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ABSTRACT

In this study, two novel methods, which are based on Karhunen Loeve Transform (KLT) and Independent
Component Analysis (ICA), are proposed for coding of speech signals. Instead of immediately dealing with
eigenvalue magnitudes, the KLT- and ICA-based methods use eigenvectors of covariance matrices (or inde-
pendent components for ICA) by geometrically grouping these vectors into fewer numbers of vectors. In
this way, a data representation compaction is achieved. Further compression is achieved through discard-
ing autocovariance eigenvectors corresponding to the small eigenvalues and applying vector quantization
on the remaining eigenvectors. Additionally, this study proposes an iterative error refinement process,
which uses the rest of the available bandwidth in order to transmit an efficient representation of the de-
scription error for better SNR. The overall process constitutes a new approach to efficient speech coding,
with ICA being used in subspace speech coding for the first time. Constant bit rate (CBR) and variable bit
rate (VBR) coding algorithms are employed with the proposed methods. TIMIT speech database is used in
the experimental studies. Speech signals are synthesized at 2.4 kbps, 8 kbps, 12.2 kbps, 16 kbps, 16.4kbps
and 19.85 kbps rates by using various frame lengths. The qualities of synthesized speech signals are com-
pared to those of available speech codecs, i.e., LPC (2.4 kbps), G.728 (LD-CELP, 16 kbps), G.729A (CS-CELP,
8 kbps), EVS (16.4 kbps), AMR-NB (12.2 kbps) and AMR-WB (19.85 kbps).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The goal of speech coding is to represent digital speech wave-
form with as few bits as possible while maintaining the intelli-
gibility and quality that is required for the particular application
(Gibson, 2005). In addition, most applications of speech coding re-
quire low coding delays, which is an undesirable property since
long coding delays interfere with speech interaction (Chen et al.,
1992). Major speech coders can be classified into two categories
as waveform and parametric coders. The former includes speech
coders such as PCM and ADPCM, and latter class (also known
as vocoders) includes very low bit-rate synthetic speech coders
(Kondoz, 2007). LPC-based coder is a parametric coder which is
mostly used in audio signal processing and speech processing to
represent the spectral envelope of speech waveform in a com-
pressed form. This coder uses the information of a finite extent lin-
ear predictive model (Deng and O’Shaughnessy, 2003). Linear pre-
diction based speech coding techniques (CELP, MELP, VSELP etc.)
have been widely researched in the literature (Vasuki and Vanathi,
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2006; Supplee et al., 1997; Gerson and Jasiuk, 1990; Chen et al.,
1992). These types of speech coders are capable of synthesizing
good quality speech at a reasonably low bit rate. An LPC variant,
CELP, has evolved to become the dominant paradigm for real time
speech compression (Devalapalli et al., 2003), which is capable of
achieving high quality speech coding at rates from 16 kbps to 32
kbps. A further variant, namely the low delay-CELP (LD-CELP) algo-
rithm was adopted by the International Telephone and Telegraph
Consultative Committee (CCITT) for speech coding at 16 kbps with
toll quality and became a standard as G.728 (Chen et al., 1992).
Similarly, G.729A (CS-ACELP Annex A) is a high quality low band-
width codec at 8 kbit/s with low complexity. ITU-T (International
Telecommunication Union) has standardized G.729 as the stan-
dard speech coding algorithm for VoIP, DSVD (Digital Simultaneous
Voice over Data) and multimedia applications (Rashed et al., 2013).
The mixed excitation linear prediction (MELP) coder was chosen
by the Digital Voice Processing Consortium to replace the exist-
ing 2400 bps Federal Standard FS-1015 (LPC-10). The MELP coder
is based on the traditional LPC model, with additional features to
improve its performance (Supplee et al., 1997). The vector sum ex-
cited linear prediction (VSELP) speech coder utilizes a codebook
with a structure that allows for a very efficient search procedure
(Gerson and Jasiuk, 1990). The coder uses two VSELP excitation
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codebooks, a gain quantizer which is robust to channel errors, and
a novel adaptive pre/postfilter arrangement.

Being the fundamental application medium of speech coders,
GSM networks started with Full Rate (FR) speech codec and
evolved into Enhanced Full Rate (EFR). The Adaptive Multi-Rate
(AMR) codec was added to 3GPP (The 3rd Generation Partnership
Project) Release 98 for GSM to enable codec rate adaptation to ra-
dio conditions (Holma and Toskala, 2011). AMR data rates range
from 4.75 kbps to 12.2 kbps at a sampling rate of 8kHz. The
AMR-Wideband (AMR-WB) codec was added to 3GPP Release 5
(Holma and Toskala, 2011). AMR-WB uses a sampling rate of 16 kHz
with data rates ranging from 6.6 kbps to 23.85 kbps, out of which,
codec rates from 6.6 kbps to 19.85 kbps can be supported by GSM
as well. AMR-WB offers clearly better voice quality than AMR (or
AMR-NB) at the same data rate, so that it is also referred to as
“wideband audio with narrowband radio transmission” (Holma and
Toskala, 2011).

Enhanced Voice Services (EVS) has been developed in 3GPP
and is described in 3GPP TS 26.441. EVS has been designed for
high quality and efficient coding of speech and music. It has two
operational modes which are primary and EVS AMR-WB Inter-
Operable. EVS is generally used in narrow band and denoted as
EVS (NB). It offers up to 20kHz audio bandwidth and has high ro-
bustness to delay jitter and packet losses due to its channel aware
coding (Atti et al., 2015) and improved packet loss concealment
(Lecomte et al., 2015).

Among the vast literature regarding speech coding at various
target bandwidths, subspace based methods attempt to reproduce
a signal by using few coefficients in a transform domain. Classi-
cally applied transforms include Karhunen Loeve Transform (KLT)
(Goyal, 2001), Independent Component Analysis (ICA) (Ferreira and
Figueiredo, 2003), Discrete Cosine Transform (DCT) (Ahmed et al.,
1974), Fast Fourier Transform (FFT) (Kumar and Kumar, 2012) and
Wavelet Transform (WT) (Skodras et al., 2001) due to their known
energy compaction properties. While DCT and WT are popular for
image coding, signal specific methods such as KLT and ICA need
further researches for practical speech coding applications.

KLT is the most statistically efficient orthonormal transform
in terms of energy compaction and decorrelation. If a signal
has Gaussian distribution with a certain temporal correlation (i.e.
R(t)+#4(7)), KLT is guaranteed to be more effective than the origi-
nal signal domain (Kim and Kleijn, 2004; Lee and Kim, 2010; Oze-
rov and Kleijn, 2011). In addition, a Gaussian signal can be ob-
tained by using the weighted sum of many independent compo-
nents that have non-Gaussian distributions. Therefore, KLT- and
ICA-based methods can be preferable to reconstruct a signal.

