RESEARCH ARTICLE

On application of matrix summability to Fourier series

Sebnem Yildiz

Department of Mathematics, Ahi Evran University, Kırşehir, Turkey

Correspondence

Şebnem Yildiz, Department of Mathematics, Ahi Evran University, Kırşehir, Turkey. Email: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

Communicated by: T. Qian

MOS Classification: 26D15; 42A24; 40F05; 40G99

Bor has recently obtained a main theorem dealing with absolute weighted mean summability of Fourier series. In this paper, we generalized that theorem for $|A, \theta_n|_k$ summability method. Also, some new and known results are obtained dealing with some basic summability methods.

KEYWORDS

absolute matrix summability, infinite series, Fourier series, Hölder inequality, Minkowski inequality, summability factors

1 | INTRODUCTION

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . By u_n^{α} and t_n^{α} , we denote the nth Cesàro means of order α , with $\alpha > -1$, of the sequence (s_n) and (na_n) , respectively, that is,¹

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} s_{\nu} \quad \text{and} \quad t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} \nu a_{\nu}, \tag{1}$$

where

$$A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)...(\alpha+n)}{n!} = O(n^{\alpha}), \qquad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0.$$
(2)

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \ge 1$, if^{2,3}

$$\sum_{n=1}^{\infty} n^{k-1} |u_n^{\alpha} - u_{n-1}^{\alpha}|^k = \sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}|^k < \infty.$$
(3)

If we take $\alpha = 1$, then $|C, \alpha|_k$ summability reduces to $|C, 1|_k$ summability.Let (p_n) be a sequence of positive real numbers such that

$$P_{n} = \sum_{\nu=0}^{n} p_{\nu} \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$
(4)

The sequence-to-sequence transformation

$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}, \quad P_n \neq 0,$$
 (5)

defines the sequence (t_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) (see Hardy⁴).

The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \ge 1$, if⁵

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty.$$
(6)

665

Wher

In the special case, when $p_n = 1$ for all values of n (resp. k = 1), $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (resp. $|\bar{N}, p_n|$) summability.

1.1 | An application of absolute matrix summability to Fourier series

For any sequence (λ_n) , we write that

$$\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$$
 and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

A sequence (λ_n) is said to be of bounded variation, denoted by $(\lambda_n) \in \mathcal{BV}$, if

$$\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty.$$

Let *f* be a periodic function with period 2π and integrable (*L*) over $(-\pi, \pi)$. Without any loss of generality the constant term in the Fourier series of *f* can be taken to be 0, so that

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} C_n(t),$$
(7)

where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt.$$

We write

$$\phi(t) = \frac{1}{2} \left\{ f(x+t) + f(x-t) \right\},\tag{8}$$

$$\phi_{\alpha}(t) = \frac{\alpha}{t^{\alpha}} \int_{0}^{t} (t-u)^{\alpha-1} \phi(u) \, du, \quad (\alpha > 0).$$
(9)

It is well known that if $\phi(t) \in \mathcal{BV}(0, \pi)$, then $t_n(x) = O(1)$, where $t_n(x)$ is the (C, 1) mean of the sequence $(nC_n(x))$. ⁶Given a normal matrix $A = (a_{nv})$, we associate 2 lower semimatrices $\overline{A} = (\overline{a}_{nv})$ and $\widehat{A} = (\widehat{a}_{nv})$ as follows:

$$\bar{a}_{n\nu} = \sum_{i=\nu}^{n} a_{ni}, \quad n, \nu = 0, 1, \dots \quad \bar{\Delta}a_{n\nu} = a_{n\nu} - a_{n-1}, \nu \quad a_{-1,0} = 0$$
⁽¹⁰⁾

and

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{n\nu} = \bar{\Delta}\bar{a}_{n\nu} = \bar{a}_{n\nu} - \bar{a}_{n-1,\nu}, \quad n = 1, 2, \dots$$
 (11)

It may be noted that \overline{A} and \widehat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$A_n(s) = \sum_{\nu=0}^n a_{n\nu} s_{\nu} = \sum_{\nu=0}^n \bar{a}_{n\nu} a_{\nu}$$
(12)

and

$$\bar{\Delta}A_n(s) = \sum_{\nu=0}^n \hat{a}_{n\nu} a_\nu.$$
(13)

Let $A = (a_{nv})$ be a normal matrix, ie, a lower triangular matrix of nonzero diagonal entries. Then, A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{\nu=0}^n a_{n\nu} s_{\nu}, \quad n = 0, 1, \dots .$$
 (14)

