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1 | INTRODUCTION

The classical Morrey spaces were introduced by Morrey [39] to study the local behavior of solutions to second-order elliptic
partial differential equations. Moreover, various Morrey spaces are defined in the process of study. Guliyev, Mizuhara and
Nakai [17, 38, 40] introduced generalized Morrey spaces MP-?(R") (see also [18, 19, 55]); Komori and Shirai [36] defined
weighted Morrey spaces LP*(w); Guliyev [20] gave a concept of the generalized weighted Morrey spaces M5#(R™) which
could be viewed as extension of both MP?(R") and LP*(w). In [20], the boundedness of the classical operators and their
commutators in spaces Mf;’(p was also studied. For other boundedness results on these spaces, see [3, 21, 24, 25, 28, 44]
for example.
The spaces M.?(R") defined by the norm

Ifllyee = sup @Ce.r)™ wBCe ™2 If 12 ey

xeR"r>0

where the function ¢ is a positive measurable function on R” X (0, o0) and w is a non-negative measurable function on
R". Here and everywhere in the sequel B(x, r) is the ball in R” of radius r centered at x and |B(x, r)| = v,r" is its Lebesgue
measure, where v,, is the volume of the unit ball in R”.

The Orlicz spaces L® were first introduced by Orlicz in [49, 50] as generalizations of Lebesgue spaces L. Since then, the
theory of Orlicz spaces themselves has been well developed and the spaces have been widely used in probability, statistics,
potential theory, partial differential equations, as well as harmonic analysis and some other fields of analysis.

In [7], the generalized Orlicz-Morrey space M®#(R") was introduced to unify Orlicz and generalized Morrey spaces.
Other definitions of generalized Orlicz—Morrey spaces can be found in [41] (see also [43]) and [57]. In words of [23], our
generalized Orlicz-Morrey space is the third kind and the ones in [41] and [57] are the first kind and the second kind,
respectively. The first kind and the second kind are different and that the second kind and the third kind are different
according to [14]. Notice that the definition of the space of the third kind relies only on the fact that L? is a normed linear
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space, which is independent of the condition that it is generated by modulars. On the other hand, the space of the first
kind is defined via the family of modulars.

Various versions of generalized weighted Orlicz-Morrey spaces were introduced in [26, 31, 37, 53]. The spaces in [31,
37] can be seen as the weighted version of generalized Orlicz-Morrey spaces of the first kind and the spaces in [53] can
be seen as the weighted version of generalized Orlicz-Morrey spaces of the second kind. We used the definition of [26]
which can be seen as the weighted version of generalized Orlicz-Morrey spaces of the third kind.

There are two remarkable results on the Morrey boundedness of Riesz potential. The first result is due to Spanne [52].
The second milestone result is due to Adams [1]. Since the inclusion relations between Morrey spaces, we can say that
Adams improved the result by Spanne. Recently many people are studying these operators from a various points of view
[12, 19, 32-34, 42, 46, 48].

In this paper, we shall investigate the Adams-type boundedness of the Riesz potential and its commutators on gen-
eralized weighted Orlicz-Morrey spaces. We also give a characterization for the BMO space via the boundedness of the
commutator of the Riesz potential. In other words, we obtain weighted versions of previous results appeared in [4, 6, 22].
Unfortunately, we follow the line of [44] and the paper by Komori and Shirai [36] assuming the somewhat strong con-
dition of A; . However, as is proved in [11, 45-47], one can say more. At least the result of this paper does not recapture
these results.

By A < B we mean that A < CB with some positive constant C independent of appropriate quantities. If A < B and
B 5 A, we write A & B and say that A and B are equivalent.

2 | DEFINITIONS AND PRELIMINARY RESULTS

Even though the A, class is well known, for completeness, we offer the definition of A, weight functions. Let
B={B(x,r) : x e R", r > 0}.

Definition 2.1. For 1 < p < oo, alocally integrable function w : R" — [0, co) is said to be an A, weight if

1 1 2\
]sglég<ﬁ/3w(x)dx><ﬁ/3w(x) dx) < o0.

A locally integrable function w : R" — [0, c0) is said to be an A, weight if
1
— / w(y)dy < Cw(x), a.e. X €B,
Bl J

for some constant C > 0. We define A, = Up>1 Ap.

For any w € A, and any Lebesgue measurable set E, we write w(E) = fE w(x)dx.
We recall the definition of Young functions.

Definition 2.2. A function @ : [0,00) — [0,00] is called a Young function, if ® is convex, left-continuous,
lim,_ g+ ®(r) = ®(0) = 0 and lim,_, ., ®(r) = 0.

