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Abstract In this paper, we determine a rotational surface

by means of generalized quaternions and study this flat

rotational surface with pointwise 1-type Gauss map in four-

dimensional generalized space E4ab. Also, for some special

cases of a and b, we obtain the characterizations of flat

rotational surfaces with pointwise 1-type Gauss map in

four-dimensional Euclidean space E4 and four-dimensional

pseudo-Euclidean space E42.
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1 Introduction

Quaternions first introduced by Hamilton are a number

system that is a generalization of the complex numbers in

four-dimensional space. A real quaternion q is defined as

q ¼ q0 þ q1iþ q2jþ q3k where q0; q1; q2; q3 are real

numbers and 1, i, j, k are the basis elements which satisfy

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1: The set of quaternions H with

these basis elements 1; i; j; kf g is isomorphic to four-di-

mensional vector space R4: There are three fundamental

operations on H: addition, scalar multiplication and

quaternion multiplication. The addition and scalar multi-

plication are defined same as the addition and scalar mul-

tiplication on R4 but the quaternion multiplication is

determined by distributive law and the multiplication rule

between the basis elements of H. The set of quaternions

H is a real vector space with these addition and scalar

multiplication. Also, it is an associative and non-commu-

tative four-dimensional Clifford algebra with together

quaternion multiplication.

The set of all unit quaternions forms 3-sphere S3. It is a

Lie group that is isomorphic to the group SU(2) and double

covering the group SO(3) , the group of three-dimensional

rotations. On the other hand, any quaternions can be rep-

resented as the terms of 4� 4 real matrices. The matrix

representation of a unit quaternion is a real orthogonal 4�
4 matrix of determinant 1. So, a unit quaternion could be

used to represent the rotations in R4: Since the rotations in

three-dimensional space and four-dimensional space can be

expressed by quaternions, they are commonly used in

computer graphics, computer vision, robotics, computer

simulations, orbital mechanics, etc.

Quaternions were generalized, and a brief introduction

of generalized quaternions was given by Pottman and

Wallner [1]. Recently, their some algebraic properties were

studied by Jafari [2]. Jafari and Yaylı [3, 4] described the

rotations in three-dimensional generalized linear space E3ab
and four-dimensional generalized linear space E4ab by

means of generalized quaternions. Also, Arslan et al. [5]

studied rotational surfaces in n-dimensional Euclidean

space.

Let G(n, m) be a Grassmannian manifold consisting of

all oriented n-planes through the origin of Em.

The Gauss map G of an n-dimensional submanifold M

of m-dimensional Euclidean space Em is a smooth map
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which carries a point p in M into the n-plane through the

origin in Em obtained by translating parallelly the tangent

space at p of M, that is, it is a smooth map which carries a

point p in M into G(n, m). The Grassmannian manifold

G(n, m) is canonically embedded in

^nEm ffi EN ;N ¼ m

n

� �
. Hence, the Gauss map is defined

by G : M ! Gðn;mÞ � EN , GðpÞ ¼ e1 ^ . . . ^ enð Þ pð Þ:
Chen and Piccinni [6] studied submanifolds with finite type

Gauss map.

A submanifold M of a Euclidean or pseudo-Euclidean

space is said to have pointwise 1-type Gauss map if

satisfies

DG ¼ f ðGþ CÞ ð1Þ

for some nonzero smooth function f on M and some con-

stant vector C. A submanifold with pointwise 1-type Gauss

map is said to be of the first kind if the vector C in Eq. (1)

is zero vector. Otherwise, pointwise 1-type Gauss map is

said to be of second kind. Rotational surfaces in Euclidean

space and pseudo-Euclidean space with pointwise 1-type

Gauss map were recently studied [7–10]. Also tensor pro-

duct surfaces with pointwise 1-type Gauss map were

recently studied [11].

In this paper, we determine a rotational surface via

generalized quaternions and study this flat rotational sur-

face with pointwise 1-type Gauss map in four-dimensional

generalized linear space E4ab. Also, for some special cases

of a and b, we obtain the characterizations of flat rotational

surfaces with pointwise 1-type Gauss map in four-dimen-

sional Euclidean space E4 and four-dimensional pseudo-

Euclidean space E42 which are given by Aksoyak and Yaylı
[12, 13].

