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Abstract This research aims to assess genotype × en-
vironment interactions (G × E) of the leaf rust (Puccinia
triticina) reactions of 29 Turkish landrace-derived pure
lines over seven environments. Field experiments were
conducted in Çanakkale, Edirne and Samsun (Turkey)
in three consecutive growing seasons from 2011-2012
to 2013–2014 under natural conditions. Leaf rust reac-
tions of genotypes were recorded in accordance with the
Modified Cobb scale. Genotype stabilities assessed by
non-parametric stability statistics. Furthermore, a Prin-
cipal Component Analysis (PCA) biplot of non- para-
metric stability statistics were used to compare their
capability for capturing both stability and leaf rust reac-
tions of genotypes in the given dataset. PCA Biplot
results showed that non-parametric parameters of
Thennarasu and Percentage Availability (PA) showed a
positive association with mean disease severity while
Rank Means (RM) were negatively associated. Non-
parametric stability analyses revealed that Genotypes
29, 25 and 15 were the most stable pure lines when only
25 and 15 could be considered as resistant-stable. In
order to determine both stability and leaf rust resistance
in bread wheat, PA and RM are recommended.

Keywords Non-parametric . Landrace bread wheat .

GGEBiplot . Stability . Heatmap . Leaf rust (Puccinia
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Introduction

Leaf rust (brown rust) is the most common fungal dis-
ease of wheat worldwide, caused by Puccinia triticina.
The easy spread of leaf rust urediniospores by wind and
its high potential for epidemics results in severe yield
losses and decreases in grain quality (Bolton et al.
2008). The most effective way to control leaf rust is
through the development of resistant genotypes; which
requires searching for new gene sources to incorporate
into resistance breeding programs with constant moni-
toring of virulence frequencies and current efficiencies
of the resistance genes (Huerta-Espino et al. 2011). On
the other hand, the stability of leaf rust reactions in those
resistant genotypes is not guaranteed due to the mutable
nature of the pathogen and other factors such as
environments.

Genotype performances vary across environments,
usually in a complex way that is difficult to evaluate
without a statistical approach. Genotype environment
interaction (G × E) is difficult to investigate because
the concept of “environmental variation” is a combi-
nation of many different sources of variation. Even if
the effects of some important environmental factors
such as precipitation or temperature on genotypic
variation can be evaluated, it would still be very
difficult to explain different behaviors of a set of
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genotypes across a series of environments with pre-
cision. This is due to the complex relationships
among a vast number of environmental factors; most
of which remain unidentified. Therefore, in order to
evaluate GxE interactions of a genotype collection,
researchers usually choose to focus on varying geno-
type performances over environments rather than
how and why environments differ from each other.
Performances of m genotypes over n environments
provides an m × n two-way multi-environmental data
matrix where any given genotype may or may not
show a clear pattern across environments. Therefore,
multi-environmental data becomes more confusing as
the number of genotypes and environments increases
(Allard and Bradshaw 1964). There are many studies
illustrating different approaches to overcome this
confusion. In order to see if there is a significant
G × E interaction effect, an analysis of variance is
conventionally included in most research (Primomo
et al. 2002; Zewdie and Bosland 2000), often used
along with another method to explore G x E interac-
tion further or assess genotype stability. Several mul-
tivariate methods offer simplicity for genotype selec-
tion, including joint-regression (Yates and Cochran
1938), Principal Component Analysis (PCA) (Yan
2014), PCAwith biplot (Sabaghnia 2016) or Additive
Main Effects and Multiplicative Interaction (AMMI)
(Adugna and Labuschagne 2002; Mohammadi and
Amri 2008; Purchase et al. 2000).

Another approach to assess genotype stability is by
using non-parametric methods which may be most ap-
propriate when basic assumptions required for paramet-
ric methods are violated, such as a non-normal distribu-
tion or presence of outliers. Non-parametric methods
compare two populations in terms of their central ten-
dencies (typically medians) and can be applied in many
data sets because they have fewer assumptions than
parametric methods. Various research comparing para-
metric and non-parametric methods concluded that
some frequently used non-parametric methods were
useful to assess genotype stabilities (Akcura et al.
2009; Kilic et al. 2010; Yue et al. 1997).

In this study, 17 non-parametric methods were ap-
plied to evaluate leaf rust reactions across seven envi-
ronments of 29 pure lines derived from bread wheat
l a nd r a c e s d e l i v e r e d f r om Ad i y aman and
Kahramanmaraş provinces in Turkey. In addition, we
used PCA biplot analysis to investigate interrelations
among non-parametric measures.

Materials and methods

Test material and disease tests

Twenty-nine Turkish pure bread wheat lines previ-
ously derived from landraces of Adıyaman and
Kahramanmaraş locations were used as test materials.
Experiments were conducted throughout three con-
secutive growing seasons (from 2011–2012 to 2013–
2014) at Çanakkale, Edirne and Samsun provinces.
Çanakkale and Edirne are located in the Marmara
Region. Long term annual temperature averages and
precipitations of Çanakkale and Edirne are 15.0 °C
and 13.8 °C with 616.3 mm and 605.0 mm of precip-
itation, respectively. Samsun, on the other hand, is
located in the Black Sea Region, receiving 686.3 mm
precipitation annually with an annual temperature
average of 14.1 °C (Anonymous 2018). According
to Köppen-Geiger classification, climates of
Çanakkale and Edirne are classified as Csa (Mediter-
ranean climate with dry and hot summers), where
Samsun is classified as Cfa (humid subtropical)
(Peel et al. 2007; Ozturk et al. 2016).

Landrace bread wheat pure line genotypes were sown
by hand in the first quarters of November in each year
and location. Experiments were laid out in a randomized
complete block design with two replications. Plant rows
were 1 m long and 20 cm apart from each other. Since
the disease was developed naturally; susceptible control
cultivars cv. Gün were sown once in every 6 rows when
cv. Thatcher and cv. Morocco were sown once in every
ten rows among plant material to ensure a uniform
spread of leaf rust. In addition, an international differ-
ential set composed of 20 genotypes containing different
leaf rust resistance genes were also sown to identify
which resistance genes were virulent/avirulent to the
leaf rust populations in our environments. The list of
these virulent and avirulent Lr genes are declared in
Akan and Akcura (2018).

