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Total energy calculations based on density functional theory were performed to investigate the physical prop-
erties for the austenitic L2; and newly calculated martensitic phases of the Cuz AlBe shape memory alloy. When
the total energy of all the phases versus the volume data are fitted to the Birch—-Murnaghan equation of state,
it is seen that the stable martensitic NM, 3M, 5M, and 7M phases of the alloy can exist. The lowest energetic
phase was determined as tetragonal non-modulated NM structure. When we compare the energy of the newly
calculated martensitic phases to the thermal fluctuation energy barriers (criteria as (3kgT')/2 meV /atom is taken),
we are confident that the energy difference between 5M, 7M, and 9R phases and the NM phase is large enough
to overcome the thermal energy barrier. Moreover, it has been observed that the calculated elastic constants of
austenitic L2; and martensitic NM, 3M, 5M, 7M, and 9R phases provide all the mechanical stability conditions
determined according to crystal structure symmetries. We consider that the phases that exceed the thermal en-
ergy barriers and satisfy the mechanical stability conditions can exist at a stable energy level. When the partial
electronic density of states (pDOS) of the austenitic and martensitic phases are analyzed, it is seen that the most
contribution to the electronic density of states comes from Cu t24 and Cu eg4 states. In addition, it is seen that the
contributions to the electronic density of state from not only s, p, t2y and ey states of Al and Be atoms but also s
and p states of Cu atom have been observed extremely small quantity in the all austenitic and martensitic phases.
On the other hand, the t24, and e, states of Cu atoms dominate in the electronic nature of the CuzAlBe shape
memory alloy. CuzAlBe shape memory alloy is a non-magnetic material since all phases of spin-up and spin-down

are all symmetrical.
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1. Introduction

Many different types of alloys have been developed as
alternatives to Ni—Ti alloys, which is the most common
conventional shape memory alloy (SMA). While Ti-Ni
alloys have a limited range of martensitic transformation
within 200-300 K range [1, 2], Cu—Al based SMAs have a
wider range of martensitic transformation temperatures
such as 77-473 K [3-5]. However, different triple Cu-Al
based alloys such as Cu—Al-Mn [5, 6], Cu-Al-Be [7, §|
and Cu—Al-Ni [9-11] have been reported to have better
mechanical behavior. In addition, the most important
factors in favor of Cu-based alloys include lightness, suc-
cessful shape memory effect, affordable price, very good
damping capacity, and good characteristics. Due to these
advantageous properties, Cu-based alloys have the poten-
tial to be used in application fields such as automotive,
aerospace industries, and as sensors and actuators for
health monitoring and microelectromechanical devices.

It has been observed that Cu-Al-Be SMAs exhibit
martensitic phase transition from L2; (austenitic) phase
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to 18R or 18R to 6R phase depending on the strain [12].
Due to this martensitic phase transition, the changing
properties make the Cu-based alloy attractive for damp-
ing applications. Pseudo-elastic behavior is a feature that
SMAs can exhibit. Pseudo-elastic behavior in Cu-based
alloys is dependent on the stress that occurs from the
austenitic DO3 (or L2;) phase to the 18R martensitic
phase during the martensitic phase transition. The stress
required for martensitic transformation is higher than
that required for recycling the austenitic phase, which
leads to hysteresis. In recent studies, it has been re-
ported that the 18R martensitic phase exhibits struc-
tural distortion under tensile stress [8]. In addition, the
18R-6R pseudo-elasticity cycle has two distinguishable
features [12]. The stress required to induce the marten-
sitic 6R phase is almost independent of the tempera-
ture, and the hysteresis at these transitions is consid-
erably greater than the transition temperature. Consid-
ering these properties, the hysteresis that occurs in the
martensitic phase transitions is very important to de-
velop damping applications of alloys [7, 12, 13].

Tensile tests carried out at a slower cross rate of
18R martensitic transformation for the Cu—Al-Be al-
loy show that the hysteresis is temperature and strain
dependent. However, it has been determined that the
entropy changes from the structural deterioration dur-
ing this transformation is fifty times smaller than from
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austenitic L2; phase to 18R martensitic phase transition
shift entropy change [8]. Unlike most of the previously
reported martensitic transitions, structural distortions in
the martensitic phases during phase transitions in Cu-
based shape memory alloys can show a hysteresis that is
not clearly noticeable in experimental solubility.

Determining the elastic constants of materials accu-
rately is crucial firstly from a scientific standpoint be-
cause it allows an analysis of the microstructural pa-
rameters of the material. Secondly, for designing new
engineering applications, elastic constant data are used
as critical input. The most general experimental meth-
ods for determining elastic constants can be classified
as static and dynamic. Although static methods such
as stretching, compression, twisting can measure elastic
constants well, the dynamic methods have many advan-
tages for calculating elastic constants. Young’s modu-
lus of Cu—Al-Be alloy was investigated by using a dy-
namic method, impulse excitation technique (EIT) [14].
In our study, the elastic constants can be successfully
calculated theoretically by using the linear deformation
method (LD) and the linear response method (LR) ap-
plied within the elastic limit. The phase transforma-
tions that occur in the materials can change the elec-
tronic properties of the material as well. Changes in the
electronic structure of the Cu—Al-Be alloy in the transi-
tions between irregular austenitic A2, regular austenitic
DO;3 (or L2;), and 18R martensitic phases were stud-
ied by electron energy loss spectrometry (EELS) and af-
ter the martensitic transition, a charge of approximately
0.17 electron/atom remained in the Cu 3d state [15]. Fur-
thermore, it was not observed that transfer of charge oc-
curred from martensitic to austenitic or between regular-
irregular austenitic phases [15]. From this point of view,
it can be seen that the change of charge can give im-
portant information about whether the crystallographic
structure of the material has changed or not.