Let (θ_n) be any sequence of positive real numbers. The series $\sum a_n$ is said to be summable $|A, \theta_n|_k, k \ge 1$, if⁷

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \left| \bar{\Delta} A_n(s) \right|^k < \infty, \tag{15}$$

where

$$\bar{\Delta}A_n(s) = A_n(s) - A_{n-1}(s). \tag{16}$$

If we take $\theta_n = \frac{p_n}{p_n}$, then $|A, \theta_n|_k$ summability, then we have $|A, p_n|_k$ summability,⁸ and if we take $\theta_n = n$, then we have $|A|_k$ summability.⁹ And also, if we take $\theta_n = \frac{p_n}{p_n}$ and $a_{nv} = \frac{p_v}{P_n}$, then we have $|\bar{N}, p_n|_k$ summability. Furthermore, if we take $\theta_n = n$, $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n, then $|A, \theta_n|_k$ summability reduces to $|C, 1|_k$ summability.² Finally, if we take $\theta_n = n$ and $a_{nv} = \frac{p_v}{P_n}$, then we obtain $|R, p_n|_k$ summability.¹⁰

2 | THE KNOWN RESULTS

Recently, many papers have been done for absolute summability factors of infinite series and Fourier series.¹¹⁻¹³ Bor¹¹ has proved the following theorem dealing with the Fourier series.

Theorem 2.1. Let (p_n) be a sequence of positive numbers such that

$$P_n = O(np_n) \quad \text{as} \quad n \to \infty. \tag{17}$$

If $\phi_1(t) \in \mathcal{BV}(0, \pi)$, (X_n) is a positive monotonic nondecreasing sequence, the sequences (X_n) , (λ_n) satisfy the following conditions and

$$\lambda_m X_m = O(1) \quad as \quad m \to \infty, \tag{18}$$

$$\sum_{n=1}^{m} nX_n |\Delta^2 \lambda_n| = O(1) \quad as \quad m \to \infty,$$
(19)

$$\sum_{n=1}^{m} \frac{p_n}{P_n} \frac{|t_n(x)|^k}{X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$
(20)

then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

3 | THE MAIN RESULT

The aim of this paper is to generalize Theorem 2.1 for $|A, \theta_n|_k$ summability method for Fourier series in the following form.

Theorem 3.1. Let $k \ge 1$ and $A = (a_{nv})$ be a positive normal matrix such that

$$\overline{a}_{no} = 1, \quad n = 0, 1, \dots,$$
 (21)

YILDIZ

WILEY <u>667</u>

 $a_{n-1,\nu} \ge a_{n\nu}, \quad for \qquad n \ge \nu + 1,$ (22)

$$\hat{a}_{n,\nu+1} = O(\nu |\bar{\Delta}a_{n\nu}|). \tag{23}$$

Let $(\theta_n a_{nn})$ be a nonincreasing sequence. If the conditions (17) to (19) in Theorem 2.1 and (θ_n) holds for the following condition,

$$\sum_{n=1}^{m} (\theta_n a_{nn})^{k-1} a_{nn} \frac{|t_n(x)|^k}{X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty$$
(24)

are satisfied, then the series $\sum C_n(x)\lambda_n$ is summable $|A, \theta_n|_k, k \ge 1$.

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.1. From the conditions (21) and (22) in Theorem 3.1, we have 14

$$\sum_{\nu=0}^{n-1} |\bar{\Delta}a_{n\nu}| = a_{nn},$$
(25)

$$\hat{a}_{n,\nu+1} \ge 0,\tag{26}$$

$$\sum_{n=\nu+1}^{m+1} \hat{a}_{n,\nu+1} = O(1).$$
(27)