The results of 2012–2013 and 2013–2014 growing
seasons from the Samsun location were excluded due to
lack of sufficient disease for proper evaluation. Hence,
multi-environmental data used in our study consisted of
seven environments: Çanakkale in 2011–2012, Edirne in
2011–2012, Samsun in 2011–2012, Çanakkale in 2012–
2013, Edirne in 2012–2013, Çanakkale in 2013–2014
and Edirne in 2013–2014. Test materials were screened
for leaf rust infections under natural conditions. Leaf rust
infections were recorded using the Modified Cobb scale
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and disease reactions determined by coefficients of infec-
tions and reaction groups. Coefficients of infections (CI)
varied between 0 and 100 according to disease spread on
plant leaves within the plots, upon which the reaction of
groups were assigned: R (resistant), very small uredia
surrounded by necrotic tissues; MR (moderately resis-
tant), small uredia surrounded by necrotic tissues; MS
(moderately susceptible), moderate-sized uredia without
necrotic tissues; S (susceptible), large uredia without
necrotic tissues (Peterson et al. 1948; Akan and Akcura
2018). Susceptible control cultivars reached 80–100 S in
all seven environments, indicating an adequate disease
infection for further evaluation. After that point, leaf rust
infections of landrace bread wheat pure lines were
assessed three times in every ten days. The replication
with the maximum score was taken as the basis of reac-
tion at each location (environment). CI were grouped as
follows: Immune (I): 0, Resistant (R): 0.1–5.0, Moder-
ately Resistant (MR): 5.01–20.0, Moderately Susceptible
(MS): 20.1–40.0, Susceptible (S): 40.1–100 (Akan and
Akcura 2018). Additionally, a scatter plot of mean disease
severity versus standard deviation (Fig. 1) were created in
Minitab 17 (Minitab 17 Statistical Software 2010).

Statistical evaluation

S1, S2, S3 and S6 rank stability statistics from Huehn
(1979) with the top, middle and lower third of entries
(TOP, MIDDLE and LOWER) from Fox et al. (1990)
were analyzed using the SAS 9.1 statistics software®
(SAS Institute, Cary NC).

Additionally, Percent Adaptability (PA) from
St.Pierre et al. (1967), Rank Sum (RS) from Kang
(1988), reaction indexes R1i and R2i from Langer
et al. (1979), Rank Means (RM) and Ranks Standard
Deviation (RSD) from Ketata et al. (1989), NP1i, NP

2
i,

NP3i and NP4i from Thennarasu (1995), NS1 and NS2
from Sabaghnia (2015) were analyzed with MS Excel.

Rankings of genotypes over environments (rij) were
calculated from actual disease severity data (DSij,
presented in Table 2) for calculating rank based non-
parametric statistics, forming a matrix. This matrix is
similar to disease severities except it consists of rankings
of genotypes instead of disease scores (CI) ranging
between 1 and 29 for each environment. Formulas ap-
plied to both matrices are shown in Table 1. For the
calculations above, k = number of test genotypes, n =
number of environments, DSij = disease severity of ge-
notype i in environment j, rij = rank of genotype i in

environment j, ri = rank mean across environments for
genotype i, Mdi = rank median across environments for
genotype i. In the ranking matrix, Q1 and Q3 are the first
and third quartiles when D1 and D9 are the first and ninth
deciles of the ranks of a given genotype across all
environments, respectively (Sabaghnia 2015). In addi-
tion,r*i , r

*
i j andM

*
di are adjusted versions (adjusted phe-

notypic values) of ri, rij and Mdi computed according to

DS*i j ¼ DSi j−DSi in order to eliminate the genotype

effect as described by Thennarasu (1995).
Calculated non-parametric stability statistics were

presented in Table 3. Since the selection criteria of
non-parametric methods vary, results are arranged by
MDS and presented as a heatmap for convenience.
Background color of outputs for each non-parametric
statistic is arranged between shades of green and red
(white being neutral) depending on how well genotypes
comply with their criteria: desired genotypes with high
stability are expected to score lower for NP1i, NP

2
i,

NP3i, NP
4
i, PA, RSD, S1, S2, S3, S6, TOP, MIDDLE,

RS, NS1, NS2 and higher for RM, MR, LOWER or
close to zero for R1i and R2i (Table 3). In addition to
genotype selection, outputs of the non-parametric
methods statistically evaluated with PCA biplot to re-
veal which statistics would be more useful to select for
both stability and leaf rust resistance.

PCA Biplot analysis is a well-known multivariate
method to evaluate interrelationships among genotypes
and environments by reducing the dimensionality and
plotting all in one biplot graphic (Akcura and Ceri
2011). PCA Biplot graphic of non-parametric stability
measures was created by JMP Version 13 (JMP 2016).
Interpretations about relationships between non-
parametric measures were based on Torres-Salinas
et al. (2013).

Results

Assessment of genotype reactions by non-parametric
stability statistics

Leaf rust severities with means and standard deviations
are given in Table 2. Disease reactions of landrace bread
wheat pure lines varied between 1 and 95 across seven
environments (Table 2). Leaf rust disease reactions of
many genotypes varied across environments due to the
high variation of disease severities. Genotype 25 were
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found resistant to leaf rust in all environments when
reaction groups of Genotype 15 were Resistant in E2,
E3, E5 and E7 and moderately resistant for E1, E4 and
E6 (Table 2). Genotypes 4, 11 and 13 had the highest
MDS in our study, thus consistently appeared as being
susceptible to leaf rust in all environments. Mean dis-
ease severities and standard deviations across environ-
ments from Table 2 were also presented as a scatterplot
in Fig. 1. Genotypes with the lowest standard deviations
tended to have either the lowest (Genotypes 25 and 15)
or the highest (Genotypes 8, 13 and 4 with the exception
of Genotype 20) mean disease severities when other
genotypes with higher standard deviations were located
in between these extreme genotypes (Fig. 1).

Non-parametric measures used in this study were
mostly calculated on genotype rankings over environ-
ments rather than their actual disease reactions. Given
that selecting for resistance to the leaf rust requires
negative selection, genotypes with lower values were
selected on some non-parametric stability statistics such
as TOP (Fox et al. 1990), Percentage Availability (PA)
(St.Pierre et al. 1967), RS (Kang 1988) and RM (Ketata
et al. 1989). According to the results of Fox’s stability
statistics, the most resistant landrace pure lines were
separated from others by having lower disease reactions,
thus appearing in the lower third of all genotypes more
often. Genotypes 9, 10, 15, 23, 25 and 29 scored highest
(100) in LOWER and lowest (0) in both TOP and
MIDDLE since they consistently appeared among the
least infected genotypes in all environments. PA, R1i,
R2i, RM and RSD separated those genotypes further,
narrowing the preferable genotypes down to 15 and 25.
PA values of 25 and 15 were 0.0, meaning that both of

these genotypes never exceeded the mean disease sever-
ity in any environment. Genotypes 25 and 15 also had
the lowest R1i scores and closest R2i scores to zero of
all genotypes indicating that their leaf rust severities had
minimal deviation across environments. Moreover, low
RM and RSD values of Genotypes 25 and 15 are also an
indication of their consistently lower leaf rust severities
across environments.

Other commonly used non-parametric stability sta-
tistics, NP1i, NP

2
i, NP

3
i and NP

4
i (Thennarasu 1995) are

based on adjusted ranks while S1, S2, S3, S6 (Huehn
1979), NS1, NS2 (Sabaghnia 2015) are based on abso-
lute rank differences and variances between genotype
rankings across environments. The majority of the sta-
bility statistics confirmed that genotypes 15, 22, 23, 25
and 29 had relatively stable disease reactions across
environments. Since some of these genotypes were un-
desirable due to higher disease scores, resistant – stable
genotypes needed to be defined. NP1i, NP

2
i, NP

3
i, NP

4
i,

S1, S2, S3, S4, NS1 and NS2 failed to recognize the lower
disease reactions of Genotypes 15 and 25 (the resistant-
stable genotypes) and favored them along with other
stable but susceptible genotypes (Tables 2 and 3). Ge-
notype 29 could be selected by Kang’s, Thennarasu’s,
Huehn’s and Fox’s stability measures with Genotype 20,
which also delivered significantly lower results in
Huehn’s statistics and RS. RS also took high perfor-
mance into consideration but failed to provide meaning-
ful outcomes.

