrimer. It was also

demonstrated that the diameters of PAMAM dendri-

mers increase systematically at a rate of approximately

1 nm per generation (Svenson and Tomalia 2005).

The hydrodynamic diameters of dendrimer-coated

nanoparticles were obtained as 45 ± 10 nm with a

Table 1 Atomic percentage changes in bare iron oxide, aminosilane-modified, G5 and G7DcMNPs

MNP Fe304 (%) G0DcMNP (%) G5DcMNP (%) G7DcMNP (%)

N ls (% of nitrogen atom) 0 4.6 6.9 10.7

C ls (% of carbon atom) 18.2 18.6 27.6 42.8

Fe 2p3 (% of iron atom) 21.6 21.5 18.7 11.8

Ol s (% of oxygen atom) 60.2 54.2 46.0 34.2

Si 2p 0 1.1 0.8 0.5

Fig. 9 Cellular internalization of dendrimer-coated magnetic nanoparticles by inverted light scattering microscopy (940)
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smaller size distribution than the value obtained for

bare nanoparticles, which is 55 ± 15 in DLS mea-

surements. The higher value of average size obtained

in DLS (compared to TEM) arises because DLS

measures the hydrodynamic radii of the particles,

which include the solvent layer at the interface

(Rahman et al. 2012).

The agglomeration rate was very high in the bare

Fe3O4 nanoparticles, which was also observed in DLS

results and TEM images. The agglomeration occurs by

the Van der Waals forces between the nanoparticles

(Hoa et al. 2009). One of the effective approaches for

preventing particle agglomeration is to coat nanopar-

ticles with polymers or other targeting agents, such as

dendrimers taking into account their biocompatibility

(Durmus et al. 2009). Since the dispersity of nanopar-

ticles was improved after the aminosilane modification

and dendrimer-coating processes, the agglomeration

of dendrimer-coated nanoparticles was expected to

be reduced (Hoa et al. 2009). A PAMAM coating

was used to reduce magnetite agglomeration. The

agglomeration of DCMNPs was reduced by increasing

dendrimer layers at the surface of bare MNPs as

observed in DLS and TEM results (Uzun et al. 2010) .

The f potential values of bare MNPs were calcu-

lated as -23.2 mV in PBS buffer pH 7.2, because of

the plentiful OH- ions. The f potential values of

G5DcMNPs and G7DcMNPs were observed at ?15.1

and ?20.9 mV, respectively. This increase in f
potential value is due to increase in positive charge

of –NH3
? on the MNP surface through dendrimeriza-

tion which also proves the success of PAMAM-

coating process (Pan et al. 2007).

Magnetic saturation value of the MNPs decreases

as the size increases (Fig. 6), which agrees with the

literature (Rahman et al. 2012).The decrease in the

magnetic properties of the larger particles would be

due to the increase in the volume/surface ratio in larger

particles. Normally, we expect a reduction in magne-

tization of MNPs after modification with APTS.

However, 5 % increase in magnetization of APTS-

modified MNPs was observed when the magnetization

Fig. 10 Cellular internalization of FITC binding dendrimer-coated magnetic nanoparticles by confocal microscopy (940)
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time was 10 min. Increasing the sonication time to

30 min and addition of APTS at the 20th min of

sonication 20.5 % increase in magnetization was

found. Increasing the time of ultrasonication and

addition of APTS during sonication prevented the

agglomeration of nanoparticles which resulted in the

improvement of magnetic properties and size distri-

bution. VSM results of bare MNPs analyzed at 25

and 37 �C were obtained as 54.5 and 48.8 emu g-1,

respectively, which indicates a 10 % reduction in the

magnetic strength of MNPs at body temperature.

The TGA curves of bare MNPs, G0DcMNPs,

G5DcMNPs, and G7DcMNPs points out the weight

loss of nanoparticles at high temperatures (Fig. 7).

The results indicate that 17 % of the sample mass

belongs to the dendrimer coating of fifth generation.

Similarly, 22 % of the sample mass belongs to

dendrimer coating of seventh generation. The increase

in the organic content of nanoparticles observed in

TGA analyses were the evidence of dendrimer growth

when the PAMAM dendrimer coating was increased

from G5 to G7.

General XPS scanning spectra of bare MNPs,

G0DcMNPs, G5DcMNPs, and G7DcMNPs demon-

strated that peaks belonging to nitrogen and silane

were not present in the spectrum of bare MNPs. These

peaks were observed after aminosilane modification

(Fig. 8).

