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A Novel Method for Numerical Analysis of Microwave
Surface Resistance of Type-II Superconductors

Sukru Yildiz, Fedai Inanir, and Ahmet Cicek

Abstract—Microwave surface resistance of type-II supercon-
ductors is investigated via the finite-element method by calculating
the electromagnetic field distribution within a superconductor.
The software allows changing the geometrical parameters in a
facile way. Using a finite-element procedure and the approxima-
tion by Bonura et al. [Eur. Phys. J. B 52 (4), 459 (2006); Eur.
Phys. J. B 53 (3), 315 (2006)], it is shown that the microwave
surface resistance of type-II superconductors can be numerically
calculated in the framework of the critical-state model.

Index Terms—Component modeling, electromagnetic (EM)
simulation, finite-element method (FEM), microwave supercon-
ductivity.

I. INTRODUCTION

R ESEARCHERS have paid a great deal of attention to
the electromagnetic response of superconducting materi-

als for both explanation of superconductivity and their broad
range of applications. Microwave surface resistance and critical
current density play fundamental roles in the performance
of superconductors in the possible microwave applications as
active or passive components.

First, the phenomenological model for the electrodynamics
of the superconductors in the mixed state was introduced by
Gittleman and Rosenblum [1], in which the model has been
improved by Coffey and Clem (CC) [2]–[4] and Brandt (B) [5].
The CC theory, apart from the flux motion, considers magnetic
field dependence of densities of normal and superconducting
fluids. When critical-state models are considered to be based on
flux distribution caused by strong pinning effects, it can be con-
cluded that calculation of microwave surface resistance via CC
or B theories can be adapted to the critical-state model. From
this consideration, Bonura et al. [6], [7] proposed a method that
takes into account the flux distribution inside a superconducting
sample in the critical state in the framework of the CC theory.
Yildiz et al. [8], [9] successfully applied the aforementioned
procedure to the microwave surface resistance considering the
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effect of different flux dynamics. The CC theory [2]–[4] and
subsequently the method of Bonura et al. [6], [7] can only be
applied to bulk samples since the flux distribution is unknown in
the thin sample limit where the distribution significantly differs
from that in bulk materials. This type of geometrical depen-
dence could possibly be eliminated by employing the finite-
element method (FEM). Recently, the FEM has been intensively
applied to develop numerical solutions of levitation, magnetiza-
tion, and ac loss problems in superconductors [10]–[19].

In this paper, a numerical model is proposed to simulate
the performance of a superconducting sample exposed to a
microwave field. The model allows both prediction of field
profiles inside the superconductor in the critical state and
calculation of microwave surface resistance. Results of surface
resistance calculations as a function of applied magnetic field
are presented.

II. MODEL FOR MICROWAVE SURFACE RESISTANCE

In the superconducting state, complex surface impedance is
defined by the complex penetration depth, i.e., λ̃, as follows:

ZS = iμ0ωλ̃(ω,B, T ). (1)

Here, μ0 and ω are permeability of vacuum (μ0 =
4π.10−7 Hm−1) and the working angular frequency, respec
tively. The surface resistance, i.e.,Rs, can be extracted when the
imaginary value of complex penetration depth (λ̃) is known, i.e.,

RS = −μ0ωIm
[
λ̃(ω,B, T )

]
. (2)

Different approximations have been proposed for the cal-
culation of the general behavior of λ̃ [2]–[4], [7]. One of the
most popular theories is elaborated by Coffey and Clem based
on the two-fluid model. According to the theory, the complex
penetration depth is defined by

λ̃(ω,B, T ) =

√√√√ λ2(B, T ) +
(
i
2

)
δ̃2υ(ω,B, T )

1− 2iλ2(B, T )/δ̃2nf(ω,B, T )
(3)

with

λ(B, T ) =
λ0√[

1−
(

T
Tc

)4
] [

1−
(

B
Bc2(T )

)] (4)

δnf (ω,B, T ) =
δ0√

1−
[
1−

(
T
Tc

)4
] [

1−
(

B
Bc2(T )

)] (5)

1051-8223 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM-UASL - Ahi Evran Universitesi. Downloaded on April 05,2022 at 08:08:59 UTC from IEEE Xplore.  Restrictions apply. 