Results of some non-parametric stability statistics
were not useful in terms of detecting susceptibility.
Genotypes 4, 13 and 11 had high disease scores with
low standard deviations, thus consistently marked as

Fig. 1 Scatterplot of mean
disease severities of 29 bread
wheat pure lines over 7
environments with standard
deviation
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Table 1 Non-parametric stability statistic symbols, formula and references

Non-parametric Stability Statistic Definitions and References

nij ¼ 1; DSij > DS j

nij ¼ 0 else

�
; PAi ¼ ∑n

j¼1nij
n x 100

PA: Percentage Availability, from St.Pierre et al. (1967)

R1i =DSiMax −DSiMin

R2i =DSib −DSil
R1i and R2i stand for the first and second stability index from

Langer et al. (1979).
DSiMax =Maximum disease severity of genotype i in a series of

environments,
DSiMin =Minimum disease severity of genotype i in a series of

environments,
DSib = Disease severity of genotype i in the best environment,
DSil = Disease severity of genotype i in the lowest environment.

RS ¼ RX i
þ Rσ2i

RS: Rank Sum. from Kang (1988). Shukla’s stability variance
formula was derived from (Lin et al. 1986).

RXi
=Ranking of genotype i in genotype rankings by disease severity.

Genotype with the highest value ranked first.

Rσ2i
= Ranking of genotype i by Shukla’s stability variance (Shukla,

1972). Genotype with the lowest value ranked first.

σ2
i ¼ P

p−2ð Þ q−1ð Þ ∑
q

j¼1
X ij−X i−X j þ X ::
� �2 SS GXEð Þ

p−1ð Þ p−2ð Þ q−1ð Þ

tij ¼ 1; rij > 2
�
3
k

tij ¼ 0; else

�
; TOP ¼ ∑n

j¼1 tij =n x 100

mij ¼ 1; 1
�
3k < rij < 2

�
3k

mij ¼ 0; else

�
; MIDDLE ¼ ∑n

j¼1mij =
n x 100

lij ¼ 1; rij < 1
�
3
k

lij ¼ 0; else

�
; LOWER ¼ ∑n

j¼1 lij =n x 100

The top, middle and lower third of entries (TOP, MIDDLE and
LOWER) were proposed by Fox et al. (1990).

S1 ¼ 2∑n−1
j ∑

n

j0 ¼ jþ1

rij−ri j0

��� ���,
n n−1ð Þ½ �

S1: First Stability statistic. (Huehn 1979)

S2 ¼ ∑
n

j¼1

rij−rið Þ2.
n−1ð Þ

S2: Second Stability statistic (Huehn 1979)

S3 ¼ ∑n
j¼1 rij−rið Þ2 =

ri

S3: Third Stability statistic (Huehn 1979)

S6 ¼ ∑n
j¼1 rij−rij j =

ri

S6: Sixth Stability statistic (Huehn 1979)

RM ¼ rij=n
RM: Rank means (Ketata et al. 1989),

formula delivered from Akcura and Kaya (2008)

RSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ j
i¼1 ri−rð Þ2 =

n−1

r RSD: Ranks standard deviation (Ketata et al. 1989),
formula derived from (Akcura and Kaya 2008)

NP1
i ¼ ∑n

j¼1 r*ij−M
*
dij j =

n

NP1i: First Non-Parametric statistic (Thennarasu 1995)

NP2
i ¼ ∑n

j¼1 r*ij−M
*
dij j=Mdi½ �.

n

NP2i: Second Non-Parametric statistic (Thennarasu 1995)
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“susceptible” across all environments (Table 2, Fig. 1).
Since the non-parametric analysis was based on geno-
type rankings rather than the reactions of groups shown
in letters from S (susceptible) to R (resistant) in Table 2,
only a few of non-parametric statistics were able to
classify them as susceptible-stable (Table 3) even
though their susceptibility to leaf rust in all environ-
ments was unquestionable. Therefore, the difference
between the reaction of groups and non-parametric as-
sessment should be taken into consideration when non-
parametric statistics are used to determine susceptibility.

Interpreting the relationships between non-parametric
stability statistics

Spearman correlations of non-parametric stability statis-
tics were presented in Table 4. NP1i, NP

3
i, R1i, RSD, S1,

S2, S3, S6, NS1, NS2 and TOP were significantly corre-
lated with each other. Significant and positive correla-
tions between Huehn’s statistics were recorded previ-
ously by Sabaghnia et al. (2006), Karimizadeh et al.
(2012) andMohammadi et al. (2007). In some instances,
this similarity extended to Thennarasu’s statistics
(Sabaghnia et al. 2013; Kaya and Turkoz 2016;
Sabaghnia et al. 2016). Mean disease severity was pos-
itively correlated with PA, NP3i, S6 and TOP when
negatively correlated with RM, LOWER and RS, R1i
of Langer et al. (1979) and RSD of Ketata et al. (1989)
were both aimed at responding differences between
maximum and minimum values of a genotype over all
environments. Naturally, results obtained from those
statistics were found to be aligned (Fig. 2 and Table 4).

A PCA biplot of non-parametric statistics calculated
from the output matrix is given in Table 3 is presented in
Fig. 2. PC 1 (49.5%) and PC2 (21.5%) were accounted
for 71% of total variance. Interpretations can be
deducted on the biplot from the distribution of non-
parametric statistics with regard to mean disease sever-
ity (MDS). Non-parametric statistics included by the
same group can be interpreted as being positively related
to each other (Zali et al. 2011). It should be noted that
NP1i, NP

3
i, S2, S3, S6 and NS2 were excluded from PCA

for their unusually high correlations with other variables
such as S1, R1i, MDS and NS1 (Table 4). In addition,
NP2i, R2i and MIDDLE were also excluded from the
PCA due to their short vector sizes, which were an
indication that these parameters didn’t contribute signif-
icantly to the overall variation (Yan 2014).