Lemma 3.2. Under the conditions (18) and (19) in Theorem 2.1, we have the following¹⁵:

$$nX_n|\Delta\lambda_n| = O(1) \quad as \quad n \to \infty, \tag{28}$$

$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty.$$
⁽²⁹⁾

Proof of Theorem. Let $(I_n(x))$ denotes the A transform of the series $\sum_{n=1}^{\infty} C_n(x)\lambda_n$. Then, by (10) and (11), we have

$$\bar{\Delta}I_n(x) = \sum_{\nu=1}^n \hat{a}_{n\nu} C_\nu(x) \lambda_\nu.$$

Applying Abel transformation to this sum, we have that

$$\begin{split} \bar{\Delta}I_n(x) &= \sum_{\nu=1}^n \hat{a}_{n\nu} C_\nu(x) \lambda_\nu \frac{\nu}{\nu} = \sum_{\nu=1}^{n-1} \Delta \left(\frac{\hat{a}_{n\nu} \lambda_\nu}{\nu}\right) \sum_{r=1}^{\nu} r C_r(x) + \frac{\hat{a}_{nn} \lambda_n}{n} \sum_{r=1}^n r C_r(x) \\ &= \sum_{\nu=1}^{n-1} \Delta \left(\frac{\hat{a}_{n\nu} \lambda_\nu}{\nu}\right) (\nu+1) t_\nu(x) + \hat{a}_{nn} \lambda_n \frac{n+1}{n} t_n(x) \\ &= \sum_{\nu=1}^{n-1} \bar{\Delta}a_{n\nu} \lambda_\nu t_\nu(x) \frac{\nu+1}{\nu} + \sum_{\nu=1}^{n-1} \hat{a}_{n,\nu+1} \Delta \lambda_\nu t_\nu(x) \frac{\nu+1}{\nu} + \sum_{\nu=1}^{n-1} \hat{a}_{n,\nu+1} \lambda_{\nu+1} \frac{t_\nu(x)}{\nu} + a_{nn} \lambda_n t_n(x) \frac{n+1}{n} \\ &= I_{n,1}(x) + I_{n,2}(x) + I_{n,3}(x) + I_{n,4}(x). \end{split}$$

To complete the proof of Theorem 3.1, by Minkowski inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |I_{n,r}(x)|^k < \infty, \quad \text{for} \quad r = 1, 2, 3, 4.$$
(30)

First, by applying Hölder inequality with indices *k* and *k'*, where k > 1 and $\frac{1}{k} + \frac{1}{k'} = 1$, we have that

$$\begin{split} &\sum_{n=2}^{m+1} \theta_n^{k-1} |I_{n,1}(x)|^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{\nu=1}^{n-1} \left| \frac{\nu+1}{\nu} \right| \left| \bar{\Delta}a_{n\nu} \right| \left| \lambda_{\nu} \right| |t_{\nu}(x)| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \sum_{\nu=1}^{n-1} \left| \bar{\Delta}a_{n\nu} \right| \left| \lambda_{\nu} \right|^k |t_{\nu}(x)|^k \times \left\{ \sum_{\nu=1}^{n-1} \left| \bar{\Delta}a_{n\nu} \right| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} (\theta_n a_{nn})^{k-1} \left\{ \sum_{\nu=1}^{n-1} \left| \bar{\Delta}a_{n\nu} \right| \left| \lambda_{\nu} \right|^k |t_{\nu}(x)|^k \right\} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{n\nu})^{k-1} \left\{ \sum_{\nu=1}^{n-1} |\bar{\Delta}a_{n\nu}| \left| \lambda_{\nu} \right|^k |t_{\nu}(x)|^k \right\} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta |\lambda_{\nu}| \sum_{r=1}^{\nu} (\theta_{r} a_{rr})^{k-1} a_{rr} \frac{|t_{r}(x)|^k}{X_{r}^{k-1}} + O(1) |\lambda_{m}| \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} \frac{|t_{\nu}(x)|^k}{X_{\nu}^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta \lambda_{\nu}| X_{\nu} + O(1) |\lambda_{m}| X_{m} \\ &= O(1) \text{ as } m \to \infty \end{split}$$

by virtue of the hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. Now, using Hölder inequality, we have that

