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a b s t r a c t 

In this study, two novel methods, which are based on Karhunen Loeve Transform (KLT) and Independent 

Component Analysis (ICA), are proposed for coding of speech signals. Instead of immediately dealing with 

eigenvalue magnitudes, the KLT- and ICA-based methods use eigenvectors of covariance matrices (or inde- 

pendent components for ICA) by geometrically grouping these vectors into fewer numbers of vectors. In 

this way, a data representation compaction is achieved. Further compression is achieved through discard- 

ing autocovariance eigenvectors corresponding to the small eigenvalues and applying vector quantization 

on the remaining eigenvectors. Additionally, this study proposes an iterative error refinement process, 

which uses the rest of the available bandwidth in order to transmit an efficient representation of the de- 

scription error for better SNR. The overall process constitutes a new approach to efficient speech coding, 

with ICA being used in subspace speech coding for the first time. Constant bit rate (CBR) and variable bit 

rate (VBR) coding algorithms are employed with the proposed methods. TIMIT speech database is used in 

the experimental studies. Speech signals are synthesized at 2.4 kbps, 8 kbps, 12.2 kbps, 16 kbps, 16.4kbps 

and 19.85 kbps rates by using various frame lengths. The qualities of synthesized speech signals are com- 

pared to those of available speech codecs, i.e., LPC (2.4 kbps), G.728 (LD-CELP, 16 kbps), G.729A (CS-CELP, 

8 kbps), EVS (16.4 kbps), AMR-NB (12.2 kbps) and AMR-WB (19.85 kbps). 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The goal of speech coding is to represent digital speech wave-

form with as few bits as possible while maintaining the intelli-

gibility and quality that is required for the particular application

( Gibson, 2005 ). In addition, most applications of speech coding re-

quire low coding delays, which is an undesirable property since

long coding delays interfere with speech interaction ( Chen et al.,

1992 ). Major speech coders can be classified into two categories

as waveform and parametric coders. The former includes speech

coders such as PCM and ADPCM, and latter class (also known

as vocoders) includes very low bit-rate synthetic speech coders

( Kondoz, 2007 ). LPC-based coder is a parametric coder which is

mostly used in audio signal processing and speech processing to

represent the spectral envelope of speech waveform in a com-

pressed form. This coder uses the information of a finite extent lin-

ear predictive model ( Deng and O’Shaughnessy, 2003 ). Linear pre-

diction based speech coding techniques (CELP, MELP, VSELP etc.)

have been widely researched in the literature ( Vasuki and Vanathi,
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006; Supplee et al., 1997; Gerson and Jasiuk, 1990; Chen et al.,

992 ). These types of speech coders are capable of synthesizing

ood quality speech at a reasonably low bit rate. An LPC variant,

ELP, has evolved to become the dominant paradigm for real time

peech compression ( Devalapalli et al., 2003 ), which is capable of

chieving high quality speech coding at rates from 16 kbps to 32

bps. A further variant, namely the low delay-CELP (LD-CELP) algo-

ithm was adopted by the International Telephone and Telegraph

onsultative Committee (CCITT) for speech coding at 16 kbps with

oll quality and became a standard as G.728 ( Chen et al., 1992 ).

imilarly, G.729A (CS-ACELP Annex A) is a high quality low band-

idth codec at 8 kbit/s with low complexity. ITU-T (International

elecommunication Union) has standardized G.729 as the stan-

ard speech coding algorithm for VoIP, DSVD (Digital Simultaneous

oice over Data) and multimedia applications ( Rashed et al., 2013 ).

he mixed excitation linear prediction (MELP) coder was chosen

y the Digital Voice Processing Consortium to replace the exist-

ng 2400 bps Federal Standard FS-1015 (LPC-10). The MELP coder

s based on the traditional LPC model, with additional features to

mprove its performance ( Supplee et al., 1997 ). The vector sum ex-

ited linear prediction (VSELP) speech coder utilizes a codebook

ith a structure that allows for a very efficient search procedure

 Gerson and Jasiuk, 1990 ). The coder uses two VSELP excitation
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odebooks, a gain quantizer which is robust to channel errors, and

 novel adaptive pre/postfilter arrangement. 

Being the fundamental application medium of speech coders,

SM networks started with Full Rate (FR) speech codec and

volved into Enhanced Full Rate (EFR). The Adaptive Multi-Rate

AMR) codec was added to 3GPP (The 3rd Generation Partnership

roject) Release 98 for GSM to enable codec rate adaptation to ra-

io conditions ( Holma and Toskala, 2011 ). AMR data rates range

rom 4.75 kbps to 12.2 kbps at a sampling rate of 8 kHz. The

MR-Wideband (AMR-WB) codec was added to 3GPP Release 5

 Holma and Toskala, 2011 ). AMR-WB uses a sampling rate of 16 kHz

ith data rates ranging from 6.6 kbps to 23.85 kbps, out of which,

odec rates from 6.6 kbps to 19.85 kbps can be supported by GSM

s well. AMR-WB offers clearly better voice quality than AMR (or

MR-NB) at the same data rate, so that it is also referred to as

wideband audio with narrowband radio transmission” ( Holma and

oskala, 2011 ). 

Enhanced Voice Services (EVS) has been developed in 3GPP

nd is described in 3GPP TS 26.441. EVS has been designed for

igh quality and efficient coding of speech and music. It has two

perational modes which are primary and EVS AMR-WB Inter-

perable. EVS is generally used in narrow band and denoted as

VS (NB). It offers up to 20 kHz audio bandwidth and has high ro-

ustness to delay jitter and packet losses due to its channel aware

oding ( Atti et al., 2015 ) and improved packet loss concealment

 Lecomte et al., 2015 ). 

Among the vast literature regarding speech coding at various

arget bandwidths, subspace based methods attempt to reproduce

 signal by using few coefficients in a transform domain. Classi-

ally applied transforms include Karhunen Loeve Transform (KLT)

 Goyal, 2001 ), Independent Component Analysis (ICA) ( Ferreira and

igueiredo, 2003 ), Discrete Cosine Transform (DCT) ( Ahmed et al.,

974 ), Fast Fourier Transform (FFT) ( Kumar and Kumar, 2012 ) and

avelet Transform (WT) ( Skodras et al., 2001 ) due to their known

nergy compaction properties. While DCT and WT are popular for

mage coding, signal specific methods such as KLT and ICA need

urther researches for practical speech coding applications. 

KLT is the most statistically efficient orthonormal transform

n terms of energy compaction and decorrelation. If a signal

as Gaussian distribution with a certain temporal correlation (i.e.

 ( τ ) � = δ( τ )), KLT is guaranteed to be more effective than the origi-

al signal domain ( Kim and Kleijn, 2004; Lee and Kim, 2010; Oze-

ov and Kleijn, 2011 ). In addition, a Gaussian signal can be ob-

ained by using the weighted sum of many independent compo-

ents that have non-Gaussian distributions. Therefore, KLT- and

CA-based methods can be preferable to reconstruct a signal. 