Non-parametric measures were concentrated into
five groups in PCA Biplot (Fig. 2). First group
contained R1i and S1. Another strong and positive rela-
tionship was visible between R1i and RSD. The second
group consisted of NS1, and TOP when MDS, PA and
NP4, were included by the third group. Fourth group
(RM, LOWER and MR) were located opposite from
these measures with respect to the biplot origin. This is a
clear indication that non-parametric statistics of Group
III were positively and strongly associated with MDS
when statistics included by Group IV demonstrated a
negative and strong association. In other words, higher
scores for the statistics included by Group IV reflected
mean disease severities of wheat genotypes when the
lower scores for the Group III statistics is an indication
for their leaf rust resistance (Fig. 2). Relationships be-
tween non-parametric stability statistics were generally

Table 1 (continued)

Non-parametric Stability Statistic Definitions and References

NP3
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r*ij−r

*
i

� �2
=n

q
= ri

NP3i: Third Non-Parametric statistic (Thennarasu 1995)

NP4
i ¼ 2

n n−1ð Þ ∑
n−1

j¼1
∑n

j0 ¼ jþ1½ �
r*ij−r

*
ij0

��� ���,
ri

2
4

3
5

NP4i: Fourth Non-Parametric statistic (Thennarasu 1995)

NS1 ¼ Q3−Q1ð Þ�
Mdi

NS1:First non parametric stability statistic from Sabaghnia 2015.

NS2 ¼ D9−D1ð Þ�
Mdi

NS2:Second non parametric stability statistic from Sabaghnia
2015.

Phytoparasitica (2020) 48:261–271266



in agreement with the earlier studies (Duarte and
Zimmermann 1995; Scapim et al. 2000).

Discussion

There are many statistical approaches available to eval-
uate multi-environmental data. While research about
non-parametric assessments of varying grain yields of

wheat genotypes across environments are fairly com-
mon, few reports were published about disease reactions
(Sabaghnia 2016). In this study, leaf rust reactions of 29
bread wheat pure lines over 7 environments were eval-
uated by some commonly referenced non-parametric
statistics with the aim of selecting resistant and stable
genotypes. According to the results of non-parametric
stability statistics, leaf rust reactions of genotypes 15,
20, 25 and 29 were found to be stable across all

Table 2 Materials pedigree and leaf rust disease reactions of bread wheat landrace genotypes in Çanakkale, Edirne between 2011 and 2014
and Samsun location in 2011–2012

Registration Codes E1 E2 E3 E4 E5 E6 E7 MDS STD

CI RG CI RG CI RG CI RG CI RG CI RG CI RG

1 ADIYAMAN TR 49034/2 60.0 S 20.0 MR 21.0 MR 30.0 MS 55.0 S 29.0 MR 47.0 S 37.43 15.16

2 ADIYAMAN TR 50457/6 47.0 S 54.0 S 60.0 S 60.0 S 45.0 S 60.0 S 90.0 S 59.43 13.77

3 ADIYAMAN TR 50476/1 53.0 S 55.0 S 18.0 MR 53.0 S 60.0 S 26.0 MR 60.0 S 46.43 15.83

4 ADIYAMAN TR 50455/1 90.0 S 80.0 S 70.0 S 90.0 S 57.0 S 70.0 S 60.0 S 73.86 12.33

5 ADIYAMAN TR 46810/6 46.0 S 80.0 S 20.0 MR 54.0 S 90.0 S 27.0 MR 90.0 S 58.14 26.98

6 ADIYAMAN TR 49029/3 46.0 S 6.0 R 45.0 S 72.0 S 5.2 R 27.0 MR 5.6 R 29.54 24.02

7 ADIYAMAN TR 50465/6 60.0 S 12.0 MR 12.8 MR 66.0 S 72.0 S 27.0 MR 72.0 S 45.97 25.54

8 ADIYAMAN TR 49034/3 65.0 S 70.0 S 80.0 S 70.0 S 57.0 S 50.0 S 50.0 S 63.14 10.45

9 ADIYAMAN TR 46822/3 54.0 S 20.0 MR 26.0 MR 55.0 S 45.0 S 21.0 MR 63.0 S 40.57 16.60

10 ADIYAMAN TR 50464/5 54.0 S 8.0 R 8.7 R 49.0 S 41.0 S 45.0 S 41.0 S 35.24 17.52

11 ADIYAMAN TR 50465/1 85.0 S 90.0 S 90.0 S 45.0 S 43.0 S 75.0 S 65.0 S 70.43 18.62

12 ADIYAMAN TR 49040/5 53.0 S 70.0 S 10.0 MR 56.0 S 56.0 S 45.0 S 56.0 S 49.43 17.48

13 ADIYAMAN TR 49040/4 60.0 S 80.0 S 70.0 S 70.0 S 58.0 S 95.0 S 75.0 S 72.57 11.64

14 ADIYAMAN TR 49040/6 65.0 S 6.0 R 10.0 MR 45.0 S 46.0 S 41.0 S 46.0 S 37.00 19.70

15 ADIYAMAN TR 50465/4 21.0 MR 2.0 R 3.0 R 22.0 MR 4.0 R 27.0 MR 2.5 R 11.64 10.28

16 ADIYAMAN TR 50476/4 56.0 S 21.0 MR 21.0 MR 55.0 S 74.0 S 67.0 S 74.0 S 52.57 21.17

17 ADIYAMAN TR 49029/5 65.0 S 19.0 MR 24.0 MR 80.0 S 57.0 S 67.0 S 78.0 S 55.71 22.85

18 ADIYAMAN TR 49029/6 53.0 S 18.0 MR 19.0 MR 60.0 S 45.0 S 65.0 S 45.0 S 43.57 17.24

19 ADIYAMAN TR 46822/5 46.0 S 17.0 MR 18.0 MR 45.0 S 90.0 S 69.0 S 90.0 S 53.57 28.35

20 ADIYAMAN TR 49029/1 54.0 S 64.0 S 44.0 S 57.0 S 55.0 S 45.0 S 60.0 S 54.14 6.83

21 ADIYAMAN TR 50476/5 56.0 S 20.0 MR 43.0 S 60.0 S 72.0 S 49.0 S 67.0 S 52.43 16.11

22 K.MARAŞ M-396/6 45.0 S 54.0 S 20.0 MR 60.0 S 58.0 S 45.0 S 58.0 S 48.57 12.98

23 K.MARAŞ M-397/6 10.0 MR 11.0 MR 11.0 MR 47.0 S 46.0 S 41.0 S 46.0 S 30.29 17.09

24 K.MARAŞ TR 32009/1 60.0 S 19.0 MR 43.0 S 60.0 S 55.0 S 20.0 MR 55.0 S 44.57 16.71

25 K.MARAŞ M-397/4 4.5 R 2.8 R 1.9 R 1.0 R 4.2 R 3.0 R 1.9 R 2.76 1.18

26 K.MARAŞ M-388/4 56.0 S 72.0 S 90.0 S 56.0 S 57.0 S 20.0 MR 57.0 S 58.29 19.54

27 K.MARAŞ M-398/3 19.0 MR 17.0 MR 20.0 MR 79.4 S 45.0 S 56.0 S 45.0 S 40.20 21.47

28 K.MARAŞ M-394/6 81.5 S 60.0 S 15.0 MR 45.0 S 55.0 S 19.0 MR 55.0 S 47.21 21.71

29 K.MARAŞ M-391/6 55.0 S 55.0 S 20.0 MR 55.0 S 55.0 S 42.0 S 55.0 S 48.14 12.33

E1Çanakkale 2011–2012; E2 Edirne 2011–2012; E3 Samsun 2011–2012; E4 Çanakkale 2012–2013; E5 Edirne 2012–2013; E6Çanakkale
2013–2014; E7 Edirne 2013–2014; CI Coefficients of Infection; RG Reaction of Group; MDS Mean disease severity across seven
environments; STD Standard deviation of leaf rust reactions across environments
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environments. However, different disease reactions of
these four genotypes needed to be taken into consider-
ation. Genotypes 25 and 15 were located apart from
other genotypes in Fig. 1 due to their consistent and
low leaf rust scores across all environments (Table 2). In
addition to being stable and resistant, genotypes 15 and
25 did not contain extreme differences between their
minimum and maximum values in comparison to
others; which can be seen in their relatively low results
of R1i and R2i and lower RSD values. Therefore, Ge-
notype 25 and 15 were chosen as candidates for being
the most leaf rust-resistant landrace derived pure lines
with high stability.