2 Preliminaries

The set of generalized quaternions, denoted by Hab; is

defined by

Hab ¼ q ¼ q0 þ q1iþ q2jþ q3k; qt 2 R; t ¼ 0; 1; 2; 3f g;

where i, j, k are quaternionic units which satisfy the

equalities

i2 ¼� a;j2 ¼ �b; k2 ¼ �ab;

ij ¼ k ¼ �ji; jk ¼ bi ¼ �kj; ki ¼ aj ¼ �ik and a; b 2 R:

By choosing a and b there are the following special cases:

1. If a ¼ b ¼ 1 is considered, then Hab is the algebra of

real quaternions.

2. If a ¼ 1; b ¼ � 1 is considered, then Hab is the algebra

of split quaternions.

3. If a ¼ 1; b ¼ 0 is considered, then Hab is the algebra

of semi-quaternions.

4. If a ¼ � 1; b ¼ 0 is considered, then Hab is the algebra

of split semi-quaternions.

5. If a ¼ b ¼ 0 is considered, then Hab is the algebra of
1
4
�quaternions.

For any p ¼ p0 þ p1iþ p2jþ p3k and q ¼ q0 þ q1iþ q2jþ
q3k in Hab; the addition rule for generalized quaternions is

defined as:

pþ q ¼ p0 þ q0ð Þ þ p1 þ q1ð Þiþ p2 þ q2ð Þjþ p3 þ q3ð Þk

and the multiplication of a generalized quaternion q ¼
q0 þ q1iþ q2jþ q3k by a real scalar c is defined as:

cq ¼ cq0 þ cq1iþ cq2jþ cq3k:

Hab is a real vector space according to this addition and

scalar multiplication.

Generalized quaternion product is defined as:

pq ¼ p0q0 � ap1q1 � bp2q2 � abp3q3ð Þ
þ p1q0 þ p0q1 � bp3q2 þ bp2q3ð Þi
þ p2q0 þ ap3q1 þ p0q2 � ap1q3ð Þj
þ p3q0 � p2q1 þ p1q2 þ p0q3ð Þk

or it could be expressed as:

pq ¼

p0 � ap1 � bp2 � abp3
p1 p0 � bp3 bp2
p2 ap3 p0 � ap1
p3 � p2 p1 p0

2
6664

3
7775

q0

q1

q2

q3

2
6664

3
7775:

ð2Þ

The generalized quaternion product has an associative and

distributive property on the addition, but it has not the

commutative property in general.

The conjugate of a generalized quaternion q is denoted

by �q and defined by �q ¼ q0 � q1i� q2j� q3k. The norm of

a generalized quaternion q is defined as:

Nq ¼ q�q ¼ q20 þ aq21 þ bq22 þ abq23:
Let u ¼ u0; u1; u2; u3ð Þ; v ¼ v0; v1; v2; v3ð Þ 2 R4 and a;

b 2 R. The generalized inner product u and v is defined by

gðu; vÞ ¼ u; vh iab¼ u0v0 þ au1v1 þ bu2v2 þ abu3v3

or it could be written

gðu; vÞ ¼ ut

1 0 0 0

0 a 0 0

0 0 b 0

0 0 0 ab

2
6664

3
7775v ¼ utGv:

So the vector space on R4 equipped with generalized scalar

product is called four-dimensional generalized space and

denoted by E4ab ¼ R4; ;h iab
� �

[3].
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If a ¼ b ¼ 1; then E4ab is four-dimensional Euclidean

space E4.

If a ¼ 1; b ¼ �1; then E4ab is four-dimensional pseudo-

Euclidean space E42:

A matrix A4�4 is called semi-orthogonal matrix in four-

dimensional generalized space E4ab if ATGA ¼ G and

detA ¼ 1. The set of all semi-orthogonal matrices is called

rotational group in E4ab [3].

