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A RECENT EXTENSION OF THE WEIGHTED MEAN
SUMMABILITY OF INFINITE SERIES

ŞEBNEM YILDIZ

Abstract. We obtain a new matrix generalization result dealing with
weighted mean summability of infinite series by using a new general class
of power increasing sequences obtained by Sulaiman [9]. This theorem also
includes some new and known results dealing with some basic summability
methods.
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1. Introduction

By (tn) we denote the nth (C, 1) mean of the sequence (nan). The series
∑
an

is said to be summable |C, 1|k, k ≥ 1, if (see [3])
∞∑

n=1

1

n
|tn|k <∞. (1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n→ ∞, (P−i = p−i = 0, i ≥ 1). (2)

The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv, (3)

defines the sequence (wn) of the weighted arithmetic mean or simply the
(
N̄ , pn

)
mean of the sequence (sn), generated by the sequence of coefficients (pn) (see
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[4]). A series
∑
an with partial sums (sn) is said to be summable |N̄ , pn|k, k ≥ 1,

if (see [2])
∞∑

n=1

(
Pn

pn

)k−1

|wn − wn−1|k <∞. (4)

If we take pn = 1 for all n, then |N̄ , pn|k summability is the same as |C, 1|k
summability.
A positive sequence (bn) is said to be almost increasing if there exists a positive
increasing sequence (cn) and two positive constants A and B such that Acn ≤
bn ≤ Bcn (see [1]). A positive sequence a = (an) is said to be a quasi-β-power
increasing if there exists a constant K = K(β, a) ≥ 1 such that

Knβan ≥ mβam (5)
holds for n ≥ m (see [5]). It should be noted that every almost increasing
sequence is a quasi-β-power increasing sequence for any nonnegative β, but the
converse need not be true as can be seen by taking an = n−β .
Let

∑
an be a given series with partial sums (sn). Let A = (anv) be a normal

matrix, i.e., a lower triangular matrix with nonzero diagonal entries. Then A
defines a sequence-to-sequence transformation, mapping of the sequence s = (sn)
to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (6)

A series
∑
an is said to be summable |A, pn|k, k ≥ 1, if (see [8])

∞∑
n=1

(
Pn

pn

)k−1

|An(s)−An−1(s)|k <∞. (7)

In the special case, if we take pn = 1 for all n, then |A, pn|k summability reduces
to |A|k summability (see [7]).
If we put anv = pv

Pn
, then |A, pn|k summability reduces to

∣∣N̄ , pn∣∣k summability.
If we take anv = pv

Pn
and pn = 1 for all n, then |A, pn|k summability reduces to

|C, 1|k summability.

2. Known Result

In [9], Sulaiman proved the following result dealing with |N̄ , pn|k summability.

Theorem 2.1 ([9]). If the sequence (Xn) is a quasi-β-power increasing sequence
0 < β < 1, (λn) is a sequence of constants both satisfying conditions

m∑
n=1

1

n
Pn = O(Pm), (8)

λn → 0 as n→ ∞, (9)
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∞∑
n=1

nXn(β)|∆|∆λn|| <∞, (10)

and
m∑

n=1

1

n(nβXn)k−1
|tn|k = O(mβXm), (11)

m∑
n=1

pn
Pn

1

(nβXn)k−1
|tn|k = O(mβXm). (12)

Then the series
∑∞

n=1 anλn is summable |N̄ , pn|k, k ≥ 1.

3. Main Result

The aim of this paper is to generalize Theorem 2.1 for |A, pn|k summability
method.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā =

(ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (13)

and
â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (14)

It is known that

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (15)

and

∆̄An(s) =

n∑
v=0

ânvav. (16)

Let ω be the class of all matrices A = (anv) satisfying
A is a positive normal matrix, (17)
ān0 = 1, n = 0, 1, ... (18)
an−1,v ≥ anv, n ≥ v + 1. (19)

Theorem 3.1. Let A ∈ ω satisfying

ann = O

(
pn
Pn

)
(20)

n−1∑
v=1

1

v
|ânv| = O(ann). (21)
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Let (Xn) be a quasi-β-power increasing sequence 0 < β < 1. If the sequences
(λn), and (Xn) satisfy all the conditions of Theorem 2.1, then the series

∞∑
n=1

anλn

is summable |A, pn|k, k ≥ 1.

