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A B S T R A C T   

One of the most prevailing primary brain tumors in adult human male is glioblastoma multiforme (GBM), which 
is categorized by rapid cellular growth. Even though the combination therapy comprises surgery, chemotherapy, 
and adjuvant therapies, the survival rate, on average, is 14.6 months. Glioma stem cells (GSCs) have key roles in 
tumorigenesis, progression, and defiance against chemotherapy and radiotherapy. In our study, firstly, the gene 
expression dataset GSE124145 was retrieved; the non-negative matrix factorization (NMF) method was applied 
on GBM dataset, and differentially expressed genes analysis (DEGs) was performed. After which, overlapping 
genes between metagenes and DEGs were detected to examine the Gene Ontology (GO) categories in the bio-
logical process (BP) in the stemness of GBM. The common hub genes were used to construct protein–protein 
interaction (PPI) network and further GO, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
was utilized to pinpoint the real hub genes. The analysis of hub genes particular for the same GO categories 
demonstrated that specific hub genes triggered distinct features of the same biological processes. After utilizing 
GSE124145 and The Cancer Genome Atlas (TCGA) dataset for survival analysis, we screened five real hub genes: 
GUCA1A, RFC2, GNG11, MMP19, and NRG1, which are strongly associated with the progression and prognosis 
of GBM. The DEGs analysis revealed that all real hub genes were overexpressed in GBM and TCGA datasets, 
which further validates our results. The constructed study of PPI, GO, and KEGG pathway on common hub genes 
was performed. Finally, the KEGG pathways performed on the top 15 candidate hub genes (including six real hub 
genes) of the PPI network in the GBM gene expression dataset study found mitogen-activated protein kinase 
(Mapk) signaling pathway to be the most significant pathway. The rest of the hub genes reviewed throughout the 
analysis might be favorable targets for diagnosing and treating GBM and lower-grade gliomas.   

1. Introduction 

One of the most prevailing and highly malignant forms of brain tu-
mors is Glioblastoma multiforme (GBM) or grade-IV glioma (Perry et al., 
2009). The diagnosis of the GBM patients is very challenging, and the 
patient survival rate is 12–15 months even with combinational therapies 

(Davis, 2016). The current therapies are surgery, chemotherapy, and 
radiotherapy (Stupp et al., 2014). The low efficiency of all therapeutic 
methods necessitates identification of new therapeutic targets for GBM 
in recent years. 

GBM is an extremely heterogeneous tumor at the pathological and 
cellular level (Dirks, 2008; Lai et al., 2011). Gene expression and cell 
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Fig. 1. Structure and workflow of the analysis steps. NMF, non-negative matrix factorization; DEGs, differentially expressed genes; PPI, protein–protein interaction.  

Fig. 2. UMAP of the GSE124145 gene expression values to study structure in high-dimensional datasets to present QC.  
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proliferation levels are also highly differing in GBM (Wu et al., 2021). 
Glioma stem cells (GSCs) take a central position regarding tumor for-
mation of lower-grade gliomas and glioblastoma multiforme. GSCs have 
important characteristics including self-renewal ability, tumor initia-
tion, progression ability, and resistance to GBM therapies. Several 
important roles of GSCs in GBM make GSCs new therapeutic targets (Lan 
et al., 2017; Li et al., 2019). Hence, there is an urgent need to discover 
new biomarkers for GBM and lower-grade astrocytomas. 

Existing research has indicated that malignancy cannot be initiated 
by only one gene, trait, or affect. It must be a linkage of distinct genes 
and biological, functional, and cellular pathways organized together. 
Non-negative matrix factorization (NMF) is a methodology used to 
analyze and group the genes with associated expression motives into the 
same co-expression and the genes with different expression motives into 

different clusters. Multiple studies have indicated that NMF can be used 
to study genes, consensus of clustering in different cells, tissues, and cell 
lines (Cheng et al., 2019; Collisson et al., 2011). Furthermore, differ-
entially expressed genes (DEGs) analysis method has been utilized in 
gene expression data gatherings of comparisons for multi-group data 
(Tang et al., 2015). 

DNA microarray innovation is an influential instrument to identify 
the gene expression profile of thousands of genes instantaneously. The 
large datasets generated by microarray technology need to be analyzed 
and interpreted to discover the biological functions of genes and the 
biological mechanism of diseases. The high dimensionality of large 
datasets generated by microarray data needs to be reduced for visuali-
zation and clustering (Hatfield et al., 2003). Clustering analysis is very 
helpful in understanding unknown gene-gene relationships (Vidman 

Fig. 3. (A) The boxplot and (B) the density plot of GSE124145 gene expression values of log2 base. Colors present the four clinical traits. hGBM: human glioblastoma 
tissue; GSC_X01 and GSC_X03: glioma stem cells; GBM_U251: glioma cell line 251. 

Fig. 4. (A) The cophenetic matrix plot identified factorization rank as four. (B) The consensus matrix shows the consensus rank r = 4. Pure block diagonal patterns 
indicate the robustness of models with 4 metagenes classes. NMF: non-negative matrix factorization; hGBM: human glioblastoma tissue; GSC_X01 and GSC_X03: 
glioma stem cells; GBM_U251: glioma cell line U251. 
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et al., 2019). The purpose of clustering is to categorize the genes with 
associated expression patterns into the same cluster and the genes with 
different expression patterns into distinct clusters. Gene expression data 
from the microarray are used to cluster genes with different methods, 
including self-organizing maps (SOM) (Tamayo et al., 1999), hierar-
chical clustering (Eisen et al., 1998), principal component analysis 
(PCA), and k-means (MacQueen, 1967). In the hierarchical clustering 
method, first genes with identical expression profiles are organized; they 
then form clustering trees (Jamail and Moussa, 2020). The limitations of 
hierarchical clustering are the high possibility of forming an inflexible 
clustering tree and sensitivity to similarity metrics (Brunet et al., 2004). 
The genes are divided into the predetermined number (k) of clusters in 
the k-means supervised model (Tavazoie et al., 1999). In the SOM 

clustering method, the dimensionality of the data is reduced and clusters 
gene with similar expression patterns. Nevertheless, these statistical 
methods have several restraints. Firstly, because these clustering 
methods mostly target dominant structures, alternative structures might 
be unnoticed in the dataset. Secondly, the grouping of genes was made 
based on similarities in their expression profiles. These two limitations 
affect the correct interpretation of huge datasets. 

Recently, different bi-clustering techniques have been developed to 
overcome the limitations of the traditional clustering methods 
mentioned above. Independent component analysis (ICA), principal 
component analysis (PCA), and NMF are popular bi-clustering tech-
niques that can allow simultaneous grouping of genes regulated under 
different conditions (Tsai and Chiu, 2010; Turner et al., 2005). The 

Table 1 
GO enrichment analysis of categories in genes screened by ‘brunet’ on the GSE124145 gene expression dataset showing the top significant GO annotations of BP, CC, 
and MF for each metagenes (p-value < 0.05).  