Selecting promising genotypes for future breeding
programs requires the assessment of stability and lower
disease reactions simultaneously. Non-parametric stabil-
ity statistics were originally created to evaluate grain
yields of genotypes in multi-environmental datasets
where higher performances are more favorable. Since
our aim was to select genotypes with the least leaf rust

disease severities as an implication of higher leaf rust
resistances, we reversed the selection criteria of some
statistics such as PA, RM and RS to suit our needs. Most
of the stability statistics provided information that relat-
able to stability and/or leaf rust severity of genotypes
except for RS. Langer’s R1i and Huehn’s S1 (Group I in
Fig. 2) were found to account for genotype stabilities
across environments, which could be extended to
Langer’s and Huehn’s other statistics such as R2i, S2,
S3, S6 due to being highly correlated to R1i and S1
(Table 4). R2i, for example, is calculated after the def-
inition of two environments: the environment with the
highest average of genotype performances is considered
as “the best environment” when the opposite is “the
lowest environment”. Then, R2i of any genotype is
calculated by the difference of their disease reactions
in these two environments. Absolute stability according
to R2i is 0, which means that the performance of a given
genotype did not change between the best and the lowest
environments where the highest difference is expected.

Table 3 Heatmap of non-parametric stability statistics of 29 pure bread wheat landrace lines

Genotype NP1 NP2 NP3 NP4 PA R1i R2i RM RSD MDS MR S1 S2 S3 S6 TOP MIDDLE LOWER  RS NS1 NS2

25 5,29 0,42 0,18 0,14 0 3,5 0 28,71 0,49 2,76 13,57 7,24 295,62 0,1 0,1 0 0 100 32 0,03 0,03
15 5,71 0,62 0,22 0,15 0 25 -0,5 27,29 2,14 11,64 15,14 8,95 459,81 3,15 0,5 0 0 100 37 0,11 0,32
6 9,57 0,67 0,47 0,1 14,29 66,8 -39,4 19,29 9,71 29,54 15,57 14 1074,29 59,88 2,91 14,29 14,29 71,43 55 0,91 1,05
23 6,57 0,49 0,28 0,15 14,29 37 35 22,71 3,2 30,29 17,43 9,14 524,95 6,2 0,76 0 0 100 40 0,23 0,50
10 5,43 0,45 0,24 0,12 28,57 46 32,3 21,86 5,81 35,24 16,00 8,1 352 16,06 1,44 0 0 100 33 0,44 0,60
14 4,86 0,58 0,27 0,11 14,29 59 36 20 7,53 37 16,57 8,1 380,95 33,21 1,85 14,29 0 85,71 37 0,36 1,00
1 6 0,37 0,38 0,07 42,86 40 26 16,57 6,43 37,43 16,00 9,9 530,67 24,18 1,78 0 14,29 85,71 29 0,53 1,33
27 7,57 0,35 0,41 0,07 28,57 62,43 25 18,14 9,03 40,2 15,00 11,24 736 53,07 2,82 14,29 14,29 71,43 45 0,71 1,14
9 5,14 0,19 0,3 0,08 42,86 43 37 16,43 5,44 40,57 16,29 7,81 329,9 21,88 1,71 0 0 100 26 0,67 1,00
18 6,57 0,36 0,35 0,07 42,86 47 26 17,43 6,7 43,57 15,93 9,43 494,95 29,25 2,08 0 14,29 85,71 32 0,68 0,89
24 6,86 0,53 0,39 0,08 57,14 41 12 15,71 5,74 44,57 17,21 8,48 477,24 33,44 2,38 0 28,57 71,43 30 0,71 1,36
7 10 0,5 0,64 0,06 57,14 60 59,2 13,43 8,73 45,97 16,29 12,86 985,9 65,66 4,08 14,29 42,86 42,86 40 2,29 2,71
3 5,57 0,41 0,34 0,04 71,43 42 42 15,57 6,58 46,43 15,21 8,33 373,24 32,44 2,48 0 14,29 85,71 27 0,56 1,00
28 8,29 0,28 0,45 0,06 57,14 66,45 40 17,57 9 47,21 14,57 12,29 815,62 54,7 2,79 14,29 14,29 71,43 40 0,82 1,47
29 2,86 0,26 0,18 0,05 71,43 35 35 16,29 2,87 48,14 14,71 4,33 102,57 4,9 0,84 0 0 100 16 0,13 0,47
22 4,14 0,34 0,29 0,04 57,14 40 38 14,57 5,32 48,57 14,71 6,19 223,24 27,04 1,9 0 14,29 85,71 18 0,58 1,50
12 5,71 0,46 0,42 0,07 71,43 60 46 15,29 5,62 49,43 13,71 8,57 501,24 26,97 1,87 0 14,29 85,71 29 0,43 1,36
21 4,71 0,31 0,5 0,12 71,43 52 24 10,29 3,73 52,43 16,21 7,81 354,57 15,24 1,73 14,29 28,57 57,14 19 0,33 1,22
16 7,86 0,46 0,68 0,16 71,43 53 53 10 5,35 52,57 15,29 10,48 617,9 33,63 3,22 14,29 28,57 57,14 29 0,82 1,18
19 12,43 0,65 0,73 0,06 42,86 73 72 14,29 10,67 53,57 13,86 15,05 1422,48 101,4 5,01 42,86 0 57,14 35 1,05 1,10
20 5,71 0,6 0,4 0,13 71,43 20 16 12,57 3,41 54,14 13,14 6,29 265,14 10,96 1,5 0 28,57 71,43 11 0,50 0,58
17 8,29 0,33 0,92 0,24 71,43 61 54 8,43 5,53 55,71 15,43 12,1 791,62 50,08 4,11 42,86 14,29 42,86 27 1,60 3,20
5 12,57 0,34 0,9 0,14 57,14 70 70 11,71 9,34 58,14 14,00 14,95 1448 94,3 5,05 42,86 0 57,14 33 1,27 1,40
26 10,57 0,78 0,71 0,15 85,71 70 -33 12,71 8,06 58,29 12,00 12 946,67 65,06 3,29 28,57 0 71,43 33 0,91 2,27
2 7,43 0,38 0,66 0,13 85,71 45 30 11 7,57 59,43 14,86 11,24 681,14 60,52 3,64 14,29 28,57 57,14 20 1,88 2,50
8 7,43 0,54 0,84 0,34 100 30 -30 8,29 5,85 63,14 13,00 10,05 559,33 46,2 3,47 28,57 28,57 42,86 25 1,00 2,83
11 10,57 0,35 1,05 0,23 71,43 47 -25 9 10,63 70,43 14,86 14,29 1171,81 158,02 6,85 57,14 14,29 28,57 32 11,00 12,00
13 9,71 0,79 1,61 0,71 100 37 5 5,29 2,5 72,57 13,43 12,48 903,62 16,42 2,74 57,14 42,86 0 22 1,00 1,20
4 7,57 0,44 1,58 0,76 100 33 -10 4,57 4,28 73,86 15,00 10,86 685,33 50,32 5,26 71,43 0 28,57 18 2,67 3,33