In this article, a novel eigen-representation grouping idea is em-
ployed together with iterated error improvement for speech cod-
ing. The performances of the proposed KLT- and ICA-based meth-
ods are evaluated for different bit rates. While similar subspace-
based studies realize speech coding by considering basic structures
of standard codecs (e.g. CELP, LPC, etc.) (Kim and Kleijn, 2004; Lee
and Kim, 2010; Ozerov and Kleijn, 2011; Ju et al., 2014; Oger et al.,
2006), the proposed speech codec does not utilize structures of
standard codecs. In contrast to the studies that rely on standards,
we applied vector quantization to the principal component vectors
of matrices that are constructed by stacking KLT eigenvectors (we
will call such matrices as “eigenvector matrices”). As a final step,
this study proposes an iterative error refinement process, where
an error signal is used to recursively improve SNR until the de-
sired bit rate is achieved. The emphasis regarding the novelty of
the proposed method is, therefore, two folds:

(i) Eigenvector clustering by alignment, and
(ii) Error data feedback to improve SNR at a target bit rate.

The proposed KLT-based coder uses eigenvalues and eigenvec-
tors of the autocorrelation matrix that is estimated from a train-
ing speech data set. Once the codebooks of eigenvectors and trans-
form coefficients are constructed, the codec is constructed and per-
formances are measured on an isolated set of test speech signals.
The proposed decoder synthesizes speech signals using the trained
codebooks in a nearest neighbor sense. Several parameters need
to be tested at the training and testing stages. The results are
compared with the performances of conventional state-of-the-art
speech coding methods. Particularly, the effects of codebook and
code vector sizes, the effect of vector quantization (VQ) optimal-
ity, the effect of frame size and eventual data rate are thoroughly
investigated. Additionally, independent component and mixing ma-
trix codebooks are constructed for ICA-based coders by using the
training speech data set. Again, the test speech signals are syn-
thesized by using pre-trained codebooks. Constant bit rate (CBR)
and variable bit rate (VBR) coding approaches are adopted with the
proposed methods. Signal quality is determined by means of Per-
ceptual Evaluation of Speech Quality (PESQ) (Kumar et al., 2014),
Composite Measure (Cov) (Hu andLoizou, 2008; Krishnamoorthy,
2011) and Mean Opinion Score (MOS) (Osahenvemwen, 2015).

The rest of the study is organized as follows: The proposed KLT-
based speech coder is described in Section 2.1. In Section 2.2, we
present the vector quantization process, which is performed in or-
der to reduce the computation time for KLT-based method. The
proposed ICA-based speech coder is described in Section 2.3. We
describe constant bit rate coding and variable bit rate coding in
Section 3. Objective quality measures are given in Section 4. Exper-
imental results, Discussion and Conclusion sections are presented
in Sections 5-7, respectively.

2. Proposed subspace methods for speech coding

KLT- and ICA- based subspace methods are proposed for coding
of speech signal frames. The codebooks are constructed by using
speech frames in the training set of the TIMIT database (Zue et al.,
1990). Test speech signals are synthesized by using these code-
books. In our experiments, codebook sizes are taken as 210 to 216,

2.1. KLT-based subspace method

The first considered subspace strategy depends on the cele-
brated KLT, which is known to decorrelate signal samples. Basis
functions of KLT are eigenvectors of the autocorrelation matrix of
the input signal, rendered according to the eigenvalue magnitudes
in a descending order. Since the signals of interest are normalized
to a zero mean, KLT equivalently uses eigenvectors of the auto-
covariance matrix. We define the transform coefficient (associated
with an eigenvector) as simply the projection of the input signal
onto that eigenvector. If the decoder has knowledge of the eigen-
vectors and transform coefficients, the signal can be recovered as a
linear combination of the orthogonal eigenvectors.

The proposed method starts by obtaining a covariance matrix
from the frames of a phoneme. Length-N subframes, which corre-
spond to 1-shifted versions of overlapping windows in each frame
with the length of M (M=2N-1), are extracted in order to form
N x N data matrices. Each shifted subframe occupies one row of
data matrix. Fig. 1 illustrates how the mentioned data matrices are
created.

The covariance matrix of pth data matrix (Xp) in the training
data set is obtained as

1 N
C,= WZ[(xi—mx)(xi—mx)T], p=1,2,..1 (1)
i=1

where X; (x; €RN) is ith column vector which corresponds to the
ith row vector in the pth data matrix and r is the number of covari-
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Fig. 1. The creation of N x N data matrices by subframes.

ance matrices (which may take values as 1024, 2048, 4096, 16384,
32768 and 65536 in the experiments). In Eq. (1), N is the number
of rows and columns in a data matrix and my is the mean of the
column vectors. Next, the eigenvector and coefficient codebooks
are formed by using the eigenvectors of the covariance matrix.
When the eigenvalues of the covariance matrix are sorted in de-
scending order {A;>A;> ...Ay}, @ matrix, ®,, is formed by stack-
ing the eigenvectors corresponding to the largest K eigenvalues of
Cp as shown in Eq. (2)

®,={¢1.92..... 9}, (2)

where ¢'s are length-N eigenvectors and ®, € R * K. The eigenvec-
tor codebook can be written as a stack of matrices ®,:

V(D D,,.... D). (3)
The pth coefficient matrix Y, is written as:
Y, = <I>;Xp, (4)

where X, is pth data matrix with size Nx N, and Y, e R < N. Even-
tually, a coefficient codebook (YY) with a size of Kx M (M=N.r) is
created by merging all columns of coefficient matrices. The num-
ber of coefficient vectors (M) is equal to one of 1024, 2048, 4096,
16384, 32768 and 65536, and is selected according to different
frame lengths and bit rates.

The test speech signals are divided into non-overlapping frames
(x!,x2,... x' ) in the testing phase. The gth test frame (x9) is
compressed by projecting it onto the designed subspace, which is
spanned by the eigenvector matrices. Euclidean distances are found
for kth iteration mathematically by using each eigenvector matrix
and coefficient vector for the gth test frame (XZ) as follows;

=l (@] =12, ®)

where @, is qth eigenvector matrix that is taken from the eigen-
vector codebook and y}=(®1x]). The minimum distance is speci-
fied with index a; for kth iteration and denoted as follows;

ay = argmin(f,), p=1.2,....1. (6)

If the eigenvector matrix for which the minimum distance is
obtained is notated as @q,, the coefficient vector (yZ) is found for
kth iteration as follows;

T

yi= @, x]. (7)
The Euclidean distances (Af) are obtained by using yz as;

Al=|vi-Y||. 1=1.2,....M, (8)

where Y is Ith column vector in the coefficient codebook. The in-
dex of the coefficient vector, which gives the minimum Euclidean

distance, can be specified with index h; for kth iteration and ex-
pressed as follows;

hy=argmin(A]), [=1,2,..., M. (9)
The coefficient vector which gives the minimum distance is de-

noted by f/z:Y,,k at the encoder side. Using the eigenvector matrix

(¢q,) and the coefficient vector (ﬁZ), approximate test frame ()‘(z)
is computed as;

