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Abstract

In this research paper, we implement the sine-Gordon expansion method to two governing
models which are the (2+1)-dimensional Nizhnik-Novikov—Veselov equation and the Caudrey—
Dodd-Gibbon-Sawada-Kotera equation. We use conformable derivative to transform these non-
linear partial differential models to ordinary differential equations. We find some wave solutions
having trigonometric function, hyperbolic function. Under the strain conditions of these solu-
tions obtained in this paper, various simulations are plotted.

Keywords: Conformable Derivative; (2+41)-Dimensional Nizhnik—Novikov—Veselov Equation;
Caudrey—Dodd—Gibbon-Sawada—Kotera Equation; Sine-Gordon Expansion Method; Wave

Solutions.

1. INTRODUCTION

In the modern century, many real-world prob-
lems arising in physics, applied science, engineer-
ing and so on have been explained via nonlinear
mathematical models (NMMs). Moreover, there is
no single property of such NMMs. For a better
understanding of such models, many new meth-
ods have been improved and studied to observe the
exhaustive properties of them. In this sense, many
powerful methods such as the cosh-sinh method T
the generalized Kudryashov method2 the Hirota’s
bilinear method# the modified simple equation
method® the exp-function method” the modified
exp-(®(€)) function method® an auxiliary ordi-
nary differential equation method? the first inte-
gral method I the Hirota method ™ the extended
sinh-Gordon equation expansion method 1214 the
auto-Bicklund transformation methodX® the sin-
cosine method®® and many others!?3¥ have been
presented to the literature.

It is well known that many properties of the con-
formable derivatives are of much more importance
compared with others. Thus, this field of science

has attracted attention of experts from all over
the world. Furthermore, it allows a better under-
standing of the physical behaviors of NMMs. In
this paper, we consider two different conformable
models which are the (2+41)-dimensional Nizhnik—
Novikov—Veselov equation and the Caudrey—Dodd-
Gibbon-Sawada-Kotera (CDGSK) equation with
conformable derivative. First, we consider the
(24+1)-dimensional conformable Nizhnik—Novikov—
Veselov equation defined as followsITk32-55

D!® = a®,.y + by, — 30V, P — 300D,
— 3bwy ® — 3bwd,, )
D, =Ty,
D, = wy,

where a,b are nonzero constants and also @, ¥, w
are the functions of z,y,t.

Second, we consider the conformable CDGSK
model given by

DE® 4 D pprpr + 300D, + 300,D,,
+1809%®, = 0. (2)
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Here, & = ®(z,t), (0 < a < 1) is real con-
stant 38688 With o = 1, Eq. @) has been first
presented to the literature by Sawada and Kotera
in 197459 Ray has investigated Eq. (@) by consid-
ering extended Kudryashov’s method 28 and many
others with the help of various methods 1849 Equa-
tion (2) is a special case of the general fifth-order
Korteweg—de Vries arising in shallow water under
gravity potential. Moreover, it also arises in quan-
tum mechanics and nonlinear optics 4!

The manuscript is organized into the following
sections. The important facts of the sine-Gordon
expansion method (SGEM) are introduced in Sec.[2
The projected method is applied to the governing
models to find several analytical solutions in Secs.
and @ This work ends with some conclusions in

Sec. Bl

2. GENERAL FACTS OF SGEM

Here, SGEM is given in detailed manner. The non-
linear sine-Gordon differential equation is given

byl D236
Qpe — Uy = m2sin(Q), (3)
where Q = Q(x,t) and m is nonzero constant. Con-
sidering Q = Q(x,t) = V((), ¢ = pu(x — ct) trans-
form into Eq. (@), it is converted as follows:
2
V=" _sin(V 4
V), ®

where V = V/(() and ( = p(z—ct) and p # 0, ¢ # 0.
After integration of Eq. (@) and doing some math-
ematical operations, we can find

()] -t (z) om0

where T is integration real constant. Taking as T' =

0,w(¢) = % and 02 = #—:2)’ then Eq. (@) is
converted as follows:

o' = osin(w). (6)
Putting o = 1, it yields

o' = sin(w). (7)