The convexity and the condition ®(0) = 0 force any Young function to be increasing. In particular, if there exists
s € (0, 00) such that ®(s) = oo, then it follows that ®(r) = oo for r > s.
Let Y be the set of all Young functions @ such that

0<P(r) < for 0<r< oo

If ® € Y, then ® is absolutely continuous on every closed interval in [0, c0) and bijective from [0, c0) to itself.
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For a Young function ® and 0 < 5 < o0, let
O N(s)=inf{r>0: ®&Fr)>s} (infd = ).
A Young function @ is said to satisfy the A,-condition, denoted by ® € A,, if
®(2r) < kd(r), r>0,

forsome k > 1. If ® € A,, then ® € Y. A Young function & is said to satisfy the V,-condition, denoted also by ® € V,, if
o) < ~d(kr), r>0
—_— 2k 9 —_— b
for some k > 1. The function ®(r) = r satisfies the A,-condition and it fails the V,-condition. If1 < p < oo, then ®(r) = r?
satisfies both the conditions. The function ®(r) = e" — r — 1 satisfies the V,-condition but it fails the A,-condition.

For a Young function ®, the complementary function ®(r) is defined by

B(r) = {sup{rs —®(s) : s €[0,0)}, if r €0, ),

0, if r = c0.

The complementary function ® is also a Young function and it satisfies & = ®. Note that ® € V, ifand only if ® € A,.
It is also known that

r<od e 1(r) < 2r, r>0. 2.1)

We recall an important pair of indices used for Young functions. For any Young function @, write

O(st)
he(t) =su , t>0.
PR e
The lower and upper dilation indices of ® are defined by
log he(t log ho(t
iq) = lim Og—(b() and I(I) = lim Og—q)(),
t—0+ logt t—co  logt

respectively.
A Young function @ is said to be of upper type p (resp. lower type p) for some p € [0, o0), if there exists a positive
constant C such that, for all t € [1, co) (resp. t € [0,1]) and s € [0, o0),
D(st) < CtPO(s). 2.2)

Remark 2.3. Tt is well known that if @ is of lower type p, and upper type p; with 1 < p, < p; < co, then ® is of lower type
pi and upper type pé and @ is lower type p, and upper type p; with1 < py < p; < o ifand onlyif ® € A, N V,.

Remark 2.4. 1t is easy to see that @ is of lower type iy — €, and of upper type Iy + € for every € > 0, where the constant
appearing in (2.2) may depend on e. We also mention that i and I may be viewed as the supremum of the lower types

of ® and the infimum of upper types, respectively.

Definition 2.5. For a Young function ® and w € A, the set

L$([R") = {f—measurable : / (k| f(x)])w(x)dx < oo for some k > 0 }
Rl’l
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is called the weighted Orlicz space. The local weighted Orlicz space Li 1oc(R™) is defined as the set of all functions f such
that fx, € Ly(R™) for all balls B C R”".

Note that LY(R") is a Banach space with respect to the norm

. |f ()l
s an = 1l = int {A >0: [ o ueodx <1
Rn
and
/ of TNy dx <1. 23)
g\ Iflle
The following analogue of the Holder inequality is known.
/ Fgw(x)dx| < 2 fll o8l 5 (2.4)
Rn w

We refer, for instance, to [54] for details on Orlicz space.
For a weight w, a measurable function f and ¢t > 0, let

m(w, f, 1) =w{x € R" : [f(x)| > 1}).
Definition 2.6. The weak weighted Orlicz space

WL2(R™) = {f-measurable : ||f||WL$ < oo}

is defined by the norm

. , f
1 gy = 1 g = inf {2> 0 sup@(om(w, 2, ¢) <1},

>0
We can prove the following by a direct calculation:
= = ! BeB 2
||XB||L$ = ”XB”WLS = W’ € b, (2.5)
where y, denotes the characteristic function of the B.
The Hardy-Littlewood maximal operator M is defined by
1
Mf(x) = sup ——-— IfDMidy,  xeR"

>0 IB(X, r)l B(x,r)

for a locally integrable function f on R".
Let 0 < a < n. The Riesz potential operator I, is defined by

1 f() = / IO,
R

n X =y

Theorem 2.7 [16, Proposition 2.4]. Let ® be a Young function. Assume in addition w € A; . Then, there is a constant C > 1
such that

fD(t)m(w, Mf, t) <C / ®(C|f()Dw(x) dx

for every locally integrable f and everyt > 0.
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Remark 2.8. For a sublinear operator S, weak modular inequality

(D(t)m(w, ST, t) <cC / O(C|f(x))w(x) dx

Rn

implies the corresponding norm inequality. Indeed, let (2.6) holds. Then, we have