)‘(z = <I>ak37z, (10)
with an error signal which is expressed as;

If the error reduction process is used for the desired bit rate,
the error signal (e]) is substituted into Eq. (5) instead of x[. In
other words, ez is used as the test frame for the second iteration
(k=2) and éz is found by following the same procedure that is
used to find /. The indices which are used to find %/ and & (be-
longing to the eigenvector matrix ¢, and coefficient vector (?ﬁ )
are transmitted to the decoder. Using these indices, the decoder
can synthesize the signal as;

d
=% +> @&l (12)
k=2

Since the error is transmitted for further refinement, the er-
ror between the synthesized signal X7 and x9 is reduced. In Fig. 2,
the encoder and decoder parts of the proposed KLT-based subspace
method are shown in parts (a) and (b), respectively. In this figure,
k is the current iteration index which is initially set to 1. Here, d
is maximum numbers of iterations that is used for CBR and VBR
coding. A set of indices is found for all iterations and is sent to the
decoder. This process is performed for all frames of the test signal.

2.2. Eigenvector quantization

Vector quantization is performed on eigenvectors to shorten
the computational delay. K-means method (Jain, 2010), which uses
the principal eigenvector of each eigenvector matrix, is used for
the eigenvector quantization. Thus, the clusters are obtained from
the eigenvector matrices including principal eigenvectors in sim-
ilar directions. The new eigenvector codebook can be represented
by 6={0,.0,, ....0,} after the quantization, where m <r. The new
eigenvector matrix is found for jth cluster and defined as;

P
0;=> @, j=1.2,..m, (13)
i=1

where p is number of eigenvector matrices in the jth cluster. Each
column of the eigenvector matrix is normalized by dividing it with
its norm. The size of the normalized eigenvector matrix is eventu-
ally Nx K.

We construct a toy example for illustration purposes here. Let
A =[a; a,] and B =[b; b;] be matrices of principal component vec-
tors a; and b;, and u; and u, are the sum of the first (a;,b;)
and second (ay,b,) principle components of A and B matrices as
u; = (a;+by) and u; = (ay+by), so that U =[uy u,]. The normal-
ized matrix is U""””:[u%n ”:'ﬁ]. Two matrices A and B have the
same cluster in the two dimensional vector space and the normal-
ization process is shown in Fig. 3.

We used 3 different approaches for the search of optimal eigen-
vector matrix within the eigenvector codebook;

(i) In the first approach (we will denote as A1), speech signals are
synthesized by searching all eigenvector matrices in the eigen-
vector codebook. (The computational delay is high).
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Fig. 2. Block diagrams of (a) the encoder and (b) the decoder for the proposed KLT-based method.

(ii) In the second approach (we will denote as A2), synthesis is
done by searching only M normalized eigenvector matrices
(Unorm). (The computational delay is low). The k-means method
is used in this approach.

(iii) In the third approach (we will denote as A3), in order to further
reduce the computational delay and improve bit allocation ef-
ficiency, we have devised a new quantization technique, where
the eigenvector matrices are quantized into clusters that con-
tain equal number of eigenvector matrices inside their quanti-
zation regions. Due to the similarity and inspiration from the
k-means method, we called the above method ‘balanced k-
means’.

The new codebook structure for the third approach (A3) is re-
alized with the following algorithm. At the end of this algorithm,
M clusters (each with L eigenvector matrices) is formed as a code-
book structure.

Step 1) Set t=1.

Step 2) Find the Euclidean distances among the principal vec-
tors of the first and the remaining eigenvector matrices;
Di=||¢p1—¢i]|, i=2,3,...,N

where N is the number of eigenvector matrices in the eigenvector
codebook.

Step 3) Find L-1 eigenvector matrices which give the smallest L-
1 Euclidean distances among N-1 eigenvector matrices. Com-

bine the first eigenvector matrix and L-1 eigenvector matri-
ces, and form tth cluster which consists of L-size eigenvector
matrices (). Here, L is the number of eigenvector matrices
in tth cluster.

Step 4) Find tth normalized eigenvector matrix (Ut,,,) by using
the eigenvector matrices (/) in the tth cluster as explained
in Fig. 3. These eigenvector matrices in the tth cluster are
removed from the eigenvector codebook.

Step 5) Increase t by 1. If t=M terminate the algorithm. Other-
wise, go to Step 2. Here M is the number of clusters.

u
)

Normalization

_

a, u,

p > (8

2

Fig. 3. Representation of the vector quantization in the two dimensional vector
space.

For a test frame, the most appropriate cluster is selected by us-
ing a normalized eigenvector matrix which gives the smallest Eu-
clidean distance in Eq. (5) (U4yrm, t=1,2,...,M). Then, the most suit-
able eigenvector matrix, which has the smallest Euclidean distance,
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is found from the L-size eigenvector matrices belonging to the se-
lected cluster. Since (L+ M) << N, the computational delay is con-
siderably reduced. In addition, the number of used bits is equal
to the new codebook structure (bit number =log,M + log,L) which
is automatically equal to the number of bits for the non-quantized
codebook (bit number =log,N). In other words, the number of allo-
cated bits is equal for the codebooks in the first approach and the
third approach. However, the encoding delay in the third approach
is less than that of the first approach.

Let us explain the situation with a numerical case example.
Suppose that we have 64 eigenvector matrices and we want to
create 16 clusters, the third approach produces a codebook with
16 sets, each of which has 4 eigenvector matrices (making the to-
tal number of bits log,4 + log, 16 =6, which is naturally equal to
log,64. According to the process strategy of the third approach
(A3), these 4 eigenvector matrices in each cluster are normalized
as in Fig. 3 to construct an eigenvector matrix. Continuing with
the same example, 16 normalized eigenvector matrices are gener-
ated. For the test frame, the most appropriate normalized eigen-
vector matrix or cluster which gives the smallest Euclidean dis-
tance in Eq. (5) is selected from these 16 normalized eigenvector
matrices. Then, the most appropriate eigenvector matrix is selected
(i.e. among the four eigenvector matrices corresponding to the se-
lected cluster). Therefore, a total of only 20 (i.e. 16 +4) eigenvec-
tor matrices are searched instead of the total set of 64 eigenvector
matrices.

A similar algorithm is performed for the coefficient codebooks,
so the computational delay of the coefficient vectors is consider-
ably shortened for the third approach. For the second approach
(A2), the coefficients and eigenvectors in the clusters are not
searched as in the third approach. Instead, the quantized coeffi-
cient and eigenvector codebooks are searched. It must be noted
that the number of quantized coefficients and eigenvectors in
the coefficient and eigenvector codebooks is M for this approach,
meaning that the search time for the second approach is also low.