Susceptible / Unstable Resistant/Stable

MDS Mean disease severity; MR Mean rank. See Table 1 for the details about stability statistics NP1i, NP2 i, NP
3
i,NP

4
i Percentage

Availability (PA), R1i, R2i, RankMeans (RM), Ranks Standard Deviation (RSD), S1, S2, S3, S6, TOP,MIDDLE, LOWER, Ranksum (RS),
NS1 and NS2. Susceptible/Unstable genotypes are marked with the darker shades of red, indicating that those genotypes poorly comply with
the criteria of any given statistic. Genotypes marked with red can be considered as unstable or both unstable and susceptible depending on
any given statistic. Similarly, preferable genotypes with high stability and for some cases high leaf rust resistances are marked with shades of
green
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Table 4 Spearman correlations of non-parametric stability statistics with mean disease severity and rank means

NP1 NP2 NP3 NP4 PA R1i R2i RM RSD MD
S MR S1 S2 S3 S6 TO

P
MIDDL

E
LOWE

R RS NS1 NS2

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s

NP1 0.11 0.00 0.08 0.21 0.00 0.97 0.02 0.00 0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.03 0.00 0.00

p 
va

lu
es

NP2 0.31 0.45 0.11 0.93 0.79 0.07 0.97 0.98 0.98 0.35 0.24 0.20 0.79 0.82 0.46 0.59 0.45 0.17 0.79 0.51
NP3 0.79 0.15 0.01 0.00 0.04 0.80 0.00 0.05 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.56 0.00 0.00
NP4 0.33 0.30 0.49 0.09 0.21 0.01 0.02 0.14 0.03 0.35 0.18 0.15 0.96 0.24 0.00 0.93 0.02 0.51 0.15 0.23

PA 0.24

-

0.02 0.66 0.32 0.71 0.62 0.00 0.75 0.00 0.01 0.42 0.35 0.18 0.01 0.01 0.01 0.00 0.00 0.01 0.00

R1i 0.55

-

0.05 0.38

-

0.24

-

0.07 0.03 0.79 0.00 0.65 0.76 0.00 0.00 0.00 0.00 0.02 0.84 0.15 0.00 0.03 0.09

R2i 0.01

-

0.35

-

0.05

-

0.47

-

0.10 0.41 0.99 0.38 0.92 0.34 0.77 0.85 0.45 0.59 0.65 0.80 0.73 0.73 0.87 0.97

RM
-

0.42 0.01

-

0.84

-

0.44

-

0.89

-

0.05 0.00 0.84 0.00 0.06 0.06 0.05 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00

RSD 0.60 0.01 0.37

-

0.28

-

0.06 0.77 0.17

-

0.04 0.55 0.97 0.00 0.00 0.00 0.00 0.03 0.88 0.08 0.00 0.00 0.03

MDS 0.46

-

0.01 0.82 0.41 0.90 0.09

-

0.02

-

0.94 0.12 0.00 0.04 0.03 0.01 0.00 0.00 0.08 0.00 0.00 0.00 0.00

MR
-

0.26

-

0.18

-

0.34

-

0.18

-

0.46 0.06 0.18 0.36 0.01 -0.54 0.40 0.37 0.50 0.25 0.11 0.92 0.18 0.16 0.34 0.38

S1 0.96 0.23 0.76 0.26 0.16 0.61 0.06

-

0.35 0.67 0.38

-

0.16 0.00 0.00 0.00 0.00 0.47 0.00 0.01 0.00 0.00

S2 0.96 0.24 0.78 0.27 0.18 0.64 0.04

-

0.37 0.67 0.40

-

0.17 0.99 0.00 0.00 0.00 0.52 0.00 0.01 0.00 0.00

S3 0.79 0.05 0.69 0.01 0.26 0.71 0.15

-

0.41 0.86 0.46

-

0.13 0.81 0.82 0.00 0.00 0.47 0.00 0.08 0.00 0.00

S6 0.81 0.04 0.87 0.23 0.49 0.53 0.11

-

0.68 0.66 0.68

-

0.22 0.81 0.82 0.92 0.00 0.20 0.00 0.70 0.00 0.00

TOP 0.74 0.14 0.89 0.52 0.48 0.42

-

0.09

-

0.68 0.41 0.70

-

0.31 0.76 0.78 0.70 0.83 0.54 0.00 0.76 0.00 0.00
MIDDL
E 0.17 0.11 0.40 0.02 0.47

-

0.04

-

0.05

-

0.49 0.03 0.34

-

0.02 0.14 0.13 0.14 0.24 0.12 0.00 0.15 0.10 0.04

LOWER
-

0.70

-

0.15

-

0.94

-

0.44

-

0.65

-

0.28 0.07 0.85

-

0.33 -0.79 0.25

-

0.68

-

0.69

-

0.66

-

0.84

-

0.87 -0.55 0.42 0.00 0.00

RS 0.41 0.27

-

0.11

-

0.13

-

0.67 0.54 0.07 0.58 0.53 -0.54 0.27 0.47 0.47 0.33 0.08 0.06 -0.27 0.16 0.90 0.43

NS1 0.81 0.05 0.86 0.28 0.50 0.41 0.03

-

0.68 0.58 0.67

-

0.18 0.80 0.79 0.86 0.95 0.79 0.32 -0.84 0.02 0.00

NS2 0.54
-

0.13 0.77 0.23 0.62 0.33 0.01

-

0.72 0.42 0.70

-

0.17 0.54 0.57 0.71 0.80 0.66 0.38 -0.76 -0.15 0.80

* p<0.01 p<0.05 p<0.05 p<0.01

positive relationship negative relationship

P
C
2
 
(
2
1
.5
%
)

Group V RS

4

Group IV

2

MR 

RM

R1i
S1

NS1

Group I

Group II

TOP

0

LOWER NP4

MDS

-2 PA

Group III

-4 -2 0 2 4 6

PC1 (49.5%)