Metagenes Biological Process Number of genes P-value FDR  

Metagenes 1 GO:0001894 ~ tissue homeostasis 5 7.61E-04 3.79E-32  
(57 genes) GO:0048873 ~ homeostasis of number of cells within a tissue 3 0.00204658 3.21E-31   

GO:0048871 ~ multicellular organismal homeostasis 5 0.00423938 8.77E-27   
GO:0060249 ~ anatomical structure homeostasis 5 0.00613093 3.61E-26   
GO:0042592 ~ homeostatic process 9 0.01859239 3.54E-25  

Metagenes 2 GO:0048705 ~ skeletal system morphogenesis 5 0.00192453 5.93E-23  
(80 genes) GO:0009887 ~ organ morphogenesis 9 0.00297594 1.97E-22   

GO:0048706 ~ embryonic skeletal system development 4 0.00366075 1.97E-22   
GO:0048732 ~ gland development 6 0.00397585 1.41E-21   
GO:0007389 ~ pattern specification process 6 0.00461076 3.06E-21  

Metagenes 3 GO:0006811 ~ ion transport 29 4.05E-05 4.78E-10  
(229 genes) GO:0006928 ~ movement of cell or subcellular component 33 4.44E-05 5.14E-10   

GO:0030029 ~ actin filament-based process 18 6.50E-05 6.15E-10   
GO:0030001 ~ metal ion transport 20 6.94E-05 8.69E-09   
GO:0071804 ~ cellular potassium ion transport 9 1.77E-04 9.65E-09  

Metagenes 4 GO:0071495 ~ cellular response to endogenous stimulus 17 1.12E-05 1.06E-08  
(84 genes) GO:0010646 ~ regulation of cell communication 28 1.31E-05 1.06E-07   

GO:0023051 ~ regulation of signaling 28 1.79E-05 1.31E-07   
GO:0009966 ~ regulation of signal transduction 26 2.15E-05 2.53E-07   
GO:0009719 ~ response to endogenous stimulus 19 2.18E-05 3.05E-07   

Metagenes Cellular Component Number 
of genes 

P-value FDR 

Metagenes 1 GO:0031235~intrinsic component of the cytoplasmic side of the plasma membrane 2 2.13E-04 1.79E-10 
(57 genes) GO:0044421~extracellular region part 13 0.0035748 3.21E-9 
Metagenes 2 GO:0019898~extrinsic component of membrane 4 2.78E-03 4.26E-9 
(80 genes) GO:0005834~heterotrimeric G-protein complex 2 0.00461076 2.06E-7 
Metagenes 3 GO:0005887~integral component of plasma membrane 33 2.77E-05 1.68E-09 
(229 genes) GO:0031226~intrinsic component of plasma membrane 34 2.86E-05 1.59E-09  

GO:0009986~cell surface 22 3.40E-04 1.05E-09  
GO:0098978~glutamatergic synapse 12 4.98E-04 3.67E-07  
GO:0045202~synapse 26 6.68E-04 12.31E-07 

Metagenes 4 GO:0098590~plasma membrane region 11 1.14E-05 0.00181278 
(84 genes) GO:0098552~side of membrane 7 8.97E-05 0.00536928  

GO:0009986~cell surface 9 1.15E-04 0.00616542  
GO:0009897~external side of plasma membrane 5 6.4E-03 0.01228229  
GO:0044432~endoplasmic reticulum part 10 1.2820512 0.02532359  

Metagenes Molecular Function Number 
of genes 

P-value FDR 

Metagenes 1 GO:0005125~cytokine activity 3 6.52E-04  0.01258421 
(57 genes)     
Metagenes 2 GO:0035612~AP-2 adaptor complex binding 2 3.5E-7  0.00184604 
(80 genes) GO:0003712~transcription cofactor activity 5 8.77E-6  0.00382706  

GO:0000989~transcription factor activity, transcription factor binding 5 7.76E-5  0.00509563  
GO:0000988~transcription factor activity, protein binding 5 7.19E-4  0.00524945  
GO:0003700~transcription factor activity, sequence-specific DNA binding 7 1.28E-3  0.00624061 

Metagenes 3 GO:0005216~ion channel activity 13 6.63E-7  3.04E-04 
(229 genes) GO:0022838~substrate-specific channel activity 13 5.36E-06  4.07E-04  

GO:0005261~cation channel activity 11 3.63E-05  4.97E-04  
GO:0051015~actin filament binding 9 4.19E-05  6.10E-04  
GO:0032394~MHC class Ib receptor activity 3 1.53E-04  7.13E-04 

Metagenes 4 GO:0005086~ARF guanyl-nucleotide exchange factor activity 3 3.84E-04  0.00446343 
(84 genes) GO:0005085~guanyl-nucleotide exchange factor activity 6 7.69E-04  0.00774728  

GO:0050839~cell adhesion molecule binding 7 8.97E-04  0.01016688  
GO:0003779~actin binding 6 7.69E-03  0.02121416  
GO:0052813~phosphatidylinositol bisphosphate kinase activity 3 3.84615385  0.02793769  
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application of PCA depends on the linearity assumption (Swain et al., 
2021). Another important disadvantage of PCA is that the positive and 
negative coefficients of ICA and PCA vectors might include the positive 
and negative values. Negative values may complicate the interpretation 
of a gene with a negative expression. Hence, it would be better to restrict 
the factors and coefficients to a non-negative setting. NMF is a bi- 
clustering technique that uses two non-negative matrices and is a 

great alternative to PCA and ICA. NMF is first used in image recognition 
(Lee and Seung, 1999). In recent years, NMF has become a very effective 
method in biomedical sciences, including metabolomics, proteomics, 
gene expression analysis, and sequencing analysis (Frigyesi and 
Höglund, 2008; Gaujoux et al., 2020; Jiang et al., 2019; Zhang et al., 
2012). NMF reduces the dimension of large gene expression datasets 
from thousands of genes to metagenes. NMF method became popular in 
recent years because it is less sensitive to select genes and identify 
several different gene expression patterns. NMF is used in several 
computational biology applications, including biomedical informatics, 
molecular pattern discovery, class comparison, cross-platform charac-
terization, and analyzing functional heterogeneity of genes (Devarajan, 
2008). Furthermore, to gain deep knowledge of gene expression data, 
the DEGs analysis approach has been used over the last decade (Rau 
et al., 2019). 

A recent study (Sakamoto et al., 2019) discovered differences in gene 
expression among GSCs, GBM tissue, and U251 cell line that was derived 
from a malignant glioblastoma tumor by explant technique (Berens 
et al., 1994) using PCA with factor loading, intracellular pathway 
analysis, and immunopathway analysis. Sakamoto et al., 2019 further 
demonstrated that MYCN, DPP4 and MIF are the important contributors 
of GSCs and deposited the microarray data in the Gene Expression 
Omnibus (GEO) database with the GEO accession number GSE123145. 

Through NMF, the genes’ behaviors are detected; this makes it easier 
to detect genes specific to one tumor type that are not detected by other 
clustering methods like PCA. One previous study showed that NMF is a 
helpful tool to have biological information from the microarray dataset 
and to understand tumor behaviors (Frigyesi and Höglund, 2008). In 
addition, another study showed that while NMF was a more effective 
tool for identifying deeper information of genes, PCA could not detect 
the important information (Boccarelli et al., 2018). Thus, in the present 
study, our aim is to analyze the GSE124145 dataset by NMF in order to 
get biologically relevant information and gain more insights into the 
pathobiology of GBM. 

In our study, we first downloaded the GSE124145 dataset from the 
publicly available GEO database. To gain an additional understanding of 
the progression and prognosis of GBM, we utilized the NMF algorithm to 
detect real hub genes accompanied by clinical traits of the DEGs and we 
performed DEGs analysis. In addition, we detected overlapping genes 
between metagenes and DEGs, and we examined the GO categories in 
the biological processes (BP) in the stemness of GBM. We used the 
common hub genes to construct the PPI network and further GO, and the 
KEGG pathway was utilized to pinpoint the real hub genes. Finally, we 
performed survival analysis by utilizing GSE124145 and The Cancer 
Genome Atlas (TCGA) dataset to discover real hub genes. 

