

AN EXAMINATION OF ECOLOGICAL AND STATISTICAL RISK ASSESSMENT OF TOXIC METALS IN SEDIMENTS AT SIDDIKLI DAM LAKE: A CASE STUDY IN KIRSEHIR, TURKEY

Tamer Akkan^{1,*}, Okan Yazicioglu², Ramazan Yazici³, Mahmut Yilmaz⁴

¹Giresun University, Department of Biology, Faculty of Science and Arts, Giresun, Turkey

²Organic Farming Program, Botanic and Animal Production Department, Technical Vocational Schools of Higher Education,

Ahi Evran University, Kirsehir, Turkey

³Laboratory and Veterinary Health Department, Cicekdagi Technical Vocational Schools of Higher Education, Ahi Evran University, Kirsehir, Turkey

⁴Department of Agricultural Biotechnology, Faculty of Agriculture, University of Ahi Evran, Kirsehir, Turkey

ABSTRACT

This study was carried out in order to examine heavy metals concentration in sediment of Sıddıklı Dam Lake in Kırşehir, Turkey. The surface sediment samples from four stations in the Sıddıklı Dam Lake were collected seasonally from September 2015 to August 2016. Concentrations of selected metals were determined using ICP-MS.

Descriptive statistical analysis including Oneway ANOVA, significance (0.05) was done. Important differences in the mean values were tested using Tukey's multiple range test. Moreover, Principal component analysis (PCA) and Hierarchical cluster analysis (HCA) were applied to the data of the dam lake

The degree of metal contamination is compared with the standard shale values. The result of sediment enrichment factor, pollution loading index, and geoaccumulation index reveals that the surface sediments of the dam lake are not polluted.

Thus, this study aims to identify the main pollution factors as well as the regions of the lake that are at risk. Moreover, significant correlations between the measured concentrations of the all heavy metals in the sediment samples were observed. It can be concluded that the heavy metal pollution level is low at Sıddıklı Dam Lake, however it will be good to adopt protective measures before it is too late.

KEYWORDS:

Heavy Metal, Accumulation, Sediment, Multivariate Statistical Methods

INTRODUCTION

Sediment pollution with heavy metals has become a serious health concern over recent years. These metals are common pollutants that have distributed aquatic environments. Heavy metals in sediments are derived from natural components or geological as well as from anthropogenic sources. Today, the most common metal pollutants are arsenic, mercury, cadmium, lead, chromium, copper, and nickel. Although some metals such as manganese, copper, and zinc are essential trace elements for organisms, they can also be dangerous at high exposure levels [1].

The sources of metals in aquatic sediments are either natural or anthropogenic [2]. The natural sediments may extensively be contaminated with various heavy metals released from domestic wastewater and/or industrial effluents, the dumping of agricultural activity, and other types of anthropogenic activities [3-5]. Heavy metals in sediments are bioaccumulated by organisms either passively from the water or by facilitated uptake. Moreover, heavy metals that are consumed by organisms may enter the food chain in significant amounts. Also, sediments play a critical major role in determining the pollution pattern of freshwater systems. They are responsible for transporting a significant proportion of many nutrients and toxic chemicals. Many studies reported that these resources within Turkey have been seriously polluted by heavy metals [6-14].

The city of Kırşehir is rich in freshwater resources, being endowed with a network of rivers that can meet a variety of the region's water needs. However, with the rapid increase in the population of the city and the need to meet the increasing demands of irrigation consumption mean that the available water resources are becoming depleted, and that the water quality has deteriorated. The Sıddıklı Dam Lake is very vital to Kırşehir as it provides very wide area of irrigation water.

FIGURE 1
Study area with sampling point locations (adapted from Google earth)

The aim of the present study was:

- 1. To determine the level of heavy metal concentration,
- 2. To determine the ecological risk in surface sediments of Sıddıklı Dam Lake, and
 - 3. To assess sediment quality.

In addition, all results collected from this study will provide the baseline information for future studies.

MATERIALS AND METHODS

Sample location and sampling. The surface sediment samples were collected seasonally between September 2015 and August 2016 from 4 stations. Surface sediment samples (0-20 cm) were collected in triplicates and homogenized in a zip locked polyethylene bag at each sampling site using an Ekman sampler. Afterwards, the collection the samples were placed in coolers with ice bags while being transported to the laboratory, whereby they were kept at about -80°C until being analyzed.

Heavy metal analysis. The samples were immediately transported to the laboratory and filtered through acid treated Millipore HA filters (0.45 μ m) using a vacuum. These samples were stored in darkness at 4 °C up until analysis [15]. Sediment samples were prepared with a preliminary digesting process via a CEM MARS-5 model microwave instrument. Heavy metal determinations of all of the samples were carried out using an ICP-MS -Bruker 820-MS [16]. The reference materials were used to check the accuracy and reliability of the method. Metal contents were expressed in terms of μ g/g.

Enrichment factor, Pollution Loading Index and Index of Geoaccumulation. The enrichment factor (EF) and Geoaccumulation index (Igeo) are some useful indicators for reflecting the status of environmental contamination [17-20]. In calculating the normalized enrichment factors (EF), the original Salomons and Förstner [21] equation was substituted in the present study with Fe. In order to evaluate a possible anthropogenic origin of the metals, the enrichment factor (EF), pollution loading index (PLI), and Igeo were calculated for the metal concentration obtained in the surface sediments [22].