<I>(t)w<{x eR" : % > t}> = <I>(t)w<{x eR"

_f
S<CZ||f||Lg

)(x)

o)
- C/@ cI’(cnfnLg )w(x) dx <1,

which implies ||Sf||WL$ < ||f||L$.
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> t})

s

(2.6)

Lemma 2.9. Let ® be a Young functionand f € Lg 1oc(R™). Assume in addition w € A, . For a ball B, the following inequal-

ity isvalid:
1f i) < 1BIS (wB) )1 Nl as),
where ||f||L$(B) = ||fXB||L$-

Proof. Let

X (%) .
mf) = sup S [ @Iy, x e

and let f denote the extension of f from B to R” by zero. It is well known that 9% f(x) < 2"M f(x) for all x € R". Then

taking into account Remark 2.8 and using Theorem 2.7, we have

1 e 170 o) )
T||X3||WL$(B) = T“XB||WL$(B) S ||§mf||WL$(B)

p ||Mf||WL$(B) < ||Mf||WL$(Rn) S ||f||L$(R") = ”f”L$(B)'

So, Lemma 2.9 is proved.

Lemma 2.10 [13]. If By := B(x, ro), then rj < Cl, xp (x) for every x € By,.

3 | GENERALIZED WEIGHTED ORLICZ-MORREY SPACES

In this section, we give the definition of the generalized weighted Orlicz-Morrey spaces M:E’(P(IR") and investigate the
fundamental structure of M,f’q’(lR{"). In the sequel we use the notation p(B) = ¢(x,r) and ¢B = B(x, cr) for B = B(x,r) € B

and c > 0.

Definition 3.1. Let ¢ be a positive measurable function on R" X (0, o), let w be a non-negative measurable function
on R"” and ® any Young function. Denote by M$’¢(R") the generalized weighted Orlicz-Morrey space, the space of all
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functions f € Li’loc(lR") such that

1y ey = 1o = sup (e, &7 (wBCE M) ™) IF oy

xeR" r>0

= sup ¢(B)~! ‘D_l(w(B)_l)”f”Lg(B) < 0o.
BeB

We denote by WM, gj’@([R") the weak generalized weighted Orlicz-Morrey space, the space of all functions f € WLi 1oc(R™)
such that

1 flly 00 = sup  @(x, N~ e (wB(x,r)™) 1 e eery < oo-
w XERM r>0

Example 3.2. Let1 < p<ooand0<x < 1.

« If®(r) = rP and ¢(x, r) = w(B(x,r))~V/P, then My P (R") = L2 (R") and WM. P(R") = WL (R™).

x—1

« If®(r) = rP and p(x,r) = w(B(x,r)) ? , then Mo P(R") = LP*(w) and WM ¥ (R") = WLP*(w).
« If®(r) = rP, then Mo (R") = MPP(R") and WML P (R") = WMPP(RM).
If (x, 7) = & (w(B(x,r))™!), then My ?(R") = LE(R") and WMy, *(R") = WLE(R").

For a Young function ® and a non-negative measurable function w, we denote by Gg the set of all functions
@ : R" % (0,00) — (0, 00) such that

inf  @(B) > ¢(B,) forallB, € B

BeB;rg<rg,

and

»(B) > ®(By)
BEB; rg>rp, <I)—1(w(B)—1) ~ CD—l(w(Bo)_l)

for all B, € B,

where rp and rp | denote the radius of the balls B and B, respectively.
The following lemma was proved in [5].

Lemma 3.3. Let B, := B(xo, 1) If ¢ € Gy, then there exists C > 0 such that

— < < < —.
o5 < Mlluaze < Wimllyee < oo

The following boundedness result for the Hardy-Littlewood maximal operator on generalized weighted Orlicz-Morrey
spaces is valid.

Theorem 3.4 [5]. Let @ be a Young function, w € A;, then the operator M is bounded from M,f’qo(lR") to WM?;’@(R”) under
the condition

sup p(x,s)

s -1 -1
s (st ey o w07 <ot o

forevery x € R" and r > 0, where C does not depend on x and r. Moreover, if ® € V,, M is bounded on Mlq;’g’(lR").

If we assume ¢ € Gy in Theorem 3.4, we get the following result.
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Corollary 3.5. If ® be a Young function, w € A;, and ¢ € G, then the operator M is bounded from M$’¢(R”) to
WM$’¢(IR”). Moreover, if ® € V,, then the operator M is bounded on M, $’¢(R").

4 | THE OPERATOR I, IN THE SPACES M:I;’qa
The following pointwise estimate plays a key role where we prove our main results.

