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Abstract. In this paper, we have generalized a new summability factor theorem for infinite series involving quasi power increasing
sequences. Some new results are also deduced.
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PACS: 02.30.Lt, 02.30.Sa

INTRODUCTION

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the
sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ... (1)

The series
∑

an is said to be summable |A, pn|k, k ≥ 1, if (see [13])

∞∑
n=1

(
Pn

pn

)k−1

|An(s) − An−1(s)|k < ∞. (2)

If we take pn = 1 for all n, then we have |A|k summability (see [15]). And also if we take anv =
pv
Pn

, then we have∣∣∣N̄, pn

∣∣∣
k summability (see [2]). Furthermore, if we take anv =

pv
Pn

and pn = 1 for all n, then |A, pn|k summability reduces
to |C, 1|k summability (see [10]). Let ω be the class of all matrices A = (anv) and A be a normal matrix satisfying:

an0 = 1, n = 0, 1, ..., (3)
an−1,v ≥ anv, for n ≥ v + 1, (4)

ann = O
(

pn
Pn

)
. (5)

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing sequence (cn)
and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [1]).
Every increasing sequence is almost increasing, but the converse need not to be true, by taking for example bn = e(−1)n

n
(see [12]). The concept of a quasi β− power increasing sequence (see [8]) is that a positive sequence α = (αn) is said
to be a quasi-β-power increasing sequence if there exists a constant K = K(α, β) such that Knβαn ≥ mβαm holds for
n ≥ m ≥ 1. Sulaiman generalizes this definition by giving [14]. A positive sequence α = (αn) is said to be quasi- f -
power increasing sequence, f = ( fn), if there exists a constant K = K(α, f ) such that K fnαn ≥ fmαm for all n ≥ m ≥ 1.
It may be mentioned that every almost increasing is quasi-β-power increasing sequence for any nonnegative β, but the
converse need not to be true, by taking, for example, αn = n−β, β > 0 (see [8]).

Third International Conference of Mathematical Sciences (ICMS 2019)
AIP Conf. Proc. 2183, 050016-1–050016-3; https://doi.org/10.1063/1.5136154

Published by AIP Publishing. 978-0-7354-1930-8/$30.00

050016-1



For any sequence (λn) we write that Δ2λn = Δλn −Δλn+1 and Δλn = λn − λn+1. The sequence (λn) is said to be of

bounded variation, denoted by (λn) ∈ BV, if
∞∑

n=1
|Δλn| < ∞.

Mazhar has proved the main theorem concerning |C, 1|k summability (see [11]), and this theorem has extended
by Bor to

∣∣∣N̄, pn

∣∣∣
k summability (see [6]). Sulaiman has obtained a further generalization of Mazhar’s Theorem (see

[12]) by taking quasi- f -power increasing sequence as follows:
Theorem 1 [14] Let (Xn) be a quasi- f -increasing sequence, where f = ( fn) = (nβlogγn), γ > 0, 0 < β < 1 and

|λm|Xm = O(1) as m→ ∞, (6)
m∑

n=1

nXn|Δ2λn| = O(1) as m→ ∞, (7)

m∑
n=1

Pn

n
= O(Pm) as m→ ∞, (8)

and

m∑
n=1

pn

Pn
|tn|k |λn|k = O(1), as m→ ∞ (9)

m∑
n=1

|tn|k
nXk−1

n
= O(Xm) as m→ ∞ (10)

hold, then the series
∑

anλn is summable
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1.

Theorem 2[14] If the condition (8) is replaced with

λn = O (n|Δλn|) , n→ ∞, (11)

in Theorem 1 and all the other conditions are satisfied, then the series
∑

anλn is summable
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1.

The Main Results

The aim of this paper is to generalize Theorem 1 and Theorem 2 for |A, pn|k summability method by concerning quasi-
f-power increasing sequence. Recently, some studies have been done concerning absolute matrix summability factors
of infinite series (see [3]-[7], [16]-[18]). Using the above matrix notations, we have the following theorems.
Theorem 3 Let A ∈ ω satisfy

n−1∑
v=1

1
v

ân,v+1 = O(ann), (12)

and (Xn) be a quasi- f -power increasing sequence, where f = ( fn) = (nβlogγn), γ > 0, 0 < β < 1. If all the other
conditions of Theorem 1 are satisfied, then the series

∑
anλn is summable |A, pn|k, k ≥ 1.

Theorem 4 Let A ∈ ω and (Xn) be a quasi- f -power increasing sequence, where f = ( fn) = (nβlogγn), γ > 0, 0 < β < 1.
If all the other conditions of Theorem 2 are satisfied, then the series

∑
anλn is summable |A, pn|k, k ≥ 1.

APPLICATIONS

By applying Theorem 3, Theorem 4 to weighted mean so, the following results can be easily verified.
1. If we take anv =

pv
Pn

in Theorem 3, Theorem 4, then we have Theorem 1 and Theorem 2.
2. If we take pn = 1 for all n in Theorem 3 and Theorem 4, then we have a new result dealing with |A|k summability.
3. If we take anv =

pv
Pn

and pn = 1 for all n in Theorem 3 and Theorem 4, then we have a new result concerning |C, 1|k
summability.
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