Statistical Analysis. Statistical analysis of data was carried out using SPSS statistical package programs. Descriptive statistical analysis including One-way ANOVA was done, with a significance of 0.01 and 0.05. Important differences in the mean values were tested using Tukey's multiple range test. Moreover, relationships among the considered variables were tested using Pearson's correlation. Multivariate analyses of the dam lake data set were performed using Principal component analyses (PCA) and cluster analysis (CA). All of the statistical calculations were performed using SPSS 17.0.

RESULTS AND DISCUSSION

Heavy metal analyses of sediment samples taken periodically from four stations over a period of 4 seasons had showed that the mean levels of aluminium (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), barium (Ba) and lead (Pb) varied had between 214.248-3204.650 (2246.891±178.055), 7.713-12.584 (9.686±0.311), 3.532-6.030 (4.723±0.184), 81.446-149.488 (113.

 324 ± 4.692), 3229.803-5451.602 $(4637.034 \pm$ 137.871), 0.695-1.692 (1.271 ± 0.073), 1.988-5.614 (3.250 ± 0.313) , 0.157-2.091 (0.970 ± 0.157) , 4.000- $11.944 (7.194\pm0.452), 0.142-0.896 (0.580\pm0.052),$ 33.767-85.124 (47.231 ± 2.900), and 4.145-8.122(5.595±0.255), μg/g, respectively. Moreover, seasonal changes of heavy metal concentrations in the surface sediment are shown in Table 1. The sequence of the means of heavy metals in water samples from each season were Fe>Al>Mn>Ba>V>Zn>Pb>Cr> Ni>Co>Cu>Ga. Also, the concentration of other elements -that is, light metals such as Ca, Na, and Kand total phosphorous varied between as a µg/g 7246.048-37642.340 (19736.146±2657.994), 5-10.4 (7.639 ± 0.454) , 4.4-7 (5.663 ± 0.190) and 0.387-0.676 (0.507±0.021). Calcium was identified as being the most abundant element. Also, other sediment parameters such as water content and organic matter as a percentage 10.650-17.7(13.352±0.612), 2.240-4.560 (2.837±0.151) were determined. The pH of the sediment had varied from 6.4 to 7.4. The average concentrations of the majority all metals in the sediment were lower than the average shale values. Also, the average concentrations of Cr, Mn, Co, Ni, Cu, Zn and Pb obtained in this study were much lower than sediments of other studies (Table 2). Moreover, in the present study, the metal concentrations in the dam lake sediments are compared with TEC and PEC values. The means of Cr, Ni, Cu, Zn and Pb in our samples were lower than TEC and PEC values (Table 2).