$$\begin{split} &\sum_{n=2}^{m+1} \theta_n^{k-1} |I_{n,2}(x)|^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{\nu=1}^{n-1} |\frac{\nu+1}{\nu}| |\hat{\mathbf{a}}_{n,\nu+1}| |\Delta \lambda_{\nu}| |t_{\nu}(x)| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{\nu=1}^{n-1} \hat{\mathbf{a}}_{n,\nu+1} |\Delta \lambda_{\nu}| |t_{\nu}(x)| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \sum_{\nu=1}^{n-1} (\nu |\Delta \lambda_{\nu}|)^k |\bar{\Delta} a_{n\nu}| |t_{\nu}(x)|^k \times \left\{ \sum_{\nu=1}^{n-1} |\bar{\Delta} a_{n\nu}| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} (\theta_n a_{nn})^{k-1} \sum_{\nu=1}^{n-1} (\nu |\Delta \lambda_{\nu}|)^k |\bar{\Delta} a_{n\nu}| |t_{\nu}(x)|^k \\ &= O(1) \sum_{n=2}^{m} (\theta_n a_{nn})^{k-1} \sum_{\nu=1}^{n-1} (\nu |\Delta \lambda_{\nu}|)^k |\bar{\Delta} a_{n\nu}| |t_{\nu}(x)|^k \\ &= O(1) \sum_{\nu=1}^{m} (\nu |\Delta \lambda_{\nu}|)^{k-1} (\nu |\Delta \lambda_{\nu}|) |t_{\nu}(x)|^k \sum_{n=\nu+1}^{m+1} (\theta_n a_{nn})^{k-1} |\bar{\Delta} a_{n\nu}| \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} \frac{1}{X_{\nu}^{k-1}} |t_{\nu}(x)|^k (\nu |\Delta \lambda_{\nu}|) \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta (\nu |\Delta \lambda_{\nu}|) \sum_{\nu=1}^{\nu} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{n\nu} \frac{1}{X_{\nu}^{k-1}} |t_{\nu}(x)|^k + O(1)m |\Delta \lambda_m| \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} \frac{1}{X_{\nu}^{k-1}} |t_{\nu}(x)|^k \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta (\nu |\Delta \lambda_{\nu}|)| X_{\nu} + O(1)m |\Delta \lambda_m| X_m \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta (\nu |\Delta \lambda_{\nu}|)| X_{\nu} + O(1) \sum_{\nu=1}^{m-1} X_{\nu} |\Delta \lambda_{\nu}| + O(1)m |\Delta \lambda_m| X_m \\ &= O(1) \sum_{\nu=1}^{m-1} \nu X_{\nu} |\Delta^2 \lambda_{\nu}| + O(1) \sum_{\nu=1}^{m-1} X_{\nu} |\Delta \lambda_{\nu}| + O(1)m |\Delta \lambda_m| X_m \\ &= O(1) as \quad m \to \infty \end{split}$$

by virtue of the hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. Again, as in $I_{n,1}$, we have that

WILFY 669

$$\begin{split} &\sum_{n=2}^{m+1} \theta_n^{k-1} |I_{n,3}(x)|^k = \sum_{n=2}^{m+1} \theta_n^{k-1} \left| \sum_{\nu=1}^{n-1} \hat{a}_{n,\nu+1} \lambda_{\nu+1} \frac{t_{\nu}(x)}{\nu} \right|^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{\nu=1}^{n-1} \hat{a}_{n,\nu+1} |\lambda_{\nu+1}| \frac{|t_{\nu}(x)|}{\nu} \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{\nu=1}^{n-1} |\bar{\Delta}a_{n\nu}| |\lambda_{\nu+1}| |t_{\nu}(x)| \right\}^k = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \sum_{\nu=1}^{n-1} |\bar{\Delta}a_{n\nu}| |\lambda_{\nu+1}|^k |t_{\nu}(x)|^k \times \left\{ \sum_{\nu=1}^{n-1} |\bar{\Delta}a_{n\nu}| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} (\theta_n a_{nn})^{k-1} \sum_{\nu=1}^{n-1} |\bar{\Delta}a_{n\nu}| |\lambda_{\nu+1}|^k |t_{\nu}(x)|^k = O(1) \sum_{\nu=1}^{m} |\lambda_{\nu+1}|^k |t_{\nu}(x)|^k \sum_{n=\nu+1}^{m+1} (\theta_n a_{nn})^{k-1} |\bar{\Delta}a_{n\nu}| \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}(x)|^k |\lambda_{\nu+1}|^{k-1} |\lambda_{\nu+1}| = O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} \frac{1}{X_{\nu}^{k-1}} |\lambda_{\nu+1}| |t_{\nu}(x)|^k a_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^{m} (\theta_{\nu} a_{\nu\nu})^{k-1} a_{\nu\nu} |t_{\nu}|^k |\lambda_{\nu+1}|^k |t_{\nu}|^k |t_{\nu}|^$$

by virtue of the hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. Finally, as in $I_{n,1}$, we have that

$$\sum_{n=1}^{m} \theta_n^{k-1} |I_{n,4}(x)|^k = O(1) \sum_{n=1}^{m} \theta_n^{k-1} a_{nn}^k |\lambda_n|^k |t_n(x)|^k = O(1) \sum_{n=1}^{m} \theta_n^{k-1} a_{nn}^{k-1} a_{nn} |\lambda_n|^{k-1} |\lambda_n| |t_n(x)|^k$$
$$= O(1) \sum_{n=1}^{m} (\theta_n a_{nn})^{k-1} a_{nn} \frac{1}{X_n^{k-1}} |\lambda_n| |t_n(x)|^k = O(1) \quad \text{as} \quad m \to \infty$$

by virtue of hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. This completes the proof of Theorem 3.1.