Lemma4.1. Let0 < a < n, ® be a Young function, w € A;, and ¢(x, t) satisfies the condition

cotn+ [ ronn D < oty (a)
t
forsome 5 € (0,1) and for every x € R" and t > 0. Then for the operator I, we have the following pointwise estimate
e GOl S MFCOPIFI (4.2)

Proof. For arbitrary ball B = B(x, t) we represent f as

f=hH+Fn [1O)=FfOxs®), f00)=FfOxe,0),

and have

I f(x) = I f1(X) + I f2(x).

For I, f1(x), following Hedberg’s trick, see [29], we obtain |I, f;(x)| < t* M f(x). For I, f,(x) by Lemma 2.9 we have

[fO)I < dr
‘A =y dy~ [ If I e 4
(B(x,0)) y (B(x,1) lx-y| T

® dr
z/ / lfWldy ——
t t<|x—y|<r r

< / 1 (w(BC M) ™) 1l gy A

t

Consequently we have
[So]
Lo f()] S t“Mf(x) + / ! (w(B(x, "))_1)”“—1||f||L$(B(x,r)) dr
t

S EMFCO + 1l [ T rptn
Thus, the technique in [56, p. 6492] by (4.1) we obtain
o fGOI S min { @Cr 0P MF G, pCx P Il |
S sup min {sﬁ_le(x), SIS o0 }
s w

= MFCF I,

where we have used that the supremum is achieved when the minimum parts are balanced. O
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Remark 4.2. Conditions of type (4.1) go back to the work of Gunawan [27]. Eridani et al. [12] (see also [19]) expanded
this technique.

The following theorem is one of our main results.
Theorem 4.3. Let0 < a < n, w € Ay, ® be a Young function, § € (0,1) and n(x,t) = p(x, t)? and ¥(t) = @(tl/ﬁ).
L If® €V, we A;, and ¢p(x,t) satisfies (3.1), then the condition (4.1) is sufficient for the boundedness of the operator I,
from M$’¢(R”) to Mg’"(R”).
2. Ifp e Q&‘)’, then the condition
t%p(x, 1) < Co(x, 1) (4.3)
forallx € R" and t > 0, where C > 0 does not depend on x and t, is necessary for the boundedness of the operator I, from

MSP(R™) to M (RM),
3. Let® € Vyandw € A;,. If p € G satisfies the condition

/ r*o(x,r) % < Ct%p(x,t) (4.4)
t

forall x € R" and t > 0, where C > 0 does not depend on x and t, then the condition (4.3) is necessary and sufficient for
the boundedness of the operator I, from M$’¢(R") to M:I;”?([R{").

Proof. By using the pointwise estimate (4.2) we have have for an arbitrary ball B

M f iz S |9

1-5
sry M

Note that from (2.3) we get

B
/‘P (Mf(;f)) w(x)dx = /@(%)w(x) dx <1.
oo msil, 5 \ Mz

Thus ||[(M f )e I LY®) <|Mf ||f 25 Consequently by using this inequality we have

B 1-8
MefllLem S IIMfIILg(B) IIfIIMi,q)- (4.5)
From Theorem 3.4 and (4.5), we get

M Nyt = supn(BY™ 0~ (wB) ™) M sy,

S AN, supnB) 9 (wB) ) IMS Iy

g
=|If ||;f¢ <s%p eB e (wB ) IMf IIL$<B>>

S 1fllygo-



GULIYEV AND DERINGOZ MATHEMATISCHE 9
NACHRICHTEN

We shall now prove the second part. Let By = B(X, ty) and x € By. By Lemma 2.10 we have ¢

by (2.5) and Lemma 3.3 we have

S IaxB,(x). Therefore,

(&S W (wBo) ™) Ma, sy < MBIy

nBo) _

-1
S 1Bl oo < 5 = 9BoY
Since this is true for every B, > 0, we are done.
The third statement of the theorem follows from the first and second parts of the theorem. O

If we take @(t) = tP, p € [1,0) and § = § with p < g < oo at Theorem 4.3 we get the following new result for gener-

alized Morrey spaces.
Corollary 4.4. Let0 < a<n w € Ay, 1 < p<q <o

L Ifl<p<gqg<oo,w€ Ap,and p(x,t) satisfies

sup < ess inf p(x, s)w(B(x, s))l/P) w(B(x,r) /P < Cp(x,t), (4.6)
t<r<oco \ I'<s<co
then the condition
°° dr 2
t%p(x,t) + r(x,r) - < Colx, 1) 4.7)
t

forallx € R" and t > 0, where C > 0 does not depend on x and t, is sufficient for the boundedness of the operator I, from
P

MEP(R™) to MEP" (R).
2. Ifp € Ql‘,ﬁ’, then the condition

t%p(x,t) < Co(x, 1-‘)s (4.8)

for all t > 0, where C > 0 does not depend on t, is necessary for the boundedness of the operator 1, from ME?(R") to
p

Q»Q’E n
M, (R™).
3. Ifl<p<g<oo,weE A,and g € Gy satisfies the condition (4.4), then the condition (4.8) is necessary and sufficient for
P

the boundedness of the operator 1, from MLIZ)@(R”) to Mg;g" ! (R™).