TABLE 1 Seasonal changes in Levels of Heavy Metals

Sa	ason	Al	Ca	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	asun	(µg/g)	(μg/g)	(μg/g)	(µg/g)	(μg/g)	(µg/g)	(µg/g)	(μg/g)	(µg/g)	(μg/g)
		1704.631	10925.378a	9.216	4.616a	91.938a	4590.873	1.045a	2.440a	0.600^{a}	7.505
Fall		513.165	748.400	0.595	0.381	3.795	195.585	0.058	0.249	0.204	1.561
Æ		214.248	8805.082	7.880	3.532	81.446	4074.272	0.974	2.112	0.157	4.645
		2405.810	12210.750	10.766	5.270	99.408	4954.949	1.219	3.168	1.147	11.944
<u>-</u>		2854.968	11380.594a	9.447	4.223a	118.442ab	4817.414	1.255a	2.393a	0.548^{a}	7.235
nte		148.753	1680.431	0.107	0.014	5.418	143.544	0.026	0.164	0.023	0.473
Winter		2478.738	7246.048	9.186	4.199	105.540	4474.711	1.187	1.988	0.493	6.071
		3204.650	15478.280	9.708	4.257	131.748	5177.031	1.306	2.789	0.606	8.389
bn.	Mean	1888.362	20921.106b	9.219	4.308a	111.430ab	4323.053	1.121a	2.916a	0.767^{a}	6.177
Spring	SE±	215.883	1564.667	0.644	0.107	8.148	446.078	0.161	0.138	0.032	0.880
ē	Min.	1319.820	16981.110	7.713	4.016	92.044	3229.803	0.695	2.692	0.689	4.000
• 1	Max.	2281.935	24639.220	10.841	4.488	131.834	5415.124	1.386	3.260	0.834	8.312
r		2539.606	35717.505°	10.862	5.745 ^b	131.487 ^b	4816.796	1.662b	5.252 ^b	1.964 ^b	7.858
Ě		96.546	845.878	0.726	0.175	7.608	259.102	0.018	0.145	0.049	0.361
Summer		2303.057	33518.830	9.032	5.255	112.879	4182.268	1.612	4.908	1.853	6.963
S		2776.026	37642.340	12.584	6.030	149.488	5451.602	1.692	5.614	2.091	8.730
_		2246.891	19736.146	9.686	4.723	113.324	4637.034	1.271	3.250	0.970	7.194
Total		178.055	2657.994	0.311	0.184	4.692	137.871	0.073	0.313	0.157	0.452
\mathbf{I}_{0}		214.248	7246.048	7.713	3.532	81.446	3229.803	0.695	1.988	0.157	4.000
		3204.650	37642.340	12.584	6.030	149.488	5451.602	1.692	5.614	2.091	11.944
•											
Se	ason	Ga	Ba	Pb		Na	K	TP	на	WC	OM
Se	ason	$(\mu g/g)$	(µg/g)	(μg/g) (ug/g) (լ	ug/g) (μg/g)	pН	(%)	(%)
	ason	(μg/g) 0.463ab	(μ g/g) 55.277	(μ g/g 6.982) (j	μg/g) (μ	ug/g) (μg/g) 0.515	6.825	(%) 14.998 ^b	(%) 3.495
	ason	(μg/g) 0.463 ^{ab} 0.058	(μg/g) 55.277 10.838	(μ g/g 6.982 0.406) (j b g 5 1	ug/g) () 0.175 6 0.126 0	ug/g) (0.275 (0.335 ((μg/g) 0.515 0.060	6.825 0.144	(%) 14.998 ^b 1.462	(%) 3.495 0.477
Fall Ball	ason	(μg/g) 0.463ab 0.058 0.319	(μg/g) 55.277 10.838 33.767	(μ g/g 6.982 0.406 6.284) (j b 9 5 1 4 5	ug/g) () 0.175 6 0.126 0 0.800 5	(.275 (.335 (.400 (.	(μ g/g) 0.515 0.060 0.387	6.825 0.144 6.400	(%) 14.998 ^b 1.462 11.070	(%) 3.495 0.477 2.260
	ason	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559	(μg/g) 55.277 10.838 33.767 85.124	(μg/g 6.982 0.406 6.284 8.122) (j b 9 5 1 4 5 2 1	ug/g) (p.175 6 .126 0 5.800 5 0.400 7	ug/g) (0.275 (0.335 (0.400 (0.000 ((μ g/g) 0.515 0.060 0.387 0.676	6.825 0.144 6.400 7.000	(%) 14.998 ^b 1.462 11.070 17.700	(%) 3.495 0.477 2.260 4.560
Fall	ason	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b	(μg/g) 55.277 10.838 33.767 85.124 39.433	(μg/g 6.982 0.406 6.284 8.122 5.210) (pb 9 5 1 1 5 2 1 1 1 a 6	ug/g) (J 0.175 6 0.126 0 0.800 5 0.400 7 0.125 5	ug/g) (0.275 (0.335 (0.400 (0.000 (0.075 ((μg/g) 0.515 0.060 0.387 0.676 0.542	6.825 0.144 6.400 7.000 7.155	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a	(%) 3.495 0.477 2.260 4.560 2.500
Fall	ason	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036	(μg/g) 55.277 10.838 33.767 85.124 39.433 0.160	(μg/g 6.982 0.406 6.284 8.122 5.210 0.099) (pb 96 14 55 14 56 16 16 16 16 16 16 16 16 16 16 16 16 16	ug/g) (j 0.175 6 .126 0 i.800 5 0.4400 7 0.125 5 0.390 0	ug/g) (0.275 (0.335 (0.400 (0.000 (0.075 (0.138 ((µg/g) 0.515 0.060 0.387 0.676 0.542 0.010	6.825 0.144 6.400 7.000 7.155 0.022	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124	(%) 3.495 0.477 2.260 4.560 2.500 0.103
Fall	ason	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680	(μg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058	(μg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956) (j b c 6 1 1 1 5 1 2 1 6 6	ug/g) (j 0.175 6 .126 0 6.800 5 0.4400 7 0.125 5 0.390 0 6.000 4	ng/g) (0.275	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511	6.825 0.144 6.400 7.000 7.155 0.022 7.100	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240
		(µg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857	(μg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438) (j b	ag/g) () .175 6 .126 0 .800 5 .1400 7 .125 5 .390 0 .000 4 .800 5	ng/g) (2.275 (2.	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740
Winter Fall	Mean	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a	(μg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438) (j b	ag/g) (p.175 6 .126 0 .8800 5 0.400 7 .125 5 .390 0 .000 4 .880 5	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.900	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab}	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713
Winter Fall	Mean SE±	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914	(нg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396) (j b c 5 1 1 5 2 1 2 1 0 (c 5 3 8 6	ag/g) (0 0.175 6 1.126 0 0.800 5 0.400 7 0.125 5 0.390 0 0.000 4 0.800 5 0.325 5 0.905 0	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.557	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126
Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.145	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 0.175 6 1.126 0 0.800 5 0.400 7 0.125 5 0.390 0 0.000 4 0.800 5 0.325 5 0.905 0 0.400 4	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557 (1.400 (1.557	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350
Fall	Mean SE±	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.145 6.085	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 0.175 6 1.126 0 0.800 5 0.400 7 0.125 5 0.390 0 0.000 4 0.800 5 0.325 5 0.905 0 0.400 4 0.400 7	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.557 (1.400 (1.000	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960 13.090	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920
Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.085	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 0.175 6 1.126 0 0.800 5 0.400 7 0.125 5 0.390 0 0.000 4 0.800 5 0.325 5 0.905 0 0.400 7 0.400 7 0.933 5	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.557 (1.400 (1.000 (1.400	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960 13.090 15.130 ^b	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640
Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.145 6.085 5.069	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 1.175 6 1.126 0 1.800 5 1.400 7 1.125 5 1.390 0 1.000 4 1.800 5 1.325 5 1.905 0 1.400 4 1.400 7 1.933 5 1.992 0	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.400 (1.400 (1.400 (1.400 (1.400 (1.400 (1.400 (1.400 (1.401	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960 13.090 15.130 ^b 0.963	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051
Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.145 6.085 5.069 0.334 4.325	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 2.175 6 3.126 0 3.800 5 0.400 7 3.125 5 0.390 0 3.800 5 3.325 5 0.905 0 3.400 4 0.400 7 0.933 5 0.992 0 3.800 5	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.557 (1.400	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960 13.090 15.130 ^b 0.963 13.230	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560
Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479 0.896	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357 46.659	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.085 5.069 0.334 4.325 5.861	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 1.175 6 1.126 0 1.800 5 1.400 7 1.125 5 1.390 0 1.000 4 1.800 5 1.325 5 1.905 0 1.400 7 1.933 5 1.992 0 1.800 5 1.200 5	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.557 (1.400	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428 0.430	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800 7.010	(%) 14.998b 1.462 11.070 17.700 11.008a 0.124 10.650 11.210 12.273ab 0.472 10.960 13.090 15.130b 0.963 13.230 17.670	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560 2.790
Summer Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479 0.896	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357 46.659	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.085 5.069 0.334 4.325 5.861	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	126 0 0 0 0 0 0 0 0 0	ng/g) (1.275 (1.335 (1.400 (1.000 (1.000 (1.075 (1.138 (1.400 (1.000	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428 0.430 0.507	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800 7.010	(%) 14.998b 1.462 11.070 17.700 11.008a 0.124 10.650 11.210 12.273ab 0.472 10.960 13.090 15.130b 0.963 13.230 17.670 13.352	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560 2.790 2.837
Summer Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479 0.896 0.580 0.052	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357 46.659 47.231 2.900	(нв/в 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.085 5.069 0.334 4.325 5.861 5.595 0.255	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	126 0 0 0 0 0 0 0 0 0	ng/g) (1.275 (1.335 (1.400 (1.000 (1.000 (1.075 (1.138 (1.800 (1.400 (1.900	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428 0.430 0.507 0.021	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800 7.010 7.013 0.053	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960 13.090 15.130 ^b 0.963 13.230 17.670 13.352 0.612	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560 2.790 2.837 0.151
Spring Winter Fall	Mean SE± Min.	(µg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479 0.896 0.580 0.052 0.142	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357 46.659 47.231 2.900 33.767	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.083 5.069 0.334 4.325 5.861 5.595 0.255	(b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	126 0 0 0 0 0 0 0 0 0	ng/g) (1.275 (1.335 (1.400 (1.000 (1.000 (1.075 (1.138 (1.400 (1.000	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428 0.430 0.507 0.021 0.387	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800 7.010 7.013 0.053 6.400	(%) 14.998b 1.462 11.070 17.700 11.008a 0.124 10.650 11.210 12.273ab 0.472 10.960 13.090 15.130b 0.963 13.230 17.670 13.352 0.612 10.650	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560 2.790 2.837 0.151 2.240
Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479 0.896	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357 46.659	(µg/g 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.085 5.069 0.334 4.325 5.861	(i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	ag/g) (0 1.175 6 1.126 0 1.800 5 1.400 7 1.125 5 1.390 0 1.000 4 1.800 5 1.325 5 1.905 0 1.400 7 1.933 5 1.992 0 1.800 5 1.200 5	ng/g) (1.275 (1.335 (1.400 (1.000 (1.075 (1.138 (1.400 (1.400 (1.400 (1.557 (1.400	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428 0.430	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800 7.010	(%) 14.998b 1.462 11.070 17.700 11.008a 0.124 10.650 11.210 12.273ab 0.472 10.960 13.090 15.130b 0.963 13.230 17.670	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560 2.790
Summer Spring Winter Fall	Mean SE± Min.	(μg/g) 0.463 ^{ab} 0.058 0.319 0.559 0.768 ^b 0.036 0.680 0.857 0.405 ^a 0.102 0.142 0.642 0.684 ^{ab} 0.095 0.479 0.896 0.580 0.052	(µg/g) 55.277 10.838 33.767 85.124 39.433 0.160 39.058 39.838 49.656 1.914 44.570 53.859 44.559 0.893 42.357 46.659 47.231 2.900	(нв/в 6.982 0.406 6.284 8.122 5.210 0.099 4.956 5.438 5.120 0.396 4.144 6.085 5.069 0.334 4.325 5.861 5.595 0.255	(b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	126 0 0 0 0 0 0 0 0 0	ng/g) (1.275 (1.335 (1.400 (1.000 (1.000 (1.075 (1.138 (1.400 (1.000	(µg/g) 0.515 0.060 0.387 0.676 0.542 0.010 0.511 0.553 0.542 0.044 0.429 0.635 0.429 0.000 0.428 0.430 0.507 0.021	6.825 0.144 6.400 7.000 7.155 0.022 7.100 7.200 7.125 0.094 7.000 7.400 6.948 0.050 6.800 7.010 7.013 0.053	(%) 14.998 ^b 1.462 11.070 17.700 11.008 ^a 0.124 10.650 11.210 12.273 ^{ab} 0.472 10.960 13.090 15.130 ^b 0.963 13.230 17.670 13.352 0.612	(%) 3.495 0.477 2.260 4.560 2.500 0.103 2.240 2.740 2.713 0.126 2.350 2.920 2.640 0.051 2.560 2.790 2.837 0.151