In this article, a novel eigen-representation grouping idea is em-

loyed together with iterated error improvement for speech cod-

ng. The performances of the proposed KLT- and ICA-based meth-

ds are evaluated for different bit rates. While similar subspace-

ased studies realize speech coding by considering basic structures

f standard codecs (e.g. CELP, LPC, etc.) ( Kim and Kleijn, 2004; Lee

nd Kim, 2010; Ozerov and Kleijn, 2011; Ju et al., 2014; Oger et al.,

006 ), the proposed speech codec does not utilize structures of

tandard codecs. In contrast to the studies that rely on standards,

e applied vector quantization to the principal component vectors

f matrices that are constructed by stacking KLT eigenvectors (we

ill call such matrices as “eigenvector matrices”). As a final step,

his study proposes an iterative error refinement process, where

n error signal is used to recursively improve SNR until the de-

ired bit rate is achieved. The emphasis regarding the novelty of

he proposed method is, therefore, two folds: 

(i) Eigenvector clustering by alignment, and 
ii) Error data feedback to improve SNR at a target bit rate. i  
The proposed KLT-based coder uses eigenvalues and eigenvec-

ors of the autocorrelation matrix that is estimated from a train-

ng speech data set. Once the codebooks of eigenvectors and trans-

orm coefficients are constructed, the codec is constructed and per-

ormances are measured on an isolated set of test speech signals.

he proposed decoder synthesizes speech signals using the trained

odebooks in a nearest neighbor sense. Several parameters need

o be tested at the training and testing stages. The results are

ompared with the performances of conventional state-of-the-art

peech coding methods. Particularly, the effects of codebook and

ode vector sizes, the effect of vector quantization (VQ) optimal-

ty, the effect of frame size and eventual data rate are thoroughly

nvestigated. Additionally, independent component and mixing ma-

rix codebooks are constructed for ICA-based coders by using the

raining speech data set. Again, the test speech signals are syn-

hesized by using pre-trained codebooks. Constant bit rate (CBR)

nd variable bit rate (VBR) coding approaches are adopted with the

roposed methods. Signal quality is determined by means of Per-

eptual Evaluation of Speech Quality (PESQ) ( Kumar et al., 2014 ),

omposite Measure (Cov) ( Hu andLoizou, 2008; Krishnamoorthy,

011 ) and Mean Opinion Score (MOS) ( Osahenvemwen, 2015 ). 

The rest of the study is organized as follows: The proposed KLT-

ased speech coder is described in Section 2.1 . In Section 2.2 , we

resent the vector quantization process, which is performed in or-

er to reduce the computation time for KLT-based method. The

roposed ICA-based speech coder is described in Section 2.3 . We

escribe constant bit rate coding and variable bit rate coding in

ection 3 . Objective quality measures are given in Section 4 . Exper-

mental results, Discussion and Conclusion sections are presented

n Sections 5 –7 , respectively. 

. Proposed subspace methods for speech coding 

KLT- and ICA- based subspace methods are proposed for coding

f speech signal frames. The codebooks are constructed by using

peech frames in the training set of the TIMIT database ( Zue et al.,

990 ). Test speech signals are synthesized by using these code-

ooks. In our experiments, codebook sizes are taken as 2 10 to 2 16 . 

.1. KLT–based subspace method 

The first considered subspace strategy depends on the cele-

rated KLT, which is known to decorrelate signal samples. Basis

unctions of KLT are eigenvectors of the autocorrelation matrix of

he input signal, rendered according to the eigenvalue magnitudes

n a descending order. Since the signals of interest are normalized

o a zero mean, KLT equivalently uses eigenvectors of the auto-

ovariance matrix. We define the transform coefficient (associated

ith an eigenvector) as simply the projection of the input signal

nto that eigenvector. If the decoder has knowledge of the eigen-

ectors and transform coefficients, the signal can be recovered as a

inear combination of the orthogonal eigenvectors. 

The proposed method starts by obtaining a covariance matrix

rom the frames of a phoneme. Length- N subframes, which corre-

pond to 1-shifted versions of overlapping windows in each frame

ith the length of M ( M = 2 N −1), are extracted in order to form

 × N data matrices. Each shifted subframe occupies one row of

ata matrix. Fig. 1 illustrates how the mentioned data matrices are

reated. 

The covariance matrix of p th data matrix ( X p ) in the training

ata set is obtained as 

 p = 

1 

N − 1 

N ∑ 

i =1 

[
( x i − m x ) ( x i − m x ) 

T 
]
, p = 1 , 2 , ..., r, (1) 

here x i ( x i ∈ R 

N ) is i th column vector which corresponds to the

 th row vector in the p th data matrix and r is the number of covari-
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Fig. 1. The creation of N × N data matrices by subframes. 
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ance matrices (which may take values as 1024, 2048, 4096, 16384,

32768 and 65536 in the experiments). In Eq. (1) , N is the number

of rows and columns in a data matrix and m x is the mean of the

column vectors. Next, the eigenvector and coefficient codebooks

are formed by using the eigenvectors of the covariance matrix.

When the eigenvalues of the covariance matrix are sorted in de-

scending order { λ1 > λ2 > . . . λN } , a matrix, �p , is formed by stack-

ing the eigenvectors corresponding to the largest K eigenvalues of

C p as shown in Eq. (2) 

�p = { φ1 , φ2 , . . . , φK } , (2)

where φ’s are length- N eigenvectors and �p ∈ R 

N × K . The eigenvec-

tor codebook can be written as a stack of matrices �p : 

�cb = { �1 , �2 , . . . , �r } . (3)

The p th coefficient matrix Y p is written as: 

Y p = �T 
p X p , (4)

where X p is p th data matrix with size N × N , and Y p ∈ R 

K × N . Even-

tually, a coefficient codebook ( Y 

cb ) with a size of K × M (M = N.r) is

created by merging all columns of coefficient matrices. The num-

ber of coefficient vectors (M) is equal to one of 1024, 2048, 4096,

16384, 32768 and 65536, and is selected according to different

frame lengths and bit rates. 

The test speech signals are divided into non-overlapping frames

( x 1 , x 2 , . . . , x t ) in the testing phase. The q th test frame ( x q ) is

compressed by projecting it onto the designed subspace, which is

spanned by the eigenvector matrices. Euclidean distances are found

for k th iteration mathematically by using each eigenvector matrix

and coefficient vector for the q th test frame ( x q 
k 
) as follows; 

f q 
p = 

∥∥x 

q 

k 
−
(
�p y 

q 
p 

)∥∥, p = 1 , 2 , . . . , r, (5)

where �p is q th eigenvector matrix that is taken from the eigen-

vector codebook and y 
q 
p = ( �T 

p x 
q 

k 
) . The minimum distance is speci-

fied with index a k for k th iteration and denoted as follows; 

a k = argmin 

(
f q 

p 

)
, p = 1 , 2 , . . . , r. (6)

If the eigenvector matrix for which the minimum distance is

obtained is notated as φa k 
, the coefficient vector ( y 

q 

k 
) is found for

k th iteration as follows; 

y q 
k 
= �T 

a k 
x 

q 

k 
. (7)

The Euclidean distances ( A 

q 

l 
) are obtained by using y 

q 

k 
as; 

A 

q 

l 
= 

∥∥y q 
k 
−Y l 

∥∥, l = 1 , 2 , . . . , M, (8)

where Y l is l th column vector in the coefficient codebook. The in-

dex of the coefficient vector, which gives the minimum Euclidean
istance, can be specified with index h k for k th iteration and ex-

ressed as follows; 

 k = argmin 

(
A 

q 

l 

)
, l = 1 , 2 , . . . , M. (9)

The coefficient vector which gives the minimum distance is de-

oted by ˆ y 
q 

k 
= Y h k 

at the encoder side. Using the eigenvector matrix

 φa k 
) and the coefficient vector ( ̂ y 

q 

k 
) , approximate test frame ( ̂ x 

q 

k 
)

s computed as; 