2.3. ICA-based subspace method

ICA is quite similar to KLT in view of their properties. How-
ever, unlike KLT, the basis vectors of ICA are not orthogonal to each
other. In this work, we investigate the performance differences of
these two subspace methods.

Similar to the autocorrelation concept (which yields the KLT),
mutual information of random variables is a measure of the mu-
tual dependence among the variables. ICA of a random vector con-
sists of finding a linear transformation that minimizes the statis-
tical dependence among its components (Comon, 1992). Applica-
tions of ICA include data compression, detection and localization of
sources or blind identification and deconvolution (Comon, 1992).
In this study, the ICA method is implemented through the Fas-
tICA algorithm (Hyvdrinen and Oja, 2000) in MATLAB. In our case,
frames of training speech signals are divided into non-overlapping
subframes. FastICA algorithm is applied to the data matrix that is
obtained from subframes of each frame. Then, mixing matrix (A)
and independent component matrix (S) are found for every data
matrix, which are used for constructing the codebook. It must be
noted that this codebook generation process uses the training data.
In the test phase, test signals are synthesized by using these code-
books. The process details can be explained as follows.

Let X, e RM * N denote pth data matrix, which is defined as

X,=A,Sp, p=1,2,....1, (14)

where Apis an M x M mixing matrix, Spis an M x N matrix which
includes independent components with M < N, and r is the num-
ber of data matrices, which are obtained from the training set. The

independent component codebook is created by a set of indepen-
dent component matrices as:

SP—{S,.S;,....S:}. (15)

The mixing codebook (U%) is constructed by concatenating all
rows of mixing matrices. Here, U ¢ RZ*M and Z is equal to M x .
In the testing phase, test speech signals are divided into non-

overlapping frames (x', x2, ..., x!) and pth signal for kth iteration
is computed as
x‘g,k:<x;§sg(spsg )’1)5,3, p=1.2....1 (16)

where XZ is gth test frame for kth iteration, and S, is pth inde-
pendent component matrix in the independent component code-
book. The index of kth iteration (ay) is found from the minimum

Euclidean distance between xg and xgk as follows;

a= argmin || x{—xj, |

). p=12,.... (17)

By taking Sq, from the independent component codebook, an
approximate mixing vector ugk is written as

-1
ul, =xJs}, (saksgk) . (18)

Then, by searching all rows of the mixing codebook, the index
hy is found by using

hy= argmin||ug -U*||, 1=1.2,....Z (19)

where Ule is Ith row vector in the mixing codebook. When u, = ﬁz

is chosen from U, X} is computed as,

%4

X, =u,Sq,, (20)
and the approximate error signal is expressed as

q_ 9 _ @4
€= X — % (21)

In this work, the same error reduction processes are used for
KLT- and ICA- based methods. In Fig. 4, the encoder and decoder
parts of the proposed ICA-based method are shown in parts (a) and
(b), respectively.

3. Constant and variable bit rate coding

In this study, we used both CBR and VBR based coding with
KLT-, and ICA-based methods. CBR coding is realized with the same
number of bit allocation for voiced and unvoiced frames of the
speech signal. Conversely, the number of bits for each frame is al-
lowed to vary in the VBR coding.

With VBR coding, it is possible to synthesize a higher qual-
ity speech signal than CBR by assigning less bits for the unvoiced
frames and more bits for the voiced frames. The main idea of this
study is to start with autocovariance eigenvectors for an approxi-
mate speech representation and then to iteratively reduce the error
between the actual and synthesized signal. The number of itera-
tions is adjusted according to target bit rates. Different error re-
duction algorithms are used for CBR and VBR cases.

In CBR coding, the encoder naturally aims at the bit rate
of the output samples. If M¢ (or M!) and M¢ (or M™) are the
size of eigenvector (or independent component) and coefficient
(or mixing) codebooks respectively, we need log,M¢+log,M°¢ (or
log,Mi+log,M™) bits. Higher values of M¢ and M¢ correspond to
better quality with a lower compression ratio. If FL is the length
of frame, d is maximum number of iterations and FS is the sam-
pling frequency, then the desired bit rate (kbps) for CBR coding is
defined as

_[th x FS]x d

bcsr T

(22)
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Fig. 4. The block diagrams of (a) the encoder and (b) the decoder for the proposed ICA-based method.
Table 1
Bit allocations for KLT_CBR and ICA_CBR methods.
Frame length (Samples) NI  Eigenvector codebook’s bits  Coefficient codebook’s bits  Total bits Kbps
80 1 12 bits 12 bits 1x(12+12)=24 bits 2.4
32 1 16 bits 16 bits 1x(16+16)=32 bits 8
64 3 16 bits 17 bits 3 x (16 +17) =99 bits 12.2
32 2 16 bits 16 bits 2 x (16 +16) =64 bits 16
48 3 16 bits 17 bits 3 x (16 +17) =99 bits 16.4
96 4 15 bits 15 bits 4x(15+15)=120 bits  19.85
where tb is the number of bits required to send indices of code-
books and is equal to (log,M¢+log,M€) or (log,M'+ log,M™). Encoder Side
The parameter d is a constant to represent the maximum number : . : . : :
. . . . .. iteration k iteration 2 iteration 1
of iterations. This parameter is known a-priori by both the encoder (k=d) (k=2) (k=1)

and the decoder. The bit allocations for KLT_CBR and ICA_CBR
methods are given in Table 1 in which NI is the number of iter-
ation.

At the encoder side, in the first iteration (k= 1), an error signal
between the test and the synthesized frames is found as e9= x9 —
)?‘17. In the second iteration (k=2), the error signal (e‘]l) is used as
the test frame and ég is found by following the same steps that
are used to find )‘(?. In the third iteration (k=3), the error signal
(e=x9 — %I —@&J) is used as the test frame and &} is found. When
the desired bit rate is reached, the process is stopped (k=d). The
synthesis of a test frame at decoder side and bit allocations for the
proposed KLT_CBR and ICA_CBR methods are illustrated in Fig. 5.