8200505 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 2, MARCH 2016

Fig. 1. (Top) Schematic diagram of the computational domain for the calcula-
tion of Rs and (bottom) a sketch of flux motion. RCD , wSC , and hSC are the
radius of the computational domain and the width and height of a type-II su-
perconductor, respectively. Shaded stripes denoted by λac represent regions in
which vortices are subject to Lorentz forces and, thus, contribute to microwave
surface resistance. The x-direction is pointing into the superconductor surface.
The computational domain is not drawn to scale for clarity.

where λ0 and δ0 are the London penetration depth at T = 0 K
and the normal-fluid skin depth at T = Tc, respectively. One
of the most important parameters in (3)–(5) is the effective
complex skin depth δ̃υ arising from the vortex motions. Field-
induced manipulation of surface resistance is deeply affected by
δ̃υ depending on the ratio ω0/ω as follows: δ̃υ can be written
in terms of characteristic lengths, δf due to the contributions of
viscous force, i.e.,

δ̃2υ = δ2f

(
1 + i

ω0

ω

)−1

(6)

where δ2f = 2Bφ0/μ0ωη with η and φ0 being the viscous-drag
coefficient and the quantum of flux, respectively, and ω0 is the
depinning frequency.

The mixed-state energy losses in type-II superconductors
are originated from both the presence of fluxons and their
motion (see Fig. 1). Below the critical temperature, vortex
pinning takes place, and dissipations essentially come from
vortex motions. Therefore, the main contribution to Rs is due to
sample regions in which fluxons experience the Lorentz force,
i.e., where �Ba × �Jω �= 0 ( �Ba and �Jω beign applied magnetic
field and microwave current density, respectively).

In contrast to the CC theory [2]–[4], under the assumption
that magnetic field distribution is not uniform over the sample,
Bonura et al. [6] proposed the following simple averaging
scheme over the whole sample to take the critical-state effects
into account:

Rs =
1

A

∫
Ω

Rs (|B(x)|) dA (7)

where Ω is the sample surface, A is its area, and x denotes the
surface element.

The FEM approach developed in this work resembles the
methodology used in ac loss calculations in [11] and [12],
reported in detail. In calculation of current densities and field
distributions inside the superconductor, the governing equation
of the FEM calculations is �∇× ((1/μ0)�∇×−→

A ) = �J (where−→
A is magnetic vector potential). Despite the fact that contribu-
tion to surface resistance is negligibly small when a component
of the applied field ( �Ba) is parallel to the applied microwave
magnetic field ( �Bω) [6], we used critical current density to take
into account the anisotropy of field dependence as follows:

Jc(B) =
Jc0(

1 +

√
k2B2

x+B2
y

B0

)β
(8)

where Jc0 is the current density under zero magnetic field;
B0 and β are the scaling parameters for the field dependence
and its exponent, respectively; whereas k is the anisotropy
quotient (k = 1 for an isotropic material). Under an increasing
applied field, evolution of current and field distribution inside
the superconductor were calculated by an equation of Js written
in terms of a step function, i.e.,

Js,incr(x, y) = Jc tanh

(
−A(x, y)

An

)
. (9)

In contrast, under a decreasing applied magnetic field, the
difference between the calculated vector potential, Ap(x, y),
from the previous ac instant and actual A(x, y) calculated for
Bmax at the current instant is employed in the calculation of Js
as follows:

Js,decr(x, y) = Jc tanh

(
Ap(x, y)−A(x, y)

An

)
(10)

where Jc is the critical current density [20], andAn is a properly
adjusted scaling factor [15].

Calculation of surface resistance using (2)–(5) requires
knowledge of particular physical parameters, such as the λ0/δ0
ratio, depinning frequency, and the lower (Bc1) and upper
(Bc2) critical fields. Moreover, in considering the critical-state
effects by (7), it is also essential to know the B profile inside the
sample, which is determined by Jc(B). Geometry and the field
profile in the sample can be computed by the FEM utilizing
the commercial COMSOL Multiphysics software (through the
ac/dc module).1 The width of our 2-D rectangular supercon-
ductor is wSC =1.3 mm, and its ratio to the diameter (2RCD)
of the computational domain is chosen as 1/25. To predict
the magnetic field distribution inside the superconductor by
COMSOL, the computational domain is divided into approx-
imately 100 000 triangular elements. Fifty elements per layer
thickness are employed to obtain a finer mesh structure. We
utilize the software to estimate magnetic field distributions
due to the applied magnetic field on the superconductor as
a function of position. The estimations can be serialized and
automated with the help of the language of MATLAB technical
computing package.2

1[Online]. Available: http://www.comsol.com
2[Online]. Available: http://www.mathworks.com

Authorized licensed use limited to: ULAKBIM-UASL - Ahi Evran Universitesi. Downloaded on April 05,2022 at 08:08:59 UTC from IEEE Xplore.  Restrictions apply. 



YILDIZ et al.: NUMERICAL ANALYSIS OF MICROWAVE SURFACE RESISTANCE OF TYPE-II SUPERCONDUCTORS 8200505

Fig. 2. Demonstration of the magnetic field and current distribution within
the superconducting sample. In this calculation, the external magnetic field is
applied along the x-direction.

III. RESULTS AND DISCUSSION

Hysteretic behavior of microwave surface resistance of
type-II superconductors due to critical state is determined
through the model discussed in the previous section. The nov-
elty in this work is utilizing FEM microwave surface resis-
tance computations via COMSOL software for conversion of
field profiles into MATLAB codes for processing. Hence, it
facilitates a more accurate calculation of microwave surface
resistance of type-II superconductors.