ˆ  q 
k 

= �a k ̂  y q 
k 
, (10)

ith an error signal which is expressed as; 

e q 
k 
= x 

q 

k 
− ˆ x 

q 

k 
. (11)

If the error reduction process is used for the desired bit rate,

he error signal ( e 
q 

k 
) is substituted into Eq. (5) instead of x 

q 

k 
. In

ther words, e 
q 

k 
is used as the test frame for the second iteration

 k = 2) and ˆ e 
q 

k 
is found by following the same procedure that is

sed to find ˆ x 
q 

k 
. The indices which are used to find ˆ x 

q 

k 
and ˆ e 

q 

k 
(be-

onging to the eigenvector matrix φa k 
and coefficient vector ( ̂ y 

q 
k 

)

re transmitted to the decoder. Using these indices, the decoder

an synthesize the signal as; 

ˆ  q = ˆ x 

q 
1 + 

d ∑ 

k =2 

ˆ e q 
k 
. (12)

Since the error is transmitted for further refinement, the er-

or between the synthesized signal ˆ x q and x q is reduced. In Fig. 2 ,

he encoder and decoder parts of the proposed KLT-based subspace

ethod are shown in parts (a) and (b), respectively. In this figure,

 is the current iteration index which is initially set to 1. Here, d

s maximum numbers of iterations that is used for CBR and VBR

oding. A set of indices is found for all iterations and is sent to the

ecoder. This process is performed for all frames of the test signal.

.2. Eigenvector quantization 

Vector quantization is performed on eigenvectors to shorten

he computational delay. K-means method ( Jain, 2010 ), which uses

he principal eigenvector of each eigenvector matrix, is used for

he eigenvector quantization. Thus, the clusters are obtained from

he eigenvector matrices including principal eigenvectors in sim-

lar directions. The new eigenvector codebook can be represented

y θcb = { θ1 , θ2 , . . . , θm 

} after the quantization, where m < r . The new

igenvector matrix is found for j th cluster and defined as; 

j = 

p ∑ 

i =1 

�i , j = 1 , 2 , . . . , m , (13)

here p is number of eigenvector matrices in the j th cluster. Each

olumn of the eigenvector matrix is normalized by dividing it with

ts norm. The size of the normalized eigenvector matrix is eventu-

lly N × K . 

We construct a toy example for illustration purposes here. Let

 = [ a 1 a 2 ] and B = [ b 1 b 2 ] be matrices of principal component vec-

ors a i and b i , and u 1 and u 2 are the sum of the first ( a 1 , b 1 )

nd second ( a 2 , b 2 ) principle components of A and B matrices as

 1 = ( a 1 + b 1 ) and u 2 = ( a 2 + b 2 ) , so that U = [ u 1 u 2 ] . The normal-

zed matrix is U norm 

= [ 
u 1 ‖ u 1 ‖ 

u 2 ‖ u 2 ‖ ] . Two matrices A and B have the

ame cluster in the two dimensional vector space and the normal-

zation process is shown in Fig. 3 . 

We used 3 different approaches for the search of optimal eigen-

ector matrix within the eigenvector codebook; 

(i) In the first approach (we will denote as A1 ), speech signals are

synthesized by searching all eigenvector matrices in the eigen-

vector codebook. (The computational delay is high). 
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(a) (b)

Fig. 2. Block diagrams of (a) the encoder and (b) the decoder for the proposed KLT-based method. 
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ii) In the second approach (we will denote as A2 ), synthesis is

done by searching only M normalized eigenvector matrices

( U norm 

). (The computational delay is low). The k -means method

is used in this approach. 

ii) In the third approach (we will denote as A3 ), in order to further

reduce the computational delay and improve bit allocation ef-

ficiency, we have devised a new quantization technique, where

the eigenvector matrices are quantized into clusters that con-

tain equal number of eigenvector matrices inside their quanti-

zation regions. Due to the similarity and inspiration from the

k-means method, we called the above method ‘balanced k -

means’. 

The new codebook structure for the third approach ( A3 ) is re-

lized with the following algorithm. At the end of this algorithm,

 clusters (each with L eigenvector matrices) is formed as a code-

ook structure. 

Step 1) Set t = 1. 

Step 2) Find the Euclidean distances among the principal vec-

tors of the first and the remaining eigenvector matrices; 

D i = ‖ 

φ1 −φi ‖ 

, i = 2 , 3 , . . . , N 

here N is the number of eigenvector matrices in the eigenvector

odebook. 

Step 3) Find L -1 eigenvector matrices which give the smallest L -

1 Euclidean distances among N -1 eigenvector matrices. Com-
bine the first eigenvector matrix and L -1 eigenvector matri-

ces, and form t th cluster which consists of L -size eigenvector

matrices ( ψ t ). Here, L is the number of eigenvector matrices

in t th cluster. 

Step 4) Find t th normalized eigenvector matrix ( U 

t 
norm 

) by using

the eigenvector matrices ( ψ t ) in the t th cluster as explained

in Fig. 3 . These eigenvector matrices in the t th cluster are

removed from the eigenvector codebook. 

Step 5) Increase t by 1. If t = M terminate the algorithm. Other-

wise, go to Step 2 . Here M is the number of clusters. 

ig. 3. Representation of the vector quantization in the two dimensional vector

pace. 

For a test frame, the most appropriate cluster is selected by us-

ng a normalized eigenvector matrix which gives the smallest Eu-

lidean distance in Eq. (5) ( U 

t 
norm 

, t = 1,2,…, M ). Then, the most suit-

ble eigenvector matrix, which has the smallest Euclidean distance,
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is found from the L -size eigenvector matrices belonging to the se-

lected cluster. Since ( L + M ) << N , the computational delay is con-

siderably reduced. In addition, the number of used bits is equal

to the new codebook structure (bit number = lo g 2 M + lo g 2 L ) which

is automatically equal to the number of bits for the non-quantized

codebook (bit number = log 2 N ). In other words, the number of allo-

cated bits is equal for the codebooks in the first approach and the

third approach. However, the encoding delay in the third approach

is less than that of the first approach. 

Let us explain the situation with a numerical case example.

Suppose that we have 64 eigenvector matrices and we want to

create 16 clusters, the third approach produces a codebook with

16 sets, each of which has 4 eigenvector matrices (making the to-

tal number of bits lo g 2 4 + lo g 2 16 = 6, which is naturally equal to

log 2 64. According to the process strategy of the third approach

( A 3), these 4 eigenvector matrices in each cluster are normalized

as in Fig. 3 to construct an eigenvector matrix. Continuing with

the same example, 16 normalized eigenvector matrices are gener-

ated. For the test frame, the most appropriate normalized eigen-

vector matrix or cluster which gives the smallest Euclidean dis-

tance in Eq. (5) is selected from these 16 normalized eigenvector

matrices. Then, the most appropriate eigenvector matrix is selected

(i.e. among the four eigenvector matrices corresponding to the se-

lected cluster). Therefore, a total of only 20 (i.e. 16 + 4) eigenvec-

tor matrices are searched instead of the total set of 64 eigenvector

matrices. 

A similar algorithm is performed for the coefficient codebooks,

so the computational delay of the coefficient vectors is consider-

ably shortened for the third approach. For the second approach

( A2 ), the coefficients and eigenvectors in the clusters are not

searched as in the third approach. Instead, the quantized coeffi-

cient and eigenvector codebooks are searched. It must be noted

that the number of quantized coefficients and eigenvectors in

the coefficient and eigenvector codebooks is M for this approach,

meaning that the search time for the second approach is also low. 