Using separation of variables method, it is found as
follows:

2me’
sin(w) = sin(w(()) = ——e

I — sech
p262<+ 1 p=1 sec (C)v

(8)

Complex Mized Dark-Bright Wave Distributions

2.2¢ _ 1
p-e
=P — tanh(0),
PeX I, (€)
(9)

where p is the integral constant. In this stage, we
take the general version of nonlinear partial differ-
ential model as

P,y Uy Qo 0, Q%) = 0. (10)

cos(w) = cos(w(())

Considering the wave transformation as Q =
Qz, )=V ((), ¢ = p(x — ct), it gives

NV, V' V" V% .. )=0.

In this equation, we may select the following trial
equation function to be solution of Eq. (I0) which
is defined by

V(¢) =) tanh'"'(¢)
=1

x [Bjsech(¢) + Ajtanh(CQ)] + Ag.  (11)

Taking Egs. [8) and (@), Eq. (I can be rewritten
as follows:

V(w) = Z cos’ ! (w)
i=1

X [B;sin(w) + Aj cos(w)] + Ag.  (12)

Balancing in this equation, n may be found. As the
coefficients of sin’(w) cos’(ww) are taken as zero, it
yields an algebraic equations. By solving the alge-
braic equations system via computational package
tools, the values of parameters are produced. Using
these parameters in Eq. (1), we find new analytical
solutions for governing models.

3. APPLICATION OF SGEM TO
THE CNNVE

In this section, we will analyze the analytical
solutions of the (241)-dimensional conformable
Nizhnik—Novikov—Veselov equation via SGEM.
First, Eq. (1) may be converted into NODEs by
considering the traveling wave transform defined as
follows:

0

t
C=aty— (13)

and
@(.’L’, Y, t) = ¢(<)a
w(z,y,t) =7(C),

\Ij(xvyvt) :QZ)(C)’ (14)
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where k is a constant and 6 (0 < 6 < 1). After
some calculations into Eq. (), the following non-
linear ordinary differential equations are obtained

(a+b)¢" — 3a(e) — 3b(re) — k¢ =0. (15)
In this last equation, by doing some simplifications,
it is rewritten as follows:

(a+b)¢" = 3a(y¢) = 3b(T¢) — k¢ =0, (16)

¢>I = w/a ¢>I = Tla (17)
which produces the following
YV=9¢+c, T=9¢+d (18)

Considering Egs. (16) and (18), it may be reached
as follows:

(a+b)¢" —3(a+b)¢* + (3ac + 3bd + k)¢ = 0.
(19)

Via balance principle, it yields n = 2, which pro-
duces

¢(w) = By sin(w) + Aj cos(w) + By cos(w) sin(w)
+ Ay cos®(w) + Ag (20)

Im[Q]

and
¢ (w) = By cos’(w) sin(w) — By sin®(w)
—2A; sin?(w) cos(w) + By cos® sin(w)
— 5By sin®(w) cos(w) — 445 cos? (w)
x sin?(w) + 24, sin?(w). (21)

Taking into account Egs. @0) and (2I) into
Eq. ([3), it produces many novel analytical solu-
tions to the governing models as follows.

Case 1. Taking as Ao = 1,B1 =0,By = —i, A1 =

O,a:—b,d:c—%, gives

7
O (z,y,t) = Ag — isech (x-l—y - k:t—)

0
tG
X tanh (:c +y— kg)

0
+ tanh? (m +y— k%) (22)

With the suitable values, wave distribution of
Eq. 22) can be seen in Figs. TH3l
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Fig. 2 Contour surfaces of Eq. (22).

2240018-4



Fractals 2022.30. Downloaded from www.worldscientific.com
by 79.123.215.72 on 03/28/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Im[]

Complex Mized Dark-Bright Wave Distributions

Re[®]
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Fig. 3 Two-dimensional simulations of imaginary and real parts of Eq. (22).