Fig. 2 PCA biplot of non-
parametric stability statistics
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These group of statistics was only partially useful for the
genotype selection because another method is needed to
complement their failure to assess disease reactions.
Some stability statistics such as Fox’s parameters were
also consistent withMDS but provided imprecise results
(favoring many genotypes at once) when others such as
NP3 failed to separate resistant genotypes from suscep-
tible ones. Comparing the results of non-parametric
statistics (Table 3) with leaf rust disease reactions
(Table 2) revealed that PA and RM were different than
other statistics in terms of detecting significantly lower
disease severities of Genotypes 15 and 25 and
distinguishing them from other genotypes, especially
from susceptible and stable Genotypes 20 and 29 (see
also Fig. 1). Duarte and Zimmermann (1995) pointed
out a similar difference between non-parametric statis-
tics by stating that PA and R2i were uncorrelated and
probably investigated different aspects of stability (see
Becker and Leon 1988 and Lin et al. 1986 for a more
detailed discussion of the different aspects of stability).
RM is calculated as the mean of ranks of any genotype
across environments and PA is the percentage of how
many times any given genotype exceeds the environ-
ment average in a multi environmental data set. Hence,
the calculations of PA and RM provided insights about
both stability and severity. These two methods success-
fully expressed genotype performances over a series of
environments because it was as easy to detect the
lowest-performing genotypes as it was for the highest
ones, hence these statistics were more useful for nega-
tive selection. In addition, PA and RM can easily be
adapted to frequently used spreadsheet programs such
as MS Excel due to their simpler formulas.

In conclusion, Genotypes 15 and 25 were selected as
the most resistant-stable genotypes and PA and RM are
recommended as useful selection tools to select for leaf
rust resistance in a multi-environmental data set. Using
non-parametric stability statistics provided valuable in-
formation about G × E interactions.

Acknowledgments The authors thank the Scientific and Tech-
nological Research Council of Turkey (TUBITAK) for their finan-
cial support under project no: 111O255 and Dr. Selin Türkmen
from ÇOMÜ Lapseki Vocational School for her kind support in
formulating the mathematical equations of non-parametric stabil-
ity statistics.

Funding This study was funded by the Scientific and Techno-
logical Research Council of Turkey (TUBITAK) grant number:
111O255.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

Adugna, W., & Labuschagne, M. T. (2002). Genotype-
environment interactions and phenotypic stability analyses
of linseed in Ethiopia. Plant Breeding, 121(1), 66–71.
https://doi.org/10.1046/j.1439-0523.2002.00670.x.

Akcura, M., & Ceri, S. (2011). Evaluation of drought tolerance
indices for selection of Turkish oat (Avena sativa L.) land-
races under various environmental conditions. Zemdirbyste-
Agriculture, 98(2), 157–166.

Akan, K., & Akcura, M. (2018). GGE biplot analysis of reactions
of bread wheat pure lines selected from central anatolian
landraces of Turkey to leaf rust disease (Puccinia triticina)
i n mu l t i p l e l o c a t i on -y ea r s . Cerea l Re s ea rch
Communications., 46(2), 311–320. https://doi.org/10.1556
/0806.46.2018.12.

Akcura, M., & Kaya, Y. (2008). Nonparametric stability methods
for interpreting genotype by environment interaction of bread
wheat genotypes (Triticum aestivum L.). Genetics and
Molecular Biology, 31(4), 906–913. https://doi.org/10.1590
/S1415-47572008005000004.

Akcura, M., Kaya, Y., & Taner, S. (2009). Evaluation of durum
wheat genotypes using parametric and nonparametric stabil-
ity statistics. Turkish Journal of Field Crops, 14(2), 111–122.

Allard, R. W., & Bradshaw, A. D. (1964). Implications of
genotype-environmental interactions in applied plant breed-
ing. Crop Science, 4(5), 503. https://doi.org/10.2135
/cropsci1964.0011183X000400050021x.

Anonymous (2018). Official statistics. Turkish State
Meteorological Service. www.mgm.gov.tr. ().

Becker, H. C., & Leon, J. (1988). Stability analysis in plant
breeding. Plant Breeding, 101, 1–23.

Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf
rust caused by Puccinia triticina.Molecular Plant Pathology,
9 (5) , 563–575. ht tps : / /doi .org /10 .1111/ j .1364-
3703.2008.00487.x.

Duarte, J. B., & Zimmermann, M. J. (1995). Correlation among
yield stability parameters in common bean. Crop Science,
3 5 ( 3 ) , 9 0 5 – 9 1 2 . h t t p s : / / d o i . o r g / 1 0 . 2 1 3 5
/cropsci1995.0011183X003500030046x.

Fox, P. N., Skovmand, B., Thompson, B. K., Braun, H. J., &
Cormier, R. (1990). Yield and adaptation of hexaploid spring
triticale. Euphytica, 47, 57–64.

Huerta-Espino, J., Singh, R. P., Germán, S., McCallum, B. D.,
Park, R. F., Chen, W. Q., & Goyeau, H. (2011). Global
status of wheat leaf rust caused by Puccinia triticina.
Euphytica, 179(1), 143–160. https://doi.org/10.1007
/s10681-011-0361-x.

Huehn, V. M. (1979). Beitrage zur erfassung der phanoty- pischen
stabilitat. EDV in Medizin und Biologie, 10, 112–117.

JMP. (2016). JMP® Version 13 (pp. 1989–2019). Cary, NC: SAS
Institute Inc..

Phytoparasitica (2020) 48:261–271270

https://doi.org/10.1046/j.1439-0523.2002.00670.x
https://doi.org/10.1556/0806.46.2018.12
https://doi.org/10.1556/0806.46.2018.12
https://doi.org/10.1590/S1415-47572008005000004
https://doi.org/10.1590/S1415-47572008005000004
https://doi.org/10.2135/cropsci1964.0011183X000400050021x
https://doi.org/10.2135/cropsci1964.0011183X000400050021x
http://www.mgm.gov.tr
https://doi.org/10.1111/j.1364-3703.2008.00487.x
https://doi.org/10.1111/j.1364-3703.2008.00487.x
https://doi.org/10.2135/cropsci1995.0011183X003500030046x
https://doi.org/10.2135/cropsci1995.0011183X003500030046x
https://doi.org/10.1007/s10681-011-0361-x
https://doi.org/10.1007/s10681-011-0361-x


Kang, M. (1988). A rank-sum method for selecting high-yielding,
stable corn genotypes. Cereal Research Communications,
16, 113–115.

Karimizadeh, R., Mohammadi, M., Sabaghnia, N., & Shefazadeh,
M. K. (2012). Using Huehn’s nonparametric stability statis-
tics to investigate genotype — Environment interaction.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1),
293–301.

Kaya, Y., & Turkoz, M. (2016). Evaluation of genotype by envi-
ronment interaction for grain yield in durum wheat using
non-parametric stability statistics. Turkish Journal of Field
Crops, 21, 51–59.

Ketata, H., Yan, S. K., Nachit, M. (1989). Relative consistency
performance across environments. Int. Symp. On
physioelogy and breeding of winter cereals for stressed med-
iterranean environments. Montpellier, July 3–6, 1989.