2.3. ICA-based subspace method 

ICA is quite similar to KLT in view of their properties. How-

ever, unlike KLT, the basis vectors of ICA are not orthogonal to each

other. In this work, we investigate the performance differences of

these two subspace methods. 

Similar to the autocorrelation concept (which yields the KLT),

mutual information of random variables is a measure of the mu-

tual dependence among the variables. ICA of a random vector con-

sists of finding a linear transformation that minimizes the statis-

tical dependence among its components ( Comon, 1992 ). Applica-

tions of ICA include data compression, detection and localization of

sources or blind identification and deconvolution ( Comon, 1992 ).

In this study, the ICA method is implemented through the Fas-

tICA algorithm ( Hyvärinen and Oja, 20 0 0 ) in MATLAB. In our case,

frames of training speech signals are divided into non-overlapping

subframes. FastICA algorithm is applied to the data matrix that is

obtained from subframes of each frame. Then, mixing matrix ( A )

and independent component matrix ( S ) are found for every data

matrix, which are used for constructing the codebook. It must be

noted that this codebook generation process uses the training data.

In the test phase, test signals are synthesized by using these code-

books. The process details can be explained as follows. 

Let X p ∈ R 

M × N denote p th data matrix, which is defined as 

X p = A p S p , p = 1 , 2 , . . . , r, (14)

where A p is an M × M mixing matrix, S p is an M × N matrix which

includes independent components with M < N , and r is the num-

ber of data matrices, which are obtained from the training set. The
ndependent component codebook is created by a set of indepen-

ent component matrices as: 

 

cb = { S 1 , S 2 , . . . , S r } . (15)

The mixing codebook ( U 

cb ) is constructed by concatenating all

ows of mixing matrices. Here, U 

cb ∈ R 

Z × M and Z is equal to M × r .

n the testing phase, test speech signals are divided into non-

verlapping frames ( x 1 , x 2 , . . . , x t ) and pth signal for k th iteration

s computed as 

 

q 
p k 

= 

(
x 

q 

k 
S T p 

(
S P S 

T 
p 

)−1 
)

S p , p = 1 , 2 , . . . , r, (16)

here x 
q 

k 
is q th test frame for k th iteration, and S p is p th inde-

endent component matrix in the independent component code-

ook. The index of k th iteration ( a k ) is found from the minimum

uclidean distance between x 
q 

k 
and x 

q 
p k 

as follows; 

 k = argmin 

(∥∥x 

q 

k 
−x 

q 
p k 

∥∥)
, p = 1 , 2 , . . . , r. (17)

By taking S a k from the independent component codebook, an

pproximate mixing vector u 

q 
a k 

is written as 

 

q 
a k 

= x 

q 

k 
S t a k 

(
S a k S 

t 
a k 

)−1 
. (18)

Then, by searching all rows of the mixing codebook, the index

 k is found by using 

 k = argmin 

∥∥u 

q 
a k 

−U 

cb 
l 

∥∥, l = 1 , 2 , . . . , Z, (19)

here U 

cb 
l 

is l th row vector in the mixing codebook. When u h k 
= ˆ u 

q 

k 

s chosen from U 

cb , ˆ x 
q 

k 
is computed as, 

ˆ  q 
k 

= u h k 
S a k , (20)

nd the approximate error signal is expressed as 

 

q 

k 
= x q 

k 
− ˆ x 

q 

k 
(21)

In this work, the same error reduction processes are used for

LT- and ICA- based methods. In Fig. 4 , the encoder and decoder

arts of the proposed ICA-based method are shown in parts (a) and

b), respectively. 

. Constant and variable bit rate coding 

In this study, we used both CBR and VBR based coding with

LT-, and ICA-based methods. CBR coding is realized with the same

umber of bit allocation for voiced and unvoiced frames of the

peech signal. Conversely, the number of bits for each frame is al-

owed to vary in the VBR coding. 

With VBR coding, it is possible to synthesize a higher qual-

ty speech signal than CBR by assigning less bits for the unvoiced

rames and more bits for the voiced frames. The main idea of this

tudy is to start with autocovariance eigenvectors for an approxi-

ate speech representation and then to iteratively reduce the error

etween the actual and synthesized signal. The number of itera-

ions is adjusted according to target bit rates. Different error re-

uction algorithms are used for CBR and VBR cases. 

In CBR coding, the encoder naturally aims at the bit rate

f the output samples. If M 

e (or M 

i ) and M 

c (or M 

m ) are the

ize of eigenvector (or independent component) and coefficient

or mixing) codebooks respectively, we need lo g 2 M 

e +lo g 2 M 

c (or

o g 2 M 

i +lo g 2 M 

m ) bits. Higher values of M 

e and M 

c correspond to

etter quality with a lower compression ratio. If FL is the length

f frame, d is maximum number of iterations and FS is the sam-

ling frequency, then the desired bit rate (kbps) for CBR coding is

efined as 

 CBR = 

[ tb × F S ] × d 
, (22)
F L 
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(a) (b)

Fig. 4. The block diagrams of (a) the encoder and (b) the decoder for the proposed ICA-based method. 

Table 1 

Bit allocations for KLT_CBR and ICA_CBR methods. 

Frame length (Samples) NI Eigenvector codebook’s bits Coefficient codebook’s bits Total bits Kbps 

80 1 12 bits 12 bits 1 × (12 + 12) = 24 bits 2.4 

32 1 16 bits 16 bits 1 × (16 + 16) = 32 bits 8 

64 3 16 bits 17 bits 3 × (16 + 17) = 99 bits 12.2 

32 2 16 bits 16 bits 2 × (16 + 16) = 64 bits 16 

48 3 16 bits 17 bits 3 × (16 + 17) = 99 bits 16.4 

96 4 15 bits 15 bits 4 × (15 + 15) = 120 bits 19.85 
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Fig. 5. Bit allocations for the proposed KLT_CBR and ICA_CBR methods. 
here tb is the number of bits required to send indices of code-

ooks and is equal to ( lo g 2 M 

e + lo g 2 M 

c ) or ( lo g 2 M 

i + lo g 2 M 

m ) .

he parameter d is a constant to represent the maximum number

f iterations. This parameter is known a-priori by both the encoder

nd the decoder. The bit allocations for KLT_CBR and ICA_CBR

ethods are given in Table 1 in which NI is the number of iter-

tion. 

At the encoder side, in the first iteration ( k = 1 ), an error signal

etween the test and the synthesized frames is found as e 
q 
1 
= x q −

ˆ  
q 
1 
. In the second iteration ( k = 2 ), the error signal ( e 

q 
1 
) is used as

he test frame and ˆ e 
q 
2 

is found by following the same steps that

re used to find ˆ x 
q 
1 
. In the third iteration ( k = 3 ), the error signal

( e q 
2 
= x q − ˆ x 

q 
1 

− ˆ e 
q 
2 
) is used as the test frame and ˆ e 

q 
3 

is found. When

he desired bit rate is reached, the process is stopped ( k = d ). The

ynthesis of a test frame at decoder side and bit allocations for the

roposed KLT_CBR and ICA_CBR methods are illustrated in Fig. 5 . 