The following lemmas are required to prove our theorem.

Lemma 3.2 ([9]). Let (Xn) be a quasi-β-power increasing sequence such that
the conditions (9) and (10) of Theorem 2.1 are satisfied. Then

nβ+1Xn|∆λn| = O(1) as n→ ∞, (22)
∞∑

n=1

nβXn|∆λn| <∞, (23)

nβXn|λn| = O(1) as n→ ∞, (24)

where Xn(β) = nβXn.

Lemma 3.3 ([6]). Let A ∈ ω and from the condition (13), (14), (18) and (19),
then

n−1∑
v=1

|∆v(ânv)| ≤ ann, (25)

m+1∑
n=v+1

|∆v(ânv)| ≤ avv, (26)

and
m+1∑

n=v+1

|ân,v+1| ≤ 1. (27)

Proof of Theorem 3.1

Proof. Let (Vn) denotes the A-transform of the series
∑
anλn. Then, by the

definition, we have that

∆̄Vn =

n∑
v=1

ânvavλv =

n∑
v=1

vavv
−1ânvλv.

Applying Abel’s transformation to this sum, we have that

∆̄Vn =

n−1∑
v=1

∆v

(
ânvλvv

−1
) v∑
r=1

rar + ânnλnn
−1

n∑
v=1

vav.

By the formula for the difference of products of sequences (see [4]) we have
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∆̄Vn

=

n−1∑
v=1

(v + 1)tv

(
1

v(v + 1)
ânvλv +

1

(v + 1)
∆v(ânv)λv +

1

(v + 1)
ân,v+1∆λv

)
+
n+ 1

n
annλntn

∆̄Vn =

n−1∑
v=1

ânvλvv
−1tv +

n−1∑
v=1

∆v(ânv)λvtv +

n−1∑
v=1

ân,v+1tv∆λv + annλntn
n+ 1

n

∆̄Vn = Vn,1 + Vn,2 + Vn,3 + Vn,4.

To complete the proof of Theorem 3.1, it is sufficient to show that
∞∑

n=1

(
Pn

pn

)k−1

| Vn,r |k<∞, for r = 1, 2, 3, 4. (28)

Firstly, using Hölder’s inequality, we have
m+1∑
n=2

(
Pn

pn

)k−1

| Vn,1 |k=
m+1∑
n=2

(
Pn

pn

)k−1
∣∣∣∣∣
n−1∑
v=1

ânvλvtvv
−1

∣∣∣∣∣
k

≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ânv||λv|k|tv|k
1

v

)
×

(
n−1∑
v=1

1

v
|ânv|

)k−1

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1

ak−1
nn

n−1∑
v=1

|ânv||λv|k|tv|k
1

v

= O(1)

m∑
v=1

1

v

|λv|(vβXv|λv|)k−1|tv|k

(vβXv)k−1

m+1∑
n=v+1

|ânv|

= O(1)

m∑
v=1

1

v

|λv||tv|k

(vβXv)k−1

= O(1)

m−1∑
v=1

(
v∑

r=1

1

r

|tr|k

(rβXr)k−1

)
∆|λv|+O(1)

(
m∑

v=1

1

v

|tv|k

(vβXv)k−1

)
|λm|

= O(1)

m−1∑
v=1

vβXv|∆λv|+O(1)mβXm|λm| = O(1) as m→ ∞,

by the hypotheses of the Theorem 3.1, Lemma 3.2, and Lemma 3.3. And using
Lemma 3.2, and Lemma 3.3. we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Vn,2 |k=
m+1∑
n=2