In Fig. 5, bit(ay), ..., bit(ay) and bit(hy), ..., bit(h;) indicate bit
allocations corresponding to the eigenvector (or independent com-
ponent) codebook and coefficient (or mixing) codebook respec-
tively.

bit(a,)

bit(f2,) «ee

bit(ﬂz)lbit(hz)lbit(ll,) bit(/z, )

The bits of codebooks

[bit(a) bit()|-+«[bit(a,) bit(,)| [vit(a;) bit(/, |

é: | | el

A
x,"|

+

xfl
Decoder Side

Fig. 5. Bit allocations for the proposed KLT_CBR and ICA_CBR methods.
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Table 2
Bit allocations for KLT_VBR and ICA_VBR methods.
Frame Eigenvector Coefficient Iteration Iteration Voiced Unvoiced Average Kbps
length codebook’s codebook’s numbers bits frame bits frame bits bits per
(Samples) bits bits frame
80 12 12 1<K<2 1 2 24 24
Kx (12 +12)
32 16 16 1<K<2 1 2 32 8
K x (16 +16)
64 16 16 1<K<4 2 2 99 12.2
K x (16 + 16)
32 16 16 1<K<3 2 2 64 16
K x (16 + 16)
48 16 16 1<K<4 2 2 99 16.4
K x (16 + 16)
96 15 15 1<K<5 3 2 119 19.85
K x (15 + 15)
Table 3
iteration k iteration 2 iteration 1 Voiced|| Start The scores for quality of the speech and ranges of MOS values.
(k<d) (k=2) (k=1) Frame(| bit - —
I | Quality of the speech ~ Score ~ MOS indicator MOS values
oo oo |bit(@,) bit(hz) bit(lll)bit(hl) itergtion @ @ excellent 5 Very satisfied 43-5
bits good 4 Satisfied 4.0-43
- fair 3 Some user satisfied 3.6-4.0
The bits of codebooks The bits of poor 2 Many user dissatisfied ~ 2.6-3.6
iteration number bad 1 Not recommended 1.0-2.6
(a)
Unvoiced| [Start The desired bit rate (kbps) for VBR coding is defined as,
Frame bit , .
| 2furt Y (th+2)+f, - in Fs
VBR= X = (24)
@ @ ( fuwtfo) FL
where ky is the number of iterations used for yth voiced frame
(b) (1< ky =d y=1, 2,..., fy). In Eq. (24), fy and f,, are the

Fig. 6. The structures of bit array for (a) voiced and (b) unvoiced frame for the
proposed KLT_VBR and ICA_VBR.

For CBR coding, the codebook indices are only transmitted to
the decoder side for all frames of test signal and test signals are
synthesized by using the same codebooks at the decoder side.

In VBR coding, a predefined error threshold (&) and a maximum
allowed number of iterations (d) are dynamically determined in or-
der to achieve the desired bit rates. The process given in Fig. 5 is
also used in VBR coding, but the bit allocation for VBR coding dif-
fers according to whether a frame can be voiced or unvoiced. Then
the algorithm continues until the error norm is less than the pre-
defined threshold (&) or the index of current iteration (k) is set
equal to the maximum iteration value (d):

X, —x " < & or k =d, (23)

where x,'* and x,™" are test and synthesized frames for kth iter-
ation.

An additional bit is used to mark whether the current frame is
voiced or unvoiced, in the VBR coding. As shown in Fig. 6, first bit
of the total bit array is always the start bit. If the frame is voiced,
then the second bit of the array is ‘1’, otherwise it is ‘0’, indicating
that the frame is unvoiced. If norm value of error signal of the gth
frame is less than ey, in the encoder side for first iteration, then
this frame is evaluated as unvoiced frame. Otherwise, gth frame is
evaluated as voiced. The parameter ¢, is a predefined threshold
value for unvoiced frames e, < ¢ < 1. For unvoiced frames, the to-
tal bit array only consists of “0 1” and the decoder consequently
generates a zero vector at the whole size of the frame. Different
number of iterations can be used at encoder side for each voiced
frame. Therefore, the number of iterations must be known at de-
coder side. Fig. 6(a) shows the bit structure of voiced frames with
bits corresponding to the number of iterations, whereas Fig. 6(b)
indicates bits in case of unvoiced frames.

number of voiced and unvoiced frames, respectively and in is the
number of bits corresponding to the number of iterations used for
a voiced frame. There is no bit allocation for e, ¢,; and d parame-
ters in the VBR, as their values are previously determined and they
are known by the encoder and decoder. In Table 2, bit allocations
are given for different bit rates using KLT_VBR and ICA_VBR.

As can be seen from Table 2, VBR coding has a different bit al-
location structure according to CBR coding. The training set in the
TIMIT database is used to determine the sizes of the eigenvector
codebooks. The same codebooks are utilized for CBR and VBR cod-
ings. Naturally, VBR coding involves a few more iterations than CBR
coding for the voiced frames.

4. The quality measurements of speech coders

The qualities of speech coders are evaluated using MOS
(Mean Opinion Score), as well as PESQ (Perceptual Evaluation of
Speech Quality), WSS (Weighted Slope Spectral distance), and LLR
(Log Likelihood Ratio) objective measures (Hu and Loizou, 2008;
Krishnamoorthy, 2011). PESQ is a test methodology for objec-
tive prediction of perceived speech quality and has been widely
used in telecommunications and IP networks. It is asserted to
have the highest correlation with the subjective measurements
(Goudarziand Sun, 2009).

4.1. MOS (Mean opinion score)

The Mean Opinion Score (MOS) provides a numerical measure
of the voice quality in telephony networks. MOS is obtained from
subjective tests by using human listeners. The ratings depend on
each listener’s perception (Osahenvemwen, 2015). MOS is defined
as the arithmetic mean of subjective evaluations in listening or
conversational tests, with score values of 1 to 5, corresponding to
verbal explanations as given in Table 3.
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Table 4
PESQ values for 16 kbps (KLT_VBR(A1)).

FL (ms) K=1 K=2 K=3 K=4

K=5 K=6 K=7 K=8 K=9

K=10

4 3,07 3,32 3,52 3,68 3,79 3,74 3,71 3,66 3,61

6 3,1 3,37 3,53 3,65 3,88 3,97 3,75 3,73 3,65

8 2,96 3,21 3,38 3,44 3,73 3,62 3,57 3,53 3,51

10 2,83 3,00 3,14 3,27 3,34 3,35 3,30 3,28 3,26
Table 5

Cov values for 16 kbps (KLT_VBR(A1)).

FL (ms) K=1 K=2 K=3 K=4

K=5 K=6 K=7 K=8 K=9

K=10

4 3.80 4.06 4.26 441
6 3.82 413 4.28 4.35
8 3.69 3.93 411 417
10 3.57 3.74 3.87 4.01

4.51 4.46 4.44 439 4.35
4.58 4.62 4.47 445 4.39
4.46 4.40 4.37 432 430
412 4.15 4.05 4.02 4.00

4.2. PESQ (Perceptual evaluation of speech quality)

This evaluation describes an objective method to predict the
subjective quality of 3.1 kHz (narrow-band) handset telephony and
narrow-band speech codecs. PESQ is used to calculate a distance
between the original and degraded speech signal (PESQ score). The
PESQ score is mapped to a MOS-like scale, which is a single num-
ber in the range of 1 to 4.5 (Kumar et al., 2014).

4.3. WSS (Weighted spectral slope)

The WSS measure is a frequency domain expression,
based on an auditory model. The WSS measure is defined as
(Krishnamoorthy, 2011);

1LY WSS m) (So(jm ) = Ss( j,m ))?
W= mzo > WSS( j,m) - )

where WSS(j,m) are the weights computed as described in
(Krishnamoorthy, 2011). In Eq. (25), K is taken as 25, M is the num-
ber of data segments, Sy(j, m) and Ss(j, m) are the spectral slopes
for the jth frequency band of the original and processed speech
signals, respectively.