In Fig. 5 , bit ( a 1 ) , . . . , bit ( a k ) and bit ( h 1 ) , . . . , bit ( h k ) indicate bit

llocations corresponding to the eigenvector (or independent com-

onent) codebook and coefficient (or mixing) codebook respec-

ively. 
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Table 2 

Bit allocations for KLT_VBR and ICA_VBR methods. 

Frame 

length 

(Samples) 

Eigenvector 

codebook’s 

bits 

Coefficient 

codebook’s 

bits 

Iteration 

numbers 

Iteration 

bits 

Voiced 

frame bits 

Unvoiced 

frame bits 

Average 

bits per 

frame 

Kbps 

80 12 12 1 < K < 2 1 

K × (12 + 12) 

2 24 2.4 

32 16 16 1 < K < 2 1 

K × (16 + 16) 

2 32 8 

64 16 16 1 < K < 4 2 

K × (16 + 16) 

2 99 12.2 

32 16 16 1 < K < 3 2 

K × (16 + 16) 

2 64 16 

48 16 16 1 < K < 4 2 

K × (16 + 16) 

2 99 16.4 

96 15 15 1 < K < 5 3 

K × (15 + 15) 

2 119 19.85 

(a)

(b)

Fig. 6. The structures of bit array for (a) voiced and (b) unvoiced frame for the 

proposed KLT_VBR and ICA_VBR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The scores for quality of the speech and ranges of MOS values. 

Quality of the speech Score MOS indicator MOS values 

excellent 5 Very satisfied 4.3–5 

good 4 Satisfied 4.0–4.3 

fair 3 Some user satisfied 3.6–4.0 

poor 2 Many user dissatisfied 2.6–3.6 

bad 1 Not recommended 1.0–2.6 
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For CBR coding, the codebook indices are only transmitted to

the decoder side for all frames of test signal and test signals are

synthesized by using the same codebooks at the decoder side. 

In VBR coding, a predefined error threshold ( ε) and a maximum

allowed number of iterations ( d ) are dynamically determined in or-

der to achieve the desired bit rates. The process given in Fig. 5 is

also used in VBR coding, but the bit allocation for VBR coding dif-

fers according to whether a frame can be voiced or unvoiced. Then

the algorithm continues until the error norm is less than the pre-

defined threshold ( ε) or the index of current iteration ( k ) is set

equal to the maximum iteration value ( d ): ∥∥x 

test 
k −x 

syn 

k 

∥∥< ε or k = d, (23)

where x test 
k 

and x 
syn 

k 
are test and synthesized frames for k th iter-

ation. 

An additional bit is used to mark whether the current frame is

voiced or unvoiced, in the VBR coding. As shown in Fig. 6 , first bit

of the total bit array is always the start bit. If the frame is voiced,

then the second bit of the array is ‘1’, otherwise it is ‘0’, indicating

that the frame is unvoiced. If norm value of error signal of the q th

frame is less than ɛ un in the encoder side for first iteration, then

this frame is evaluated as unvoiced frame. Otherwise, q th frame is

evaluated as voiced. The parameter ɛ un is a predefined threshold

value for unvoiced frames ɛ un < ɛ < 1. For unvoiced frames, the to-

tal bit array only consists of “0 1” and the decoder consequently

generates a zero vector at the whole size of the frame. Different

number of iterations can be used at encoder side for each voiced

frame. Therefore, the number of iterations must be known at de-

coder side. Fig. 6 (a) shows the bit structure of voiced frames with

bits corresponding to the number of iterations, whereas Fig. 6 (b)

indicates bits in case of unvoiced frames. 
The desired bit rate (kbps) for VBR coding is defined as, 

 V BR = 

2 f u v + 

∑ f v 
y =1 ( tb +2 ) + f v · in 

( f u v + f v ) 
×F S 

F L 
(24)

here k y is the number of iterations used for y th voiced frame

 1 ≤ k y ≤ d, y = 1 , 2 , . . . , f v ). In Eq. (24) , f v and f uv are the

umber of voiced and unvoiced frames, respectively and in is the

umber of bits corresponding to the number of iterations used for

 voiced frame. There is no bit allocation for ɛ , ɛ un and d parame-

ers in the VBR, as their values are previously determined and they

re known by the encoder and decoder. In Table 2 , bit allocations

re given for different bit rates using KLT_VBR and ICA_VBR. 

As can be seen from Table 2 , VBR coding has a different bit al-

ocation structure according to CBR coding. The training set in the

IMIT database is used to determine the sizes of the eigenvector

odebooks. The same codebooks are utilized for CBR and VBR cod-

ngs. Naturally, VBR coding involves a few more iterations than CBR

oding for the voiced frames. 

. The quality measurements of speech coders 

The qualities of speech coders are evaluated using MOS

Mean Opinion Score), as well as PESQ (Perceptual Evaluation of

peech Quality), WSS (Weighted Slope Spectral distance), and LLR

Log Likelihood Ratio) objective measures ( Hu and Loizou, 2008;

rishnamoorthy, 2011 ). PESQ is a test methodology for objec-

ive prediction of perceived speech quality and has been widely

sed in telecommunications and IP networks. It is asserted to

ave the highest correlation with the subjective measurements

 Goudarziand Sun, 2009 ). 

.1. MOS (Mean opinion score) 

The Mean Opinion Score (MOS) provides a numerical measure

f the voice quality in telephony networks. MOS is obtained from

ubjective tests by using human listeners. The ratings depend on

ach listener’s perception ( Osahenvemwen, 2015 ). MOS is defined

s the arithmetic mean of subjective evaluations in listening or

onversational tests, with score values of 1 to 5, corresponding to

erbal explanations as given in Table 3 . 
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Table 4 

PESQ values for 16 kbps (KLT_VBR( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

4 3,07 3,32 3,52 3,68 3,74 3,79 3,74 3,71 3,66 3,61 

6 3,11 3,37 3,53 3,65 3,70 3,88 3,97 3,75 3,73 3,65 

8 2,96 3,21 3,38 3,44 3,52 3,73 3,62 3,57 3,53 3,51 

10 2,83 3,00 3,14 3,27 3,30 3,34 3,35 3,30 3,28 3,26 

Table 5 

Cov values for 16 kbps (KLT_VBR( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

4 3.80 4.06 4.26 4.41 4.47 4.51 4.46 4.44 4.39 4.35 

6 3.82 4.13 4.28 4.35 4.46 4.58 4.62 4.47 4.45 4.39 

8 3.69 3.93 4.11 4.17 4.29 4.46 4.40 4.37 4.32 4.30 

10 3.57 3.74 3.87 4.01 4.09 4.12 4.15 4.05 4.02 4.00 
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.2. PESQ (Perceptual evaluation of speech quality) 

This evaluation describes an objective method to predict the

ubjective quality of 3.1 kHz (narrow-band) handset telephony and

arrow-band speech codecs. PESQ is used to calculate a distance

etween the original and degraded speech signal (PESQ score). The

ESQ score is mapped to a MOS-like scale, which is a single num-

er in the range of 1 to 4.5 ( Kumar et al., 2014 ). 

.3. WSS (Weighted spectral slope) 

The WSS measure is a frequency domain expression,

ased on an auditory model. The WSS measure is defined as

 Krishnamoorthy, 2011 ); 

SS = 

1 

M 

M−1 ∑ 

m =0 

∑ K 
j=1 WSS ( j, m ) ( S o ( j, m ) − S s ( j, m ) ) 

2 

∑ K 
j=1 WSS ( j, m ) 

, (25) 

here WSS(j,m) are the weights computed as described in

 Krishnamoorthy, 2011 ). In Eq. (25) , K is taken as 25, M is the num-

er of data segments, S o ( j, m ) and S s ( j, m ) are the spectral slopes

or the j th frequency band of the original and processed speech

ignals, respectively. 