Horizontally, letters a, b and c show statistically significant differences in same group of metals (p < 0.05).

TABLE 2
Comparison of heavy metals in the previous studies

		Metals (μg/g)											
		Al	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ba	Pb
This study		2246.891	9.686	4.723	113.324	4637.034	1.271	3.250	0.970	7.194	0.580	47.231	5.595
Seyhan Dam Lake [10]				118.95	803.63	39.350			19.80	39.09			
Kapulukaya Dam Lake [23]		%3.39		426.84	601.97	%2.48	24.19	71.71	17.66	51.86			21.16
Gala Lake [24]				67.42				34.20	12.52	50.46			11.71
US EPA				26				16	16	110			31
Shale Value [25]		80.000	130	90	850	47.200	19	68	45	95	19	580	
Threshold	TEL			37.3				18	35.7	123			35
Effect Con-	LEL			26				16	16	120			31
centrations	MET			55				35	28	150			42
[26]	ERL			80				30	70	120			35
	PEL			90				36	197	315			91.3
Probable Ef-	SEL			110				75	110	820			250
fect Concen-	TET			100				61	86	540			170
trations [26]	ERM			145				50	390	270			110

TEL Threshold effect level, PEL probable effect level,

LEL lowest effect level, SEL severe effect level. MET minimal effect threshold, ERL effect range low, TET toxic effect threshold, ERM effect range median.

The influences of anthropogenic metals pollution in surface sediments of Sıddıklı Dam Lake were determined using enrichment factor (EF-PLI) and geoaccumulation index (Igeo) for each of the metals (Table 3). The Igeo had suggested that individual metal contamination in the sediments could be classified as being "practically uncontaminated". The mean result from the present investigation had showed that Igeo of Cu: -6.3, V: -4.3, Cr: -4.8, Mn: -3.5, Co: -4.5, Ni: -5.1, Zn: -4.3, Ga: -5.7, Ba: -4.2, Pb: -2.4, Al: 7.5, Ca: 9, and Fe: 9.4, respectively. Contamination factor (EF) is a useful indicator reflecting the status of environmental contamination. The results from this study show that enrichment factors of all metals had varied from 0 to 1, and were classified as having "no enrichment". Also, the PLI index provide a simple, comparative means for assessing the level of metal pollution. The result from present study are classified as having no metal pollution except for Fe, Ca, and Al which are known as being the most common elements within Earth's crust. According to Varol [27], PLI values between 1.02 and 4.19 (mean 1.88) indicate that the Tigris River is moderately polluted. Also, the mean EF values for all metals (Cr and Mn except) were higher than 1.5, which suggests an anthropogenic impact on the heavy metal levels in the sediment of the Tigris River. Kankılıç et al. [23] had found evidence of heavy metal pollution in the Kapulukaya Dam Lake (Kırıkkale), with EF values that were over the pollution limits. Çevik et al. [10] had investigated the accumulation of heavy metals in the surface sediment of the Seyhan Dam Lake in Adana, Turkey. Their data were assessed using the Igeo, and had indicated

that the surface sediment samples were partially contaminated with Cd which is used in agricultural activities as a fertilizer and pesticides.

TABLE 3
SEF, PLI and Igeo values in surface sediments

SEF, IL	i anu igeo va	ilues ili sul	lace seuments
	Igeo	EF	PLI
Cu	-6.3	0.0	0.02
Al	7.5	0.3	274.75
Ca	9.0	0.9	793.59
\mathbf{V}	- 4.3	0.0	0.07
Cr	- 4.8	0.0	0.05
Mn	-3.5	0.0	0.13
Fe	9.4	1.0	985.64
Co	- 4.5	0.0	0.07
Ni	- 5.1	0.0	0.05
Zn	-4.3	0.0	0.08
Ga	-5.7	0.0	0.03
Ba	- 4.2	0.0	0.08
Pb	-2.4	0.0	0.28

According to statistical analysis (One-Way ANOVA) Ca, Cr, Mn, Ni, Co, Cu, Ga, Pb and WC in sediment concentrations were significantly different between the seasonal changes (p<0.05). Furthermore, Table 3 shows the statistical analysis of correlation matrix in terms of linear correlation coefficient (r) values (significant at 0.05 and 0.01) in sediment samples across all seasons, respectively. A positive correlation exists between V, Cr, Al and Ca, Mn, Cr, Ca, and V, Mn, Fe, V, and Cr, Fe, Co, Cr, and Mn, Ni, Cu, Fe, and Co, Cu, Zn, Co, and Ni, Zn, Ga, Ni, and Cu, Ga, Ba, Cu, and Zn, Na, K, Ba, and Pb. Also, a negative correlation exists between TP,

pH, Na, and K (Table 4). A large portion of the results from this study correlate with those of other studies [28, 30].