Let E4ab be four-dimensional generalized space. Then,

the metric tensor g in E4ab has the form

g ¼ dx20 þ adx21 þ bdx22 þ abdx23;

where ðx0; x1; x2; x3Þ is a standard rectangular coordinate

system in E4ab:

Let M be a two-dimensional submanifold of four-di-

mensional generalized space E4ab: We denote Levi-Civita

connections of E4ab and M by ~r and r; respectively. Let

e1; e2; e3; e4 be an adapted local orthonormal frame in E4ab
such that e1; e2 are tangent toM and e3; e4 normal toM. We

use the following convention on the ranges of indices:

1� i; j; k; . . .� 2, 3� r; s; t; . . .� 4, 1�A;B;C; . . .� 4:

Let xA be the dual-1 form of eA defined by xA Xð Þ ¼
eA;Xh i and eA ¼ eA; eAh i ¼ � 1: Also, the connection

forms xAB are defined by

deA ¼
X
B

eBxABeB;

where xAB þ xBA ¼ 0: Then, we have

~rei
ek
¼

X2
j¼1

ejxij ekð Þej þ
X4
r¼3

erh
r
iker ð3Þ

and

~res
ek
¼ �

X2
j¼1

ejh
s
kjej þ Des

ek
; Des

ek
¼

X4
r¼3

erxsr ekð Þer; ð4Þ

where D is the normal connection and hrik are the coeffi-

cients of the second fundamental form h.

If we define a covariant differentiation �rh of the second

fundamental form h on the direct sum of the tangent bundle

and the normal bundle TM 	 T?M of M by

�rXhð Þ Y ; Zð Þ ¼ DXh Y ; Zð Þ � h rXY ; Zð Þ � h Y;rXZð Þ

for any vector fields X, Y and Z tangent toM, then we have

the Codazzi equation

�rXhð Þ Y ; Zð Þ ¼ �rYhð Þ X; Zð Þ ð5Þ

and the Gauss equation is given by

RðX; YÞZ;Wh i ¼ h X;Wð Þ; h Y ; Zð Þh i � h X; Zð Þ; h Y ;Wð Þh i;
ð6Þ

where the vectors X, Y, Z and W are tangent to M and R is

the curvature tensor associated with r: The curvature

tensor R associated with r is defined by

RðX; YÞZ ¼ rXrYZ �rYrXZ �r X;Y½ 
Z:

For any real function f on M, the Laplacian Df of f is given
by

Df ¼ �ei
X
i

~rei
~rei f � ~rrei

ei
f

� �
: ð7Þ

The Gaussian curvature K of M in E4ab is given by

K ¼
X4
s¼3

es hs11h
s
22 � hs12h

s
21

� �
: ð8Þ

Also if Gaussian curvature of M vanishes identically, i.e.,

K ¼ 0; the surface M is called flat.

3 Flat Rotation Surfaces with Pointwise 1-Type
Gauss Map Via Generalized Quaternions

In this section, by using generalized quaternions we

determine a rotational surface in four-dimensional gener-

alized space E4ab: If we choose generalized quaternions p

and q in Eq. (2) as p ¼ cos t þ i 1ffiffi
a

p sin t and

q ¼ xðsÞ þ jyðsÞ, we obtain following rotational surface in

E4ab:

X t; sð Þ

¼

cos t � affiffiffi
a

p sin t 0 0

1ffiffiffi
a

p sin t cos t 0 0

0 0 cos t � affiffiffi
a

p sin t

0 0
1ffiffiffi
a

p sin t cos t

0
BBBBBBBBBB@

1
CCCCCCCCCCA

xðsÞ
0

yðsÞ
0

0
BBB@

1
CCCA;

M : X t; sð Þ ¼ xðsÞ cos t; 1ffiffiffi
a

p xðsÞ sin t; yðsÞ cos t; 1ffiffiffi
a

p yðsÞ sin t
� �

;

ð9Þ

where a is positive real constant and uðsÞ ¼
xðsÞ; 0; yðsÞ; 0ð Þ is the profile curve of M. We choose a

moving frame e1; e2; e3; e4 such that e1; e2 are tangent to M

and e3; e4 are normal to M as follows:

Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions 253

123



e1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1 x2 sð Þ þ by2ðsÞð Þ
p �x sð Þ sin t; 1ffiffiffi

a
p x sð Þ cos t;

�

�yðsÞ sin t; 1ffiffiffi
a

p yðsÞ cos t
�
;

e2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 x0ðsÞð Þ2þb y0ðsÞð Þ2
� �r x0 sð Þ cos t; 1ffiffiffi

a
p x0 sð Þ sin t;

