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Abstract Through the rapid development of the watersheds
in Turkey with projects developed by incorporated compa-
nies, a problem has arisen of how to operate a cascade reser-
voir system composed of state- and private sector-owned res-
ervoirs in terms of the volume and timing of water releases to
meet downstream water demands. This study presents a
catchment-based optimization model based on inflow forecast
with frequent updating for the integrated operation of hydro-
power plants under various sales methods. The model is for-
mulated in terms of nonlinear programming (NLP) on a
monthly basis for a 1-year period to assess the production
strategies of the system reservoirs for that year. This model
provides the basic constraints on the reservoir volume for
daily and hourly optimization procedures. Forecasted flows
are generated using seasonal autoregressive integratedmoving
average (ARIMA) models based on historical flow values.
The proposed model is tested on the Garzan Hydropower
System using historical, mean, and forecasted flow values.
The results show that the integrated operation plan and im-
provement in the accuracy of inflow forecasts yield economic
benefits as a consequence of optimal reservoir operation.
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Introduction

Growing external energy dependence and rising oil prices are
encouraging Turkey to turn to renewable energy, especially
hydropower. In this context, the Electricity Market Law No.
4628 and the revised establishment law of the General
Directorate of State Hydraulic Works (DSI) No. 6200 gave
rise to a new era in the Turkish energy market by transferring
the operational rights of existing, under-construction and
planned hydropower plants to the private sector and by allo-
cating water rights licenses for the development of new pro-
jects for electricity production. Today, through the rapid de-
velopment of the watersheds with the projects developed by
incorporated companies, the problem has arisen of how to
operate a cascade reservoir system composed of state- and
private sector-owned reservoirs in terms of the volume and
timing of water releases to meet downstream water demands.

Power generation companies can sell their electricity
through bilateral contracts, the renewable energy sources sup-
port mechanism or the day-ahead market operated by the
Market Financial Settlement Center (PMUM). Companies
have to report their choices of sales method to the Energy
Market Regulatory Authority each year. The day-ahead mar-
ket is the main structure of the energy trade. Producers that
prefer to sell electricity on the day-ahead market report their
hourly expected production plans to PMUM.Appropriate pre-
dictions for the short-term productions of power plants con-
tribute not only to ensuring the system energy balance but also
to the profits of companies (Demirdizen 2013).

However, in most of the cascade hydropower systems in
the country, a single-reservoir simulation model is employed
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in the operation of each of the system reservoirs. These model
applications are performed with limited knowledge of the
short- and long-term operation strategies of the upstream
schemes. The administration’s influence and control over the
basins have loosened as a result of the increasing number of
stakeholders involved. The conflicts related to the operation of
reservoirs have become increasingly intense with the commis-
sioning of new power plants and irrigation schemes. The sit-
uation has resulted in a growing need for an integrated and
holistic approach to basin planning and management.

In recent years, basin-wide water resources management
tools have been developed for the simulation and optimi-
zation of reservoir operations, such as IRAS (Interactive
River-Aquifer Simulation), TERRA (Tennessee Valley
Authority Environment and River Resource Aid),
CTIWM (Coo l i ng Techno logy In s t i t u t e Wa t e r
Management), and RiverWare (Ito et al. 2001). However,
these general packages have limited capability in terms of
the development of optimal operation policies and water
allocation schemes for most site-specific systems
(Karamouz et al. 2005). Hence, there is a need to develop
site-specific tools to generate decisions in operational man-
agement (Rani and Moreira 2010).

Huysentruyt et al. (1996), Karamouz and Zahraie
(1996), and Shim et al. (1996) developed decision support
systems for power systems in New England, Iran, and
South Korea, respectively. Peng (1998) developed a math-
ematical model for the real-time operation optimization of
the West Branch Penobscot River System in the state of
Maine of the USA. Barros et al. (2003) formulated a
monthly optimization model, called SISOPT, for the
management and operation of the Brazilian Hydropower
System. Karamouz et al. (2005) presented a system for the
monthly operational planning of multipurpose reservoirs
in the Dez and Karoon River System in Iran.

This study presents a reservoir system optimization
model formulated in terms of nonlinear programming
(NLP) for the integrated operation of hydropower plants
under various sales methods in the Turkish energy mar-
ket. The key components of the model are database
management, inflow modeling and forecasting, optimiza-
tion and reservoir operation using inflow forecasts with
frequent updating. The assigned system integrates a da-
tabase with basic hydrological, topographical, and tech-
nical information to execute the optimization algorithm.