A—n
Remark 4.5. If we take ¢(x,t) =t » at Corollary 4.4, then condition (4.4) is equivalent to 0 < 4 < n — ap and condition

(4.8) is equivalent to 1.1 % Therefore, we get the following result for weighted Morrey spaces.
p g n-

Corollary 4.6. Let0 <a <n,1<p<qg<oo,w € Apand0 <A <n-—ap.Thenl,is boundedfrome,’/l(R”) toMZ,’A(R")
. .1 1 a
lfand Ol’lly lf; - E = m

In the case w = 1 we have the following classical result of Adams.

Corollary 4.7 [1]. Let 0 <« <n,1 < p < q < o0 and 0 < A < n — ap. Then I, is bounded from MP*(R") to M@*(R") if
ol 1 a
and Ol’lly lf; - E = m

We also have the following weak type result:
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Theorem 4.8. Let0 < a < n, w € Ay, ® be a Young function, 8 € (0,1) and n(x,t) = ¢(x, )’ and ¥(t) = d)(tl/ﬁ).

L Ifw € A;, and ¢(x,t) satisfies (3.1), then the condition (4.1) is sufficient for the boundedness of the operator I, from
MIP(R") 1o WM, (R™).

2. If p € GY, then the condition (4.3) is necessary for the boundedness of the operator I, from M:I;’(/J(IR") to WM;I;’W(IR").

3. Letw € A,,. If ¢ € Gy satisfies the condition (4.4) then the condition (4.3) is necessary and sufficient for the boundedness

of the operator I, from M$’¢(IR") to WM:I;’U([R”).

Proof. The proof is similar to the proof of Theorem 4.3. We omit the details. O

5 | THE COMMUTATOR [b,I,]|IN M$’¢
We recall the definition of the space of BMO(R").

Definition 5.1. Suppose thatb € Llloc(lR"), let

lbll = swp e /B L 1b0)= b,
where
boer) = = / b(y)dy.
|B(x,r)| B(x,r)
Define

BMO(R™) = {b € LI(R") : ||b]|, < o}.
To prove main results of this section, we need the following lemmas.

Lemma 5.2 [35]. Let b € BMO(R"™). Then there is a constant C > 0 such that
t
|bB(x,r) - bB(x,t)l < C||b|l. In ; fOl" 0<2r<t, (5.1)

where C is independent of b, x, r and t.

Lemma 5.3 [30]. Ifw € A, b € BMO(R") and ® be a Young function with ® € A,, then

Sup ®_1 (U)(B(x, r))_l) ||b - bB(XJ)”Lﬁ(B(x,r)) s ”b”* (52)

xeR"r>0

Lemma 5.4 [30]. Let0 < p < o0, W € A, and b € BMO(R™). Then for any ball B, we have

1 .
<@/B|b<y>—b3ww(y)dy> < b1l

The commutators generated by a suitable function b and the operator I, is formally defined by

(b, Io1f = Ia(bf) — bI(f).
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Given a measurable function b the operators |b, I,| and M}, are defined by

b, L1 f(x) = / LORLOITSFN

|x = y[r=

and

My(f)(x) = sup [B(x, )] / 1bG) — bO)IIF)] dy
>0 B(x,f)

respectively. We refer to [2, 15] for details on these operators.

Theorem 5.5 [5]. Let b € BMO(R"), ® be a Young function which is of lower type p, and upper type p; with
1< py<p; <oo,w€E A,,pand d satisfy the condition

Po’
t . p(x,s) -1 1
r§?<poo (1 +In r ) <ets<ss<nolof d-1 (w(B(x, S))—l) >(D (w(B(x, ) ) <Colx.r) (5.3)

for every x € R" and r > 0, where C does not depend on x and r. Then the operator My, is bounded from Mf;’qa(lR") to
Q.0 'mn
M, 7 (R").

Remark 5.6. Theorem 5.5 was considered under the condition w € A, in [5]. One can easily extend this result to the case
w € Ap, by using the technique given in Theorem 5.9.