.4. LLR (Log likelihood ratio) 

LLR measure is one of the LPC-based objective measures. It

ainly concerns with the similarity of spectral envelopes. The LLR

or each 20ms frame is defined as ( Hu and Loizou, 2008 ); 

LR ( a o , a s ) = log 

(
a s R o a s 

a o R o a o 

)
, (26) 

here a o and a s are the LPC vectors of the original and the pro-

essed speech frames, respectively, and R o is the autocorrelation

atrix of the original speech frame. 

.5. Composite measure 

Since conventional objective measures are not sufficient to pro-

ide high correlations in terms of speech/noise distortion and

verall speech quality, it is necessary to combine different objec-

ive measures in order to create a Composite measure ( Hu and

oizou, 2008 ). In this study, we have used a composite measure

Cov) for overall speech quality. The Cov measure is an overall

lanning and combination of the evaluation measures in time do-

ain, frequency domain and perceptual field, and is defined as fol-

ows ( Hu and Loizou, 2008 ): 
ov = 1 , 594 + 0 , 805 · PESQ − 0 , 512 · LLR − 0 , 007 · WSS . (27) 1  
. Experimental study 

.1. Database 

In the experimental studies, the speech material of the TIMIT

atabase has been divided into training and testing sets. The train-

ng and test sets contain 4620 and 1344 utterances, respectively.

he speech signal in the database has a sampling frequency of

6 kHz (16 bit, PCM format). The sampling frequency was con-

erted to 8 kHz with downsampling process and 45 phonemes

ere obtained by merging similar utterances from 61 phonemes

n the speech database. Only the sampling frequency of 16 kHz at

9.85 kbps is used for the experiments. 

In the training phase, equal number of phonemes (varying be-

ween 15 and 100) is used for each phoneme class. The length

f each phoneme is equal to 960 and 1920 samples at 8 kHz and

6 kHz in the training phase, respectively. Then, 960 samples or

920 samples of phonemes are divided into frames and data matri-

es are constructed by using these frames for ICA- and KLT-based

ethods. 30 utterances of sentences randomly selected from the

est set of the TIMIT database are assigned to be used in the test-

ng phase. MOS, PESQ and Cov values are found for each utterance.

hen, average MOS, PESQ and Cov values are computed for all sen-

ences. 

.2. Results 

Multiple tests are performed in order to analyze the efficiency

f the proposed KLT and ICA based methods. In experimental stud-

es, KLT_CBR and KLT_VBR naturally correspond to CBR and VBR

oding for KLT, respectively. Similarly, ICA_CBR and ICA_VBR cor-

espond to CBR and VBR coding for ICA, respectively. The aver-

ge values of PESQ and Cov are shown in Tables 4–11 for the first

earching approach ( A1 ). Frame length of 2ms was not used for

LT_VBR with 16 kbps and KLT_CBR with 8 kbps, because 8 kbps

nd 16 kbps bitrates are exceeded when the number of iterations

s more than one. Similarly, frame lengths of 2 ms and 4 ms are

ot used for KLT_VBR method with 8 kbps, because 8 kbps is ex-

eeded when the number of iterations is more than one. Speech

ignals are reproduced by using eigenvectors corresponding to the

argest K eigenvalues for all different frame lengths (K = 1,2,3,…,10).

Average PESQ and Cov values of 30 test utterances are given in

ables 12–18 . These tables also include MOS values, which were

btained by subjective listening tests of synthesized and original

peech waveforms by 10 students and 10 academicians. Listening

ests were realized in a quiet environment using high quality head-

hones. 

The average MOS values of 20 users are given in Tables 12 and

4–18 . In Tables 12–18 , A1, A2 and A3 indicate the first, second
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Table 6 

PESQ values for 16 kbps (KLT_CBR( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

2 2,90 3,22 3,53 3,57 3,37 3,11 2,89 2,7 2,62 2,48 

4 2,85 3,08 3,26 3,52 3,50 3,60 3,65 3,48 3,41 3,27 

6 2,84 3,03 3,21 3,59 3,66 3,76 3,82 3,70 3,63 3,61 

8 2,77 2,98 3,16 3,23 3,49 3,32 3,27 3,25 3,23 3,19 

10 2,74 2,90 3,00 3,13 3,27 3,22 3,16 3,14 3,12 3,08 

Table 7 

Cov values for 16 kbps (KLT_CBR( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

2 3,65 3,98 4,27 4,29 4,14 3,90 3,70 3,51 3,41 3,26 

4 3,59 3,81 4,02 4,25 4,24 4,33 4,37 4,21 4,15 4,02 

6 3,57 3,78 3,96 4,27 4,33 4,41 4,49 4,38 4,29 4,26 

8 3,52 3,76 3,93 4,01 4,19 4,09 4,03 4,01 3,98 3,93 

10 3,50 3,67 3,76 3,91 3,98 3,99 3,94 3,92 3,90 3,80 

Table 8 

PESQ values for 8 kbps (KLT_VBR ( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

6 2,66 2,86 2,95 3,11 3,23 3,37 3,50 3,39 3,27 3,26 

8 2,65 2,84 3,00 3,05 3,08 3,13 3,13 3,15 3,13 3,12 

10 2,68 2,81 2,89 2,98 2,99 3,04 3,01 3,03 3,01 2,98 

Table 9 

Cov values for 8 kbps (KLT_VBR ( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

6 3,22 3,55 3,68 3,79 3,92 4,02 4,10 4,03 3,87 3,86 

8 3,32 3,52 3,67 3,74 3,78 3,83 3,83 3,85 3,85 3,83 

10 3,34 3,49 3,58 3,67 3,69 3,74 3,71 3,72 3,71 3,70 

Table 10 

PESQ values for 8 kbps (KLT_CBR ( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

4 2,64 2,82 2,98 3,12 3,20 3,09 2,99 2,87 2,78 2,73 

6 2,6 2,78 2,92 3,01 3,03 3,08 3,10 3,10 3,08 3,06 

8 2,51 2,67 2,82 2,9 2,88 2,86 2,79 2,68 2,66 2,61 

10 2,22 2,32 2,41 2,39 2,39 2,36 2,38 2,26 2,26 2,21 

Table 11 

Cov values for 8 kbps (KLT_CBR ( A1 )). 

FL (ms) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 

4 3,21 3,41 3,6 3,82 3,87 3,78 3,68 3,59 3,5 3,46 

6 3,37 3,58 3,66 3,72 3,75 3,78 3,80 3,81 3,8 3,78 

8 3,15 3,36 3,51 3,6 3,61 3,59 3,47 3,39 3,31 3,27 

10 2,88 3,02 3,12 3,11 3,11 3,1 3,09 2,98 2,95 2,89 

Table 12 

Average MOS, PESQ and Cov values at 2.4 Kbps. 