2. Materials & methods 

2.1. Processing of the microarray data 

Microarray data for human glioblastoma and glioma stem cells were 
retrieved from NIH Gene Expression Omnibus (GEO) (Sakamoto et al., 
2019) by typing in the search box the word “glioma” on the GEO 
database. The GSE124145 gene expression dataset includes total RNAs 
from the human glioblastoma multiforme tissues (hGBM), the human 
glioma stem cell lines X01 (GSC_X01), human glioma stem cell lines X03 
(GSC_X03), and glioma cell line U251 (U251) from direct tumor resec-
tion of a 54-year-old female patient. Microarray data contains 12 sam-
ples such that GSM35221674 hGBM rep1, GSM35221675 hGBM rep2, 
GSM35221676 hGBM rep3; GSM352211677 GSCs X01 rep1, 
GSM352211678 GSCs X01 rep2, GSM352211679 GSCs X01 rep3; 
GSM352211680 GSCs X03 rep1, GSM352211681 GSCs X03 rep2, 
GSM352211682 GSCs X03 rep3; GSM352211683 U251 rep1, 
GSM352211684 U251 rep2, GSM352211685 U251 rep3. 

Genomic data from cells, cell lines, and tissues of GBM gene 
expression were collected. All probe sets were converted to gene 

Table 2 
GO enrichment analysis of categories in genes screened by ‘brunet’ on the 
GSE124145 gene expression dataset showing the top five significant KEGG 
pathways for all the metagenes (p-value < 0.05).  

Metagenes KEGG pathways Number 
of genes 

P-value FDR 

Metagenes 
1 

hsa04724: 
Glutamatergic synapse 

6 3.06E-05  0.00337782 

(57 genes) hsa04611:Platelet 
activation 

6 2.61E-04  0.00483749  

hsa04723:Retrograde 
endocannabinoid 
signaling 

6 3.66E-04  0.01007856  

hsa04666:Fc gamma R- 
mediated phagocytosis 

5 9.55E-04  0.01076968  

hsa04961:Endocrine 
and other factor- 
regulated calcium 
reabsorption 

4 2.04E-05  0.01155311 

Metagenes 
2 

hsa04720:Long-term 
potentiation 

4 3.23E-05  0.00216310 

(80 genes) hsa05031: 
Amphetamine addiction 

4 4.76E-04  0.00233627  

hsa04650:Natural killer 
cell mediated 
cytotoxicity 

5 6.55E-04  0.00256852  

hsa04728: 
Dopaminergic synapse 

5 7.96E-04  0.00298064  

hsa04971:Gastric acid 
secretion 

4 2.04E-03  0.00300012 

Metagenes 
3 

hsa04713:Circadian 
entrainment 

7 2.11E-04  0.00153095 

(229 
genes) 

hsa04022:cGMP-PKG 
signaling pathway 

8 6.77E-04  0.00194994  

hsa04610:Complement 
and coagulation 
cascades 

6 9.21E-04  0.00256897  

hsa04270:Vascular 
smooth muscle 
contraction 

7 0.00118562  0.00675934  

hsa04261:Adrenergic 
signaling in 
cardiomyocytes 

7 0.00211191  0.00705379 

Metagenes 
4 

hsa05214:Glioma 4 0.00222855  0.00227312 

(84 genes) hsa04144:Endocytosis 5 0.0155247  0.00500242  
hsa04068:FoxO 
signaling pathway 

4 0.01659162  0.00613771  

hsa05200:Pathways in 
cancer 

6 0.01961737  0.00844578  

hsa05210:Colorectal 
cancer 

3 0.02599431  0.00930283 

GO, Gene ontology; BP, biological function; MF, molecular function; CC, cellular 
component; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

Table 3 
The number of down and up-regulated DEGs by paired features.  

Features Compared Down-Regulated DEGs Up-Regulated DEGs 

hGBM-GSC_X01 12 410 
hGBM-GSC_X03 16 429 
hGBM-GBM_U251 24 544 
GSC_X01-GSC_X03 41 40 
GSC_X01-GBM_U251 122 123 
GSC_X03-GBM_U251 112 112  
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symbols to the probe annotation files of the GPL570 platform, and gene 
expression levels were log2 transformed. This study has performed the 
quality control of the dataset via Uniform Manifold Approximation and 
Projection (UMAP), which is a dimension reduction method useful for 
visualizing clusters or groups of samples and relative proximities. The 
number of nearest neighbors used in the calculation is indicated in the 
plot (Konopka and Konopka, 2018). 

The GEOquery package in Bioconductor is used to analyze 
GSE124145 dataset. The list of packages is Biobase, biomaRT, UMAP, 
and gplots packages in R studio (Davis and Meltzer, 2007; Durinck et al., 
2005; Konopka and Konopka, 2018; Warnes et al., 2009). Benjamini- 
Hochberg technique is used to calculate the adjusted p-value, avoid Type 
I errors, and correct multiple testing. A hypergeometric model was 
performed for both the down-regulated and up-regulated DEGs in 
DAVID GO enrichment in categories and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis (Huang et al., 2007; 
Kanehisa et al., 2016). Moreover, adjusting the statistical tests locally is 
done by calculation of a false discovery rate (FDR) (Benjamini and 
Hochberg, 1995; Dudoit et al., 2003; Hochberg and Tamhane, 1987). 

2.2. Gene expression analysis 

Most of the analyses were achieved in the R programming version 
3.6.3. The design of the study is given in Fig. 1. This study aims to 
demonstrate the capability of NMF to uncover expressive biological 
evidence from malignant brain tumor RNA-microarray data. The novel 
application of the NMF bioinformatics pipeline was an effective method 
to elucidate commonalities and discrepancies between samples of the 
dataset. Differentially expressed genes are screened according to both 
fold change and p − value criteria. Although methods to correct for 
multiple comparisons, such as Bonferroni correction, have long been 
applied, most of these techniques are not suitable for analyzing gene 
expression datasets (Tarca et al., 2006). 

2.3. Non-negative matrix factorization 

Given a target matrix Vmxn, NMF identifies non-negative matrices 
such that Nmxr and Mrxn (i.e., with all entries ≥ 0) to present the matrix 
decomposition as: 

V≈ NM #1 
In practice, this study typically viewed N as a basis or metagenes 

matrix. The rank factorization is selected on the constraint r ≤ min(m, n).

The purpose of this selection is to explain and distinguish the details 
classified among V into r factors: the columns of N. Given a matrix Vm×n, 
NMF finds two non-negative matrices Nm×r and Mr×n(i.e., with all ele-
ments ≥ 0) to represent the decomposed matrix as: 

V≈ NM, 
For instance, by natural demanding of non-negative N and M to 

minimize the cost function: 

‖V − NM‖F , subject to N ≥ 0,M ≥ 0 

It is considered a gene expression dataset characterized by the 
expression levels of m genes (probes) in n samples of unique tissues, 
cells, cell lines, time points, or experiments. The number m of genes is 
usually from hundreds to thousands, and the n of experiments or pa-
tients is usually 100 for gene expression research. The gene expression 
datasets are presented by a matrix of expression V of size NxM, whose 
rows consist of m genes, expression levels, and columns of n samples. 
The goal is to factorize a small number of rows, i.e. rank, each defined as 
a positive linear combination of the target matrix V. The positive linear 
combination of metagenesis is described by the gene expression motif of 
the samples. To obtain a dimensional reduction of the microarray data 
and to evaluate the distinctions among samples, NMF was implemented 
utilizing the “NMF” package (Gaujoux and Seoighe, 2010) in R. 