�

y0ðsÞ cos t; 1ffiffiffi
a

p y0ðsÞ sin t
�
;

e3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e3b x0ðsÞð Þ2þb y0ðsÞð Þ2
� �r �by0 sð Þ cos t;� bffiffiffi

a
p y0 sð Þ sin t;

�

x0ðsÞ cos t; 1ffiffiffi
a

p x0ðsÞ sin t
�
;

e4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4b x2 sð Þ þ by2ðsÞð Þ
p �by sð Þ sin t; bffiffiffi

a
p y sð Þ cos t;

�

xðsÞ sin t;� 1ffiffiffi
a

p xðsÞ cos t
�
;

where b is nonzero real constant. It is easily seen that

e1; e1h i ¼ e1; e2; e2h i ¼ e2; e3; e3h i ¼ e3 ¼ ee2; e4; e4h i
¼ e4 ¼ ee1;

where e1; e2 and e are signatures of x2 sð Þ þ by2ðsÞ;
x0ðsÞð Þ2þb y0ðsÞð Þ2 and b; respectively. Then, we have the

dual 1-forms as:

x1 ¼ e1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 x2 sð Þ þ by2ðsÞð Þ

p
dt and

x2 ¼ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 x0ðsÞð Þ2þb y0ðsÞð Þ2
� �r

ds:

By a direct computation, we can obtain coefficients of the

second fundamental form and the connection forms as:

h311 ¼ b,kbðsÞ; h312 ¼ 0; h322 ¼ �b,kcðsÞ;
h411 ¼ 0; h412 ¼ �b,kbðsÞ; h422 ¼ 0:

ð10Þ

and

x12 ¼ � e1,aðsÞx1;x13 ¼ e1b,kbðsÞx1;

x14 ¼ � e2b,kbðsÞx2; x23 ¼ �e2b,kcðsÞx2;

x24 ¼ � e1b,kbðsÞx1; x34 ¼ �e1b,k
2aðsÞx1:

ð11Þ

Moreover, combining Eqs. (3), (4), (10) and (11) we have

covariant differentiation with respect to e1 and e2 as

follows:

~re1e1 ¼ � e2,aðsÞe2 þ ee2b,kbðsÞe3;
~re2e1 ¼ � ee1b,kbðsÞe4;
~re1e2 ¼ e1,aðsÞe1 � ee1b,kbðsÞe4;
~re2e2 ¼ � ee2b,kcðsÞe3;
~re1e3 ¼ � e1b,kbðsÞe1 � ee1b,k

2aðsÞe4;
~re2e3 ¼ e2b,kcðsÞe2;
~re1e4 ¼ e2b,kbðsÞe2 þ ee2b,k

2aðsÞe3;
~re2e4 ¼ e1b,kbðsÞe1;

ð12Þ

where

aðsÞ ¼ xðsÞx0ðsÞ þ byðsÞy0ðsÞ
e1 x2 sð Þ þ by2ðsÞð Þ ; ð13Þ

bðsÞ ¼ xðsÞy0ðsÞ � x0ðsÞyðsÞ
e1 x2 sð Þ þ by2ðsÞð Þ ; ð14Þ

cðsÞ ¼ x00ðsÞy0ðsÞ � x0ðsÞy00ðsÞ
e2 x0ðsÞð Þ2þb y0ðsÞð Þ2
� � ; ð15Þ

,ðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 x0ðsÞð Þ2þb y0ðsÞð Þ2
� �r ;

kðsÞ ¼ 1ffiffiffiffiffi
eb

p :

ð16Þ

Without loss of generality, we assume that the profile curve

u is parameterized by its arc-length, that is,

x0ðsÞð Þ2þb y0ðsÞð Þ2¼ 1: ð17Þ

In that case, we have that e2 ¼ 1. From Eqs. (2) and (10),

we obtain Gaussian curvature K of M as:

K ¼ �bbðsÞ cðsÞ þ e1bðsÞð Þ: ð18Þ

Furthermore, by using Eqs. (5), (6) and after some

computations we have Gauss and Codazzi equations for

a0 sð Þ þ e1a
2 sð Þ ¼ bbðsÞ cðsÞ þ e1bðsÞð Þ ð19Þ

and

b0 sð Þ ¼ � 2e1aðsÞbðsÞ þ aðsÞcðsÞð Þ; ð20Þ

respectively.