In the regional XPS scanning spectra of

G0DcMNPs, G5DcMNPs, and G7DcMNPs, the

amounts of iron, oxygen, and silisium decrease, while

the amounts of nitrogen and carbon increase expo-

nentially throughout the dendrimer-coating process.

The decrease in the levels of iron, oxygen, and silisium

atoms was due to the increase of the thickness of

PAMAM layers at the surface of the nanoparticles.

The inverted light microscopy images demon-

strated that DcMNPs were successfully taken up by

MCF-7 cells, even at low concentrations (Wuang et al.

2007; Mahmoudi et al. 2009). The main mechanism

for the cellular internalization of MNPs is probably

endocytosis (Gupta and Wells 2004).

MCF-7 cells were treated with bare iron oxide

nanoparticles, and DcMNPs. Bare iron oxide nano-

particles were not taken up by the cells because of their

negative surface charge coming from the abundant

OH- ions which was also demonstrated by Pan et al.

(2007). After MNPs were modified with different

generations of PAMAM dendrimers, the positive

charge increases with respect to the generation number

because of the increasing amount of –NH3
? on the

nanoparticle surface. XPS results showed that the

amount of positively charged amine groups on the

surface of DcMNPs was increased by dendrimer

coating (Fig. 8). Positively charged DcMNPs will be

easily attached to negatively charged cell membrane

which will result in increased rate of cellular internal-

ization. (Figs. 9, 10). In the literature, there are

parallel reports (Thorek and Tsourkas 2008; Slowing

et al. 2006).

The performed cytotoxicity assays demonstrated

that G7DcMNPs and G4DcMNP were nontoxic up to

120 and 250 lg ml-1 concentrations, respectively.

The lower toxicity of G4DcMNP was due to the fewer

number of amine groups at the surface compared with

G7DcMNPs (Table 1). High generations of DcMNPs

having abundant functional groups are usually used

for ds RNA and oligo nucleotide delivery systems

(Boas et al. 2001; Svenson and Tomalia 2005).

Pan et al. (2007) demonstrated that G5DcMNPs

could efficiently be used as delivery system for

antisense surviving oligodeoxynucleotide (asODN)

at 25 ug ml-1 concentration in cancer therapy. The

toxicity observed at higher generations can be reduced

by binding with such ligands. The lower generations

of DcMNPs were generally used as drug delivery

systems because of their highly branched and multi-

cavity structures. Furthermore, the free amine func-

tional groups in drug-loaded DcMNPs can be modified

with different molecules like folic acid (Thomas et al.

2005) and PEG (Tang et al. 2012; Singh et al. 2008) to

reduce their cytotoxicity.

The synthesis of DcMNPs for biomedical purposes

such as targeted drug delivery is a fairly novel subject.

Pan et al. (2005) have synthesized dendrimers up to

generation levels of 3.5, 4, and 5. However, they did

not perform a detailed investigation on the character-

izations and cellular internalizations of nanoparticles.

In this study, generation levels of dendrimer up to 7

were synthesized and studied. Also, a detailed inves-

tigation was performed for characterization of the

dendrimer-coated nanoparticles by XRD, XPS, FTIR,

TEM, DLS, f potential, VSM, and TGA-FTIR anal-

yses. The cellular internalizations of nanoparticles

were also examined by inverted light and confocal

microscopy. The synthesis optimization and detailed

characterizations on different generations of dendri-

mer-coated nanoparticles have not been reported in
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the literature before. The synthesized dendrimers at

different generations can be used for various purposes

such as targeted drug delivery, MRI, or hyperthermia.

For example, smaller generations of dendrimers can be

used as drug carriers, and the greater generations can

be used to carry DNA and siRNA molecules by their

rigid surface characteristics (Svenson and Tomalia

2005).

It was demonstrated that the synthesized PAMAM

coated iron oxide nanoparticles could be suitable as

potent drug delivery and magnetic targeting systems

when loaded with therapeutics such as anticancer

agents. In future studies, the anti cancer agents would

be loaded to these MNPs, and drug release, stability,

and targetting properties would be evaluated by

in vitro and in vivo studies. These MNPs could also

be used in chemical separation processes such as

protein purifications (Uzun et al. 2010), and environ-

mental pollution control studies(Chou and Lien 2011).
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