COMSOL Multiphysics is used to obtain the current distri-
bution in the superconductor and to calculate its microwave sur-
face resistance in the critical state. Fig. 2 depicts the magnetic
flux density and current distributions in a rectangular type-II
superconductor exposed to an increasing applied field. Rs can
easily be calculated by means of the codes developed in this
work and the proposition by Bonura et al. [6] for the model
by Coffey and Clem [2]–[4]. Our calculations are carried out
for temperatures sufficiently lower than the critical temperature
of the superconductor (T = Tc/2). Hence, field dependence of

Fig. 3. Comparison of the performance of the proposed FEM-based numerical
model with the classical analytical models.

repinning frequency is ignored, whereas the ω/ω0 ratio is set to
1. The ratio is intended to be illustrative but not exhaustive and
is adopted to be constant in the whole field range presented by
Bonura et al. [21].

To validate the accuracy of our calculations, the normalized
curves obtained in this work are compared in the Mathematica
environment against those obtained by solving analytical expres-
sions utilizing the Kim [22] Jc(B) = Jc0 × (1 + (|B|/B0))

−n

and exponential [23] Jc(B) = Jc0 × exp(−(|B|/B0)) models
for the field dependence of critical current density (see Fig. 3).
Here,B0 and n are positive adjustable parameters. Although (8)
resembles the Kim model more, it eliminates anisotropic field
dependence of Jc. Rmax and Bp(= μ0H

∗) in Fig. 3 represent
maximum calculated surface resistance and full penetration
field, resepctively. It is known that Bp corresponds to a specific
point at which the transition from convexity to concavity occurs
in surface resistance hysteresis curves. This is demonstrated in
the work of Yildiz et al. [8] (Fig. 5 therein) where a behavioral
investigation was carried out. It is clearly seen that the proposed
model displays a good agreement with the existing classical
models [8], [9].

Numerical results obtained by the proposed model for dif-
ferent thicknesses (hSC) of the superconducting sample are
presented in Fig. 4. Rs decreases with decreasing hSC , and
the rate of change is directly proportional to hSC , as shown
in the inset of Fig. 4. This stems from the fact that the model
is based on flux lines that penetrate into the material. While the
lowest surface resistance is 0.2 mΩ for YBCO [24], i.e., the
most popular type-II superconductor, the model in this work
yields still lower values with decreasing hSC . This suggests that
the proposed model should be further investigated. However,
the model results for bulk samples are quite satisfactory.

The proposed model can also provide information on how
microwave surface resistance varies for different parameters
in a relatively simple manner. Variations of surface resistance
for different Bc2 values are provided in Fig. 5. As expected,
the higher the Bc2 value, the smaller the slope of the curve.
However, this variation reaches a plateau with still increasing
Bc2 where the influence of the upper critical field on Rs

vanishes. This is depicted in the inset of Fig. 5.
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Fig. 4. Surface resistance curves for different superconductor thicknesses
(hSC). Simulation parameters are Ic = 100 A, An = 10−9, wSC = 3 mm,
RCD = 10wSC , ω/ω0 = 1, T/Tc = 0.5, λ0/δ0 = 0.02, B0 = 0.032,
k = 0.3, β = 0.5, Bc2 = 70Bp . hSC = 0.1, 0.25, 0.5, 0.75, 1 mm.

Fig. 5. Surface resistance curves for different Bc2 values. Simulation pa-
rameters are Ic = 100 A, An = 10−9, wSC = 3 mm, hSC = 0.05 mm,
RCD = 10wSC , ω/ω0 = 1, T/Tc = 0.5, λ0/δ0 = 0.02, B0 = 0.032,
k = 0.3, β = 0.5, Bc2 = 10, 25, 50, 75, 100Bp .

IV. CONCLUSION

Microwave surface resistance of a type-II superconducting
material has been numerically obtained by means of a model
based on the FEM in two dimensions through the popular
COMSOL Multiphysics software. Field-dependent calculations
are carried out for different sample thickness and upper critical
field values. For sufficiently small film thicknesses approaching

the thin-film limit, microwave surface resistance values calcu-
lated through the proposed method are considerably smaller
than the values in the literature. This may be stemming from
the fact that the Coffey–Clem model becomes unsuitable in the
thin-film limit.
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[8] Ş. Yildiz, F. Inanir, and U. Kolemen, “Effect of Meissner surface cur-
rent on the microwave surface resistance of type-II superconductors,”
Physica C, vol. 470, no. 13/14, pp. 575–581, Jul. 2010.
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Tokat, in 2006 and 2011, respectively.

From 2004 to 2013, he was a Research Assistant with the Department
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