A critical issue is the decision of the factorization rank- r, which 
defines the number of metagenes used to approximate the target matrix. 
One of the most standard approaches is to process the cophenetic cor-
relation coefficient. Brunet et al. proposed to choose the smallest r value 
at which this coefficient starts to decrease (Brunet et al., 2004). This 
study interpreted the r value as metagene profiles capturing gene 
expression patterns particular to different clinical traits. 

Further, searching for genes with reasonably large coefficients in 
each biological and functional process may provide some benefits, 
assuming that additional genes can partake in more than one biological 
process. The gene.score scoring technique contributed by Kim and Park 
(Kim and Park, 2007) has been implemented to achieve this assumption. 
The most metagene-specific genes were extracted utilizing Kim and 
Park’s scoring and screening approach. (Esposito et al., 2020; Ram-
anarayanan et al., 2011). 

2.4. Identification of DEGs and clustering analysis of GSE124145 

Gene expression values were extracted via the GEOquery package in 
Bioconductor (Davis and Meltzer, 2007) then converted to a base-2 

Fig. 5. (A) A cluster dendrogram of the four groups (clusters) of features by the candidate hub genes expression levels. (B) A heatmap of expression levels of 52 hub 
genes by four features. 
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logarithmic scale in R. Normalization is done by dividing expression 
values by the sum of all expression values of the given array (Quack-
enbush, 2002). Clustering analysis of DEGs was done using the hclust() 
function (R Core Team, 2020) to associate the expression pattern of 
DEGs in each pairwise traits; hGBM – GSC_X01, hGBM – GSC_X03, hGBM 
- GBM_U251, GSC_X01- GSC_X03, GSC_X01- GBM_U251 and GSC_X03 – 
GBM_U251. 

The experiment is designed to focus on all of the pairwise compari-
sons since we are interested in spotting DEGs in most tractable way. We 
do the pairwise comparisons between each trait by fixing one as the 
control group and then check for overlaps. We emphasize the statistical 
significance utilizing t-test under the threshold p − value < 0.05 and 
|log2(FC) | > 6.5 to screen up-regulated and down-regulated DEGs. The 
study used fold change threshold value in log2 scale between median and 
mean of the expression values of samples as provided in Table S1 to 
identify up-regulated and down-regulated DEGs. 

2.5. GO terms and KEGG pathway analysis 

Biomart package in R is used to convert probe-IDs of common hub 
genes to the gene symbols and names. The common genes were por-
trayed by their BP, molecular functions (MF), and cellular components 

(CC) with GO of the database for Annotation and DAVID, which stands 
for Visualization and Integrated Discovery (Huang et al., 2009). All 
categorized genes were carefully studied, and other parts like the 
annotation types, Universal Protein resource, and GO-terms in FAT were 
chosen to utilize DAVID and KEGG (Kanehisa et al., 2016). 

2.6. PPI network 

We built the PPI network of the common hub genes. NetworkAnalyst, 
reachable on the web, offers an exploration of PPI networks for partic-
ular genes utilizing STRING Interactome (Szklarczyk et al., 2016; Zhou 
et al., 2019). To broadly uncover the regulatory and molecular mecha-
nisms in candidate hub genes, total RNAs is simply grouped into the 
hGBM and GSC_X01, GSC_X03, and GBM_U251 features. The DEGs from 
hGBM – GSC_X01, hGBM – GSC_X03, hGBM -GBM_U251, GSC_X01- 
GSC_X03, GSC_X01- GBM_U251, and GSC_X03 – GBM_U251 groups were 
studied to construct a PPI network with formerly narrated GO classifi-
cation and enrichments. Function Explorer of NetworkAnalyst is utilized 
to implement functional enrichment analysis for the common hub nodes, 
which are specifically highlighted nodes via KEGG pathway databases 
that would result in the most significant pathways enrichment. A hy-
pergeometric test is utilized to calculate the enrichment p-value < 0.05, 

Table 4 
The GO and KEGG pathway enrichments of the common hub genes.  

Category Term Genes P-value FDR 

GOTERM_BP_FAT GO:0007049 ~ cell cycle PAX8, THRA, MAPK1  0.00099  0.003763553 
GOTERM_BP_FAT GO:0031663 ~ lipopolysaccharide-mediated signaling 

pathway 
SCARB1, CCL5, MAPK1  0.00350  0.003275988 

GOTERM_BP_FAT GO:0048732 ~ gland development DDR1, PAX8, THRA, MAPK1, EPHB3  0.00656  0.003376552 
GOTERM_BP_FAT GO:0042592 ~ homeostatic process SCARB1, SLC46A1, THRA, RFC2, CCL5, MAPK1, SLC39A5, 

SLC39A13, ATP6V1E2  
0.00719  0.003375988 

GOTERM_BP_FAT GO:0046916 ~ cellular transition metal 
ion homeostasis 

SLC46A1, SLC39A5, SLC39A13  0.00931  0.025184143 

GOTERM_BP_FAT GO:0055076 ~ transition metal ion homeostasis SLC46A1, SLC39A5, SLC39A13  0.01697  0.01002087 
GOTERM_BP_FAT GO:0000041 ~ transition metal ion transport SLC39A5, SLC39A13, ATP6V1E2  0.01755  0.01230103 
GOTERM_BP_FAT GO:0030003 ~ cellular cation homeostasis SLC46A1, CCL5, SLC39A5, SLC39A13, ATP6V1E2  0.01871  0.02056453 
GOTERM_BP_FAT GO:0035295 ~ tube development DDR1, PAX8, THRA, MAPK1, EPHB3  0.01947  0.02076576 
GOTERM_BP_FAT GO:0006873 ~ cellular ion homeostasis SLC46A1, CCL5, SLC39A5, SLC39A13, ATP6V1E2  0.02037  0.02077453 
GOTERM_MF_FAT GO:0072341 ~ modified amino acid binding SCARB1, SLC46A1, TIMD4  0.01030  0.00109775 
GOTERM_MF_FAT GO:0005524 ~ ATP binding DDR1, PXK, UBA7, RFC2, HSPA6, MAPK1, TTLL12, EPHB3, 

GNG11  
0.01378  0.00139519 

GOTERM_MF_FAT GO:0032559 ~ adenyl ribonucleotide binding DDR1, PXK, UBA7, RFC2, HSPA6, MAPK1, TTLL12, EPHB3, 
GNG11  

0.01576  0.00146491 

GOTERM_MF_FAT GO:0008392 ~ arachidonic acid epoxygenase activity CYP2A6, CYP2E1  0.03246  0.00175023 
GOTERM_MF_FAT GO:0008391 ~ arachidonic acid monooxygenase activity CYP2A6, CYP2E1  0.03246  0.00177237 
GOTERM_MF_FAT GO:0035639 ~ purine ribonucleoside triphosphate binding DDR1, PXK, UBA7, RFC2, HSPA6, MAPK1, TTLL12, EPHB3, 

GNG11  
0.04234  0.00185748 

GOTERM_MF_FAT GO:0032550 ~ purine ribonucleoside binding DDR1, PXK, UBA7, RFC2, HSPA6, MAPK1, TTLL12, EPHB3, 
GNG11  

0.04341  0.00196678 

GOTERM_MF_FAT GO:0001883 ~ purine nucleoside binding DDR1, PXK, UBA7, RFC2, HSPA6, MAPK1, TTLL12, EPHB3, 
GNG11  