The proposed model is tes ted on the Garzan
Hydropower System using historical, mean, and forecasted
flow values for the dry and rainy seasons to analyze its
limits and effectiveness in operational management.
Moreover, the system reservoirs are operated sequentially
using the historical data sets to verify the performance of
the integrated operation algorithm against the single-
reservoir simulation procedure.

Integrated reservoir system optimization model

Several classical optimization and computational intelligence
techniques, such as linear programming, dynamic program-
ming, nonlinear programming, evolutionary computations,
fuzzy set theory, and artificial neural networks, have been
developed and applied for the management and operations
of reservoir systems over the last three decades. Labadie
(2004), Rani and Moreira (2010), Wurbs (1993), and Yeh
(1985) provided comprehensive literature reviews of the the-
ories and applications of these algorithms in the context of
reservoir operation models.

The proposed integrated reservoir system optimization
model is formulated in terms of NLP. Although reaching the
global optimum is a challenge in NLP, this technique offers
the most general formulation of the nonlinear and complex
relationships between physical and hydrological variables
(Rani and Moreira 2010; Yeh 1985). NLP-based methodolo-
gies have additional flexibility with respect to constraint qual-
ifications. This advantage can be put to use in the case of
larger, more complex, nonlinear programming problems to
obtain well-defined solutions. However, to date, there have
been few applications of this technique to hydropower gener-
ation because of its extreme computational requirements
(Ahmed and Lansey 2001; Kameswaran and Biegler 2008;
Rani and Moreira 2010).

The optimization model is established on a monthly basis
for a 1-year period to assess the production strategies of the
system reservoirs for that year. The suggested system provides
the needed 1-year optimal operation policy to make the choice
of sales method and the basic constraints on reservoir volume
for daily and hourly real-time optimization procedures. The
model uses the maximization of income, which is the product
of produced energy and energy price, as its objective. Energy
production is formulated as a function of net head, power
release, and system efficiency, as detailed in Table 1. The
constraint set includes flow continuity, turbine capacity, spill-
way capacity, minimum release, minimum energy production,
minimum storage, and reservoir capacity, as listed in Table 2.
The distinct feature of the present model that differs from
other studies to date is the calculation of the energy production
of a cascade hydropower system using inflow forecast with
frequent updating. The model uses the advantage of NLP in
the formulation of the energy production considering the real-
istic turbine efficiency and net head values in each time step of
the operation period.

Forecasted inflow values are generated using seasonal
autoregressive integrated moving average (ARIMA) models
based on the historical flow values. ARIMA models have
been extensively used for time series forecasting based on
only past streamflow values (Maier and Dandy 2000).
Fernandez and Vega (2009), Huang et al. (2004), Modarres
(2007), Muhamad and Hassan (2005), Wang et al. (2009), and
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Yurekli et al. (2004) provided comprehensive literature re-
views of the applications of these models in the context of
water resources time series.

Integrated system operation optimizations are performed
with these forecasted inflow values for each month of the
operation period. The states of the system reservoirs are up-
dated at the beginning of each month based on the observed
inflow values of the previous month. If the observed inflow
value for a reservoir is lower than its forecasted amount, the
spillway release, if any, and then the storage level are de-
creased at first with the difference of the forecasted and ob-
served flow amounts. In this case, if the changed storage level
remains below its minimum value, the optimized power re-
lease is decreased until the minimum storage constraint is
satisfied. Conversely, if the observed inflow value is higher
than its forecasted amount, the storage level is increased by the
difference of the observed and forecasted flow amounts. If the
increased storage level remains above its maximum value, the
optimized power release is increased up to the design dis-
charge, and the remaining storage amount is added to the
spillway release. Subsequently, the inflow value of the

downstream reservoir is updated based on these adjustments,
and the forecasting error modifications are continued for each
system reservoir sequentially. The operation optimization for
the next month starts with the updated storage levels of the
system reservoirs. This procedure is schematically illustrated
in Fig. A1 (Online Resource).

The Garzan Hydropower System

The proposed model is applied to the Garzan Hydropower
System as a case study. Garzan Creek is a branch of the
Tigris River and flows through the south-eastern Anatolia
Region of Turkey. The hydropower system consists of the
Aysehatun Dam and HEPP Project with the Mutki
Derivation, the Kor Dam and HEPP Project, the Garzan
Dam and HEPP Project, and the Garzan irrigation scheme,
which covers an area of 60,000 ha, as depicted in Fig. 1
(Aksa 2004; DSI 1987; Enersu 2008; Jemas-Su 2001).

