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Bor has recently obtained a main theorem dealing with absolute weighted mean
summability of Fourier series. In this paper, we generalized that theorem for|A, 𝜃n|k summability method. Also, some new and known results are obtained
dealing with some basic summability methods.
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1 INTRODUCTION

Let
∑

an be a given infinite series with partial sums (sn). By u𝛼
n and t𝛼n, we denote the nth Cesàro means of order 𝛼, with

𝛼 > −1, of the sequence (sn) and (nan), respectively, that is,1

u𝛼
n = 1

A𝛼
n

n∑
v=0

A𝛼−1
n−v sv and t𝛼n = 1

A𝛼
n

n∑
v=0

A𝛼−1
n−v vav, (1)

where

A𝛼
n = (𝛼 + 1)(𝛼 + 2)...(𝛼 + n)

n!
= O(n𝛼), A𝛼

−n = 0 for n > 0. (2)

The series
∑

an is said to be summable |C, 𝛼|k, k ≥ 1, if2,3

∞∑
n=1

nk−1|u𝛼
n − u𝛼

n−1|k =
∞∑

n=1

1
n
|t𝛼n|k < ∞. (3)

If we take 𝛼 = 1, then |C, 𝛼|k summability reduces to |C, 1|k summability.Let (pn) be a sequence of positive real numbers
such that

Pn =
n∑

v=0
pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (4)

The sequence-to-sequence transformation

tn = 1
Pn

n∑
v=0

pvsv, Pn ≠ 0, (5)
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defines the sequence (tn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn) generated by the sequence of
coefficients (pn) (see Hardy4).

The series
∑

an is said to be summable |N̄, pn|k, k ≥ 1, if5

∞∑
n=1

(
Pn

pn

)k−1|tn − tn−1|k < ∞. (6)

In the special case, when pn = 1 for all values of n (resp. k = 1), |N̄, pn|k summability is the same as |C, 1|k (resp. |N̄, pn|)
summability.

1.1 An application of absolute matrix summability to Fourier series
For any sequence (𝜆n), we write that

Δ2𝜆n = Δ𝜆n − Δ𝜆n+1 and Δ𝜆n = 𝜆n − 𝜆n+1.

A sequence (𝜆n) is said to be of bounded variation, denoted by (𝜆n) ∈  , if

∞∑
n=1

|Δ𝜆n| < ∞.

Let f be a periodic function with period 2𝜋 and integrable (L) over (−𝜋, 𝜋). Without any loss of generality the constant
term in the Fourier series of f can be taken to be 0, so that

f (t) ∼
∞∑

n=1
(an cos nt + bn sin nt) =

∞∑
n=1

Cn(t), (7)

where

a0 = 1
𝜋 ∫

𝜋

−𝜋
f (t)dt, an = 1

𝜋 ∫
𝜋

−𝜋
f (t) cos(nt)dt, bn = 1

𝜋 ∫
𝜋

−𝜋
f (t) sin(nt)dt.

We write

𝜙(t) = 1
2
{f (x + t) + f (x − t)} , (8)

𝜙𝛼(t) =
𝛼

t𝛼 ∫
t

0
(t − u)𝛼−1𝜙(u) du, (𝛼 > 0). (9)

It is well known that if 𝜙(t) ∈ (0, 𝜋), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence (nCn(x)). 6Given
a normal matrix A = (anv), we associate 2 lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =
n∑

i=v
ani, n, v = 0, 1, ... Δ̄anv = anv − an−1, v a−1,0 = 0 (10)

and

â00 = ā00 = a00, ânv = Δ̄ānv = ānv − ān−1,v, n = 1, 2, … . (11)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series transformations,
respectively. Then, we have

An(s) =
n∑

v=0
anvsv =

n∑
v=0

ānvav (12)
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and

Δ̄An(s) =
n∑

v=0
ânvav. (13)

Let A = (anv) be a normal matrix, ie, a lower triangular matrix of nonzero diagonal entries. Then, A defines the
sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑

v=0
anvsv, n = 0, 1, … . (14)

Let (𝜃n) be any sequence of positive real numbers. The series
∑

an is said to be summable |A, 𝜃n|k, k ≥ 1, if7

∞∑
n=1

𝜃k−1
n ||Δ̄An(s)||k < ∞, (15)

where

Δ̄An(s) = An(s) − An−1(s). (16)

If we take 𝜃n = Pn
pn

, then |A, 𝜃n|k summability, then we have |A, pn|k summability,8 and if we take 𝜃n = n, then we have|A|k summability.9 And also, if we take 𝜃n = Pn
pn

and anv =
pv
Pn

, then we have |N̄, pn|k summability. Furthermore, if we take
𝜃n = n, anv = pv

Pn
and pn = 1 for all values of n, then |A, 𝜃n|k summability reduces to |C, 1|k summability.2 Finally, if we

take 𝜃n = n and anv =
pv
Pn

, then we obtain |R, pn|k summability.10

2 THE KNOWN RESULTS

Recently, many papers have been done for absolute summability factors of infinite series and Fourier series.11-13 Bor11 has
proved the following theorem dealing with the Fourier series.