The following lemma is the analogue of the Hedberg’s trick for [b, I,].

Lemma5.7. If 0 <a < nand f,b € Ll (R"), then for all x € R" and r > 0 we get

loc

/ Lyﬂ_lb(x) — b dy S 1My f(x). (54)
B

(x,r) |x — y|n—«
Proof.

o) o1
P — b - b d = b b d
L e~ bl dy JZ Lo b by

< Y@ ineeinT / IfWI1bG) — bl dy
j=0 |x=y|<27/r
S My f(x). O
Lemma 5.8. Ifb € L, (R") and By := B(xo, 1), then
rg |b(x) = bp,| S |b,Io|xp,(x)
forevery x € B,,.

Proof. If x,y € By, then |x —y| < |x — xg| + |y — Xo| < 2rg. Since 0 < a < n, we get (2ry)* " < |x — y|*~". Therefore

b, Il xp,(x) = [ |b(x) =bW)l|x —y|*"dy > (2ro)*™" [ |b(x)—b(y)|dy
By By

> (2ro)* " ~ 1y |b(x) = bp,|. O

/ (b(x) — b)) dy

By
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Theorem 5.9. Let b € BMO(R"), 8 € (0,1), ® be a Young function which is of lower type p, and upper type p,; with
1< py £ p1 <oo,w € Ay . Let p(x,r) satisfy the conditions (5.3) and

reo(x,r) + / (1 + ln%)go(x, Ht* % < Co(x, r)B (5.5)
r

for every x € R" and r > 0, where C does not depend on x and r. Define n(x,r) = p(x,r)f and ¥(r) = tb(rl/ﬁ). Then, the
operator [b, I, is bounded from M:I;’(P(IR”) to Mi’”(u;z").

Proof. For arbitrary x, € R", set B = B(x, r) for the ball centered at x, and of radius r. Write f = f + f, with f; = fx,,
and f, = fx, .
(@B)
For x € B we have

|[b. 1 f2(x0)] £ / 160) = ()|

re X =yl

|f2(»)ldy zﬁ 16®) — b()|

(2B) |x0 - yln—ot

sﬁ le(y)ldy+ﬁ 1609 = bl ) ay

(2B) |xo — |« (2B) [xXo — |«

LfO)Idy

=J; + (%),

sincex €Bandy € C(2B) implies |x — y| = |xy — yI-
By an argument similar to that used in the estimate (2.25) in [37], we have

For the sake of completeness, we give the proof of the estimate (5.6). Taking into account (2.1) and Remark 2.3, it follows

that
_ _ FH-1 -1
/5 1b(x) — bglw™1(x) w(x)dxg/éfn |b(x) — bg|®~! (w(B)™")w(B) w0 dx
B @-1(w(B)~1)|B| B w(x)|B|

1 L 15 — byl 17 [w(B)]”
Sw/B{_:O[ e ] [ IB| ] w(x) dx.

1

Since w € A, C A, , we know that w! P EAy for i € {0, 1} (see, for example, [10, p. 136]). By this and Lemma 5.4, we
conclude that, for i € {0,1},

L iy — b P @] 1
w(B)/Blb(x) bg| 5| —w(x)dx

pi-1
~ [ﬁ / w(x)dx] [% / wl-PE(x)dx] {%@ / |b(x)—bB|P§w1—P€(x)dx} <1,
B B w i B

which yields to (5.6).
Let us estimate J; now.

5= A @) =gl ) ay

(2B) |xo — |«

o)

dt
| th+l-a

~ /E 160" — bsllf D)
(2B)

[x0
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® dt
<[/ 1) — byl | f 3] dy —2
2r J2r<|xyg—y|<t t

dt

<[ [ wo-bilisoidy 5o
2r J B(xg,t)
dt

s o) - bl oy
2r B(xg,t)

« dt
# [ lbsean = bl [ 0Ny 5
2r B(x,t) t

dt
||f||L$(B(x0,t)) —t”+1—“ (by (2.4))

< [ )10 brgole™
2r

LE(B(xo.1))

[s]
_ _ dt
+/ |DBxo.r) = BB I 22 (Bxy )P Hw(B(xg, )™) -« (by Lemma 2.9)
2r

« t dt
Sllbll*/ <1+ln;)IIfIILg(B(XO,mCD‘l(w(B(xo,t))‘l) prrs (by (5.1) and (5.6))
2r