Four principal components (PC) were obtained with an eigenvalue of more than 1, explaining greater than 85.35 % of total variance. PC 1 grouped metals such as Cr, Ni, cu, Ca, Co reveal 39.61 % of the total variance. Cr, Cu and Ca had originated from natural sources [31]. Cr and Ni are derived from terrigenous detritus material [32]. Also, PC 2 explains 24.22 % of the total variance and reveals high loading values for the Al, V, Ga, Co, Zn, TP, Mn and Fe, which are predominantly contributed by the agricultural runoff [30]. A similar result was shown in sediment samples taken from Iznik Lake [33]. PC3 (13.16 % of total variance) is the strong loading of Ba, Pb, Na, and K with WC and OM, confirming that

metals from organic complexes exist within the sediment structure [34]. The fourth PC was explaining 8.18 % of the total variance has strong positive loadings on Ba, moderate positive loadings on pH, and weak negative loadings on Pb. Thus, this indicates pollutants from the metal group, which indicates some source of stream runoff (Table 5, Figure 2).

The present study Hierarchical cluster analysis (HCA) was used to show sampling stations with similar characteristics in the dam lake reservoir. The first cluster corresponds to station 1. This station is situated at the deepest and closest part to the door area of the dam lake. Also, Cluster 2 corresponds to 4 and 2, 3. These stations are situated very close to the river discharge sampling location. These zones mostly receive their pollution from agricultural runoff activities and soil erosion (Figure 3).

TABLE 4
Pearson correlation coefficients between heavy metal levels in Siddikli Dam Lake

	Al	Ca	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Al	1									
Ca	0.150	1								
\mathbf{V}	0.573*	0.607^{*}	1							
Cr	0.185	0.751**	0.590*	1						
Mn	0.524^{*}	0.700**	0.757**	0.497^{*}	1					
Fe	0.467	0.239	0.778**	0.357	0.690^{**}	1				
Co	0.512^{*}	0.785^{**}	0.779^{**}	0.656**	0.809^{**}	0.600^{*}	1			
Ni	0.201	0.939**	0.508^{*}	0.811^{**}	0.612^*	0.199	0.769**	1		
Cu	0.248	0.907^{**}	0.592^{*}	0.892^{**}	0.562^{*}	0.216	0.800**	0.921**	1	
Zn	0.373	0.229	0.705^{**}	0.530^{*}	0.424	0.763^{**}	0.523*	0.181	0.392	1
Ga	0.727^{**}	0.169	0.559^{*}	0.365	0.647^{**}	0.695^{**}	0.612^{*}	0.227	0.278	0.490
Ba	-0.261	-0.074	0.067	0.274	-0.309	-0.017	-0.166	-0.164	0.130	0.542*
Pb	-0.243	-0.371	0.012	0.006	-0.284	0.344	-0.264	-0.269	-0.350	0.197
Na	-0.377	-0.100	0.010	0.151	-0.235	0.203	-0.123	-0.134	-0.045	0.315
K	-0.246	-0.066	0.108	0.066	-0.130	0.346	-0.010	-0.086	-0.090	0.264
TP	-0.220	-0.591*	- 0.655**	-0.817**	-0.543*	-0.652**	-0.685**	- 0.588*	-0.725**	-0.816**
pН	0.097	-0.061	-0.103	-0.037	0.228	-0.062	-0.117	-0.165	-0.047	0.021
WC	-0.091	0.352	0.234	0.689^{**}	-0.061	0.167	0.329	0.472	0.578^{*}	0.505^{*}
OM	-0.359	-0.280	-0.280	0.206	-0.458	-0.091	- 0.374	-0.135	-0.112	0.067
	(J a	Ba	Pb	Na	K	TP	pН	WC	OM

Al									
Ca									
\mathbf{V}									
Cr									
Mn									
Fe									
Co									
Ni									
Cu									
Zn									
Ga	1								
Ba	-0.281	1							
Pb	0.011	0.152	1						
Na	- 0.149	0.587^{*}	0.595*	1					
K	-0.064	0.324	0.681**	0.915^{**}	1				
TP	-0.452	-0.412	-0.083	-0.389	-0.340	1			
pН	0.130	0.185	-0.477	-0.049	-0.287	-0.015	1		
WC	-0.022	0.568^{*}	0.319	0.602^{*}	0.516^{*}	-0.704**	-0.290	1	
OM	-0.221	0.492	0.634^{**}	0.693**	0.564^{*}	-0.143	0.018	0.592^{*}	1

^{**}p< 0.01

^{*}p< 0.05

TABLE 5
Varimax rotated factor matrix for the whole data set

Variable	PC 1	PC 2	PC 3	PC 4
Eigenvalues	7.525	4.602	2.501	1.589
% of Variance	39.61	24.22	13.16	8.36
Accumulative %	39.61	63.82	76.99	85.35
	Fa	ctor loadings (va	nrimax normalize	ed)
Al	0.069	0.724	-0.338	0.081
Ca	0.933	0.159	-0.158	-0.050
V	0.473	0.770	0.044	-0.049
Cr	0.850	0.262	0.274	0.095
Mn	0.483	0.715	-0.313	0.040
Fe	0.097	0.920	0.240	-0.145
Co	0.717	0.606	-0.145	-0.106
Ni	0.953	0.117	-0.127	-0.161
Cu	0.970	0.178	- 0.007	0.101
Zn	0.255	0.708	0.472	0.265
Ga	0.090	0.856	-0.138	0.004
Ba	0.095	-0.114	0.717	0.562
Pb	-0.318	0.125	0.706	-0.524
Na	-0.027	-0.019	0.916	-0.023
K	- 0.060	0.112	0.814	-0.338
TP	-0.645	-0.518	- 0.464	-0.166
pН	-0.131	0.082	- 0.156	0.849
WC	0.589	- 0.029	0.734	-0.031
OM	-0.073	-0.272	0.805	0.034