To summarize briefly the results obtained from the
present studies, firstly, it is observed that hysteresis can
also occur not only for the phase transition from the par-
ent phase to the martensitic phase (L2; to 18R) but also
between martensitic phases (18R to 6R) in the Cu-Al-Be
alloys [7, 8, 12, 13]. Secondly, it has been reported that
not only unexpected mechanical behavior occurs due to
structural deterioration during phase transitions but also
in this case hysteresis occurring in Cu-based alloys cannot
be observed experimentally [8]. From this point of view,
the determination of the mechanical stability state of the
alloy is important depending on the stability conditions
of the cubic (L2;), tetragonal (NM), and orthorhombic
phases (3M, 5M, 7M, and 9R) in the CuyAlBe SMA.
This is because, understanding the mechanical stability
of the solid-state lies in the formulation of stability cri-
teria, a set of conditions that determine the critical level
of external stress or internal strains at which a homo-
geneous lattice without any defects becomes structurally
unstable. Mechanical stability is one of the most central
issues in the analysis of structural reactions such as the

formation, growth, single crystalline, or polycrystalline
form of a crystal. Accordingly, lattice stability is one of
the most fundamental issues in the flexibility and sta-
bility of the crystal phase [16, 17]. In order to deter-
mine the mechanical stability of the calculated austenitic
(L21) and martensitic (NM, 3M, 5M, 7TM, and 9R) phases
in Cu—Al-Be SMA, it has been investigated whether it
provides the mechanical stability conditions. These me-
chanical stability conditions are determined by the stabil-
ity criteria based on the symmetries of the crystal struc-
tures. Correspondingly, the provision of mechanical sta-
bility will be a reference point for supporting the stability
of newly calculated crystal lattice. Thirdly, it is under-
stood that electronic charge exchange can be regarded as
an indication of phase transitions in SMAs [15]. In the
light of all these informations, the presence of stable NM
(non-modulated), 3M, 5M, and 7M martensitic phases
were investigated in this study in addition to previously
observed DOg3 (or L2;) austenitic and 18R-6R marten-
sitic phases. The structural, mechanical, and electronic
properties of the stable state are also calculated to assess
the potential of these phases in their application areas.
In our study the results obtained not only are compat-
ible with the previous data for the austenitic L2; and
martensitic 9R phases but also will provide significant
contributions to the literatures physical properties of the
Cu—Al-Be alloy, in the theoretically conjectured and in-
vestigated NM, 3M, 5M, and 7M phases.

2. Computational details

In this study, ab initio simulation calculations based
on the DFT were performed using the potential of the
projector augmented wave (PAW) to solve the Kohn—
Sham equations [18-20]. Total energy calculations were
performed using the Vienna ab initio simulation pack-
age (VASP) [21-25]. The effects of electronic exchange
and correlation functions are considered with using the
generalized gradient approximation (GGA) developed by
Burke, Perdew, and Ernzerhof [26]. In our calcula-
tions, kinetic energy cut-off values for L2; austenitic,
NM, 3M, 5M, 7M, and 9R martensitic structures were
determined to be 600 eV. The energy convergence cri-
terion of the electronic self-consistency was chosen as
10~® eV /atom [27]. The Brillouin zone integrations were
carried out by the Monkhorst—Pack special points mesh
with a grid size of 16 x 16 x 16 (for austenitic L2;),
12 x 12 x 10 (for martensitic NM), 10 x 2 x 8 (for marten-
sitic 3M, 5M, and 7M) and 12 x 12 x 10 (for marten-
sitic 9R) for the all phases in the CupAlBe alloy [28].
The contribution of valence electrons is influential in de-
termining the electronic properties of Cu—Al-Be alloys.
The valence electron configurations for Cu, Al, and Be
atoms are 3d'%4s!, 3523p', and 2s2, respectively. To de-
termine the electronic behavior of the material, the den-
sity of electronic states (DOS) was calculated using the
tetrahedron method involving the Bloch corrections. In
the DOS calculations, the k-mesh numbers are increased
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(a) The illustration of cubic L2; Heusler phase of CusAlBe SMA. (b) Reduced tetragonal bct nonmodulated

(NM) cell of CuzAlBe shape memory alloy. Blue, cyan, and green spheres represent Cu, Al, and Be atoms in the

pictures, respectively.

to 22 x 22 x 22 (for cubic L2, phase), 16 x 16 x 14 (for
martensitic NM phase), 16 x 8 x 14 (for 3M-5M phases),
and 12 x4 x 10 (for 7TM-9R phases). The austenitic cubic
L2, structure has a unit cell of 16 atoms. The unit cell
of the tetragonal NM structure also contains 8 atoms.