® t dt
SB[ (14108 Yoo, 0) 2

2r

Also using (5.4), we get

N (1 + ln;)go(xo,t) dt

Jo(x) +J1 S |Ibllr*Mp f(x) + IIbII*IIfIIM$.¢/

1-a’
2r t

where Jo(x) 1= [[b, I ]f1(x)].
Thus, by (5.5) we obtain

Jo(0)+J1 % 11Bll, min { @Cro, 1P~ M, £ (), 9, NP 1l 00 |
< IIbll, sup min {#7M, £ GO, S f 00 |
= 161 (My G I
Consequently for every x € B we have
Jo() + 7y S 1IbIL(Mp F ()P ||f||;§¢. (5.7)
By using the inequality (5.7) we have

IMoC) +Jall Lz sy S 11DIl (M f)F

1-8
N

Note that from (2.3) we get

g
/1p (M f (X)) w(x) dx = /q,(M)w(x)dx <1
B B

B IMp fll o
”be”Lz(B) Ly(B)
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8
Thus ||(be)’6||Lg(B) < ||be||L$(B)‘ Therefore, we have

90C) + 1 lzycsy S IBI 1M1

1-8
71

We will now focus on the estimation of J,.

b b
Wl o s = Lg—ihﬂﬂd
w c |x |n a
2B) 10 ™ Ly (B)
LI
~ ||b(-)=b T —d
Ib(-) B”L‘Lg(B) /C(ZB) |xo — y|r—a y
bl )
< L/ L’L_ady (by (5.2))
¥-1(w(B)™1) Jap) X0 — I
bl / Tt
N —— [fOI i @
P-1(w(B)1) J2p) gy £
IIbII* / /
~ [fldy ——
w(B) 2r<|xg—y|<t tn+1 “
lIb]l. / /
< _
S T () s lfO)ld yt,1+1 —
s ok / 1 2889 @~ (WBCxo, D)) 1% di - (by Lemma 2.9)
p-1 ( (B)_l) 2r “ ,
b1l /"" -
< T , X, %1 dt
lp—l(w(B)—l)”f”M$¢ . P(xo, 1)
< Oy . by (5.5))
lp—l(w(B)—l) My

Consequently by using Theorem 5.5, we get

b, Lo 1 f llngwan

sup n(xorr)_llp_l(w(B)_l)“[b’IOC]f”Lg(B)

xo€R",r>0

A

B
IIbII*IIfI|;f¢< sup  p(xp, 1) 10" (w(B)_l)IIbeIILg(B)> +IBILIf 1 e

Xo€ER",r>0

S IBILALf 20

The following theorem is one of our main results.

Theorem 5.10. Let 0 < a < n, ® be a Young function, w € A, b € BMO(R") \ {const}, 8 € (0,1) and n(x,t) = (x,t)?
and ¥(t) = o(t'/F).

L. If @ is of lower type p, and upper type p; with 1 < py < p; < oo, w € A, and ¢(t) satisfies (5.3), then the condition (5.5)
is sufficient for the boundedness of the operator |b, I, | from M$’¢(R”) to Mi’”(w).
2. If ® € A, and ¢ € Gy, then the condition (4.3) is necessary for the boundedness of the operator |b, I,| from M$’¢(R”) to
W
M, (R™).
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3. Let @ is of lower type p, and upper type py with 1 < py < p; < 00, w € Ay, . If ¢ € Gy satisfies the conditions

sup (1 +1n - )go(x t) < Co(x,r), (5.8)
r<t<oo
and
/ <1+1n )qo(x t)t“ L < crvg(x, r) (5.9)

forall x € R" and r > 0, where C > 0 does not depend on x and r, then the condition (4.3) is necessary and sufficient for
the boundedness of the operator |b, I, | from M$’¢(R”) to Mg’n(R").

Proof. From the proof of Theorem 5.9, we know that the boundedness result is still true if one has |b, I;| instead of [b, I, ],
see, for example, [9, Remark 3]. Hence, the first part of the theorem is a corollary of Theorem 5.9.

We shall now prove the second part. Let By = B(x,,7,) and x € B;. By Lemma 5.8 we have r{|b(x) —bg | S
|b, I | xp,(x). Therefore, by (5.2) and Lemma 3.3

o Tl oy _
0= b0 = by v ||b||*

115 T g, sy ¥~ (w(Bo) ™)

n(By)

< BollIb, Ll X8y 0 S 0(Bo)ll s, ll 2o < < @By
||b||*77 0 XB, 1 S Nbo)ll XB, ® 2(Bo) 0
Since this is true for every Bj, we are done.
The third statement of the theorem follows from the first and second parts of the theorem. O

Ifwe take ®(t) = tP, pe[l,0)and f = = Wlth D < q < o at Theorem 5.10 we get the following new result for gener-

alized Morrey spaces.
Corollary 5.11. LetO<a <n,w € Ay, 1 < p <q < oo andb € BMO(R™) \ {const}.