The net evaporation rates, monthly mean inflow values,
environmental and irrigation water demands, reservoir area

Table 1 Objective function of the integrated reservoir system optimization model

Objective function Equation Symbol Definition

max∑
t

pt ∑
i
Ei;t−Ec

t

� �� � (1) pt Estimated energy price for time period t in US dollar cent/kWh

Ei , t Energy production of the ith plant during time period t in kWh

Ec
t

Contractual energy demand for time period t in kWh

where

Ei , t = ξT ξG φt Pi , t (2) ξT Transformer efficiency, 98.5% as default (IFC 2015)

ξG Generator efficiency, 97.5% as default (IFC 2015)

φt Conversion factor from time period t to hours

Pi , t Power of the ith plant during time period t in kW

Pi;t ¼ g Hn
i;t ∑

j
εi; j;t ϕt R

p
i; j;t

� � (3) g Acceleration of gravity, 9.81 m/s2

Hn
i;t

Net head in the ith reservoir during time period t in m

εi , j , t Efficiency of turbine j of the ith reservoir during time period t

ϕt Conversion factor from m3 to m3/s

Rp
i; j;t

Power release through the jth turbine of the ith reservoir during time period t in m3

εi; j;t ¼ f 1
Rp
i; j;t

Rp
imax

� � (4)
Rp
imax

Maximum power release through a turbine of the ith reservoir in m3

f1 Fitted curve equation of the relation between the ratio of power release to designed discharge
and turbine efficiency

Hn
i;t ¼ λ Ha

i;t−twi

� �
−κi

ϕt ∑
j
Rp
i; j;t

 !
2

(5) λ Gross head reduction for local losses, 95% as default

Ha
i;t

Average water level in the ith reservoir during time period t in m

twi Tail water level of the ith reservoir

κi Friction loss constant for the penstocks and/or energy tunnels of the ith reservoir in m/(m3/s)2

Ha
i;t ¼ Hi;t−1 þ Hi;t

� 	
=2

(6) Hi , t − 1 Water level in the ith reservoir at the beginning of time period t in m

Hi , t Water level in the ith reservoir at the end of time period t in m

Hi , t = f2(Si , t) (7) Si , t Storage in the ith reservoir at the end of time period t in m3

f2 Fitted curve equation of the relation between reservoir storage and water level
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and water level functions expressed as high-order polynomials
of the storage, turbine efficiency curves, and energy prices are
the inputs to the proposedmodel, together with the topograph-
ical and technical features of the projects, as listed in Table 3
(Yalcin 2015).

TheMINOS solver, which employs a projected Lagrangian
algorithm on a sequence of linearly constrained sub-problems,
is used to solve this optimization problem with nonlinear con-
straints and the objective function within the General
Algebraic Modeling System (GAMS) package (Murtagh
et al. 2014). The steps of the procedure followed for this

purpose are schematically illustrated in Fig. A2 (Online
Resource). Moreover, to verify the efficiency of the integrated
operation, the same process is applied to the system reservoirs
sequentially.

Evaporation rates

The net evaporation rates of the system reservoirs are based on
records from meteorological stations operated by the General
Directorate of State Meteorological Works (DMI). For the
Aysehatun and Kor projects, the monthly total evaporation

Fig. 1 Location map of the study area
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and monthly mean temperature data from the Bitlis meteoro-
logical station are used, and for the Garzan Reservoir, the
records of the Siirt meteorological station are utilized (DMI
2009). Assuming a 0.5 °C decrease in temperature per 100 m
increase in altitude, the temperature data observed at the rele-
vant stations are transformed into the maximum water levels
of the reservoirs (Limak 2006). Then, the monthly total evap-
oration quantities corresponding to these transformed temper-
atures are determined based on the correlations between the
monthly mean temperature and the monthly total evaporation
records of these stations. Next, the calculated evaporation
values are multiplied by the pan coefficient (0.7) to convert
the pan evaporations into the actual evaporation from the lake
surface (Usul 2009). Finally, the net evaporation rates per unit
area are obtained by subtracting the precipitation records from
the appropriate stations from the actual evaporation values.
For the Aysehatun and Kor projects, the monthly total precip-
itation data observed at the Mutki meteorological station are
used, and for the Garzan Reservoir, the records from the
Kozluk meteorological station are utilized (DMI 2009).

Inflow values

The historical, mean and forecasted flow values for the dry
and rainy seasons are provided to the system as input to ana-
lyze the limits and effectiveness of the NLP model in opera-
tional management. The results of the optimizations based on
the historical and mean flow values represent the range of
income that can be derived for the period under consideration.
In operational studies, the states of the system reservoirs are
updated at the beginning of each month due to inflow fore-
casting errors, and the optimizations are repeated for the re-
maining portion of the operation period. The increase in the
difference between the observed and forecasted flow values
requires great modifications in the states of the system reser-
voirs. These modifications decrease the objective function

value that can be achieved at the end of the operation period.
The use of the monthly mean flow amounts is the simplest but
the least accurate approach in the determination of the fore-
casted inflow rates. Therefore, whereas the operations based
on the historical inflow rates provide an upper bound on the
system income, the objective function value based on the
monthly mean flow rates can be defined as the lower bound.
To investigate how close the results can come to the upper
bound, the successively renewed inflow forecasts obtained
via seasonal ARIMA models are utilized in the integrated
system operation optimizations.