0.04377  0.00206671 

GOTERM_CC_FAT GO:0031253 ~ cell projection membrane SCARB1, SLC46A1, GUCA1A  0.01161  0.00241032 
GOTERM_CC_FAT GO:1903561 ~ extracellular vesicle DDR1, SCARB1, HSPA6, MAPK1, SLC39A5, CILP2, WFDC2, 

TMEM106A  
0.03171  0.00335669 

GOTERM_CC_FAT GO:0005789 ~ endoplasmic reticulum membrane CYP2A6, CYP2E1, ALG10, PIGX  0.03216  0.00427774 
GOTERM_CC_FAT GO:0043230 ~ extracellular organelle DDR1, SCARB1, HSPA6, MAPK1, SLC39A5, CILP2, WFDC2, 

TMEM106A  
0.32906  0.00543521 

GOTERM_CC_FAT GO:0042175 ~ nuclear outer membrane-endoplasmic 
reticulum membrane network 

CYP2A6, CYP2E1, ALG10, PIGX  0.03339  0.00574228 

GOTERM_CC_FAT GO:0044432 ~ endoplasmic reticulum part CYP2A6, CYP2E1, ALG10, PIGX  0.04210  0.00755629 
GOTERM_CC_FAT GO:0031226 ~ intrinsic component of plasma membrane DDR1, SCARB1, BEST4, SLC39A5, EPHB3  0.04461  0.00887441 
GOTERM_CC_FAT GO:0005576 ~ extracellular region DDR1, SCARB1, CCL5, MFAP3, HSPA6, MAPK1, SLC39A5,CILP2, 

WFDC2, TMEM106A, EPHB3  
0.04475  0.00915997 

GOTERM_CC_FAT GO:0005576 ~ extracellular region DDR1, SCARB1, CCL5, MFAP3, HSPA6, MAPK1, SLC39A5, 
CILP2, WFDC2, TMEM106A, EPHB3  

0.04475  0.00925895 

GOTERM_CC_FAT GO:0005783 ~ endoplasmic reticulum CYP2A6, CYP2E1, ALG10, PIGX  0.04595  0.00934579 
GOTERM_CC_FAT GO:0044421 ~ extracellular region part DDR1, SCARB1, CCL5, HSPA6, MAPK1, SLC39A5, CILP2, 

WFDC2, TMEM106A  
0.04627  0.00945447 

KEGG_PATHWAY hsa05164:Influenza A CCL5, HSPA6, MAPK1  0.05383  0.01545990 
KEGG_PATHWAY hsa05216:Thyroid cancer PAX8, MAPK1  0.06146  0.02600558 
KEGG_PATHWAY hsa05020:Prion diseases PRNP, CCL5, MAPK1  0.07170  0.39374634 

GO, Gene ontology; BP, biological function; MF, molecular function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes 
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in which the complete corresponded proteins are also demonstrated. 

2.7. Validation of common genes 

This study selects the common hub genes (intersection of the meta-
genes and DEGs sets) for validation and further analysis. To examine the 
portion of common hub genes in the stemness of GBM, the positively 
correlated genes in TCGA of the gene expression dataset through 

UALCAN database (Chandrashekar et al., 2017) at significance level (log 
rank p-value < 0.05) is studied. For deep analysis and validation, the 
log-rank test was employed to measure the survival analysis of GBM 
patients and the significance of the survival effect (Park, 2005). 

3. Results 

3.1. Quality control of gene expression data 

For quality control (QC) of the GSE124145 gene expression dataset, 
UMAP, a dimension reduction method useful for visualizing clusters or 
groups of samples and relative proximities is used (Fig. 2). In Figure 3A 
and 3B, a boxplot of the non-normalized gene expression values and a 
density plot are presented with the groups (hGBM, GSC_X01, GSC_X03, 
and GBM_U251) of tissues, stem cells, and cell lines, respectively. The 
density plot Fig. 3B complements boxplot Fig. 3A in checking for data 
normalization before differential expression (DE) analysis. 

3.2. The NMF analysis on GSE124145 gene expression dataset 

In Fig. 4A, the function of factorization rank of r = 2,3,..,7 is selected 
as the emergence rank of the RSS survey. The optimum rank is detected 
by NMF at r = 4. In Fig. 4B, the consensus matrix plot validated the 
factorization rank as four, which describes the number of bases. The 
rank value affects the metagenes matrix defined by Brunet et al. 2007. 
Clear block diagonal patterns confirm the robustness of models with four 
metagenes modules, whereas a rank-5,6,7 factorization displays 

Fig. 6. A human PPI network for the common hub genes of the GSCs and GBM gene expression dataset.  

Table 5 
The top 15 common hub genes of PPI network of GBM gene expression dataset.  

Gene 
ID 

Genes Nodes Betweenness 
centrality 

Expression Fold 
Change 

5594 MAPK1 152 28928.5  8.512  7.57 
3310 HSPA6 29 6770.5  7.648  6.59 
7067 THRA 23 4751.5  7.985  7.75 
23,170 TTLL12 14 3133  10.631  8.53 
2049 EPHB3 14 3133  8.666  8.59 
5982 RFC2 9 1948  10.878  6.52 
2978 GUCA1A 7 1980  3.988  9.23 
11,099 PTPN21 6 739.5  5.113  10.78 
7316 UBC 4 853  6.176  5.67 
3084 NRG1 4 738  10.559  8.64 
58,223 MMP19 3 493  11.453  6.95 
2791 GNG11 3 1980  3.988  9.23 
5573 NCKAP5 2 2151  8.273  8.95 
3320 HSP90AA1 2 1980  2.950  5.23 
2099 ESR1 2 1575  1.967  4.57  
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enlarged diffusion (Fig. S1). 

3.3. The GO and KEGG pathways enrichments of the four Metagenes 

In Table 1, the four metagenes using the NMF method were detected 
according to significance level (p-value < 0. 05 and FDR < 0.05) of BP, 
CC, and MF of the GO pathway analysis. Moreover, KEGG pathway 
enrichments of the four metagenes are shown in Table 2. 

It is demonstrated that the significant enrichments of the metagenes 
BP terms are homeostasis pathways, skeletal system morphogenesis, ion 
transport, stimulus, signaling, and cell communication pathways. The 

metagenes of CC terms are in general components of plasma membrane, 
extracellular region part, heterotrimeric G-protein complex, gluta-
matergic synapse, plasma membrane region, and endoplasmic reticulum 
part. The significant enrichment of the metagenes in MF are cytokine 
activity, transcription cofactor/factor activity, protein/actin binding, 
sequence-specific DNA binding, ion channel activity, and cell adhesion 
molecule binding. KEGG pathway enrichment of metagenes are mostly 
significant in hsa04724 (glutamatergic synapse), hsa04720 (long-term 
potentiation), hsa04713 (circadian entrainment), and hsa05214 
(glioma). 

3.4. Degs of paired clinical traits 

Following data preprocessing and quality evaluation, the study 
revealed the expression values from the 12 samples in GSE124145. A 
total of 1985 DEGs (1658 up-regulated and 327 down-regulated as can 
be seen in Table S2-S7 in hGBM and GSC_X01, GSC_X03, and GBM_U251 
clinical features, under the threshold of p-value < 0.05 and |log2FC| >
6.5 (Table 3) were screened for the subsequent analyses. The volcano 
plots of DEGs were shown in Fig. S2. 

3.5. Identification of common hub genes 

There were 450 genes in the four metagenes and 1985 DEGs in total. 
The overlapping number of genes in both sets was identified as 52 genes, 
which are the common genes (Fig. 5). 