The 5M modulated crystal structure designed for pro-
totype NigMnGa magnetic SMA (MSMA) has been used
to create modulated martensitic super cells for Cu-Al-
Be SMA [29]. As given in Fig. 1, to create modulated
martensitic super cells of CuyAlBe alloy, we used a body-
centered tetragonal (bct) primitive cell obtained from
the cubic austenitic L2; structure (from Fig. la to b).
This primitive cell forms the crystal structure of the non-
modulated (NM) martensite phase. In the next step, 3M,
5M, 7M, and 9R structures were created by shifting in
non-modulated NM bct primitive cell in the direction
of [110] in three, five, seven, and nine atomic planes,
respectively. Finally, all atoms are displaced with the
same phase according to the acoustic character of the
static wave of modulation. In this way, the supercell
with modulation resembles as close as possible the ex-
perimentally observed structure for NiosMnGa single crys-
tals [30]. For example, the relationship between the lat-
tice parameters of the orthorhombic 5M structure con-
sisting of 40 atoms and the cubic L2; lattice parame-
ter is as follows: asy = arz, /V2, bsm = Bara, /V2 ve
asm = arz, [29]. Martensitic structures with 3M, 5M,
7M, and 9R modulated were periodically iterated 3, 5,
7, and 9 times in the direction of [110], respectively, and
orthorhombic super cells with 24, 40, 56, and 72 atoms re-
spectively composed of tetragonal crystallographic units
were formed.

The method of forming the martensitic super cells is
schematically shown in Fig. 2. Firstly, the structural
relaxation is performed with respect to the ionic posi-
tions, the shape, and the volume of the supercell. After

obtaining the volume at which the energy is minimum,
the material is re-relaxed at this volume by changing the
shape, volume, and ionic positions at the same time in
order to get forces on each atom to be nearly zero. Self-
consistent calculations have been terminated when the
pressure on the crystal system is approximately 0 kbar
and the total force applied on each atom reaches approx-
imately 0.01 ¢V/A. When the specified criteria are sat-
isfied, the structural configuration with the lowest en-
ergy of the crystal structure is obtained. In the second
step, the mechanical properties such as the bulk modu-
lus and the derivative of the bulk modulus are calculated
using these equilibrium state structures as reference zero
strain state. In the equation of state calculations, the
total energy of the crystal structure with the lowest en-
ergy determined for each size of unit cell (obtained by
increasing and decreasing the volume up to 5%) by fix-
ing the volume of the unit cell and allowing the displace-
ments of the ions until eliminating the forces on them
through ionic optimization. This method was repeated
for each case by increasing and decreasing the volume of
the crystal structure by 5% and a data set was formed
by obtaining the total energy for each volume. Note that
all results refer to as state at T' = 0 K without external
stress. The total energies of the crystal structure of its
volume calculated so as to decide the lattice constants
and bulk modulus By (GPa) and its pressure derivative

B by fitting the data to the Birch-Murnaghan equation

of states (EoS):
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where Ey, Vy, By, and B are defined as the total en- Hence, we calculate the elastic constants of these new
ergy, equilibrium volume, bulk modulus, and its pressure crystal structures, by applying proper linear elastic defor-
derivative at the zero pressure, respectively. In order to mations to the unit cell of the cubic L2; austenitic struc-
better understand the mechanical behavior of the mate- ture. The deformation parameters of the three different
rial, anisotropic behavior needs to be addressed as well. deformations were selected as § = +0.03, £0.02, +0.01.
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Fig. 2. Modulated martensitic structures of Cup AlBe Heusler alloy in the 3M, 5M, 7M, and 9R phases shown schemat-
ically: projection of all modulated martensitic phases on the (001) plane (top view).
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In this way, C11, C12, C44 and bulk modulus B elastic
constants have been calculated [31]. The number of elas-
tic constants of martensitic phases is more than six. For
this reason, the elastic constants of martensitic phases
are calculated by used linear response calculation method
(LR), which based on the determination of Hessian ma-
trices [31]. Electronic DOS calculations has also been
made to determine the electronic properties of the alloy.
In addition, partial electronic density of state (pDOS)
calculations were performed to investigate the contribu-
tions of Cu, Al, and Be atoms to the electron density of
the material, and this distribution of the contributions
with respect to the atoms was investigated.

3. Results and discussion

8.1. Structural properties of alloys

The calculated lattice constant of the L2; phase is
5.712 A and the corresponding volume of the unit cell
is 186.36 A3. The calculated lattice constant is in rea-
sonable agreement with the experimental lattice con-
stant, which is reported to in the range of 5.825 A and
5.963 A [3, 32]. Together with the L2; phase, there are
experimental and theoretical results from previous works
on the 9R phase. The lattice constants a, b, ¢, of the
martensitic 9R structure were also calculated as 4.784 A,
5.319 A, and 3.840 A in our work. The calculated lat-
tice constants of the 9R martensitic phase are consis-
tent with the experimental results [3, 32]. Furthermore,
the bulk modulus of the martensitic 9R phase was deter-
mined to be 120.4386 GPa and the pressure derivative of
the bulk module as 4.4603. The calculated values for cu-
bic austenitic L2, lattice constants (a = b = ¢) deviated
by 4% and 1.9% off from the experimental studies [3, 32].

TABLE I

The calculated lattice parameters a (A), b (A) and ¢ (A)
bulk modulus By (GPa) and its pressure derivative B’ in
the all phases of CuzAlBe shape memory alloy.