Case 2. If we consider these coefficients as Ay =
—I,Al = O,AQ = 1,Bl = O,BQ = ’L,k) = —G(l +
3c¢) — b(1 + 3d), we extract another complex result
as follows:

@2(1‘, Y, t)

= —1+isech(a:+y

(—a(1 + 3¢) — b(1 + 3d))t?
_ . )

(—a(1+ 3c) —b(1 + 3d))t9>

Xtanh(x—i—y— 7

+ tanh? (a: +y

(—a(l+3¢) —b(1 + 3d>>t9). (23)

0

Various simulations of Eq. (23)) can be observed in

Figs. @Hal

Case 3. When AO = —2,A1 = O,AQ = 2,B1 =
0,By =0,k = —a(4 + 3c) — b(4 + 3d), it produces

Im[D]

®3(z,y,t) = —2 + 2tanh? <:C +y

(—a(4 + 3¢) — b(4 + 3d))t?
- J ) (24)

For Eq. (24)), various graphs in Figs. [[] and B are
presented.

Case 4. Taking these cases as for A1 = 0,4y =
17B1 = 0732 = iaa = _3(Ck—d)’b = (3053(1) reaches

another solution for governing model

t@
oa(x,y,t) = Ao + isech (a: +y— k—)

0
t@
X tanh (x +y— k:g>

9
+ tanh? <x +y— k:g) (25)

Considering the strain conditions, it may be
observed that this solution is of the following sur-
faces as shown in Figs. QHITl

Re[®]

Fig. 4 Three-dimensional simulation of imaginary and real parts of Eq. (23]).
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Fig. 5 Contour surfaces of Eq.
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Fig. 7 Three-dimensional and contour simulations of Eq. (24)).
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Fig. 8 Two-dimensional simulations of Eq. (24).

4. APPLICATION OF SGEM TO
THE CDGSKE

In this subsection of paper, the application of the

SGEM on the CDGSKE*#8 is introduced. We, first
start by transforming Eq. () to NODEs by consid-
ering the following traveling wave transformation

0

Gla,t) = U(E), €= ha— c%. (26)

Im[d]

Complex Mized Dark-Bright Wave Distributions

Substituting Eq. @27) into Eq. (@), the following
NODEs is obtained

—cU 4+ KU®) 4+ 3063 (UU") + 60k(U3) = 0.
(27)

Integrating Eq. ([28) once with respect to ¢ and get-
ting the integrate constant as zero results in

— U+ KUY 4 30k3U0" + 60kU% = 0. (28)

Balancing U® with U? in Eq. 29) is obtained with
n = 2. Using n = 2 into Eq. (I2]) produces

U(w) = By sin(w) + A cos(w) + Bs cos(w) sin(w)
+ Ay cos?(w) + Ay. (29)

With the necessary integrations of Eq. (B0) accord-
ingly produces
U’ (w) = By cos®(w) sin(w) — B sin®(w)
— 24, sin*(w) cos(w) + By cos® sin(w)
— 5By sin®(w) cos(w) — 44, cos? (w)
x sin?(w) 4 245 sin* (@), (30)

Re[Q]

10 o] 40

Fig. 9 Three-dimensional simulation of imaginary and real parts of Eq. (23)).
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Fig. 10 Contour surfaces of Eq. (23]).
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Im[ @]

0er
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D&

0.2

Fig. 11 Two-dimensional simulations of imaginary and real parts of Eq. ([25)).

U™ (w) = —8cos®(w) sin®(w)A; + 16 cos(w)
x sin(w)A; — 16 cos?(w) sin’(w) Ay
+ 88 cos? (w) sin (w) Ay — 16 5in°(w) Ay
+ cos* (w) sin(w) By — 18 cos?(w)
x sin®(w)B; + 5sin’(w)B; + cos® (w)
x sin(w) By — 58 cos®(w) sin®(w) By
+ 61 cos(w) sin®(w) By. (31)
Inserting Egs. (30)-32) into Eq. [29) gives an

algebraic equation in trigonometric function includ-
ing various forms of sin’(w)cos’(w). Getting the
coefficients of trigonometric terms in the same
power to zero gives a system of equations. Solving
this system with aid of symbolic software to obtain
the values of the coefficients gives the traveling wave
solutions to Eq. ([2)).