3.6. GO and KEGG pathway enrichment analysis of common hub genes 

Table 4 shows the significant enrichments of the most candidate hub 
genes in BP terms are mostly enriched with GO:0007049 ~ cell cycle, 
GO:0031663 ~ lipopolysaccharide-mediated signaling pathway, 
GO:0048732 ~ gland development, GO:0042592 ~ homeostatic pro-
cess, and GO:0046916 ~ cellular transition metal ion homeostasis. The 
significant enrichments GO terms in CC are GO:0031253 ~ cell pro-
jection membrane, GO:1903561 ~ extracellular vesicle, GO:0005789 ~ 
endoplasmic reticulum membrane, GO:0043230 ~ extracellular organ-
elle, and GO:0042175 ~ nuclear outer membrane-endoplasmic reticu-
lum membrane network. Moreover, the significant enrichment of the 
hub genes in MF contains GO:0072341 ~ modified amino acid binding, 
GO:0005524 ~ ATP binding, GO:0032559 ~ adenyl ribonucleotide 
binding, GO:0008392 ~ arachidonic acid epoxygenase activity, and 
GO:0008391 ~ arachidonic acid monooxygenase activity. Lastly, KEGG 
signaling pathway analysis reported that the hub genes were signifi-
cantly enriched in hsa05164:influenza A, hsa05216:thyroid cancer, and 
hsa05020:prion diseases. 

GO enrichment analysis of down-regulated and up-regulated DEGs of 

Table 6 
The KEGG pathways of the top 15 candidate hub genes of PPI network in GBM gene expression dataset.  

Term KEGG description Total Expected Hits P-Value FDR 

hsa04010 Mapk signaling pathway 135  0.293 8 3.94E-09 9.15E-06 
hsa04727 Neurotrophin signaling pathway 119  0.261 7 2.92E-09 9.29E-07 
hsa04725 Cholinergic synapse 112  0.246 6 8.74E-08 9.27E-06 
hsa04728 Dopaminergic synapse 131  0.288 6 2.23E-07 1.52E-05 
hsa04720 Long-term potentiation 67  0.147 5 2.39E-07 1.52E-05 
hsa05214 Glioma 75  0.165 5 4.23E-07 2.24E-05 
hsa04925 Aldosterone synthesis and secretion 98  0.215 5 1.61E-06 7.33E-05 
hsa05205 Proteoglycans in cancer 201  0.442 6 2.78E-06 0.000111 
hsa04114 Oocyte meiosis 125  0.275 5 5.38E-06 0.00019 
hsa05200 Pathways in cancer 530  1.16 8 6.44E-06 0.000205 
hsa05031 Amphetamine addiction 68  0.149 4 1.19E-05 0.000345 
hsa04310 Wnt signaling pathway 158  0.347 5 1.69E-05 0.000431 
hsa04971 Gastric acid secretion 75  0.165 4 1.76E-05 0.000431 
hsa04012 ErbB signaling pathway 85  0.187 4 2.90E-05 0.000643 
hsa04911 Insulin secretion 86  0.189 4 3.03E-05 0.000643 

MAPK: mitogen-activated protein kinase; ErbB: erythroblastic oncogene B: KEGG, Kyoto Encyclopedia of Genes and Genomes. 

Table 7 
Five real hub genes by expression values in log2 base for each clinical feature.  

Clinical Traits 

Hub Genes hGBM GBM_U251 GSC_X01 GSC_X03 

GUCA1A  7.87859535  4.07658209  4.58879582  5.2724957 
RFC2  9.03021097  9.83556542  8.80343733  8.40102803 
GNG11  6.04000574  7.34968424  6.88022928  7.13599808 
MMP19  9.78068367  11.191266  11.4270119  10.1253016 
NRG1  7.8430097  9.38390535  8.24695019  7.66156598  

Fig. 7. Heatmap of the real hub genes expression values by the clinical traits.  
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categories BP, MF, and CC in each paired comparison of hGBM – 
GSC_X01, hGBM – GSC_X03, hGBM – GBM_U251, GSC_X01 –GSC_X03, 
GSC_X01 – GBM_U251, and GSC_X03 – GBM_U251 groups are listed in 
Table S2-S7. 

3.7. PPI network 

To achieve the analysis of protein–protein interactions, PPI network 
was built on the common hub genes list. A total of 256 nodes and 262 
edges were screened from the PPI network (Fig. 6). Fifteen primary 
nodes with the highest degrees in the gene expression of GSE124145 
dataset common hub genes are selected in Table 5. These were MAPK1, 
HSPA6, THRA, TTLL12, EPHB3, RFC2, GUCA1A, PTPN21, UBC, NRG1, 
MMP19, GNG11, NCKAP5, HSP90AA1, and ESR1. Genes with 
sequencing from yellow to red color shows the number of neighboring 
nodes and changes in proteins (genes) as illustrated in Fig. 6. The PPI 
network of common hub genes KEGG enrichment analysis picks the 
MAPK signaling pathway as the most significant (p-value < 0.05) 
pathway (Table 6). MAPK signaling pathway demonstrates an important 
role in many cancers involving GBM through hyperactivation and it is of 
concern in various biomarkers of tumorigenic progression such as 
migration, differentiation, proliferation, and survival. For PPI network 
of all the DEGs corresponding bi-comparison of clinical traits, see 
Fig. S3. 

3.8. Validation of real hub genes 

The overlapping common genes between key metagenes and DEGs 
were filtered and confirmed at expression levels and overall survival 
(OS) in TCGA datasets. After survival analysis by using GSE124145 and 
TCGA dataset, as illustrated in Table 7 and Fig. 7, we identified five real 
hub genes: Guanylate Cyclase Activator 1A (GUCA1A), Replication 
Factor C Subunit 2 (RFC2), G Protein Subunit Gamma 11 (GNG11), 
Matrix Metallopeptidase 19 (MMP19), and Neuregulin 1 (NRG1) 
strongly linked to the progression of GBM (Fig. 8). 

4. Discussion 

GBM is the most prevalent, destructive, and fatal brain tumor. Cur-
rent treatment options, including surgery, chemotherapy, and radio-
therapy, cannot fully treat the disease because the tumor is highly 
defiant to these treatments. GSCs have the self-renewal capacity and 
they are responsible for the tumor resistance in treating GBM. There is 
an urgent need to find out sensitive diagnostic and therapeutic targets 
for GBM. Our aim is to demonstrate the capability of NMF to uncover the 
biologically meaningful patterns from malignant brain tumor RNA- 
microarray data and discover reliable biomarkers for GBM. 

In this study, first, we applied NMF analysis to GSE124145 dataset to 
evaluate the gene expression profile differences including GSCs, spe-
cifically U251 cell line, and a human GBM tissue sample. NMF is first 
described as a method for reduction dimension and feature identifica-
tion on non-negative data (Lee and Seung, 1999). To detect gene 
expression patterns, NMF has been widely used (Esposito et al., 2020; 
Gaujoux et al., 2020). Its several advantages make NMF method more 
preferred than other clustering methods (k-means, hierarchical clus-
tering, and self-organizing map algorithms). One of the most important 
advantages of NMF method is the ability to discover the specific genes 
for each population. In addition, NMF provides biologically interpret-
able results of microarray datasets. 