METHOD ER MOS PESQ Cov 

ICA_VBR ER ( + ) 2,5 2,38 2,94 

ICA_CBR ER ( + ) 2,47 2,32 2,85 

KLT_VBR (A1) ER ( + ) 2,52 2,55 3,02 

KLT_CBR (A1) ER ( + ) 2,47 2,48 2,98 

KLT_VBR (A3) ER ( + ) 2,42 2,43 2,81 

KLT_CBR (A3) ER ( + ) 2,33 2,29 2,58 

LPC – 2,31 2,35 2,61 
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and third searching approaches respectively. In these tables, ER ( + )

indicates that the error reduction procedure is additionally applied.

The experimental results for different codebook sizes are shown

in Table 13 . It is observed that computational time increases for
arge size codebooks in high bit rates. Therefore, the size of eigen-

ector codebook (number of eigenvector matrices) is decreased

rom 65,536 to 16,384 and 1024 by using vector quantization in the

odebook, as described in Section 2.2 . In Table 13 , K indicates the

ength of the coefficients or number of largest eigenvalues which

esult in best quality. 

In Table 13 , the number of the clusters (each of the clusters

as a normalized eigenvector matrix) is M = 1024. The number of

igenvector matrices in each cluster for the third approach ( A3 )

s L = 64. A total of M + L (1024 + 64) eigenvector matrices are

earched to find the most suitable eigenvector matrix. As seen

rom the Table 13 , the quality values decrease when the quanti-

ation method is used for the second approach, but the third ap-

roach keeps the quality close to that of full search for 16 kbps

nd 19.85 kbps. In Tables 14–18 , we compared well-known speech

odecs G729A, G728, EVS, AMR-NB and AMR-WB with the best
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Table 13 

Average PESQ and Cov values based on quantization method at 16 Kbps and 19.85 Kbps. 

KLT_CBR KLT_VBR 

Searching Approaches Eigenvector codebook size Kbps K ER PESQ Cov K ER PESQ Cov 

A2 1024 16 5 ER ( −) 2,86 3,54 6 ER ( + ) 3,01 3,70 

A2 16384 16 3 ER ( −) 3,41 4,01 6 ER ( + ) 3,54 4,12 

A1 65536 16 7 ER ( −) 3,82 4,49 7 ER ( + ) 3,97 4,62 

A1 65536 19.85 7 ER ( + ) 4,01 4,68 7 ER ( + ) 4,11 4,74 

A3 1024 + 64 19.85 5 ER ( + ) 3,85 4,53 5 ER ( + ) 4,01 4,67 

A3 1024 + 64 16 7 ER ( + ) 3,65 4,30 5 ER ( + ) 3,81 4,47 

Table 14 

The average MOS, PESQ and Cov values at 8 Kbps. 

Methods ER MOS PESQ Cov 

ICA_VBR ER( + ) 3,38 2.98 3.77 

ICA_CBR ER( −) 3,28 2.83 3.56 

KLT_VBR (A1) ER( + ) 3,61 3.50 4.10 

KLT_CBR (A1) ER( −) 3,42 3,20 3,82 

KLT_VBR (A3) ER( + ) 3,40 3.25 3.85 

KLT_CBR (A3) ER( −) 3,30 3,03 3,68 

G729A – 3,58 3,38 3,91 

Table 15 

The average MOS, PESQ and Cov values at 12.2 Kbps. 

Methods ER MOS PESQ Cov 

ICA_VBR ER ( + ) 3,94 3,48 4,11 

ICA_CBR ER ( + ) 3,80 3,36 3,95 

KLT_VBR (A1) ER ( + ) 4,05 3,78 4,38 

KLT_CBR (A1) ER ( + ) 4,00 3,65 4,22 

KLT_VBR (A3) ER ( + ) 3,95 3,64 4,23 

KLT_CBR (A3) ER ( + ) 3,82 3,38 4,04 

AMR-NB – 4,11 3,74 4,32 

Table 16 

The average MOS, PESQ and Cov values at 16 Kbps. 

Methods ER MOS PESQ Cov 

ICA_VBR ER ( + ) 4,05 3.63 4.29 

ICA_CBR ER ( −) 3,98 3.50 4.05 

KLT_VBR (A1) ER ( + ) 4,15 3,97 4,62 

KLT_CBR (A1) ER ( + ) 4,08 3,82 4,49 

KLT_VBR (A3) ER ( + ) 4,06 3,81 4,47 

KLT_CBR (A3) ER ( + ) 4,00 3,65 4,30 

G728 – 4,11 3,68 4,43 

Table 17 

The average MOS, PESQ and Cov values at 16.4 Kbps. 

Methods ER MOS PESQ Cov 

ICA_VBR ER ( + ) 4,13 3,67 4,32 

ICA_CBR ER ( + ) 4,03 3,56 4,11 

KLT_VBR (A1) ER ( + ) 4,19 4,00 4,65 

KLT_CBR (A1) ER ( + ) 4,10 3,84 4,51 

KLT_VBR (A3) ER ( + ) 4,08 3,83 4,48 

KLT_CBR (A3) ER ( + ) 4,04 3,68 4,32 

EVS (NB) – 4,43 4,16 4,80 

Table 18 

The average MOS, PESQ and Cov values at 19.85 Kbps. 

Methods ER MOS PESQ Cov 

ICA_VBR ER ( + ) 4,23 3,84 4,60 

ICA_CBR ER ( + ) 4,17 3,73 4,51 

KLT_VBR (A1) ER ( + ) 4,36 4,11 4,74 

KLT_CBR (A1) ER ( + ) 4,29 4,01 4,68 

KLT_VBR (A3) ER ( + ) 4,25 4,01 4,67 

KLT_CBR (A3) ER ( + ) 4,18 3,85 4,53 

AMR-WB – 4,50 4,19 4,66 

Fig. 7. PESQ values obtained for the KLT_VBR ( A1 ) and other codecs. 

Fig. 8. Cov values obtained for the KLT_VBR ( A1 ) and other codecs. 
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peration points of the proposed KLT- and ICA-based methods

t the same available bit rates. The bit rates of standard speech

odecs are 8 kbps, 12.2 kbps, 16 kbps, 16.4 kbps and 19.85 kbps for

729A, AMR-NB, G728, EVS (Narrow-Band) and AMR-WB respec-

ively. In Tables 14–17 , the best results are found by using mixing

atrices of size 4 × 4 and independent component matrices of size

x N for the ICA-based method, where N corresponds to the length

f frames. In Tables 12 and 18 , mixing matrices of size 2 × 2 and in-

ependent component matrices of size 2x N are used for ICA-based

ethod. 

The PESQ and Cov values that are obtained for the proposed

ethod (KLT_VBR ( A1 )) and other speech codecs are comparatively

hown in Figs. 7 and 8 , respectively. A sampling rate of 16 kHz is

sed for the results in Table 18 . 

For KLT- and ICA-based methods, encoder and decoder delays

er frame are given in Tables 19 and 20 respectively. In these ta-

les, FL is the frame length (milliseconds), ED and DD indicate the

ncoder and decoder delays (milliseconds), respectively. 
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Table 19 

Encoder delays per frame for KLT- and ICA-based methods. 

2,4 kbps 8 kbps 12,2 kbps 16 kbps 16,4 kbps 19,85 kbps 

ED FL ED FL ED FL ED FL ED FL ED FL 

KLT_CBR (A1) 382 10 1260 4 1520 6 2190 6 2210 6 2420 6 

KLT_CBR (A3) 14 10 29 4 43 6 59 6 63 6 74 6 

KLT_VBR (A1) 302 10 1182 6 1440 6 2082 6 2098 6 2280 6 

KLT_VBR (A3) 12 10 26 6 37 6 54 6 59 6 71 6 

ICA_CBR 266 20 965 4 1380 4 1918 2 1981 2 2195 6 

ICA_VBR 204 20 742 4 1208 4 1650 2 1705 2 2026 6 

Table 20 

Decoder delays per frame for KLT- and ICA-based methods. 