Historical records and averages for months

The monthly mean flow records obtained from the Besiri (EIE
2603), Bogazonu (DSI 26-57), Kozluk (DSI 26-24), Kozluk
(EIE 2634), and Meydanonu (DSI 26-58) hydrometric sta-
tions operated by DSI and the General Directorate of
Electrical Power Resources Survey and Development
Administration (EIE) are utilized to investigate the inflow po-
tential at the dam locations (DSI 2007; EIE 2003). These
stations are shown in Fig. 1 and are detailed in Table 4.

First, the raw flow data from the Besiri station are corrected
for the upstream irrigation abstraction, which covers an area of
3362 ha and has been in operation since 1996, according to the
Garzan-Kozluk irrigation module (Enersu 2008). Then, the nat-
uralized flow values and correlations are used to produce rep-
resentative flow data for the 1971–2000 period. The disconti-
nuities in the records of the Bogazonu and Meydanonu stations
are patched based on the correlations with the flow rates of the
Besiri gauging station. In the correlation studies, the upstream-
downstream relationships along the river branches are evaluat-
ed using the quantities for the corresponding months, and inap-
propriate data sets are not included. In the extension of the flow
values measured at the Kozluk (DSI 26-24) station, the corre-
lation equation obtained based on the naturalized flow rates of

Table 3 Characteristics of the
Garzan projects Characteristics Unit Aysehatun Kor Garzan

Purpose – Energy Energy Energy

Drainage area km2 405.0 942.2 1266.0

Thalwag elevation m 1180.0 895.0 675.5

Maximum water level m 1250.0 956.0 788.3

Minimum water level m 1230.0 930.0 757.7

Tailwater level m 950.0 830.0 676.0

Design discharge m3/s 13.36 26.54 43.60

Penstock: number/diameter/length −/m/m 1/2.3/250 1/2.5/210 1/3.2/210

Energy tunnel: number/diameter/length −/m/m 1/3.5/8410 1/3.3/6370 1/4.0/382

Number of units – 2 2 2

Gross head/net head m/m 300.0/282.0 126.0/109.9 112.3/108.6

Turbine type – Francis Francis Francis
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the Besiri gauging station is utilized for the 1985–1999 period.
For the year 2000, the quantities are transformed from the ob-
servations at the Kozluk (EIE 2634) station based on the catch-
ment area ratio between these stations.

In the estimation of the monthly mean flow rates at the
Mutki Weir location, the drainage area ratio among the weir
and the intermediate catchment between the Meydanonu and
Bogazonu gauging stations is utilized. The amounts diverted
from Mutki Creek to Aysehatun Dam are determined from
these values according to the transmission canal capacity of
25.74 m3/s (DSI 1987). The flow rates at the Aysehatun Dam
location are converted from the extended data set from the
Bogazonu station based on the catchment area ratio between
them. The sums of these values with the diverted flows from
Mutki Creek are utilized as the observedmonthly mean inflow
values of the Aysehatun Dam and HEPP Project.

The extended flows of the Meydanonu station are propa-
gated to the Kor Dam site in proportion to the drainage areas.
Then, the historical monthly mean inflow values of the Kor
Dam and HEPP Project are determined by subtracting the
produced runoff values at the Aysehatun Dam and Mutki
Weir locations from these values.

The catchment area ratio is used to project the extended
runoff rates at the Kozluk (DSI 26-24) gauging station to the
Garzan Dam axis. The differences between these values and
the flow amounts at the Kor Dam site are treated as the ob-
served monthly mean inflow values of the Garzan Reservoir.

The monthly river flows at the Aysehatun, Kor and Garzan
Dam locations for the 30-year period from 1971 to 2000 and
their monthly averages are displayed in Fig. A3.a, Fig. A3.b,
and Fig. A3.c (Online Resource), respectively. The water
years 1988 and 1989 are determined to represent rainy and
dry seasons, respectively, according to the statistics of the
entire data set and those of the selected test years, as detailed
in Table A1 (Online Resource). The averages of the monthly
mean flow values for the entire flow record are 35.65, 54.90,
and 68.31 hm3 at the Aysehatun, Kor, and Garzan Dam axes,
respectively. These amounts are, in turn, 77.19, 120.87, and
143.70 hm3 in water year 1988 and 13.37, 20.41, and 24.86

hm3 in water year 1989. Moreover, the maximum and mini-
mum monthly mean flow amounts are observed in the rainiest
and driest water years during the 1971–2000 period,
respectively.