This study identified the DEGs in the hGBM – GSC_X01, hGBM – 
GSC_X03, hGBM -GBM_U251, GSC_X01- GSC_X03, GSC_X01- 
GBM_U251, and GSC_X03 – GBM_U251 groups. After which, we chose 
the overlapping genes between the resulted metagenes utilizing NMF 
and identified DEGs; in total, 52 common hub genes were noted. 
Following a sequence of bioinformatics investigation, six real hub genes 
strongly related to the progression and prognosis of GBM were detected. 
The results suggested the development of therapeutic management, risk 
stratification, and prognosis prediction for GBM patients. 

We detected significant enrichment of the most candidate hub genes 
in BP terms: GO:0007049 ~ cell cycle; the significant enrichment of the 
hub genes in MF contains GO:0072341 ~ modified amino acid binding, 
whereas the significant enrichment for GO terms in CC are GO:0031253 
~ cell projection membrane, GO:1903561 ~ extracellular vesicle, 

Fig. 8. Overall Survival (OS) analysis of GBM patients Kaplan- Meier analysis, log-rank test, P value < 0.05 of the real hub genes in the TCGA dataset via UALCAN. 
(A) GUCA1A, (B) RFC2, (C) GNG11, (D) MMP19, (E) NRG1. Orange lines represent low expression of the real hub genes, whereas green lines represent high 
expression of n patients. 
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GO:0005576 ~ extracellular region, and GO:0043230 ~ extracellular 
organelle. A previous study analyzing the GSE74304 and GSE124145 
datasets also found out that one of the most enriched GO terms is 
extracellular region, which confirms our results (Wu et al., 2021). 

We detect biological processes for each metagenes p-value < 0.05. 
The GO pathway analysis resulted in BP of Metagenes 1 mostly involved 
in GO:0001894 ~ tissue homeostasis, Metagenes 2 mostly involved in 
GO:0048705 ~ skeletal system morphogenesis, Metagenes 3 mostly 
involved in GO:0006811 ~ ion transport, and finally Metagenes 4 
involved in GO:0071495 ~ cellular response to endogenous stimulus. 
Metagenes enriched for the different GO categories indicate that meta-
genes may affect different biological processes. 

KEGG pathway enrichment analysis reported up-regulated DEGs that 
were involved in hsa04514:cell adhesion molecules (CAMs), hsa05202: 
transcriptional misregulation in cancer, hsa05014:amytrophic lateral 
sclerosis (ALS), and hsa04360:axon guidance. KEGG pathway enrich-
ment analysis presented down-regulated genes that were mostly 
involved in hsa04151:PI3K-Akt signaling pathway (Daniel et al., 2018), 
hsa04728:dopaminergic synapse, and hsa04974:protein digestion and 
absorption. The constructed study of protein–protein interactions and 
KEGG pathway enrichment study indicated as hsa04010:MAPK 
signaling pathway, hsa04727:neurotrophin signaling pathway (Lawn 
et al., 2015; Zhu et al., 2017), hsa04725:cholinergic synapse (Yang et al., 
2019), hsa04728:dopaminergic synapse (Wei et al., 2014), hsa04720: 
Long-term potentiation (Hu et al., 2015; Long et al., 2017), hsa05214: 
glioma in which hsa04141:protein processing in MAPK signaling 
pathway (Agarwal et al., 2015; Daniel et al., 2018; Krishna et al., 2021) 
was further studied because of a close association with GBM. 

MAPK signaling pathway and PI3K-AKT signaling pathways were 
also among the most enriched KEGG pathways in the previous study, 
which used PCA to analyze the same dataset as in our study (Sakamoto 
et al., 2019). Based on the Cancer Genome Atlas project results, the 
phosphatidylinositol 3-kinase (PI3K) pathway is also an important 
signaling pathway in GBM (Uhm, 2009). Many roles of MAPK and PI3K- 
AKT signaling pathways, such as hyperactivation, proliferation, meta-
bolism, survival, and migration, were shown in several cancer including 
GBM (Krishna et al., 2021). Targeting PI3K signaling pathway as a 
treatment approach for some cancers has been shown previously. Li 
et al., 2017 showed that the inhibition of MAPK signaling pathways can 
limit the glioma progression. However, there is not much clinical studies 
of PI3K and MAPK inhibitors for the treatment of GBM. Hence, the 
combination of PI3K and MAPK inhibitors could be effective therapeutic 
approaches for GBM. Our results support the idea that PI3K and MAPK 
signaling might be important therapeutic targets for GBM. 

In this study, we implemented survival analysis to screen real hub 
genes under the cut-off p-value < 0.05. A total of five genes (GUCA1A, 
RFC2, GNG11, MMP19, and NRG1) were particularly outstanding. They 
were tightly linked with GBM prognosis likely to be potential bio-
markers. Previous research also detected that those five real hub genes 
were involved in the process of the cell cycle, partaking in the tumor 
proliferation and formation. Our study identified different significant 
genes from the study that uses PCA to analyze the same dataset in which 
MYCN, DPP4 and MIF were reported as an important contributors of 
GSCs (Sakamoto et al., 2019). 

It was proven that the mutation GUCA1 (guanylyl cyclase-activating 
protein 1) is central to a severe dominantly inherited retinal degenera-
tion (Buch et al., 2011; He et al., 2021; Hou et al., 2019), which is mostly 
active in signaling by the GPCR pathway (Cherry and Stella, 2014). 
Higher RFC2 (replication factor subunit 2) levels, resulting in poor pa-
tient survival, were also noted in GBM patients and lower-grade gliomas 
(Ho et al., 2020). 

G- protein family have many roles, including cell division and cell 
differentiation (Syrovatkina et al., 2016), and their roles in the pro-
gression of cancers have been shown in previous studies. GNG5 was 
potential biomarker for the gliomas (Zhang et al., 2021). Cai et al. re-
ported that GNG11 (G protein subunit 11) expression was linked to poor 

prognosis (Cai et al., 2021). Our results contribute to the G-protein 
family members and they could be great biomarkers for GBM. Expres-
sion of MMP19 (matrix metalloproteinase 19) was proven to be corre-
lated with the WHO-grading of human malignant gliomas, which might 
be the cause of the growth of high-grade astrocytic tumors and might be 
candidate drug-targets. (Stojic et al., 2008; Wang et al., 2013). Neuro-
gulins have roles in the development of nervous systems, and neuregulin 
family members are indicated in several cancer types (Cheng et al., 
2019; Forster et al., 2011). NRG1 was found to promote malignancy in 
glioma and glioblastoma cells (Lin et al., 2020). Lin et al. also demon-
strated NRG1 activates the MAPK signaling pathway, thus our findings 
strongly support that treatments targeting NRG1 and MAPK signaling 
pathway might successfully treat the GBM. Moreover, growing expres-
sion of NRG1 would converse the impacts of overexpression of miR- 
125a-3p on proliferation, apoptosis, and migration of glioblastoma 
cells reported by Yin et al, 2015. In addition, miR-125a-3p was relevant 
to the poor prognosis of GBM patients (Yin et al., 2015). Another recent 
study presented NRG1 to be differentially expressed in lower grade 
glioma and GBM in assessment to normal tissue (Zhao et al., 2021). All 
these genes were significantly up-regulated in GBM. Two GSCs (X01 and 
X02) with GBM tissue and U251 cell lines in GSE124145 in mRNA level 
have proven their vital role in angiogenesis. Further research is needed 
to discover the molecular functions of GUCA1A, RFL2, GNG11, MMP19, 
and NRG1 in the GBM to discover the treatment strategies of GBM. Our 
results would contribute to the future GBM studies to find out the mo-
lecular pathology of GBM. 