1 -
Structure | Method Structural properties

a [A][b [A]] ¢ [A] |B [GPa]| B’ |Refs.
our calc.|5.712(5.712| 5.712 | 128.454 | 4.406
L2, exp. |5.963|5.963| 5.963 3]

5.825|5.825| 5.825 [32]
NM our calc. |4.048(4.048| 5.682 | 129.000 | 4.353
3M our calc.|3.929(4.178| 5.885 | 125.659 |4.5193
5M our calc. [4.361(4.659| 5.212 | 124.417 | 4.450
™ our calc. [3.956|5.238| 4.610 | 119.911 | 4.585
our calc. [4.784(5.319| 3.839 | 120.438 | 4.460
IR exp. [4.390(5.250| 3.830 [3]
4.460(5.220|12.750 [32]

Ref. [32]. The lattice constants are given without standard-
ization since the material studied by Moreau is polycrys-
talline (the grain size is given about 50 to 80 um by Moreau
and the unit cell parameters of 18R martensitic measured
a = 0.466 nm, b = 0.522 nm, ¢ = 1.275 nm and B = 83.3° by
using X-ray diffraction patterns)

The first lattice constant a of orthorhombic martensitic
9R phase deviated by 8.9% and 7.2% off from the ex-
perimental studies [3, 32]. The second lattice constant
b also deviated by 1.3% and 1.9% off from the experi-
mental studies [3, 32]. The third lattice constant c is
highly consistent with the experimental study [3]. The
deviation rate is only 0.2% [3]. However, since the lat-
tice constant of the experimental study given in Ref. [32]
is given without standardizing, it will not be correct to
make a comparison. In addition, to the best of our knowl-
edge, there are no experimental and theoretical stud-
ies for bulk modulus and its pressure derivative that we
can compare our results for austenitic (L2;) and marten-
sitic (NM, 3M, 5M, 7M, and 9R) phases with. Besides,
to the best of our knowledge, there are no experimen-
tal and theoretical studies related to the lattice con-
stants of newly calculated martensitic (NM, 3M, 5M, 7M,
and 9R) phases. The determined structural properties
such as lattice constants a, b, ¢, the mechanical proper-
ties, bulk modulus B, and its pressure derivative B are
given in Table I for austenitic L2; and all martensitic
phases.

Experimental studies have shown that the austenitic
cubic L2, structure, which is known as the main stable
phase of the CusAlBe alloy, undergoes a phase transfor-
mation from 18R and/or 18R to 6R modulated structures
depending on the strain [12]. Moreover, the 18R marten-
sitic phase was reported to undergo structural deforma-
tion under tensile stress [8]. This result suggests that
hysteresis may also occur in the case of phase transitions
occurring between martensitic phases [8]. This shows
how important it is to investigate the existence of differ-
ent martensitic phases that may be possible to take ad-
vantage of some applications of Cu—Al-Be alloys. From
this point of view, the presence of martensitic phases not
previously reported has been particularly investigated in
this study. The fit results of the total energy value calcu-
lated per molecule for all phases to the Birch—-Murnaghan
EoS are given in Fig. 3.

As shown in Fig. 3, the total energies and the lat-
tice constants, bulk modulus and its pressure deriva-
tive corresponding to different volumes per molecule of
cubic L2;, tetragonal NM, orthorhombic 3M, 5M, 7M,
and 9R crystal structures, by fitting to a third order
Birch-Murnaghan equation of state, have been calcu-
lated theoretically. The calculated structural parame-
ters are listed in Table I. The lattice constants of tetrag-
onal non-modulated NM phase are calculated as a =
b = 4.048 A and ¢ = 5.682 A. Furthermore, the vol-
ume Vjy, bulk modulus By, and its pressure derivative B’
corresponding to the minimum energy are calculated as
46.565 A3 /molecule, 129 GPa, and 4.353, respectively.
The energy of the non-modulated tetragonal NM phase
is about 2.16 meV /molecule smaller than the cubic phase
(L27) closest to itself. This indicates that the NM phase
is a lower temperature phase. To the best of our knowl-
edge, no literature has been found on the experimental
and theoretical work that we can compare the structural,
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Fig. 3. The equation of state data for L2;, NM, 3M,
5M, 7TM, and 9R phases. They are fitted to the 3rd order
Birch-Murnaghan equation of state. The total energy
values in here are expressed as a function of volume per
molecule in the CusAlBe SMA.

mechanical, and electronic properties of the martensitic
NM, 3M, 5M, and 7TM phases with. For this reason, as
given in Fig. 3 not only the new phases calculated ac-
cording to the Birch—-Murhangan state equation have a
distribution corresponding to the minimum energy, but
also the energy differences between the phases must be
evaluated in terms of thermal fluctuation energy. When
we consider a thermodynamic system at an absolute tem-
perature T, the average thermal energy carried by each
microscopic degree of freedom in the system is about of
magnitude kgT. At room temperature, the value of this
thermal energy kg7'/2 is approximately 0.012926 eV. As
there are three degrees of freedom per atom, correspond-
ing to the three spatial directions, which means a thermal
energy of 3kgT'/2 per atom, this value is approximately
0.03878 €V /atom (or 38.78 meV/atom).