Forecasted inflows

ARIMA models, as introduced by Box and Jenkins (1976),
are represented by ARIMA (p, d, q) × (P,D,Q)s. The terms (p,
d, q) and (P, D, Q)s represent the orders of the non-seasonal
and seasonal components, respectively, where d is the number
of regular differencing;D is the number of seasonal differenc-
ing; p is the order of the non-seasonal autoregressive (AR); q
is the order of the non-seasonal moving average (MA); P is the
order of the seasonal AR; Q is the order of the seasonal MA;
and s is the season length, which is 12 for monthly data.

The time series are split into two sets, namely, the training
and testing periods. The historical river flow data from 1971 to
1987 and from 1971 to 1988 are used as the training periods
for calibrating the forecasting models, and the data from the
years 1988 and 1989 are used as the test sets for the verifica-
tion of the models in the rainy and dry seasons, respectively
(Table A1 in Online Resource).

Prior to fitting ARIMA models, the time series are trans-
formed via a logarithmic transformation to eliminate any dif-
ficulties arising from non-normality and heteroscedasticity in
the estimated residuals (Hipel and McLeod 1994). The auto-
correlation functions (ACFs) and partial autocorrelation func-
tions (PACFs) are examined to identify appropriate ARIMA
models for the time series of river flows. First, the ACFs are
differenced by a lag of 12 because of their seasonality. Then,
the presence of non-seasonal and seasonal AR and MA terms
in the models is evaluated in accordance with the Akaike
information criterion (AIC) and Ljung-Box-Pierce statistics.
Finally, the ACFs and PACFs of the residuals are checked to
determine whether the residuals lie within confidence limits
such that they satisfy the requirements of a white noise process
(Shabri and Suhartono 2012).

Table 4 Characteristics of the stream gauging stations

Station Id Station name Opening date Closing date Drainage area
(km2)

Elevation
(m)

Mean discharge
(m3/s)

DSI 26-57 Keyburan Brook
Bogazonu

24.10.1981 – 425.0 1200 8.6

DSI 26-58 Garzan Creek
Meydanonu

29.11.1981 08.01.1999 783.2 909 15.8

DSI 26-24 Pisyar Creek
Kozluk

01.08.1970 – 1359.3 620 26.0

EIE 2634 Garzan Creek
Kozluk

19.10.1999 30.09.2000 1407.7 630 23.0

EIE 2603 Garzan Creek
Besiri

01.11.1945 30.09.2000 2450.4 545 49.0
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To determine the forecasted inflow rates for the first month
of the operations during the rainy period, the sample ACFs
and PACFs of the historical river flow data from 1971 to 1987
are plotted in Fig. A4.a, Fig. A5.a, and Fig. A6.a (Online
Resource) for the Aysehatun, Kor, and Garzan Dam locations,
respectively. The seasonal spikes do not truncate but rather
damp out in the PACFs, and they cut off after a lag of 1 in
the ACFs, suggesting that a seasonal MA parameter is needed
in the models. Therefore, (P, D, Q) = (0, 1, 1) appears to be
appropriate to test as the seasonal component of the models.

However, the non-seasonal patterns in the ACFs and
PACFs are not as clear. The patterns could indicate either an
MA or an AR parameter. Thus, the non-seasonal component
of the models (p, d, q) could be either (1, 0, 0) or (0, 0, 1).
Based on the minimum AICs and Ljung-Box-Pierce statistics,
the optimal model is the ARIMA (0, 0, 1) (0, 1, 1)12 for all
dam locations.

The residual plots showing the ACFs and PACFs of the
residuals are presented in Fig. A4.b, Fig. A5.b, and Fig.
A6.b (Online Resource) for the Aysehatun, Kor, and Garzan
Dam locations, respectively. The ACFs and PACFs of the
residuals lie within the confidence limits, and the residuals
do not exhibit a significant correlation, thereby confirming
that the residuals of the selected model are consistent with
white noise (Shabri and Suhartono 2012).

The ARIMA models used in each time step of the opera-
tions are developed following the same procedure described
above using the IBM SPSS Forecasting module (IBM
Corporation 2012). The selected models are listed in
Table A2 (Online Resource).