| APPLICATIONS 4

We can apply Theorem 3.1 to weighted mean $A = (a_{nv})$ is defined as $a_{nv} = \frac{p_v}{P_v}$ when $0 \le v \le n$, where $P_n = p_0 + p_1 + ... + p_n$. We have that

$$\bar{a}_{n\nu} = \frac{P_n - P_{\nu-1}}{P_n}$$
 and $\hat{a}_{n,\nu+1} = \frac{(p_n P_{\nu})}{(P_n P_{n-1})}$

The following results can be easily verified.

- 1. If we take $\theta_n = \frac{P_n}{p_n}$ in Theorem 3.1, then we have a result dealing with $|A, p_n|_k$ summability.¹⁶

- 2. If we take $\theta_n = n$ in Theorem 3.1, then we have a result dealing with $|A|_k$ summability. 3. If we take $\theta_n = \frac{p_n}{p_n}$ and $a_{nv} = \frac{p_v}{p_n}$ in Theorem 3.1, then we have Theorem 2.1. 4. If we take $\theta_n = n$, $a_{nv} = \frac{p_v}{p_n}$ and $p_n = 1$ for all values of *n* in Theorem 3.1, then we have a new result concerning $|C,1|_k$ summability.
- 5. If we take $\theta_n = n$ and $a_{n\nu} = \frac{p_{\nu}}{P_n}$ in Theorem 3.1, then we get $|R, p_n|_k$ summability.

ORCID

Sebnem Yildiz http://orcid.org/0000-0003-3763-0308

REFERENCES

- 1. Cesàro E. Sur la multiplication des sèries. Bull Sci Math. 1890;14:114-120.
- 2. Flett TM. On an extension of absolute summability and some theorems of Littlewood and Paley. Proc Lond Math Soc. 1957;7:113-141.
- 3. Kogbetliantz E. Sur lès series absolument sommables par la methode des moyennes arithmetiques. Bull Sci Math. 1925;49:234-256.
- 4. Hardy GH. Divergent Series. Oxford: Clerandon Press; 1949.
- 5. Bor H. On two summability methods. Math Proc Cambridge Philos Soc. 1985;97:147-149.
- 6. Chen KK. Functions of bounded variation and the cesaro means of Fourier series. Acad Sin Sci Record. 1945;1:283-289.
- 7. Sarıgöl MA. On the local properties of factored Fourier series. Appl Math Comp. 2010;216:3386-3390.
- 8. Sulaiman WT. Inclusion theorems for absolute matrix summability methods of an infinite series. IV Indian J Pure Appl Math. 2003;34(11):1547-1557.

⁶⁷⁰ WILEY

- 9. Tanovič-Miller N. On strong summability. *Glas Mat Ser III*. 1979;14(34):87-97.
- 10. Bor H. On the relative strength of two absolute summability methods. Proc Amer Math Soc. 1991;113:1009-1012.
- 11. Bor H. On absolute weighted mean summability of infinite series and Fourier series. Filomat. 2016;30:2803-2807.
- 12. Bor H. Some new results on absolute Riesz summability of infinite series and Fourier series. Positivity. 2016;20:599-605.
- 13. Bor H. An application of power increasing sequences to infinite series and Fourier series. Filomat. 2017;31:1543-1547.
- 14. Sulaiman WT. Some new factor theorem for absolute summability. Demonstr Math XLVI. 2013;1:149-156.
- 15. Bor H. Quasi-monotone and almost increasing sequences and their new applications. Abstr Appl Anal. 2012; Art. ID. 793548: 6PP.
- 16. Yıldız Ş. A new theorem on absolute matrix summability of Fourier series. Pub Inst Math. 2017. (Beograd) (N.S.) (in press).

How to cite this article: Yildiz S. On application of matrix summability to Fourier series. *Math Meth Appl Sci.* 2018;41:664–670. https://doi.org/10.1002/mma.4635