From this point of view, we examine the mini-
mum energy states of the phases; the energy differ-
ence between L2; and NM phases corresponds to about
0.54 meV/atom. This energy value is considerably
smaller than the average thermal fluctuation energy of
38.78 meV/atom and the difference of energy between
these phases is within thermal fluctuation limits. In
the case of the lowest energy of the orthorhombic 3M
phase, the lattice constants of phase are calculated as
a = 3929 A, a = 4.178 A, and ¢ = 5.885 A. Struc-
tural properties such as bulk modulus and its pressure
derivative are also given in Table I. The energy difference
between the lowest energy tetragonal NM phase and the
orthorhombic 3M phase is estimated to be approximately
14.92 meV /atom. This difference in energy is about half
of the thermal energy (38.78 meV /atom). From this, the
transition from the NM or L2; phase to the martensitic
3M phase can be instantaneously induced by thermal en-
ergy, or the thermal energy barrier cannot be exceeded.
On the other hand, the energy difference between the
minimum energies of the martensitic 5M and 7M phases

and the minimum energy of the NM phase was calcu-
lated to be 44.47 meV/atom and 58.89 meV/atom, re-
spectively. These energy differences are greater than the
thermal fluctuation energy value. Thus, a higher energy
phase than the low energy phase can be passed over the
thermal energy barrier and stable high energy phases can
exist. Finally, the difference between the orthorhombic
9R phase and the martensitic NM phase with the low-
est energies is calculated to be 72.97 meV/atom. This
energy is about twice as much as the thermal fluctua-
tion energy. Considering these results, since the ground
state energies of the non-modulated NM and modulated
3M phases have sub energy below the thermal fluctuation
energy barrier per atom, their formations can be instan-
taneously induced by the transported thermal energy.
However, the energy differences of the 5M, 7TM, and 9R
martensitic phases are large enough to exceed the ther-
mal energy barrier. As shown in the Birch-Murnaghan
equation of state (given in Fig. 3), the stability of these
phases can be mentioned.

3.2. Mechanical properties of alloys

Here we describe the results for the anisotropic elastic
properties of different polymorphs of Cus AlBe to address
the mechanical stability and the effects of martensitic
phase transformations on anisotropic mechanical prop-
erties. We first investigate the elastic constants for the
cubic L27 austenitic phase of CusAlBe. The elastic con-
stants are obtained by applying three different deforma-
tions (volume preserving deformations are used for pure
and tetragonal shear coefficients) for cubic L2; struc-
ture. The austenitic L2; phase has three independent
elastic constants. These elastic constants are the bulk
modulus B = (C11 + 2C42)/3, tetragonal shear moduli
C = (C11 — C12)/2, and pure shear moduli Cyy. In
our calculations, for each type of lattice deformation,
strain parameter § varies from —0.03 to 0.03 in steps
of 0.01 to get the data yielding the strain energy as a
function of strain. The deformation energy per unit vol-
ume versus strain §2 curve gives the corresponding elas-
tic constants from this data. Our calculated bulk mod-
ulus and two shear moduli values are compatible with
previous experimental studies [33]. The three indepen-
dent anisotropic elastic constants C'11, Ch2, Cyyq are de-
termined from By, c'.

The number of independent elastic constants of
martensitic phases (NM, 3M, 5M, 7M, and 9R) is more
than three. Depending on the tetragonal symmetry, the
number of independent elastic constants of the NM phase
is reduced to six. The other martensitic phases with or-
thorhombic symmetry (3M, 5M, 7M, and 9R) have nine
independent elastic constants. For the nonmodulated
and modulated structures the elastic constants are calcu-
lated by using a LR calculation method, which is based
on the determination of Hessian matrices [31]. In addi-
tion, both the linear deformation method (LD) and the
LR method were used to calculate the elastic constants
for the L2; phase. The values of Ci1, Ci2, and Cyy
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TABLE II

The elastic constants C;; (GPa), bulk modulus By (GPa) and tetragonal shear elastic constants c’ (GPa) of CusAlBe
material in the austenitic and martensitic phases, compared with available experiment and previous theoretical studies

Structure| Method Elastic constants C;; [GPa)
Cn1 C12 Ci3 Ca2 Ca3 C33 Caq Css Cse B C Refs.
° our calc. |LR|[157.079|109.335 98.056 125.249(23.872
3 é L2y LD|145.884|115.699 119.502 125.761(15.092
A exp. 141.600| 94.200 127.400 110.000{23.700| [33]
o NM our calc.|LR |248.867| 46.282 [105.162 186.802| 2.864 108.017(133.083
= ] 3M our calc. |LR[199.753| 47.606 |115.075(240.689|91.770|190.198 | 32.164 [97.025|109.733|126.616
E} é) 5M our calc. |[LR|[170.124|106.769| 92.817 |183.483|69.527|200.873| 69.037 [61.952| 47.096 |121.412
3~ ™ our calc. |[LR| 91.514 | 59.685 | 24.273 | 79.379 |40.403| 45.115 | 66.692 [39.276| 73.612 | 51.637
B IR our calc.|LR| 97.079 | 12.750 | 37.918 [125.32229.842| 91.307 | 68.515 [10.208| 50.011 | 52.748

calculated by using linear deformation show a deviation
of 3%, 22%, and 6%, respectively from the experimental
studies. When the results obtained by linear deforma-
tion are evaluated, the C1, and Cy4 elastic constants are
very compatible with the experimental results, whereas
the deviation of C1s elastic constant is higher than the
others. The deviations observed in Ci1, Cio, and Cyy
elastic constants calculated by the second method LR are
10%, 15%, and 22% respectively, when compared to the
experimental results. To best of our knowledge, there are
no experimental and theoretical studies to compare the
calculated elastic constants for the other five martensitic
phases (NM, 3M, 5M, 7M, and 9R). The elastic constants
for five martensitic phases (NM, 3M, 5M, 7M, and 9R)
are calculated for the first time in this study. The calcu-
lated elastic constants for all phases of CusAlBe and the
available experimental results are given in Table II.