The observed, mean, and forecasted flow rates at the
Aysehatun Dam, Kor Dam, and Garzan Dam locations
during the rainy and dry seasons are displayed in Fig.
A7 and Fig. A8 (Online Resource), respectively. These

graphs show that the ARIMA results are closer to the
corresponding observed streamflow values than are the
mean inflow rates.

The forecasting performance of the models at the testing
stages is evaluated using the mean absolute error (MAE), the
root mean square error (RMSE), the mean bias error (MBE),
the normalized mean bias error (NMBE), the correlation co-
efficient (R), and the Nash-Sutcliffe coefficient of efficiency
(CE). In addition, the RMSE/ o error index, where o is the
mean of the observed flow values, is utilized to compare the
results with those of other studies on river flow forecasting
(Valipour et al. 2013). Relatively small MAE, RMSE, MBE,
and RMSE/ o values indicate the accuracy of the forecasting
models. The tendency of the models towards over- or under-
estimation can be observed from the NMBE values
(Ghanbarpour et al. 2009). The R values measure the degree
of linear correlation between the predicted and observed flow
rates. The CE values provide an indication of the model per-
formance at prediction values far from the mean of the histor-
ical time series.

In Table 5, it is shown that for all dam locations and for
both seasons, the ARIMA models demonstrate good perfor-
mance with respect to the monthly averages in the testing
phases. Although the mean flow rates are more highly corre-
lated with the observed flows, these increases in the R values
have no effect on the magnitudes of the other error measures.

Environmental and irrigation water demands

For the maintenance of natural ecosystems, 10% of the month-
ly mean inflow values over the last 10 years (1991–2000) is
left on the river bed as environmental water due to the energy
tunnels of the system projects (DSI 2014). This release is

Table 5 Forecasting performance indices of the mean and ARIMA approaches

Basin Model MAE RMSE NMBE RMSE/ o MBE R CE

Rainy period

Aysehatun Mean 41.541 60.222 − 0.538 0.780 41.541 0.966 0.416

ARIMA 23.116 39.558 − 0.175 0.512 13.537 0.889 0.748

Kor Mean 65.973 97.616 − 0.546 0.808 65.973 0.971 0.409

ARIMA 34.151 57.459 − 0.136 0.475 16.461 0.912 0.795

Garzan Mean 75.069 104.992 − 0.522 0.731 75.069 0.962 0.446

ARIMA 49.659 78.018 − 0.049 0.543 7.015 0.876 0.694

Dry period

Aysehatun Mean 22.369 38.555 1.666 2.884 − 22.277 0.630 − 9.608

ARIMA 13.230 19.670 0.586 1.471 − 7.838 0.468 − 1.761

Kor Mean 34.645 59.526 1.690 2.917 − 34.494 0.632 − 9.337

ARIMA 28.643 47.341 0.811 2.320 − 16.554 0.382 − 5.538

Garzan Mean 44.069 74.337 1.761 2.991 − 43.774 0.646 − 7.742

ARIMA 35.134 52.321 0.787 2.105 − 19.566 0.355 − 3.331
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formulated in the model through the inclusion of the term Rde

in the flow continuity equation defined in Table 2.
The Garzan irrigation scheme is largely sourced from the

outflows of the Garzan Reservoir. Hence, operations must be
conducted such that the outflow rates are equal to or greater
than the irrigation water demands of the corresponding months,
which are determined in accordance with the Garzan irrigation
module (FPGA 1968). In the model, the minimum release con-
straint defined in Table 2 guarantees that the irrigation demand
will be met through the outflows of the Garzan Reservoir.

Turbine efficiency

Turbine efficiency depends on the type of turbine and the ratio
of power release to capacity. The efficiency curves for
Francis-type turbines, which are the type utilized in the system
power plants, are defined in the model as high-order polyno-
mials of the ratio of the power release to the designed dis-
charge (Pro-sem 2008; Yalcin 2015).

Energy prices

There are two types of prices on the day-ahead market, namely,
the market-clearing price (MCP) and the system marginal price
(SMP). If a producer supplies its expected amount of produced
energy on time, as previously reported to PMUM, it receives
payment at theMCP. If the produced energy is more or less than
the reported amount, it leads to a system imbalance, and the
SMP enters the calculation (Demirdizen 2013). The MCP and
SMP averages and the averages for months are presented in Fig.
A9 and Fig. A10 (Online Resource), respectively.

The day-aheadmarket has been in operation sinceDecember
2009 (PMUM 2014). There are not sufficient data available to
apply a monthly forecasting procedure. Hence, the monthly
SMP averages are utilized as inputs to the NLP model.