Our study has some limitations. One of the limitations of this study is 
that NMF may not identify the biologically important genes with low 
expression levels. Another limitation is NMF method might be affected 
by batch effects in the microarray data. Although we validated the re-
sults in the TCGA dataset, the accuracy of the results requires molecular 
and cellular experiments. In this study, we showed that NMF is a useful 
method to find significant genes. 

5. Conclusions 

In this study, we focused on one of the GBM gene expression datasets 
in the database of GEO. In this study, GUCA1A, RFC2, GNG11, MMP19, 
NCKAP5, and NRG1 were screened as the real hub genes for the up-
coming molecular studies in GBM. These hub genes can be presented to 
the promising prospect of future research for therapeutic targets in GBM. 
The rest of the analysis in this study would help explore the causes of the 
gliomas, in particular GBM, underlying biological, cellular, and func-
tional events. In this study, we showed that the combination of NMF and 
DEGs analyses is a useful method in finding significant genes at high 
resolution and interpreting the biological meaning of microarray data. 

Funding 

This work was funded by Deanship of Scientific Research at Jouf 
University under grant No (DSR-2021–01-0315). 

7. Data availability 

The GSE124145 dataset used and analyzed in this present study are 
available in the NIH GEO 

(http://www.ncbi.nlm.nih.gov/geo) public repository. 

CRediT authorship contribution statement 

Sevinç Akçay: Conceptualization, Methodology, Software, Investi-
gation, Writing – review & editing. Emine Güven: Conceptualization, 
Methodology, Software, Investigation, Data curation, Writing – original 
draft, Writing – review & editing, Visualization, Supervision, Funding 
acquisition. Muhammad Afzal: Investigation, Data curation, Writing – 
review & editing, Visualization. Imran Kazmi: Investigation, Data 

S. Akçay et al.                                                                                                                                                                                                                                   

http://www.ncbi.nlm.nih.gov/geo


Gene 824 (2022) 146395

12

curation, Writing – review & editing, Visualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work was funded by the Deanship of Scientific Research Jouf 
University, Saudi Arabia under the grant number (DSR-2021-01-0315). 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.gene.2022.146395. 

References 

Agarwal, K., Saji, M., Lazaroff, S., Palmer, A.F., Ringel, M.D., Paulaitis, M.E., 2015. 
Analysis of exosome release as a cellular response to MAPK pathway inhibition. 
Langmuir 31, 5440–5448. 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 
289–300. 

Berens, M.E., Rief, M.D., Loo, M.A., Giese, A., 1994. The role of extracellular matrix in 
human astrocytoma migration and proliferation studied in a microliter scale assay. 
Clin. Exp. Metast. 12, 405–415. https://doi.org/10.1007/BF01755884. 

Boccarelli, A., Esposito, F., Coluccia, M., Frassanito, M.A., Vacca, A., Del Buono, N., 
2018. Improving knowledge on the activation of bone marrow fibroblasts in MGUS 
and MM disease through the automatic extraction of genes via a nonnegative matrix 
factorization approach on gene expression profiles. J. Translational Med. 16, 1–16. 

Brunet, J.-P., Tamayo, P., Golub, T.R., Mesirov, J.P., 2004. Metagenes and molecular 
pattern discovery using matrix factorization. PNAS 101, 4164–4169. https://doi. 
org/10.1073/pnas.0308531101. 

Buch, P.K., Mihelec, M., Cottrill, P., Wilkie, S.E., Pearson, R.A., Duran, Y., West, E.L., 
Michaelides, M., Ali, R.R., Hunt, D.M., 2011. Dominant cone-rod dystrophy: a mouse 
model generated by gene targeting of the GCAP1/Guca1a gene. PLoS ONE 6, 
e18089. 

Cai, Z., Yu, C., Li, S., Wang, C., Fan, Y., Ji, Q., Chen, F., Li, W., 2021. A Novel 
Classification of Glioma Subgroup, Which Is Highly Correlated With the Clinical 
Characteristics and Tumor Tissue Characteristics, Based on the Expression Levels of 
Gβ and Gγ Genes. Front. Oncol. 11, 2256. https://doi.org/10.3389/ 
fonc.2021.685823. 

Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce- 
Rodriguez, I., Chakravarthi, B.V., Varambally, S., 2017. UALCAN: a portal for 
facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 
649–658. 

Cheng, Q., Huang, C., Cao, H., Lin, J., Gong, X., Li, J., Chen, Y., Tian, Z., Fang, Z., 
Huang, J., 2019. A Novel Prognostic Signature of Transcription Factors for the 
Prediction in Patients With GBM. Front. Genetics 10. 

Cherry, A.E., Stella, N., 2014. G protein-coupled receptors as oncogenic signals in glioma: 
emerging therapeutic avenues. Neuroscience 222–236. https://doi.org/10.1016/j. 
neuroscience.2014.08.015. 

Collisson, E.A., Sadanandam, A., Olson, P., Gibb, W.J., Truitt, M., Gu, S., Cooc, J., 
Weinkle, J., Kim, G.E., Jakkula, L., Feiler, H.S., Ko, A.H., Olshen, A.B., Danenberg, K. 
L., Tempero, M.A., Spellman, P.T., Hanahan, D., Gray, J.W., 2011. Subtypes of 
pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. 
Med. 17, 500–503. https://doi.org/10.1038/nm.2344. 

Daniel, P.M., Filiz, G., Tymms, M.J., Ramsay, R.G., Kaye, A.H., Stylli, S.S., 
Mantamadiotis, T., 2018. Intratumor MAPK and PI3K signaling pathway 
heterogeneity in glioblastoma tissue correlates with CREB signaling and distinct 
target gene signatures. Exp. Mol. Pathol. 105, 23–31. https://doi.org/10.1016/j. 
yexmp.2018.05.009. 

Davis, M.E., 2016. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. 
Nursing 20, S2. 

Davis, S., Meltzer, P., 2007. GEOquery: A bridge between the Gene Expression Omnibus 
(GEO) and BioConductor. Bioinformatics (Oxford, England) 23, 1846–1847. https:// 
doi.org/10.1093/bioinformatics/btm254. 

Devarajan, K., 2008. Nonnegative Matrix Factorization: An Analytical and Interpretive 
Tool in Computational Biology. PLoS Comput. Biol. 4, e1000029 https://doi.org/ 
10.1371/journal.pcbi.1000029. 

Dirks, P.B., 2008. Brain tumour stem cells: the undercurrents of human brain cancer and 
their relationship to neural stem cells. Philosophical Trans. Roy. Soc. B: Biol. Sci. 
363, 139–152. 

Dudoit, S., Shaffer, J.P., Boldrick, J.C., 2003. Multiple hypothesis testing in microarray 
experiments. Statistical Sci. 71–103. 

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., Huber, W., 
2005. BioMart and Bioconductor: a powerful link between biological databases and 
microarray data analysis. Bioinformatics 21, 3439–3440. 

Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., 1998. Cluster analysis and display 
of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868. 

Esposito, F., Boccarelli, A., Del Buono, N., 2020. An NMF-Based Methodology for 
Selecting Biomarkers in the Landscape of Genes of Heterogeneous Cancer-Associated 
Fibroblast Populations. Bioinf. Biol. Insights 14. https://doi.org/10.1177/ 
1177932220906827. 

Forster, J.A., Paul, A.B., Harnden, P., Knowles, M.A., 2011. Expression of NRG1 and its 
receptors in human bladder cancer. Br. J. Cancer 104, 1135–1143. https://doi.org/ 
10.1038/bjc.2011.39. 
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