Case 1. When 4, = %(45
0’A2 = _%Q’Bl = 0,By = %,C = _%(_11"‘

v/105)k5, then, we have the combined dark-bright
solitary wave solutions to Eq. ([2]) as follows:

1
120

—11 4+ v105)k>t?
x(kx—l-( i 05) )

1
®y(z,t) = —(45 + V105) k% + §ik2sech

86

. 540
- (kx L 8\/9105)/-@ ¢ )

1 —11 + 105)k°¢?
- §/<:2tanh2 </<::c + ( + 30 05) )

(32)

With the help of taking some values of parameters
under the strain conditions, we plot its surfaces as

Figs. T2HI4l
Case 2. If taking as Ag = %,Al = 0,4y =

2 1.2
—%,Bl = 0,By, = —%,c = kP, then, we have

Fig. 12 Three-dimensional simulations of imaginary and real parts of Eq. (B3).
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D40

-40 -20 a . ] —&

Fig. 13 Contour surfaces of Eq. (33).

Im[®]
o.002f

0.001 |

—40

Fig. 14 Two-dimensional simulations of imaginary and real parts of Eq. ([B3).

hyperbolic function solutions to Eq. (@) as being where k is real constant with nonzero. Choosing
21 1540 some suitable values of parameters under the strain
By (z,t) = 5 - iikzsech <kx — T) conditions, we plot its surfaces as Figs. [OHI7

Case 3. Once Ay = —%(—1)%0%, A =0, Ay =
s tanh (ko — 20 3(-1)8c3, By =0, By = j(~1)wes, k= (~1)ses,

0 we find the bright soliton solution to Eq. ([2))

12

! _ kT g(z,t) = (34)

oh tanh (kx g ) (33) 2i + 2sinh((—1)5ciz — <)

Fig. 15 Three-dimensional simulations of imaginary and real parts of Eq. (34).
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Fig. 18 Three-dimensional simulations of imaginary and real parts of Eq. (B5).

in which ¢ is real constant with nonzero. Han-
dling suitable values of parameters with the
strain conditions, we form its surfaces as Figs.
LSH20L

Case 4. When it comes to these coefficients, Ay =
2

A =04 =%, B =0, By = kics, k =

c%, it is introduced the mixed dark-bright soliton

solution to Eq. () as follows:

_'_
0
X tanh (c%x — %)

1 10
- 50% tanh? (c}»x - %) (35)

Various surfaces of Eq. (36) under the strain condi-
tions can be observed in Figs. 2TH23l

o
l\3| e

P t) =
4(LE7 ) 0

DO | =

6
.2 1 ct
1¢5 sech <c5x — —>
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Fig. 19 Contour surfaces of Eq. (33).
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Fig. 20 Two-dimensional simulations of imaginary and real parts of Eq. (30).
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Fig. 21 Three-dimensional simulations of imaginary and real parts of Eq. (36).
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Fig. 22 Contour surfaces of Eq. (36).
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Im[®]
0.2

0.1

-0.zb

Fig. 23 Two-dimensional simulations of imaginary and real parts of Eq. (36).

5. CONCLUSION

In this paper, we have successfully applied
SGEM to both conformable (241)-dimensional
Nizhnik—Novikov—Veselov equation and confor-
mable CDGSK equation. We have constructed
many entirely new complex, dark, bright, mixed
dark-bright soliton solutions to the governing mod-
els. To the better understanding of physical mean-
ings of results, we have submitted various surfaces
of wave solutions, as seen in Figs. [H23] under
the strain conditions and choosing suitable val-
ues of parameters with 6§ = 0.9. We utilized the
Mathematica software in all provided computa-
tions. Both the Nizhnik—Novikov—Veselov equation
and the CDGSK equation are an integrable mod-
els derived from KdV equation. These models are
generally described phenomenon such as in fluid
mechanics, plasma physics, geometrical optics, etc.
The submitted soliton solutions may play a key role
in mathematical physics and engineering. The pur-
posed method is very efficient and simple to con-
struct various types of wave solutions of nonlinear
partial differential models which are faced in every
nonlinear phenomena.
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