Operational studies

Optimization studies are performed for the rainy and dry sea-
sons using three different inflow sets. The initial and ending
storage values of the system reservoirs are constrained to be
equal to the dead volumes. In addition, the contractual energy
demand is not considered, and the operations are optimized
using a model that assumes that all produced energy will be
sold on the day-ahead market (Yalcin 2015).

The operations based on the historical inflow rates provide
an upper bound on the income that can be obtained for the
period under consideration. Moreover, the system reservoirs
are operated sequentially using the historical data sets to eval-
uate the efficiency of the integrated operation plan. In these
consecutive operations, the inflow values are obtained by
adding the optimized outflows of the upstream projects to
the intermediate basin flows.

Then, the monthly means of the extended data sets from
1971 to 2000 are utilized as input during the 12-month oper-
ation period for each fall season. These objective function
values can be defined as the lower bounds on the combined
system incomes. The optimizations are repeated 12 times at
the beginning of each month based on the real states of the
system reservoirs.

To provide an estimate of income that can be achieved in
practice, the same procedure is performed using the succes-
sively renewed inflow forecasts obtained via the selected
ARIMA models. The states of the system reservoirs are up-
dated at the beginning of each month based on the observed
inflow values from the previous month.

Rainy season operations

The objective function values for the combined and separate
system operations based on the historical time series are pre-
sented in Fig. A11 (Online Resource). The total income for the
integrated system operation is 55.57 million US dollars/year.
According to the results of the sequential optimization studies
of the system reservoirs, the income during the period under
consideration is 52.14 million US dollars/year. Therefore, for
the same period of operation with the same initial and ending
storage values, the integrated optimization model yields
6.59% more revenue than the separate reservoir optimization
approach (Table 6).

Figure A12 (Online Resource) presents a comparison of the
monthly storage variations of the system reservoirs, and Fig.
A13 (Online Resource) shows a comparison of the income
values obtained from three different inflow series. The NLP
model based on the historical inflow rates yields 5.34% more
income than the model based on the mean inflow values and
3.66% more income than the model based on the forecasting
results (Table 6). The reason for this difference is based on the
amounts of spilled water for the Garzan Reservoir, as present-
ed in Fig. A14 (Online Resource).

Table 6 Results of the operations for the Garzan Hydropower System

Income (million US dollar) Aysehatun Kor Garzan Total

Rainy period

Combined system run Historical 20.05 13.74 21.78 55.57

Mean 19.47 13.55 19.74 52.76

Forecasted 19.69 13.71 20.21 53.61

Separate system runs Historical 20.22 13.11 18.81 52.14

Dry period

Combined system run Historical 6.40 3.34 5.50 15.24

Mean Infeasible

Forecasted Infeasible

Separate system runs Historical 6.67 3.49 5.00 15.16
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Dry season operations

In water year 1989, the critical factor is the irrigation water
needs of the Garzan irrigation scheme. In this year,
215.14 hm3 of water must be supplied from the outflows of
the Garzan Reservoir, but the total flow volume of the inter-
mediate basin between the Kor and Garzan reservoirs is only
59.21 hm3. Therefore, the outflow of the Kor HEPP is critical
for satisfying the irrigation water demand.

The income value of the combined system for water year
1989 is 15.24 million US dollars/year. However, in the se-
quential optimization studies of the system reservoirs, the
Garzan Reservoir operation optimization does not converge
because of the minimum release constraint defined in Table 2.
This outcome is likely to occur in real-life applications during
such a dry season when all reservoirs and the irrigation
scheme are in operation. By decreasing the demand amounts
until convergence is reached, the optimization becomes feasi-
ble at 83% of the initial demand, and the total income of the
reservoir system is 15.16 million US dollars/year (Fig. A15 in
Online Resource). Comparisons of the income values obtain-
ed from the combined and separate system operations and the
monthly storage variations of the system reservoirs are pre-
sented in Fig. A16 and Fig. A17 (Online Resource),
respectively.

The same situation is also observed in the operation opti-
mizations when the monthly mean and forecasted flow values
are taken as inputs to the model. The NLP model, considering
the system as a whole, begins to fail to converge after several
steps. The optimization does not converge in run-8 (May to
September) using the mean flow values or in run-5 (February
to September) using the updated ARIMA forecasts. The rea-
son for these non-convergences is that insufficient storage is
allocated for the irrigation needs because of the inadequate
inflow values.

Discussions

The proposed site-specific optimization model is utilized to
verify the performance of the catchment-based operation al-
gorithm against the sequential optimization of the system res-
ervoirs. This model gives the opportunity to conduct a realistic
comparison in terms of system income by means of the ad-
vantage of NLP in the formulation of energy production. The
integrated and sequential optimization studies are conducted
with the historical inflow data sets of the rainiest and driest
water years during the 1971–2000 period. For both fall sea-
sons, the integrated system operation plans yield more income
than do the sequential optimization studies of the system res-
ervoirs (Table 6). Moreover, in the dry season, the sequential
system operation plans generate insufficient outflow rates that
satisfy only 83% of the downstream irrigation demand.