When the previous studies are examined, it is observed
that hysteresis might also occur not only for the phase
transition from the parent phase to the martensitic phase
(L2; to 18R) but also between the martensitic phases
(18R to 6R) in the Cu-Al-Be alloys [7, 8, 2, 13]. Fur-
thermore, it has been reported that not only unexpected
mechanical behavior occurs due to structural deteriora-
tion during phase transitions but also in this case hys-
teresis occurring in Cu-based alloys cannot be observed
experimentally [8]. The conditions for mechanical sta-
bility in a crystal structure follow from the requirement
that upon a general strain deformation, the change in the
total energy and all elastic constants (C;;) must be pos-
itive. Mathematically necessary and sufficient stability
conditions for a crystal system to be mechanically stable
can be listed as follows [17]:

e The matrix Cj; is definite positive;
o All eigenvalues of C;; are positive;
e Sylvester’s criterion must be provided;

e An arbitrary set of minors of C' are all positive.

The four possible formulations are called the Born elas-
tic stability conditions for an unstressed crystal system.
They are valid regardless of the symmetry of the crystal
and are not linear [17].

In order to investigate the mechanical stability in the
austenitic and martensitic phases of the Cu—Al-Be SMA,
firstly, we review the mechanical stability conditions of
the cubic, tetragonal, orthorhombic symmetries, so as to
further verify our calculated results for all elastic con-
stants (C;;). The necessary and sufficient stability con-
ditions are given in Table III for the cubic, tetragonal,
and orthorhombic crystal symmetries.

The first calculated cubic crystal system is called
austenitic L2;. The constraints and restrictions are given
in the first row of Table III so that the lattice can be
mechanically stable. When viewed with respect to the
elastic constants of the cubic L2; phase, in our results,
011, C12, and C44 are 157.079 GPa, 109.335 GPa, and
98.056 GPa, respectively. Besides, the bulk modulus By
is 125.249 GPa, and thus, the condition Ci5 < By < Cy1
is satisfied.

The second calculated crystal structure is the marten-
sitic tetragonal NM phase. The stability requirements
necessary for a tetragonal crystal to be mechanically
stable after applied homogeneous elastic deformation
are given in the second row of Table III. All elas-
tic constants of the tetragonal phase are positive as
seen in Table II. The restrictions criteria (C7; — Ci2),
(011 + C33 — 2013), and (2011 + 2C12 +4C13 + 033) are
equal to 202.585, 225.261, and 1197.75 GPa, respectively.
The bulk modulus By value can be calculated as follows
using the elastic constants of the crystal system as given
in Ref. [36]:

1
By = 9 (Cr1 + Cag + C33 +2C1 + 2C13 +2C03) . (2)

There are some equality relations between elastic con-
stants in tetragonal symmetries. The elastic constant
Cyo equals C71, Coz equals Ch3. Depending on these
equations, Eq. (2) takes the following form:

1
By = 5 (2011 + 2C12 +4C13 + 033) . (3)

Using Eq. (3), the bulk modulus is easily calculated
to be 133.083 GPa. It was determined that there
was about 3% deviation between this bulk modulus
By value (133.083 GPa) and the bulk modulus By
value (129.008 GPa) obtained from the Birch—-Murnaghan
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TABLE III

The mechanical stability conditions, restrictions for elastic constants C;; (GPa) and bulk modulus By (GPa) by the
crystal symmetries stability criteria in the all phases of CuzAlBe SMA.

Crystal
Fysta Criteria Restrictions for Cj; Restrictions for B
symmetries . . Refs.
of phases for elastic constants elastic constants bulk modulus
. Ci1 >0
Cubic Ci1—Ci2>0 [34]
C 0 C By < C
(L2, phase) o i . Ci1 +2C12 > 0 12 < Bo< & [35]
44
Ci1 >0 Ci1 —Ci2>0
Tetragonal C33 >0 Ci1+Cs3 —2C13>0 By > 3(Ch2 +2Ch3) [34]
(NM phase) C1a >0 2C11 + 2Ch2 By < 5(Ci2 + 2C33) [36]
Ces >0 +4C13 + Cs3 > 0
Ci1>0
C’:: >0 C11 4 C22 —2C12 >0
Orthorhombi C Csz3 —2C 0
rHIOT 1OMDIC Cs3 >0 1t s 13> By > %(012 + C13 + Ca3) [37]
(3M, 5M, 7M, Cus> 0 Cog + Cs33 — 2053 >0 B <1(C' + Cos + Ciss) [38]
and 9R phases) 044 >0 C11 4 Co2 + Cs3 + 2C12 0= 3 2 3
C;Z >0 +2C13+2C23 >0

equation of state (FoS). We can interpret that in the light
of these results, the martensitic tetragonal NM structure
is mechanically stable.