4.4. LLR (Log likelihood ratio)

LLR measure is one of the LPC-based objective measures. It
mainly concerns with the similarity of spectral envelopes. The LLR
for each 20ms frame is defined as (Hu and Loizou, 2008);

aSl{OaS )

LLR(a,,a5)= log<7

aRoa, (26)

where a, and as are the LPC vectors of the original and the pro-
cessed speech frames, respectively, and R, is the autocorrelation
matrix of the original speech frame.

4.5. Composite measure

Since conventional objective measures are not sufficient to pro-
vide high correlations in terms of speech/noise distortion and
overall speech quality, it is necessary to combine different objec-
tive measures in order to create a Composite measure (Hu and
Loizou, 2008). In this study, we have used a composite measure
(Cov) for overall speech quality. The Cov measure is an overall
planning and combination of the evaluation measures in time do-
main, frequency domain and perceptual field, and is defined as fol-
lows (Hu and Loizou, 2008):

Cov=1,594+0,805-PESQ— 0,512 -LLR— 0,007 - WSS.  (27)

5. Experimental study
5.1. Database

In the experimental studies, the speech material of the TIMIT
database has been divided into training and testing sets. The train-
ing and test sets contain 4620 and 1344 utterances, respectively.
The speech signal in the database has a sampling frequency of
16kHz (16 bit, PCM format). The sampling frequency was con-
verted to 8kHz with downsampling process and 45 phonemes
were obtained by merging similar utterances from 61 phonemes
in the speech database. Only the sampling frequency of 16 kHz at
19.85 kbps is used for the experiments.

In the training phase, equal number of phonemes (varying be-
tween 15 and 100) is used for each phoneme class. The length
of each phoneme is equal to 960 and 1920 samples at 8 kHz and
16kHz in the training phase, respectively. Then, 960 samples or
1920 samples of phonemes are divided into frames and data matri-
ces are constructed by using these frames for ICA- and KLT-based
methods. 30 utterances of sentences randomly selected from the
test set of the TIMIT database are assigned to be used in the test-
ing phase. MOS, PESQ and Cov values are found for each utterance.
Then, average MOS, PESQ and Cov values are computed for all sen-
tences.

5.2. Results

Multiple tests are performed in order to analyze the efficiency
of the proposed KLT and ICA based methods. In experimental stud-
ies, KLT_CBR and KLT_VBR naturally correspond to CBR and VBR
coding for KLT, respectively. Similarly, ICA_CBR and ICA_VBR cor-
respond to CBR and VBR coding for ICA, respectively. The aver-
age values of PESQ and Cov are shown in Tables 4-11 for the first
searching approach (A1). Frame length of 2ms was not used for
KLT_VBR with 16 kbps and KLT_CBR with 8 kbps, because 8 kbps
and 16 kbps bitrates are exceeded when the number of iterations
is more than one. Similarly, frame lengths of 2 ms and 4 ms are
not used for KLT_VBR method with 8 kbps, because 8 kbps is ex-
ceeded when the number of iterations is more than one. Speech
signals are reproduced by using eigenvectors corresponding to the
largest K eigenvalues for all different frame lengths (K=1,2,3,...,10).

Average PESQ and Cov values of 30 test utterances are given in
Tables 12-18. These tables also include MOS values, which were
obtained by subjective listening tests of synthesized and original
speech waveforms by 10 students and 10 academicians. Listening
tests were realized in a quiet environment using high quality head-
phones.

The average MOS values of 20 users are given in Tables 12 and
14-18. In Tables 12-18, A1, A2 and A3 indicate the first, second
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Table 6
PESQ values for 16 kbps (KLT_CBR(A1)).
FL(ms) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
2 290 322 353 357 337 311 289 27 262 248
4 285 308 326 352 350 360 365 348 341 327
6 284 303 321 359 366 376 38 370 363 361
8 277 298 316 323 349 332 327 325 323 319
10 274 290 300 313 327 322 316 314 312 308
Table 7
Cov values for 16 kbps (KLT_CBR(A1)).
FL(ms) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
2 365 398 427 429 414 39 370 351 341 326
4 359 381 402 425 424 433 437 421 415 402
6 357 378 396 427 433 441 449 438 429 426
8 352 376 393 401 419 409 403 401 398 393
10 350 367 376 391 398 399 394 392 390 380
Table 8
PESQ values for 8 kbps (KLT_VBR (A1)).
FL(ms) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
6 266 28 295 311 323 337 350 339 327 326
8 265 284 300 305 308 313 313 315 313 312
10 268 281 289 298 299 304 301 303 301 298
Table 9
Cov values for 8 kbps (KLT_VBR (A1)).
FL(ms) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
6 322 355 368 379 392 402 410 403 387 386
8 332 352 367 374 378 383 38 38 38 383
10 334 349 358 367 369 374 371 372 371 370
Table 10
PESQ values for 8 kbps (KLT_CBR (A1)).
FL(ms) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
4 264 28 298 312 320 309 299 287 278 273
6 26 278 292 301 303 308 310 310 308 3,06
8 251 267 282 29 288 28 279 268 266 261
10 222 232 241 239 239 236 238 226 226 221
Table 11
Cov values for 8 kbps (KLT_CBR (A1)).
FL(ms) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
4 321 341 36 382 387 378 368 359 35 3,46
6 337 358 366 372 375 378 38 381 38 3,78
8 315 336 351 36 361 359 347 339 331 327
10 288 302 312 311 3,11 31 309 298 295 289
Table 12 large size codebooks in high bit rates. Therefore, the size of eigen-
Average MOS, PESQ and Cov values at 2.4Kbps. vector codebook (number of eigenvector matrices) is decreased
METHOD ER MOS PESQ  Cov from 65,536 to 16,384 and 1024 by using vector quantization in the
ICA VBR ER(+) 25 238 204 codebook, as described in Section 2.2. In Table 13, K indicates the
ICA_CBR ER (+) 247 232 285 length of the coefficients or number of largest eigenvalues which
KLT_VBR (A1) ER(+) 252 255 3,02 result in best quality.
KLT CBR (A1)  ER(+) 247 248 298 In Table 13, the number of the clusters (each of the clusters
ﬁg“c':.f ((:33)) E]; Ei; ;g ;"2‘3 g’gé has a normalized eigenvector matrix) is M =1024. The number of
LPC _ 231 235 261 eigenvector matrices in each cluster for the third approach (A3)

and third searching approaches respectively. In these tables, ER (+)
indicates that the error reduction procedure is additionally applied.