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

FIGURE 2
Component plot

CONCLUSIONS

The present results indicate that heavy metal contamination in the surface sediment of Sıddıklı Dam Lake is lower than reference values. Seasonal variation of metals from sediment are statistically significant. Moreover, a positive relationship was found between metals. The study revealed that on the basis of computed indexes (EF, PLI and $I_{\rm geo}$) Sıddıklı Dam Lake is classified as being unpolluted. In total, all four of the PCA accounts for 85.35 % of the total

FIGURE 3
Dendogram (using Ward Method) shows
clusters of variables

variance demonstrated, and that the lithogenic factor dominates the distribution of most of the metals. Furthermore, it is probable that these elements had originated from agricultural activities around the lake. Consequently, given the current situation, the lake needs to be protected through a protection and regular monitoring program.

ACKNOWLEDGEMENTS

This study has been supported by the project numbered as PYO_FEN_FEN.4001.15.004 accepted by Ahi Evran University, BAPKOM.

REFERENCES

- [1] Intawongse, M. and Dean, J.R. (2006) Uptake of Heavy Metals by Vegetable Plants Grown on Contaminated Soil and their Bioavailability in the Human Gastrointestinal Tract. Food Additives and Contaminants. 23(1), 36-48.
- [2] Singh, K.P., Mohan, D., Singh, V.K., and Malik, A. (2005) Studies on Distribution and Fractionation of Heavy Metals in Gomti River Sediments-a Tributary of the Ganges. Journal of Hydrology. 312, 14-27.
- [3] Khaled, A., El Nemr, A. and El Sikaily, A. (2006) An Assessment of Heavy-Metal Contamination in Surface Sediments of the Suez Gulf Using Geoaccumulation Indexes and Statistical Analysis. Chemistry and Ecology. 22(3), 239-252.
- [4] Verep, B., Akın, Ş., Mutlu, C., Apaydın, G., Ertuğral, B. and Çevik, U. (2007) Assessment of Trace Elements in Rainbow Trout (*Onchorhynchus mykiss*) Cultured in Marine Aquaculture Cages on the Black Sea Coast. Fresen. Environ. Bull. 16, 1005-1011.
- [5] Polat, N. and Akkan, T. (2016) Assessment of Heavy Metal and Detergent Pollution in Giresun Coastal Zone, Turkey. Fresen. Environ. Bull. 25, 2884-2890.
- [6] Parlak, H., Çakır, A., Boyacıoğlu, M. and Arslan, Ö.Ç. (2006) Heavy Metal Deposition in Sediments from the Delta of the Gediz River (Western Turkey): A Preliminary Study. E.U. Journal of Fisheries and Aquatic Sciences. 23 (3-4), 445-448.
- [7] Akbulut, A. and Akbulut, N.E. (2010) The study of heavy metal pollution and accumulation in water, sediment, and fish tissue in Kızılırmak River Basin in Turkey. Environmental Monitoring and Assessment. 167, 521-526.
- [8] Tuna, A.L., Yılmaz, F., Demirak, A. and Ozdemir, N. (2007) Sources and Distribution of Trace Metals in the Sarıcay Stream Basin of Southwestern Turkey. Environmental Monitoring and Assessment. 125, 47-57.
- [9] Kucuksezgin, F., Uluturhan, E. and Batki, H. (2008) Distribution of Heavy Metals in Water, Particulate Matter and Sediments of Gediz River (Eastern Aegean). Environmental Monitoring and Assessment. 141, 213-225.