2,4 kbps 8 kbps 12,2 kbps 16 kbps 16,4 kbps 19,85 kbps 

DD FL DD FL DD FL DD FL DD FL DD FL 

KLT_CBR (A1) 0,6 10 0,8 4 0,9 6 0,98 6 1,01 6 1,1 6 

KLT_CBR (A3) 0,18 10 0,32 4 0,45 6 0,50 6 0,51 6 0,57 6 

KLT_VBR (A1) 0,57 10 0,78 6 0,87 6 0,96 6 0,98 6 1,07 6 

KLT_VBR (A3) 0,12 10 0,28 6 0,4 6 0,48 6 0,50 6 0,55 6 

ICA_CBR 0,51 20 0,67 4 0,83 4 0,92 2 0,94 2 1,01 6 

ICA_VBR 0,46 20 0,63 4 0,79 4 0,91 2 0,92 2 0,98 6 
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Realization of subjective listening tests is a difficult and time

consuming task. In this work, we had conducted subjective tests

over 10 young students (age: 20 ∼26, 6 male, 4 female) and 10 rel-

atively older academicians (age: 35 ∼50, 5 male, 5 female). Since it

was not possible to reach to a larger set of subjects, we also put

synthesized speech waveforms to accessible web storages for self

assessment: https://github.com/serkankeser/speech . 

6. Discussion 

KLT is known to provide maximum energy compaction in the

average sense among orthogonal transforms. If the signal is well

correlated, the energy compaction results in packing most of the

signal energy into the few transform coefficients, rest of which can

be discarded in encoding. 

While KLT uses only second order statistics to find the most im-

portant signal components, ICA depicts higher order statistics. Due

to this difference, both of these transforms are applied in a novel

speech coding approach that incorporates CBR or VBR. The sub-

space representation was used for rough approximation and error

refinement was iteratively performed until the desired bit rate was

met. 

In the experimental studies, four different English speech ut-

terances which have been generated as test signals of ITU-T for

telecommunication systems are tested with the proposed methods.

The average PESQ and Cov values of these tests are observed to be

very close, especially for the frame lengths of 4 ms and 6 ms using

TIMIT dataset. Besides, the results stand well against newest stan-

dard coders, indicating that the proposed methods must be consid-

ered as plausible alternatives for speech coding. The algorithms are

implemented in MATLAB, running on a simple desktop PC with in-

tel core i5 processor and 4GB RAM. The computational times were

observed to vary according to desired bit rate and codebook size.

The first approach ( A1 ) naturally gives the best quality (due to

its extensive search). Consequently, its calculation delay was high.

The third approach ( A3 , where the optimal eigenvetor matrices are

searched) had a synthesis quality close to the first approach for

16 kbps, 16.4 kbps and 19.85 kbps, whereas its computation de-

lay was visibly low. We observed that quality of the synthesized

speech signals was the worst in the second approach ( A2 ) as com-

pared to A1 and A3 . 

The quality values of speech signals that are synthesized by us-

ing the KLT_VBR( A1 ) method are higher when compared to those
f LPC, G729A, G.728, AMR-NB (12.2 kbps) and AMR-WB (19.85

bps) coding methods. PESQ and Cov values of the KLT_VBR(A1)

nd KLT_VBR( A3 ) methods are somewhat lower than that of EVS

16.4 kbps). Only the PESQ value of the KLT_VBR( A1 ) method

tands lower than that of AMR-WB (19.85 kbps). However, Cov

alue of KLT_VBR( A1 ) is found higher than that of AMR-WB. The

LT_CBR( A1 ) method gives higher PESQ and Cov values than those

f G728 and LPC methods. In addition, the KLT_CBR( A1 ) method

ives a higher Cov value than that of AMR-WB. The ICA_VBR

ethod gives higher PESQ and Cov values than those of the LPC

ethod. In addition, the ICA_CBR method gives a higher Cov

alue than that of the LPC method. However, the performances

f ICA_VBR and ICA_CBR are lower than those of G729A, AMR-NB

nd AMR-WB methods. The KLT_VBR( A3 ) has lower the compu-

ational delay than KLT_VBR( A1 ). However, the KLT_VBR(A3) has

lightly lower PESQ and Cov values than KLT_VBR(A1). Further-

ore, KLT_VBR( A3 ) has higher PESQ and Cov values than LPC,

728 and has higher Cov value than AMR-WB. PESQ and Cov value

f KLT_VBR( A3 ) is found slightly lower than those of AMR-NB and

729A. 

For lower bit rates (such as 2.4 kbps), the proposed methods

ive higher MOS values than those of LPC at the same bit rate. For

 kbps, the MOS value of speech signal that are synthesized by us-

ng the KLT_VBR( A1 ) is higher than that of G729A. For 12.2 kbps,

OS value of AMR-NB is higher than MOS values of the proposed

ethods. For 16 kbps, only MOS value of KLT_VBR( A1 ) is higher

han that of G728. For 16.4 kbps and 19.85 kbps, MOS values of

VS (NB) and AMR-NB are higher than MOS values of the proposed

ethods. Although the PESQ values of ICA-based methods are vis-

bly lower than the PESQ values of KLT-based methods, the MOS

alues of ICA-based methods are obtained closer to the MOS val-

es of KLT-based methods. 

. Conclusion 

A contribution of this study is to apply vector quantization to

he principal component vectors of the eigenvector matrices (or

ndependent components) which are obtained from KLT (or ICA).

his method is applied to ICA for the first time in the literature.

nother contribution is to process an iterative error refinement,

here the error signal is used to recursively improve SNR until the

esired bit rate is achieved. These two subspace methods (KLT and

CA) are applied for speech compression under CBR and VBR con-

https://github.com/serkankeser/speech
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itions. In all these combinations (KLT_CBR, KLT_VBR, ICA_CBR and

CA_VBR), a novel covariance eigenvector grouping strategy is pro-

osed. Adopting a strategy of vector alignment is believed to be an

nsightful alternative to directly vector quantizing subspace bases.

he comparison of these two subspace methods in various target

it rates for both CBR and VBR is believed to constitute a thorough

ustification for the usefulness of these subspace methods. 

Apart from the above-mentioned alignment strategy in vector

uantization, a new method for feeding the error description back

o the signal representation is proposed to improve SNR at a given

arget bit rate. The KLT-based methods, especially KLT_VBR, gave

xperimentally more satisfactory results than the ICA-based and

ther CBR methods. Utilization of KLT at VBR was observed to pro-

ide plausible performance (quality and decoding delay) as com-

ared to several state-of-the-art speech coding standards at analo-

ous bit rates. 

For the synthesized signals, high quality speech sounds are ob-

ained for 12.2 kbps, 16 kbps, 16.4 kbps and 19.85 kbps bit rates.

owever, the computation time is observed to become a concern

t these bit rates by using the first approach ( A1 ). The computa-

ion delay increases together with the codebook size in high bit

ates. As a remedy of this problem the computational delay is re-

uced by applying a novel quantization method ( A3 ) which is ob-

erved to keep the original high quality. The proposed basis align-

ent (quantization) and error refinement processes are expected

o provide a new insight to the speech coding problem. 
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