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Abstract. In this paper, we have extended a theorem dealing with absolute Riesz summability.
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INTRODUCTION

Let
∑

an be a given infinite series with partial sums (sn).Let (pn) be a sequence of positive numbers such that Pn =∑n
v=0 pv → ∞ as n→ ∞, (P−i = p−i = 0, i ≥ 1). The sequence-to-sequence transformation

wn =
1
Pn

n∑

v=0

pvsv (1)

defines the sequence (wn) of the weighted arithmetic mean or simply the
(
N̄, pn

)
mean of the sequence (sn), generated

by the sequence of coefficients (pn) (see [4]). Let (θn) be any sequence of positive constants. The series
∑

an is said to
be summable |N̄, pn, θn|k, k ≥ 1, if (see [7])

∞∑

n=1

θk−1
n | tn − tn−1 |k< ∞. (2)

Theorem 1 Let (Xn) be an almost increasing sequence and let (θnann) be a non-increasing sequence. Suppose that
there exists sequences (βn) and (λn) such that

|Δλn| ≤ βn, (3)
βn → 0 as n→ ∞, (4)

∞∑

n=1

n|Δβn|Xn < ∞, (5)

|λn|Xn = 0(1). (6)

If
m∑

n=1

θk−1
n
|tn|k

nkXk−1
n
= O(Xm) as m→ (7)

and (pn) is a sequence such that

Pn = O(npn), (8)
PnΔpn = O(pn pn+1), (9)

then the series
∑∞

n=1 anλnPn/npn is summable |N̄, pn, θn|k, k ≥ 1 (see ([3])).
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Main Results

Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑

i=v

ani, n, v = 0, 1, ... Δ̄anv = anv − an−1,v, a−1,0 = 0 (10)

and

â00 = ā00 = a00, ânv = Δ̄ānv, n = 1, 2, ... (11)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series transformations,
respectively. Then, we have

An(s) =
∑n

v=0 anvsv =
∑n

v=0 ānvav (12)

and

Δ̄An(s) =
∑n

v=0 ânvav. (13)

In this study, we extend Theorem 1 to |A, θn|k summability method (see [5] and [6]) with above notation as follow:

Theorem 2 Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (14)
an−1,v ≥ anv, for n ≥ v + 1, (15)

ann = O( pn
Pn

), (16)
nann = O(1), (17)

ân,v+1 = O(v|Δvânv|). (18)

Let (θnann) be a non-increasing sequence and let (Xn) be an almost increasing sequence. If all the conditions of
Theorem 1 are satisfied then the series

∑∞
n=1 anλnPn/npn is summable |A, θn|k, k ≥ 1.

Conclusion

If we take θn = Pn
pn

in Theorem 2, then we have a result concerning the |A, pn|k summability factors of infinite series,
and if we take anv =

pv
Pn

Theorem 2, then we have another result dealing with
∣∣∣N̄, pn, θn

∣∣∣
k summability factors of

infinite series. Also, if we put anv =
pv
Pn

and pn = 1 for all n in Theorem 2, then we obtain a result concerning |C, 1, θn|k
summability factors of infinite series. Moreover, if we take θn = Pn

pn
, k = 1 and anv =

pv
Pn

in Theorem 2, then we have a
result dealing with

∣∣∣N̄, pn

∣∣∣ summability factors of infinite series ,and if we take θn = n, anv =
pv
Pn

and pn = 1 for all n
in Theorem 2, then we obtain a result concerning the |C, 1|k summability factors of infinite series.
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