L Ifw € A, and ¢(x, r) satisfies

n

ess inf ¢(x, $)sP
t<s<oo

sup (1 +In - < Co(x,r),

r<t<oco

tp

then the condition
r*o(x,r) +/ (1 +In- )qo(x r)t“ < Co(x, r)q
r

forall x € R" and r > 0 and C > 0 does not depend on x and r, is sufficient for the boundedness of the operator |b, 1|
D

from MP?(R™) to MZP* (R™).
2. Ifp € GY, then the condition

Fip(x,r) < Co(x,r)a (5.10)

forall x € R" and r > 0 and C > 0 does not depend on x and r, is necessary for the boundedness of the operator |b, 1|
P

from MP?(R™) to MZP* (R™).
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3 Letwe A, Ifpe Qg’ satisfies the conditions (5.8) and (5.?), then the condition (5.10) is necessary and sufficient for the

boundedness of the operator |b, 1| from Mf;’qo(lR") to Mgfa ! (R™).

The following theorem characterizes the BMO space via the boundedness of the operator [b, I, ].

Theorem 5.12. Let 0 <a <n, ® be a Young function, w € Ay, b € LI (R"), 8 €(0,1) and n(x,t) = p(x,t)’ and

loc
W(1) = o(c1/P).

L If ® is of lower type p, and upper type p; with 1 < py < p; < oo, W € A, and @(X, t) satisfies (5.3) and
* t dt
(1 +1In ;)go(x, 0 < Colx, ), (5.11)
,

t%p(x,t) < Co(x, t)P (5.12)

hold for all x € R" and t > 0, where C > 0 does not depend on x and t, then the condition b € BMO(R") is sufficient for
the boundedness of the operator [b, 1] from M$’¢(R”) to ME’”(R”).
2. If ¢ € Gy and the condition

P(x, H)F < Ctéo(x, t) (5.13)

hold for all x € R" and t > 0, where C > 0 does not depend on x and t, then the condition b € BMO(R") is necessary for
the boundedness of the operator [b, 1] from Mf;’(P(R”) to M:ﬂ’n(R”).
3. If ® eV, ¢e¥ condition (5.11) holds and ¢(x,t)? ~ t“p(x,t), then the condition b € BMO(R") is necessary and

sufficient for the boundedness of the operator [b, I, ] from M?:’@([R{”) to Mﬁ’”(w),
Proof.
(1) The first statement of the theorem follows from Theorem 5.9.
(2) We shall now prove the second part. We use the idea given in [35] (see also [8, 48 51]). Choose z, € R" and § > 0 such

that in the neighborhood {z Dz =zl < ﬁé } the function |z|"~% can be represented as a Fourier series which
converges absolutely. That is

)
|z|" = Z a,eivnz,
=0

Letz; = %0. For any ball B = B(x,, ), let y, = xo — 2rz; and B’ = B(y,,r). Then for x € B and y € B/, we have that

X—=Yy
2r

X — Xy
2r

Y—Yo
2r

—Z < Sl

"

Now set s(x) = sgn(b(x) — bg/), then

/Blb(x) —bp/|dx = /B(b(x) — bp)s(x)dx = ﬁ /B /B,(b(x) — b())s(x)dy dx
~ WN—A SA—N p—Q b(x) — b()|6(x —y) n—a
vy /Rn /Rn |x —y|n—a 2 s(xX)xp(x)xp (y)dy dx

e b(x) = b(y) iv, & (x—
~r E an/ / —n_); el o™ y)s(x))(B(x))(B/(y)dydx.
Rn JRR |x—Y|

n=0
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Taking

g,(y) = e 10/2ny yp () and  hy,(x) = el0/20 X s(x) yp(x),

we obtain

[ -bylaxsr=Ya, [ [ 22000 0,0y d
B n=0 Rn

Rn |x _y|l’l—a

<crey Ianl/ |[b, e 1gn ()| 1R ()] dx
n=0 Rz

= Y laul [ |Ib. L]0 dx.
n=0 B

Applying Lemmas 2.9 and 3.3, we have

/ I[b. I 1gn ()] dx < 21B1%~" (w(B)™") [[b. Lalgnll v s
B

S BB b, L 1gall 7 gy S P DB gallyy0 gy S 0 (BIPB)!
SrieBY T St
Thus we have obtained

1

2
— b(x)—b dxs—/bx—b/dx$1,
57 /1000 =l < 20 [ b0~ b

which completes the proof of the theorem.
The third statement of the theorem follows from the first and second parts of the theorem. O
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