Finally, let us focus on the mechanical stability of the
newly calculated orthorhombic (3M, 5M, 7M, and 9R)
phases. When we examine the elastic constants of or-
thorhombic phases in terms of mechanical stability crite-
ria given in the last row of Table III, firstly, it is seen that
all elastic constants calculated in our study are positive.
On the other hand, it is provided also the restriction cri-
teria given for the elastic constants C;; of orthorhombic
systems. The bulk modulus B values for martensitic or-
thorhombic 3M, 5M, 7M, and 9R phases were calculated
to be 126.616, 121.412, 51.637, and 52.748 GPa, respec-
tively, from Eq. (2). As for that given in the last row of
Table III, we calculated the lower limit of the bulk mod-
ulus By to be 84.817, 89.700, 41.450, and 26.840 GPa for
the 3M, 5M, 7M, and 9R phases, respectively. Similarly,
the upper limits are calculated to be 210.213, 184.830,
72.000, and 104.570 GPa for orthorhombic martensitic
phases from 3M to 9R. We can see that the elastic con-
stants of the orthorhombic 3M and 5M phases satisfy all
the stability conditions given in Table III. Moreover, the
bulk modulus values for the 3M and 5M phases calcu-
lated from equation of state and elastic constants are
highly compatible (deviation about 0.8% and 2%, re-
spectively). However, even though providing the given
mechanical stability requirements, the bulk modulus By
values of the 7M and 9R phases, which are calculated
from Eq. (2), are much smaller than the values calcu-
lated from equation of state (deviation about 56%). As
is known, martensitic phases according to the acoustic
character of the static wave of modulation are formed by
applying in order of 3-5-7-9 layer period from 3M to 9R
structure [29]. The initial deformation rate of the crystal
structure is increased due to the increase of the 3-5-7-9

layer periods (3M — 9R direction) in the phase modula-
tion. Contrary to this case, the symmetry of the crystal
system decreases. Thus, the elasticity of the 7TM and 9R
phases increases and the values of the elastic constants
decrease. The bulk modulus value becomes smaller.

3.8. Electronic properties of alloys

In this subsection the influence of crystal structure on
the electronic structure of CupAlBe alloy is discussed.
The total electronic DOS and electronic density of state
of individual atoms (pDOS) from the spin-resolved bands
for austenitic (L21) and martensitic (NM, 3M, 5M, 7M,
and 9R) phases are determined and shown in Fig. 4a, b,
Fig. 5a, b, Fig. 6a, b, respectively. When the electronic
properties of the L2; structure in Fig. 4a are examined,
the lowest valence bands between —10 eV and —8 eV are
predominantly due to Cu 3d (2, and e,) states. The
majority and minority states of these bands have almost
no contribution to magnetization since the DOS behav-
ior is symmetrical. It is not seen individually that the
Cu atoms contribute to the electronic state density from
the s and p orbitals. Most of the contributions com-
ing to DOS are composed of the d states of Cu atoms
extending from —6 eV to 4 eV around the Fermi level.
It is seen that the contributions of Al and Be atoms are
considerably smaller than Cu atoms. A noticeable contri-
bution of —6 eV to —4 eV (around —5 €V) is observed in
the Cu eq states, and this contribution decreases towards
the Fermi level. In the range of —5 eV and —4 €V, a re-
markably larger contribution is obtained from the Cu o,
states than Cu e, states and this contribution decreases
towards —7 eV.

Above and below the Fermi level except for the range
between —5 eV and —4 €V, it is seen that the contribu-
tions from the Cu e  states are predominant.
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When martensitic phase transformation from the
austenitic L2; to non-modulated NM martensitic phase is
carried out, as shown in Fig. 4b, it is noteworthy that the
contributions from the s and p orbits of Al and Be atoms
are very small. Besides, there are many peaks in the
range of —8 eV and —4 eV due to the contributions from
both Cu ty4 and Cu e, states. In the range between —7 eV
and —4 eV, Cu ty, states are dominant and also are sim-
ilar to those to Cu e4 states. Furthermore, in the range
of —4 eV to —3 eV, a peak consisting of both Cu ¢, and
Cu ¢4 states is observed. A small peak occurs at about
—2 eV above the level of the Fermi resulting from Cu p
states. In non-modulated NM martensitic phase, it is
seen that the spin-up and spin-down states are symmetri-
cal. Accordingly, the magnetic character does not change
in martensitic NM phase of the material. As one can seen
in Fig. 5a, b, Fig. 6a, b, the most contribution is gener-
ally between —8 eV and the Fermi level in the marten-
sitic 3M, 5M, TM, and 9R phases of the material. In
addition, it is seen that the contribution from ¢y, and e,
states, which form the most contribution, changes as the
phase changes. It is known that the phase shifts occur-
ring in the materials can change the electronic properties
of the material. In experimental studies, changes in the
electronic structure of the Cu—Al-Be alloy in the transi-
tions between irregular austenitic A2, regular austenitic
DOj3 (or L2;) and 18R martensitic phases were studied by
electron energy loss spectrometry (EELS) and after the
martensitic transition, the electron charge density of the
material was observed to change [15]. From this point of
view, in our calculations, change of distribution of elec-
tronic charge can be considered as an evidence for the
presence of new phases, for transition from the austenitic
to martensitic and/or between martensitic phases.