(
Pn

pn

)k−1
∣∣∣∣∣
n−1∑
v=1

∆v(ânv)λvtv

∣∣∣∣∣
k
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≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)

×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1

ak−1
nn

n−1∑
v=1

|∆v(ânv)||λv|k|tv|k

= O(1)

m∑
v=1

|λv|k|tv|k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

pv
Pv

|λv||tv|k
(vβXv|λv|)k−1

(vβXv)k−1

= O(1)

m−1∑
v=1

(
v∑

r=1

pr
Pr

|tr|k

(rβXr)k−1

)
∆|λv|+O(1)

(
m∑

v=1

pv
Pv

|tv|k

(vβXv)k−1

)
|λm|

= O(1)

m−1∑
v=1

vβXv|∆λv|+O(1)mβXm|λm|

= O(1) as m→ ∞,

by the hypotheses of the Theorem 3.1. Also, using Lemma 3.2, and Lemma 3.3.
we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Vn,3 |k=
m+1∑
n=2

(
Pn

pn

)k−1
∣∣∣∣∣
n−1∑
v=1

ân,v+1∆λvtv

∣∣∣∣∣
k

≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1||∆λv||tv|

)k

≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1|
|∆λv|

(vβXv)k−1
|tv|k

)
×

(
n−1∑
v=1

|ân,v+1|vβXv|∆λv|

)k−1

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1

ak−1
nn

(
n−1∑
v=1

|ân,v+1|
|∆λv|

(vβXv)k−1
|tv|k

)
×

(
n−1∑
v=1

vβXv|∆λv|

)k−1

= O(1)

m∑
v=1

|∆λv|
(vβXv)k−1

|tv|k
m+1∑

n=v+1

|ân,v+1|

= O(1)

m∑
v=1

v|∆λv|
(vβXv)k−1

|tv|k

v

= O(1)

m−1∑
v=1

(
v∑

r=1

1

r

|tr|k

(rβXr)k−1

)
∆(v|∆λv|) +O(1)

(
m∑

v=1

1

v

|tv|k

(vβXv)k−1

)
m|∆λm|
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= O(1)

m−1∑
v=1

vβXv∆(v|∆λv|) +O(1)mβ+1Xm|∆λm|

= O(1)

m−1∑
v=1

vβXv|∆λv|+O(1)

m−1∑
v=1

vβ+1Xv|∆|∆λv||+O(1)mβ+1Xm|∆λm|

= O(1) as m→ ∞,

by the hypotheses of the Theorem 3.1. Finally, we have
m∑

n=1

(
Pn

pn

)k−1

| Vn,4 |k= O(1)

m∑
n=1

(
Pn

pn

)k−1

aknn|λn|k|tn|k

= O(1)

m∑
n=1

pn
Pn

|tn|k

(nβXn)k−1
(nβXn|λn|)k−1|λn|

= O(1)

m∑
n=1

pn
Pn

|tn|k

(nβXn)k−1
|λn|

= O(1)

m−1∑
n=1

(
n∑

v=1

pv
Pv

|tv|k

(vβXv)k−1

)
∆|λn|+O(1)

(
m∑

n=1

pn
Pn

|tn|k

(nβXn)k−1

)
|λm|

= O(1)

m−1∑
n=1

nβXn|∆λn|+O(1)mβXm|λm|

= O(1) as m→ ∞,

by the hypotheses of the Theorem 3.1, and Lemma 3.2. �

This completes the proof of Theorem 3.1.

4. Conclusions

1. If we take anv = pv

Pn
in Theorem 3.1, then we can return to Theorem 2.1.

2. If we take pn = 1 for all n in Theorem 3.1, then we have a new theorem on
|A|k summability method.
3. If we put anv = pv

Pn
and pn = 1 for all n in Theorem 3.1, then we obtain

another result concerning |C, 1|k summability method.
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