The experimental results for different codebook sizes are shown
in Table 13. It is observed that computational time increases for

is L=64. A total of M+L (1024 +64) eigenvector matrices are
searched to find the most suitable eigenvector matrix. As seen
from the Table 13, the quality values decrease when the quanti-
zation method is used for the second approach, but the third ap-
proach keeps the quality close to that of full search for 16 kbps
and 19.85 kbps. In Tables 14-18, we compared well-known speech
codecs G729A, G728, EVS, AMR-NB and AMR-WB with the best
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Table 13
Average PESQ and Cov values based on quantization method at 16 Kbps and 19.85 Kbps.
KLT_CBR KLT_VBR

Searching Approaches Eigenvector codebook size ~ Kbps K ER PESQ  Cov K ER PESQ  Cov

A2 1024 16 5 ER(-) 286 354 6 ER(+) 301 370

A2 16384 16 3 ER(-) 341 401 6 ER(+) 354 412

Al 65536 16 7 ER(-) 382 449 7 ER(+) 397 462

Al 65536 1985 7 ER(+) 401 468 7 ER(+) 411 474

A3 1024 + 64 19.85 5 ER (+) 3,85 4,53 5 ER (+) 4,01 4,67

A3 1024 + 64 16 7 ER(+) 365 430 5 ER(+) 381 447

Table 14 50 -
The average MOS, PESQ and Cov values at 8 Kbps.
T 4,16 4,19

Methods ER MOS PESQ  Cov a0 4 3,97
ICA_VBR ER(+) 338 2.98 3.77 35 L
ICA_CBR ER(-) 328 283 356 g
KLT_VBR (A1) ER(+) 361 350 410 30 -
KLT_CBR (A1) ER(-) 342 320 382 e
KLT_VBR (A3) ER(+) 340 325 385 2 T i -+-LPC (2,4 kbps),G.729A (8 kbps), AMR-
KLT_CBR (A3) ER(-) 330 303 368 20~ NB (12,2 kbps), G728 (16 kbps), EVS
G729A - 3,58 3,38 3,91 (16,4 kbps), AMR-WB (19,85 kbps)

Table 15

The average MOS, PESQ and Cov values at 12.2 Kbps.
Methods ER MOS PESQ Cov
ICA_VBR ER (+) 3,94 3,48 411
ICA_CBR ER (+) 3,80 3,36 3,95
KLT_VBR (A1) ER(+) 4,05 3,78 4,38
KLT_CBR (A1) ER(+) 4,00 3,65 4,22
KLT_VBR (A3) ER(4+) 3,95 3,64 423
KLT_CBR (A3) ER(+) 3,82 3,38 4,04
AMR-NB - 4,11 3,74 4,32

Table 16

The average MOS, PESQ and Cov values at 16 Kbps.
Methods ER MOS PESQ Cov
ICA_VBR ER (+) 4,05 3.63 4.29
ICA_CBR ER(-) 3,98 3.50 4.05
KLT_VBR (A1) ER(+) 4,15 3,97 4,62
KLT_CBR (A1) ER(+) 4,08 3,82 4,49
KLT_VBR (A3) ER(+) 4,06 381 447
KLT_CBR (A3) ER(+) 4,00 3,65 4,30
G728 - 4,11 3,68 4,43

Table 17

The average MOS, PESQ and Cov values at 16.4 Kbps.
Methods ER MOS PESQ Cov
ICA_VBR ER (+) 4,13 3,67 4,32
ICA_CBR ER (+) 4,03 3,56 411
KLT_VBR (A1) ER(+) 419 400 465
KLT_CBR (A1) ER(+) 410 384 451
KLT_VBR (A3) ER(+) 408 383 448
KLT_CBR (A3) ER(+) 404 368 432
EVS (NB) - 4,43 4,16 4,80

Table 18

The average MOS, PESQ and Cov values at 19.85 Kbps.
Methods ER MOS PESQ  Cov
ICA_VBR ER(+) 423 384 460
ICA_CBR ER (+) 4,17 3,73 4,51
KLT_VBR (A1) ER(+) 436 411 4,74
KLT_CBR (A1) ER(+) 429 401 468
KLT_VBR (A3) ER(+) 425 401 467
KLT_CBR (A3) ER(+) 418 3,85 453
AMR-WB - 4,50 4,19 4,66

15 -

-=-Proposed method

10 +
0,5 -

0,0 1 1 1 1 1 1
2,4 kbps 8 kbps 12,2kbps 16 kbps 16,4 kbps 19,85 kbps

Fig. 7. PESQ values obtained for the KLT_VBR (A1) and other codecs.

2,5 = ~+-LPC (2,4 kbps),G.729A (8 kbps), AMR-
2,61 NB (12,2 kbps), G728 (16 kbps), EVS
2 - (16,4 kbps), AMR-WB (19,85 kbps)
1,5 — ~#-Proposed method

05 —

0 1 1 I 1 I 1
2,4kbps 8kbps 12,2kbps 16kbps 16,4 kbps 19,85 kbps

Fig. 8. Cov values obtained for the KLT_VBR (A1) and other codecs.

operation points of the proposed KLT- and ICA-based methods
at the same available bit rates. The bit rates of standard speech
codecs are 8 kbps, 12.2 kbps, 16 kbps, 16.4 kbps and 19.85 kbps for
G729A, AMR-NB, G728, EVS (Narrow-Band) and AMR-WB respec-
tively. In Tables 14-17, the best results are found by using mixing
matrices of size 4 x 4 and independent component matrices of size
4xN for the ICA-based method, where N corresponds to the length
of frames. In Tables 12 and 18, mixing matrices of size 2 x 2 and in-
dependent component matrices of size 2xN are used for ICA-based
method.

The PESQ and Cov values that are obtained for the proposed
method (KLT_VBR (A1)) and other speech codecs are comparatively
shown in Figs. 7 and 8, respectively. A sampling rate of 16 kHz is
used for the results in Table 18.

For KLT- and ICA-based methods, encoder and decoder delays
per frame are given in Tables 19 and 20 respectively. In these ta-
bles, FL is the frame length (milliseconds), ED and DD indicate the
encoder and decoder delays (milliseconds), respectively.
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Table 19
Encoder delays per frame for KLT- and ICA-based methods.
2,4 kbps 8 kbps 12,2 kbps 16 kbps 16,4 kbps 19,85 kbps
ED FL ED FL ED FL ED FL ED FL ED FL
KLT_CBR (A1) 382 10 1260 4 1520 6 2190 6 2210 6 2420 6
KLT_CBR (A3) 14 10 29 4 43 6 59 6 63 6 74 6
KLT_VBR (A1) 302 10 1182 6 1440 6 2082 6 2098 6 2280 6
KLT_VBR (A3) 12 10 26 6 37 6 54 6 59 6 71 6
ICA_CBR 266 20 965 4 1380 4 1918 2 1981 2 2195 6
ICA_VBR 204 20 742 4 1208 4 1650 2 1705 2 2026 6
Table 20
Decoder delays per frame for KLT- and ICA-based methods.
2,4 kbps 8 kbps 12,2 kbps 16 kbps 16,4 kbps 19,85 kbps
DD FL DD FL DD FL DD FL DD FL DD FL
KLT_CBR (A1) 06 10 08 4 09 6 098 6 1,01 6 11 6
KLT_CBR (A3) 0,18 10 032 4 045 6 050 6 0,51 6 057 6
KLT_VBR (A1) 057 10 078 6 087 6 096 6 098 6 1,07 6
KLT_VBR (A3) 0,12 10 028 6 0,4 6 048 6 050 6 055 6
ICA_CBR 0,51 20 067 4 083 4 092 2 094 2 1,01 6
ICA_VBR 046 20 063 4 079 4 0,91 2 092 2 098 6