Theorem 2.1. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n → ∞. (17)

If 𝜙1(t) ∈ (0, 𝜋), (Xn) is a positive monotonic nondecreasing sequence, the sequences (Xn), (𝜆n) satisfy the following
conditions and

𝜆mXm = O(1) as m → ∞, (18)

m∑
n=1

nXn|Δ2𝜆n| = O(1) as m → ∞, (19)

m∑
n=1

pn

Pn

|tn(x)|k
Xk−1

n
= O(Xm) as m → ∞, (20)

then the series
∑

Cn(x)𝜆n is summable |N̄, pn|k, k ≥ 1.

3 THE MAIN RESULT

The aim of this paper is to generalize Theorem 2.1 for |A, 𝜃n|k summability method for Fourier series in the following form.

Theorem 3.1. Let k ≥ 1 and A = (anv) be a positive normal matrix such that

ano = 1, n = 0, 1, … , (21)
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an−1,v ≥ anv, for n ≥ v + 1, (22)

ân,v+1 = O(v|Δ̄anv|). (23)

Let (𝜃nann) be a nonincreasing sequence. If the conditions (17) to (19) in Theorem 2.1 and (𝜃n) holds for the following
condition,

m∑
n=1

(𝜃nann)k−1ann
|tn(x)|k

Xk−1
n

= O(Xm) as m → ∞ (24)

are satisfied, then the series
∑

Cn(x)𝜆n is summable |A, 𝜃n|k, k ≥ 1.

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.1. From the conditions (21) and (22) in Theorem 3.1, we have14

n−1∑
v=0

|Δ̄anv| = ann, (25)

ân,v+1 ≥ 0, (26)

m+1∑
n=v+1

ân,v+1 = O(1). (27)

Lemma 3.2. Under the conditions (18) and (19) in Theorem 2.1, we have the following15:

nXn|Δ𝜆n| = O(1) as n → ∞, (28)

∞∑
n=1

Xn|Δ𝜆n| < ∞. (29)

Proof of Theorem. Let (In(x)) denotes the A transform of the series
∑∞

n=1 Cn(x)𝜆n. Then, by (10) and (11), we have

Δ̄In(x) =
n∑

v=1
ânvCv(x)𝜆v.

Applying Abel transformation to this sum, we have that

Δ̄In(x) =
n∑

v=1
ânvCv(x)𝜆v

v
v
=

n−1∑
v=1

Δ
(

ânv𝜆v

v

) v∑
r=1

rCr(x) +
ânn𝜆n

n

n∑
r=1

rCr(x)

=
n−1∑
v=1

Δ
(

ânv𝜆v

v

)
(v + 1)tv(x) + ânn𝜆n

n + 1
n

tn(x)

=
n−1∑
v=1

Δ̄anv𝜆vtv(x)
v + 1

v
+

n−1∑
v=1

ân,v+1Δ𝜆vtv(x)
v + 1

v
+

n−1∑
v=1

ân,v+1𝜆v+1
tv(x)

v
+ ann𝜆ntn(x)

n + 1
n

= In,1(x) + In,2(x) + In,3(x) + In,4(x).

To complete the proof of Theorem 3.1, by Minkowski inequality, it is sufficient to show that

∞∑
n=1

𝜃k−1
n |In,r(x)|k < ∞, for r = 1, 2, 3, 4. (30)
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First, by applying Hölder inequality with indices k and k′, where k > 1 and 1
k
+ 1

k′ = 1, we have that

m+1∑
n=2

𝜃k−1
n |In,1(x)|k ≤

m+1∑
n=2

𝜃k−1
n

{n−1∑
v=1

|v + 1
v

| ||Δ̄anv|| |𝜆v||tv(x)|
}k

= O(1)
m+1∑
n=2

𝜃k−1
n

n−1∑
v=1

||Δ̄anv|| |𝜆v|k|tv(x)|k ×
{n−1∑

v=1

||Δ̄anv||
}k−1

= O(1)
m+1∑
n=2

(𝜃nann)k−1

{n−1∑
v=1

|Δ̄anv||𝜆v|k|tv(x)|k
}

= O(1)
m∑

v=1
|𝜆v|k−1|𝜆v||tv(x)|k m+1∑

n=v+1
(𝜃nann)k−1|Δ̄anv|

= O(1)
m∑

v=1
(𝜃vavv)k−1 1

Xk−1
v

|𝜆v||tv(x)|kavv

= O(1)
m−1∑
v=1

Δ|𝜆v| v∑
r=1

(𝜃rarr)k−1arr
|tr(x)|k
Xk−1

r
+ O(1)|𝜆m| m∑

v=1
(𝜃vavv)k−1avv

|tv(x)|k
Xk−1

v

= O(1)
m−1∑
v=1

|Δ𝜆v|Xv + O(1)|𝜆m|Xm

= O(1) as m → ∞

by virtue of the hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. Now, using Hölder inequality, we have that