The optimization results based on the historical inflow
values are the upper bounds of the system income. These
results cannot be reached in real-life management practices
due to unknown inflow conditions. To investigate how close
the results can come to this theoretical upper bound, the inte-
grated system operations are performed for each fall season
with the successively renewed inflow forecasts and the month-
ly means of the historical inflow data sets. In the rainy season,
the operations based on the ARIMA forecasts and the mean
inflow values supply 96.34 and 94.66% of the revenue opti-
mized using the integrated algorithmwith the historical inflow
rates, respectively. However, in the dry season, the operation
optimizations begin to fail to converge after several steps
when the monthly mean and forecasted flow values are taken
as inputs to the model. These findings illustrate the importance
of forecasts to real-life operational management practices. The
CE and R values of the ARIMA forecasts and the mean flow
rates are indicators of this result. The negative CE values
indicate that the observed mean is a better predictor than the
forecasting model results (Table 5).

Although there are 30-year historical inflow data, the mod-
el is tested only for the rainiest and driest water years to eval-
uate the forecasting performance of the ARIMA models and
its effectiveness in operational management. The results show
that the ARIMA models fail in forecasting the inflow rates in
the driest water year coming just after the rainiest water year of
the observation period. To enhance the forecasting perfor-
mance of the ARIMA models, other hydroclimatic data, in-
cluding precipitation, temperature, and evaporation, can be
integrated as independent variables. Moreover, other tech-
niques for streamflow forecasting, such as least-squares sup-
port vector machine (LSSVM), artificial neural network
(ANN), and support vector machine (SVM) models, can be
integrated into the optimization system to achieve more accu-
rate estimates (Shabri and Suhartono 2012).

This monthly operation algorithm must be adapted to daily
and hourly real-time optimizations based on the floating ener-
gy prices on the day-ahead market (PMUM 2014). After the
determination of a 1-year monthly optimal operation policy in
terms of the volume and timing of water releases to meet the
downstream water demands, the integrated daily and hourly
real-time operation optimization studies must be conducted
according to the basic constraints on reservoir volume obtain-
ed by means of the monthly operation optimization of reser-
voir systems. This process is indispensable to prevent energy
imbalances and enormous price differences on the day-ahead
market and to increase the economic benefits of stakeholders.

Furthermore, the concept of firm energy can be used to
maximize the reliable energy production capacity obtainable
on a long-term basis, even during the most adverse hydrolog-
ical seasons (Ouarda et al. 1997). In this context, the objective
function of the proposed model can be modified to maximize
the total energy production. In addition, the power-release
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terms in the constraints are expressed in terms of the sum of
the firm and secondary power releases. The results of such an
examination can be utilized to establish energy contracts, and
significantly higher revenues can be obtained than with the
day-ahead market. Moreover, basin projects can be analyzed
under various hydrological scenarios to assess the results of
delaying or advancing the schedule of a power plant,
expanding the capacity of existing plants or adjusting the nor-
mal and minimum operating levels of system reservoirs.

Conclusions

Integrated reservoir operation is important for hydropower sys-
tem reservoirs from which water is subtracted for agriculture
activities, human settlements, and industrial needs. Particularly,
in a cascade system composed of state- and private sector-owned
reservoirs, the manner in which reservoirs are operated in terms
of the volume and timing of water releases to meet downstream
water supply demands is a problem of some concern.

In this context, it is demonstrated in this study that an inte-
grated operation plan and adequate flow forecasts make a
beneficial contribution to the effective management of the
incoming water and, thus, the energy production. When the
performance of the integrated algorithm is verified against the
sequential optimization of the system reservoirs, the
catchment-based optimization model produces more energy
by maximizing head and minimizing spill and supplies the
irrigational water demand even under the most adverse climat-
ic conditions. Moreover, it is revealed that improvement in the
accuracy of the forecasts used in real-life management prac-
tices yields economic benefits as a consequence of optimal
reservoir operation. Even a small percentage increase in ener-
gy production is substantial.

Consequently, cascade hydropower systems, for which
single-reservoir simulation models are employed in the oper-
ation of each of the system reservoirs, as in the case of Turkey,
must be planned and operated through an integrated manage-
ment process to use hydropower potential more efficiently.
The application of such a process reduces conflicts and in-
creases benefits because Bthe whole is greater than the sum
of its parts^ (Barrow 2001).
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