Realization of subjective listening tests is a difficult and time
consuming task. In this work, we had conducted subjective tests
over 10 young students (age: 20~26, 6 male, 4 female) and 10 rel-
atively older academicians (age: 35~50, 5 male, 5 female). Since it
was not possible to reach to a larger set of subjects, we also put
synthesized speech waveforms to accessible web storages for self
assessment: https://github.com/serkankeser/speech.

6. Discussion

KLT is known to provide maximum energy compaction in the
average sense among orthogonal transforms. If the signal is well
correlated, the energy compaction results in packing most of the
signal energy into the few transform coefficients, rest of which can
be discarded in encoding.

While KLT uses only second order statistics to find the most im-
portant signal components, ICA depicts higher order statistics. Due
to this difference, both of these transforms are applied in a novel
speech coding approach that incorporates CBR or VBR. The sub-
space representation was used for rough approximation and error
refinement was iteratively performed until the desired bit rate was
met.

In the experimental studies, four different English speech ut-
terances which have been generated as test signals of ITU-T for
telecommunication systems are tested with the proposed methods.
The average PESQ and Cov values of these tests are observed to be
very close, especially for the frame lengths of 4 ms and 6 ms using
TIMIT dataset. Besides, the results stand well against newest stan-
dard coders, indicating that the proposed methods must be consid-
ered as plausible alternatives for speech coding. The algorithms are
implemented in MATLAB, running on a simple desktop PC with in-
tel core i5 processor and 4GB RAM. The computational times were
observed to vary according to desired bit rate and codebook size.
The first approach (A1) naturally gives the best quality (due to
its extensive search). Consequently, its calculation delay was high.
The third approach (A3, where the optimal eigenvetor matrices are
searched) had a synthesis quality close to the first approach for
16 kbps, 16.4 kbps and 19.85 kbps, whereas its computation de-
lay was visibly low. We observed that quality of the synthesized
speech signals was the worst in the second approach (A2) as com-
pared to Al and A3.

The quality values of speech signals that are synthesized by us-
ing the KLT_VBR(A1) method are higher when compared to those

of LPC, G729A, G.728, AMR-NB (12.2 kbps) and AMR-WB (19.85
kbps) coding methods. PESQ and Cov values of the KLT_VBR(A1)
and KLT_VBR(A3) methods are somewhat lower than that of EVS
(16.4 kbps). Only the PESQ value of the KLT_VBR(A1) method
stands lower than that of AMR-WB (19.85 kbps). However, Cov
value of KLT_VBR(A1) is found higher than that of AMR-WB. The
KLT_CBR(A1) method gives higher PESQ and Cov values than those
of G728 and LPC methods. In addition, the KLT_CBR(A1) method
gives a higher Cov value than that of AMR-WB. The ICA_VBR
method gives higher PESQ and Cov values than those of the LPC
method. In addition, the ICA_CBR method gives a higher Cov
value than that of the LPC method. However, the performances
of ICA_VBR and ICA_CBR are lower than those of G729A, AMR-NB
and AMR-WB methods. The KLT_VBR(A3) has lower the compu-
tational delay than KLT_VBR(A1). However, the KLT_VBR(A3) has
slightly lower PESQ and Cov values than KLT_VBR(A1). Further-
more, KLT_VBR(A3) has higher PESQ and Cov values than LPC,
G728 and has higher Cov value than AMR-WB. PESQ and Cov value
of KLT_VBR(A3) is found slightly lower than those of AMR-NB and
G729A.

For lower bit rates (such as 2.4 kbps), the proposed methods
give higher MOS values than those of LPC at the same bit rate. For
8 kbps, the MOS value of speech signal that are synthesized by us-
ing the KLT_VBR(A1) is higher than that of G729A. For 12.2 kbps,
MOS value of AMR-NB is higher than MOS values of the proposed
methods. For 16 kbps, only MOS value of KLT_VBR(A1) is higher
than that of G728. For 16.4 kbps and 19.85 kbps, MOS values of
EVS (NB) and AMR-NB are higher than MOS values of the proposed
methods. Although the PESQ values of ICA-based methods are vis-
ibly lower than the PESQ values of KLT-based methods, the MOS
values of ICA-based methods are obtained closer to the MOS val-
ues of KLT-based methods.

7. Conclusion

A contribution of this study is to apply vector quantization to
the principal component vectors of the eigenvector matrices (or
independent components) which are obtained from KLT (or ICA).
This method is applied to ICA for the first time in the literature.
Another contribution is to process an iterative error refinement,
where the error signal is used to recursively improve SNR until the
desired bit rate is achieved. These two subspace methods (KLT and
ICA) are applied for speech compression under CBR and VBR con-
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ditions. In all these combinations (KLT_CBR, KLT_VBR, ICA_CBR and
ICA_VBR), a novel covariance eigenvector grouping strategy is pro-
posed. Adopting a strategy of vector alignment is believed to be an
insightful alternative to directly vector quantizing subspace bases.
The comparison of these two subspace methods in various target
bit rates for both CBR and VBR is believed to constitute a thorough
justification for the usefulness of these subspace methods.

Apart from the above-mentioned alignment strategy in vector
quantization, a new method for feeding the error description back
to the signal representation is proposed to improve SNR at a given
target bit rate. The KLT-based methods, especially KLT_VBR, gave
experimentally more satisfactory results than the ICA-based and
other CBR methods. Utilization of KLT at VBR was observed to pro-
vide plausible performance (quality and decoding delay) as com-
pared to several state-of-the-art speech coding standards at analo-
gous bit rates.

For the synthesized signals, high quality speech sounds are ob-
tained for 12.2 kbps, 16 kbps, 16.4 kbps and 19.85 kbps bit rates.
However, the computation time is observed to become a concern
at these bit rates by using the first approach (A1). The computa-
tion delay increases together with the codebook size in high bit
rates. As a remedy of this problem the computational delay is re-
duced by applying a novel quantization method (A3) which is ob-
served to keep the original high quality. The proposed basis align-
ment (quantization) and error refinement processes are expected
to provide a new insight to the speech coding problem.
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