When we investigated the variation of the electron
charge distribution due to the phase transitions of the
CuyAlBe alloy, as seen in Fig. 4a and b, there is a very
large peak in the L2; phase of the alloy due to Cu ta,
majority and minority states between —5 eV and —4 €eV.
As the phase transition from L2; to NM structure oc-
curs, the intensity of the Cu ty, peak is reduced and
divided into two parts. One of the peaks was between
—5 eV and —4 €V and the other peak was located at
—4 eV. Furthermore, at the L2, phase, two sharp peaks
at —5 eV were formed by Cu e, spin-up and spin-down
states. When it was passed to the NM phase, its in-
tensity was considerably reduced and a sharp peak very
close to —4 eV appeared. As shown in Fig. 5a, when it
is also switched to the 3M phase, the contribution from
the Cu ty4 states becomes quite dominant over the other
phases, between —6 eV and —3 eV. This predominant
contribution is present in both spin-up and spin-down
states of the Cu tg4. When we focus on the L2; and
NM structures given in Fig. 4a and b, the intensities of
0.781 state eV/atom and 0.750 state eV /atom, respec-
tively, observed at about -5 eV, increase dramatically to
the average 1.455 state eV /atom as the material migrates
to the 3M phase.

The contributions from ¢y, states, which are dis-
tributed between —6 eV and —3 eV at 3M phase, become
a sharp peak toward —3 eV energy at 5M phase. There
are the two sharp peaks at —4 €V in the martensitic 7M
phase. The contributions from the Cu e4 states do not
change very rapidly and in large quantities during phase
transitions compared to Cu ty4 states. In the 9R phase,
no noticeable change was observed in the contributions
from Cu ty4 and Cu e, states. The contributions to the
electronic density of state from not only s, p, oy, and
ey states of Al and Be atoms but also s and p states of
Cu atom have been observed in extremely small quantity
in the all austenitic and martensitic phases. As shown
in Figs. 4, 5 and 6, the t3; and e, states of Cu atoms
dominate in the electronic nature of the CusAlBe SMA.

4. Conclusion

As shown in Fig. 3, the total energies and the lattice
constants, bulk modulus By GPa and its pressure deriva-
tive B’ corresponding to different volumes per molecule
of cubic L21, tetragonal NM, orthorhombic 3M, 5M, 7M,
and 9R crystal structures, by fitting to a third order
Birch—-Murnaghan equation of state, have been calculated
theoretically. The martensitic tetragonal NM phase is de-
termined as the lowest energetic state. The phases after
the NM phase as far as energies are listed as L2; —-3M—
5M —7M— 9R, respectively. However, the energy differ-
ences between phases are compared with the thermal en-
ergy criterion 3kgT /2 per atom. The energy differences
between the lowest energized NM phase and the phases
L2y, 3M, 5M, 7M, and 9R were calculated to be 0.54,
14.92, 44.47, 58.89, and 72.97 meV /atom, respectively.
It has been determined that NM — L2; and NM — 3M
energy differences are below the thermal energy criterion
and above the energy differences of NM — 5M, NM —
7M and NM — 9R. Phases with higher energy differences
than thermal fluctuation energy cannot be generated in-
stantaneously due to thermal fluctuation. It is reason-
able to assume that these phases are stable structures
with minimum energy.

The calculated elastic constants, which determine the
mechanical behavior of the material, are compatible with
previous experimental studies [33]. The elastic constants
of C11, C12, and Cyy calculated by using LD show a de-
viation of 3%, 22%, and 6% respectively from the experi-
mental studies. When our results obtained are evaluated,
the C11 and Cyy elastic constants are highly compati-
ble with the experimental results, whereas the deviation
ratio of Cio value is higher than the others. The sec-
ond method used to calculate elastic constants is the LR
method. The elastic constants of Cy1, C12, and Cyy cal-
culated by using LR method show a deviation of 10%,
15%, and 22% respectively from the experimental stud-
ies. There is no experimental or theoretical study to
compare the elastic constants calculated for the other
martensitic (NM, 3M, 5M, 7M, and 9R) phases. Ac-
cordingly, the elastic constants of five martensitic phases
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(NM, 3M, 5M, 7M, and 9R) are calculated for the first
time in this study. When the obtained elastic constants
are evaluated in terms of mechanical stability, the elas-
tic constants of austenitic and martensitic phases satisfy
all the mechanical stability conditions given in Table III
according to crystal symmetry. In addition, for the L2,
NM, 3M, and 5M phases, the bulk modulus obtained not
only from the equation of state, but also obtained from
the mathematical relations of the elastic constants are
quite compatible. However, the bulk modulus values ob-
tained using the elastic constants given in Table III for
7M and 9R martensitic phases are found to be smaller
than the bulk modulus values calculated from EoS. How-
ever, the elastic constants of these phases provide all the
mechanical stability requirements given for orthorhombic
crystal structures.

When the pDOS of the austenitic and martensitic
phases are analyzed, it is seen that the most contribu-
tion to the electronic density of states comes from Cu a4
and Cu e, states. However, it is seen that the contribu-
tions due to the individual atoms change in phase transi-
tions from the austenitic phase to the martensitic phase
and/or between martensitic phases. This charge varia-
tion can be considered as evidence for the presence of
new calculated martensitic phases (NM, 3M, 5M, and
7M) for the CuyAlBe alloy. However, CusAlBe SMA is
a non-magnetic material, since all phases of spin-up and
spin-down are all symmetrical. In other words, Cus AlBe
alloy is the conventional SMA.
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