Kilic, H., Akcura, M., & Aktas, H. (2010). Assessment of para-
metric and non-parametric methods for selecting stable and
adapted durum wheat genotypes in multi-environments.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3),
271–279.

Langer, S., Frey, K. J., & Baily, T. (1979). Association of different
stability models in wheat. Euphytica, 28, 17–24.

Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability
analysis: Where do we stand? Crop Science, 26(1), 894–900.
h t t p s : / / do i . o rg / 10 . 2135 / c r op s c i 1986 . 0011183
X002600050012x.

Minitab 17 Statistical Software. (2010). State college. PA:
Minitab, Inc.. www.minitab.com.

Mohammadi, R., Abdulahi, A., Haghparast, R., & Armion, M.
(2007). Interpreting genotype× environment interactions for
durum wheat grain yields using nonparametric methods.
Euphytica, 157(1–2), 239–251.

Mohammadi, R., & Amri, A. (2008). Comparison of parametric
and non-parametric methods for selecting stable and adapted
durumwheat genotypes in variable environments.Euphytica,
159(3), 419–432. https://doi.org/10.1007/s10681-007-9600-
6.

Ozturk,M. Z., Cetinkaya, G., &Aydin, S. (2016). Climate types of
Turkey according to Köppen-Geiger climate classification.
Istanbul University Journal of Geography, 35, 17–27.
https://doi.org/10.26650/JGEOG330955.

Peel, M. C., Finlayson, B. L., &McMahon, T. A. (2007). Updated
world map of the koppen-Geiger climate classification.
Hydrology and earth system sciences discussions.
European geosciences union, 4(2), 439–473.

Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A
diagrammatic scale for estimating rust intensity on leaves
and stems of cereals. Canadian Journal of Research, 26(5),
496–500.

Primomo, V. S., Falk, D. E., Ablett, G. R., Tanner, J. W., & Rajcan,
I. (2002). Genotype x environment interactions, stability and
agronomic performance of soybean with altered fatty acid
profiles. Crop Science, 42(1), 37–44. https://doi.org/10.2135
/cropsci2002.0037.

Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000).
Genotype × environment interaction of winter wheat
(Triticum aestivum L.) in South Africa: II. Stability analysis
of yield performance South African Journal of Plant and Soil,

1 7 ( 3 ) , 1 0 1 – 1 0 7 . h t t p s : / / d o i . o r g / 1 0 . 1 0 8 0
/02571862.2000.10634878.

Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). Non-
parametric methods for interpreting genotype · environment
interaction of lentil genotypes.Crop Science, 46, 1100–1106.

Sabaghnia, N., Mohammadi, M., & Karimizadeh, R. (2013).
Interpreting genotype× environment interaction of beard
wheat genotypes using different nonparametric stability sta-
tistics. Poljoprivreda i Sumarstvo, 59(2), 21.

Sabaghnia, N. (2015). Identification of the most stable genotypes
in multi-environment trials by using nonparametric methods.
Acta agriculturae Slovenica, 105(1), 103–110.

Sabaghnia, N. (2016). Nonparametric statistical methods for anal-
ysis of genotype × environment interactions in plant pathol-
ogy. Australasian Plant Pathology, 45(6), 571–580.
https://doi.org/10.1007/s13313-016-0453-0.

Scapim, C. A., Oliveira, V. R., De Lucca, E., Braccini, A., Cruz, C.
D., De Bastos Andrade, C. A., & Vidigal, M. C. G. (2000).
Yield stability in maize (Zea mays L.) and correlations among
the parameters of the Eberhart and Russell, Lin and Binns
and Huehn models. Genetics and Molecular Biology, 23(2),
3 8 7 – 3 9 3 . h t t p s : / / d o i . o r g / 1 0 . 1 5 9 0 / S 1 4 1 5 -
47572000000200025.

St.Pierre, C. A., Klinck, H. R., & Gauthier, F. M. (1967). Early
generation selection under different environments as it influ-
ences adaptation of barley. Canadian Journal of Plant
Science, 47, 507–517.

Shukla, G. K. (1972). Some statistical aspects of partitioning
genotype-environmental components of variability.
Heredity 29:237-245.

Thennarasu, K. (1995). On certain non-parametric proce- dures for
studying genotype–environment interactions and yield stabil-
ity. PhD thesis. PJ School, IARI, New Delhi, India.

Torres-Salinas, D., Robinson-García, N., Jiménez-Contreras, E.,
Herrera, F., & López-Cózar, E. D. (2013). On the use of
biplot analysis for multivariate bibliometric and scientific
indicators. Journal of the American Society for Information
Science and Technology, 64(7), 1468–1479.

Yates, F., & Cochran, W. G. (1938). The analysis of groups of
experiments. J.Agric.Sci., 28, 556–580.

Yue, G. L., Roozeboom, K. L., Schapaugh, W. T., & Liang, G. H.
(1997). Evaluation of soybean cultivars using parametric and
nonparametric stability estimates. Plant Breeding, 116(3),
271–275. https://doi.org/10.1111/j.1439-0523.1997.
tb00995.x.

Yan, W. (2014). Crop variety trials: Data management and analy-
sis. John Wiley & Sons. ISBN 978-1-118-68864-9.

Zali, H., Farshadfar, E., & Sabaghpour, S. H. (2011). Non-
parametric analysis of phenotypic stability in chickpea
(Cicer arietinum L.) genotypes in Iran. Crop Breeding
Journal, 1(1), 89–100.

Zewdie, Y., & Bosland, P. W. (2000). Evaluation of genotype,
environment, and genotype-by-environment interaction for
capsaicinoids in Capsicum annuum L. Euphytica, 111(3),
185–190. https://doi.org/10.1023/A:1003837314929.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

Phytoparasitica (2020) 48:261–271 271

https://doi.org/10.2135/cropsci1986.0011183X002600050012x
https://doi.org/10.2135/cropsci1986.0011183X002600050012x
http://www.minitab.com
https://doi.org/10.1007/s10681-007-9600-6
https://doi.org/10.1007/s10681-007-9600-6
https://doi.org/10.26650/JGEOG330955
https://doi.org/10.2135/cropsci2002.0037
https://doi.org/10.2135/cropsci2002.0037
https://doi.org/10.1080/02571862.2000.10634878
https://doi.org/10.1080/02571862.2000.10634878
https://doi.org/10.1007/s13313-016-0453-0
https://doi.org/10.1590/S1415-47572000000200025
https://doi.org/10.1590/S1415-47572000000200025
https://doi.org/10.1111/j.1439-0523.1997.tb00995.x
https://doi.org/10.1111/j.1439-0523.1997.tb00995.x
https://doi.org/10.1023/A:1003837314929

	Evaluating leaf rust reactions of pure bread wheat landrace lines using non-parametric statistics
	Abstract
	Introduction
	Materials and methods
	Test material and disease tests
	Statistical evaluation

	Results
	Assessment of genotype reactions by non-parametric stability statistics
	Interpreting the relationships between non-parametric stability statistics

	Discussion
	References