m+1∑
n=2

𝜃k−1
n |In,2(x)|k ≤

m+1∑
n=2

𝜃k−1
n

{n−1∑
v=1

|v + 1
v

||ân,v+1||Δ𝜆v||tv(x)|
}k

= O(1)
m+1∑
n=2

𝜃k−1
n

{n−1∑
v=1

ân,v+1|Δ𝜆v||tv(x)|
}k

= O(1)
m+1∑
n=2

𝜃k−1
n

n−1∑
v=1

(v|Δ𝜆v|)k|Δ̄anv||tv(x)|k ×
{n−1∑

v=1

||Δ̄anv||
}k−1

= O(1)
m+1∑
n=2

(𝜃nann)k−1
n−1∑
v=1

(v|Δ𝜆v|)k|Δ̄anv||tv(x)|k
= O(1)

m∑
v=1

(v|Δ𝜆v|)k−1(v|Δ𝜆v|)|tv(x)|k m+1∑
n=v+1

(𝜃nann)k−1|Δ̄anv|
= O(1)

m∑
v=1

(𝜃vavv)k−1avv
1

Xk−1
v

|tv(x)|k(v|Δ𝜆v|)
= O(1)

m−1∑
v=1

Δ(v|Δ𝜆v|) v∑
r=1

(𝜃rarr)k−1arr
1

Xk−1
r

|tr(x)|k + O(1)m|Δ𝜆m| m∑
v=1

(𝜃vavv)k−1avv
1

Xk−1
v

|tv(x)|k
= O(1)

m−1∑
v=1

|Δ(v|Δ𝜆v|)|Xv + O(1)m|Δ𝜆m|Xm

= O(1)
m−1∑
v=1

vXv|Δ2𝜆v| + O(1)
m−1∑
v=1

Xv|Δ𝜆v| + O(1)m|Δ𝜆m|Xm

= O(1) as m → ∞
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by virtue of the hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. Again, as in In,1, we have that

m+1∑
n=2

𝜃k−1
n |In,3(x)|k =

m+1∑
n=2

𝜃k−1
n

||||||
n−1∑
v=1

ân,v+1𝜆v+1
tv(x)

v

||||||
k

≤
m+1∑
n=2

𝜃k−1
n

{n−1∑
v=1

ân,v+1|𝜆v+1| |tv(x)|
v

}k

= O(1)
m+1∑
n=2

𝜃k−1
n

{n−1∑
v=1

|Δ̄anv||𝜆v+1||tv(x)|
}k

= O(1)
m+1∑
n=2

𝜃k−1
n

n−1∑
v=1

|Δ̄anv||𝜆v+1|k|tv(x)|k ×
{n−1∑

v=1
|Δ̄anv|

}k−1

= O(1)
m+1∑
n=2

(𝜃nann)k−1
n−1∑
v=1

|Δ̄anv||𝜆v+1|k|tv(x)|k = O(1)
m∑

v=1
|𝜆v+1|k|tv(x)|k m+1∑

n=v+1
(𝜃nann)k−1|Δ̄anv|

= O(1)
m∑

v=1
(𝜃vavv)k−1avv|tv(x)|k|𝜆v+1|k−1|𝜆v+1| = O(1)

m∑
v=1

(𝜃vavv)k−1 1
Xk−1

v
|𝜆v+1||tv(x)|kavv

= O(1) as m → ∞

by virtue of the hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. Finally, as in In,1, we have that
m∑

n=1
𝜃k−1

n |In,4(x)|k = O(1)
m∑

n=1
𝜃k−1

n ak
nn|𝜆n|k|tn(x)|k = O(1)

m∑
n=1

𝜃k−1
n ak−1

nn ann|𝜆n|k−1|𝜆n||tn(x)|k
= O(1)

m∑
n=1

(𝜃nann)k−1ann
1

Xk−1
n

|𝜆n||tn(x)|k = O(1) as m → ∞

by virtue of hypotheses of Theorem 3.1, Lemma 3.1, and Lemma 3.2. This completes the proof of Theorem 3.1.

4 APPLICATIONS

We can apply Theorem 3.1 to weighted mean A = (anv) is defined as anv =
pv
Pn

when 0 ≤ v ≤ n, where Pn = p0+p1+ ...+pn.

We have that
ānv =

Pn − Pv−1

Pn
and ân,v+1 =

(pnPv)
(PnPn−1)

The following results can be easily verified.

1. If we take 𝜃n = Pn
pn

in Theorem 3.1, then we have a result dealing with |A, pn|k summability.16

2. If we take 𝜃n = n in Theorem 3.1, then we have a result dealing with |A|k summability.
3. If we take 𝜃n = Pn

pn
and anv =

pv
Pn

in Theorem 3.1, then we have Theorem 2.1.
4. If we take 𝜃n = n, anv = pv

Pn
and pn = 1 for all values of n in Theorem 3.1, then we have a new result concerning|C, 1|k summability.

5. If we take 𝜃n = n and anv =
pv
Pn

in Theorem 3.1, then we get |R, pn|k summability.
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