- [10] Çevik, F., Göksu, M.Z.L., Derici, O.B. and Findik, Ö. (2009) An Assessment of Metal Pollution in Surface Sediments of Seyhan Dam by Using Enrichment Factor, Geoaccumulation Index and Statistical Analyses. Environmental Monitoring and Assessment. 152(1-4), 309-317.
- [11] Baltas, H., Kiris, E. and Sirin, M. (2017) Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (*Engraulis encrasicolus*) from the Black Sea in Rize, Turkey. Marine Pollution Bulletin. 16(1-2), 528-533.
- [12] Bölükbaşı, V. and Akın, B.S. (2016) Agricultural Induced Heavy Metal Accumulation in Seyfe Lake, Turkey. Bulletin of Environmental Contamination and Toxicology. 96, 401-407.
- [13] Köse, E., Çiçek, A., Uysal, K., Tokatli, C., Emiroğlu, Ö., Arslan, N. (2015) Heavy Metal Accumulations in Water, Sediment, and Some Cyprinid Species in Porsuk Stream (Turkey), Water Environment Research, 87(3), 195-204.
- [14] Tokatli, C., Köse, E., Çiçek, A., Emiroğlu, Ö., Arslan, N., Dayioğlu, H. (2012) Lead Accumulations in Biotic and Abiotic Components of Emet Stream, Uluabat Lake Basin, Turkey. Pakistan Journal of Zoology. 44(6), 1587-1592.
- [15] APHA (American Public Health Association). (1998) Standard Methods for the Examination of Water and Wastewater. APHA, AWWA, WPCF, WPCF, Washington.
- [16] Alam, M.G.M., Tanaka, A., Stagnitti. F., Allinson. G. and Maekawa, T. (2001) Observations on the Effects of Caged Carp Culture on Water and Sediment Metal Concentrations in Lake Kasumigaura, Japan. Ecotoxicology and Environmental Safety. 48, 107-115.
- [17] Trefry, J.H. and Presley, B.J. (1976) Heavy metals in sediments from San Antonio Bay and the northwest Gulf of Mexico. Environmental Geology. 1, 283-294.
- [18] Sinex, S.A. and Helz. G.R. (1981) Regional geochemistry of trace elements in Chesapeake Bay Sediments. Environmental Geology. 3(6), 315-323
- [19] Helz, G.R., Sinex, S.A., Ferri, K.L. and Nichols, M. (1985) Processes controlling Fe, Mn and Zn in sediments of northern Chesapeake Bay, Estuarine. Estuarine, Coastal and Shelf Science. 21, 1-16.
- [20] Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P. and Litheraty, P. (2003) Analysis and Assessment of Heavy Metal Pollution in Suspended Solids and Sediments of the River Danube. Chemosphere. 51, 633-642.
- [21] Salomons, W. and Forstner, U. (1984) Metals in Hydrocycle. Berlin: Springer.

- [22] Ozseker, K., Eruz, C. and Ciliz, S. (2013) Determination of Copper Pollution and associated Ecological risk in coastal sediment of Southeastern Black Sea Region, Turkey. Bulletin of Environmental Contamination and Toxicology. 91(6), 661-666.
- [23] Kankılıç, G.B., Tüzün, İ. and Kadıoğulu, Y.K. (2013) Assessment of Heavy Metal levels in Sediment samples of Kapulukaya Dam Lake (Kirikkale) and Lower Catchment Area. Environmental Monitoring and Assessment. 185, 6739-6750.
- [24] Tokatli, C. (2017) Bioecelogical and Statistical Risk Assessment of Toxic Metals in Sediment of a Worldwide important Wetland: Galaka Lake National Park (Turkey). Archives of environmental Protection. 43(1), 34-47.
- [25] Taylor, S.R. (1964) Abundance of Chemical Elements in the Continental Crust: A New Table. Geochimica et Cosmochimica Acta. 28, 1273-1285.
- [26] Macdonald, D.D., Ingersoll, C.G. and Berger, T.A. (2000) Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology. 39, 20-31.
- [27] Varol, M. (2011) Assessment of Heavy Metal Contamination in Sediments of the Tigris River (Turkey) using Pollution Indices and Multivariate Statistical Techniques. Journal of Hazardous Materials. 195, 355-364.
- [28] Şener, Ş., Davraz, A. and Karagüzel, R. (2014) Assessment of trace metal contents in water and bottom sediments from Eğirdir Lake, Turkey. Environmental Earth Sciences. 71, 2807-2819.
- [29] Hacısalihoğlu, S. and Karaer, F. (2016) Relationships of Heavy Metals in Water and Surface sediment with Different Chemical Fractions in Lake Uluabat, Turkey. Polish Journal of Environmental Studies. 25(5), 1937-1946.
- [30] Gopal, V., Achyuthan, H. and Jayaprakash, M. (2017) Assessment of Trace elements in Yercaud Lake Sediments, Southern India. Environmental Earth Sciences. 76, 63.

- [31] Lv, J., Zhang, Z., Li, S., Liu, Y., Sun, Y. and Dai, B. (2014) Assessing Spatial Distribution, Sources, and Potential Ecological Risk of Heavy Metals in Surface Sediments of the Nansi Lake, Eastern China. Journal of Radioanalytical and Nuclear Chemistry. 299, 1671-1681.
- [32] Krishna, A.K., Mohan, K.R. and Murthy, N.N. (2011) Multivariate Statistical Approach for Monitoring of Heavy Metals in Sediments: A Case Study from Wailpalli Watershed, Nalgonada District, Andhra Pradesh, India. Research Journal of Environmental and Earth Sciences. 3, 103-113.
- [33] Ünlü, S. and Alpar, B. (2016) An Assessment of trace element Contamination in the Freshwater Sediment of Lake Iznik (NW Turkey). Environmental Earth Sciences. 75, 140.
- [34] Lepane, V., Varvas, M., Viitak, A., Alliksaar, T. and Heinsalu, A. (2007) Sedimentary Record of Heavy Metals in lake Liinjary, Southern Estonia. Estonian Journal of Earth Sciences. 56, 221-232.

Received: 22.01.2018 Accepted: 22.09.2018

CORRESPONDING AUTHOR

Tamer Akkan

Giresun University, Department of Biology, Faculty of Science and Arts, Giresun – Turkey

e-mail: biyoloji@yahoo.com