By using Eqs. (7), (12) and with straightforward com-

putation, the Laplacian DG of the Gauss map G ¼ e1 ^ e2
is computed as:

DG ¼ b 3b2 sð Þ þ c2 sð Þ
� �

e1 ^ e2

þ ee1bk �b0ðsÞ þ e1c
0 sð Þð Þe1 ^ e3

� ee1bkaðsÞ e1bðsÞ � cðsÞð Þe2 ^ e4

þ 2ee1bbðsÞ e1bðsÞ þ cðsÞð Þe3 ^ e4

ð21Þ
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Now, we determine the flat rotational surfaces in E4ab with

the pointwise 1-type Gauss map.

Suppose that the rotational surface M given by the

parameterization (9) is flat. From Eq. (18), we obtain that

bðsÞ ¼ 0 or e1bðsÞ þ cðsÞ ¼ 0: We assume that e1bðsÞ þ
cðsÞ 6¼ 0: Then, b(s) is equal to zero and Eq. (20) implies

that aðsÞcðsÞ ¼ 0: Since e1bðsÞ þ cðsÞ 6¼ 0; it implies that

c(s) is not equal to zero. Then, we obtain as aðsÞ ¼ 0: In

that case, by using Eqs. (13) and (14) we obtain that u sð Þ ¼
x sð Þ; 0; yðsÞ; 0ð Þ is a constant vector. This is a contradiction.
Therefore, cðsÞ ¼ �e1bðsÞ for all s. From Eq. (19), we get

a0 sð Þ þ e1a
2 sð Þ ¼ 0 ð22Þ

whose trivial solution and non-trivial solution are

aðsÞ ¼ 0

and

aðsÞ ¼ 1

e1sþ s0
;

respectively.

3.1 Case aðsÞ ¼ 0

We assume that aðsÞ ¼ 0: By Eq. (20), we obtain that b ¼
b0 is a constant. So, we have c ¼ �e1b0. In that case, by

using Eqs. (13), (14) and (15), x and y satisfy the following

differential equations:

x2 sð Þ þ by2ðsÞ ¼ l l is a constant; ð23Þ

xðsÞy0ðsÞ � x0ðsÞyðsÞ ¼ e1b0l; ð24Þ

x00ðsÞy0ðsÞ � x0ðsÞy00ðsÞ ¼ �e1b0: ð25Þ

3.1.1 Case b[ 0

We assume that b[ 0: Then, we obtain a Riemannian

metric. Equation (23) is always positive. In that case, we

have e1 ¼ 1. We can choose l in Eq. (23) as l ¼ l20; where
l0 is a nonzero real constant. So, by using Eq. (23) we can

put

xðsÞ ¼ l0 cos h sð Þ; yðsÞ ¼ l0ffiffiffi
b

p sin h sð Þ: ð26Þ

By differentiating Eq. (26), we get

x0ðsÞ ¼ �
ffiffiffi
b

p
h0ðsÞy sð Þ and y0ðsÞ ¼ 1ffiffiffi

b
p h0ðsÞx sð Þ; ð27Þ

where h sð Þ is some angle function. By substituting

Eqs. (26) and (27) into Eq. (24), we have

h sð Þ ¼
ffiffiffi
b

p
b0sþ d; d ¼ const:

On the other hand, since the curve u is a unit speed curve,

from Eq. (17) we have

bb20l
2
0 ¼ 1:

Then, we can write components of the curve u as:

xðsÞ ¼ l0 cos
ffiffiffi
b

p
b0sþ d

� �
;

yðsÞ ¼ l0ffiffiffi
b

p sin
ffiffiffi
b

p
b0sþ d

� �
; bb20l

2
0 ¼ 1:

ð28Þ

Hence, we obtain that the profile curve u is a family of

ellipse. On the other hand, by using Eq. (21) we can rewrite

the Laplacian of the Gauss map G with aðsÞ ¼ 0 and

b ¼ �e1c ¼ b0

DG ¼ 4bb20G;

that is, the flat surface M is pointwise 1-type Gauss map

with the function f ¼ 4bb20 and C ¼ 0, even if it is a

pointwise 1-type Gauss map of the first kind.

Remark 1 If we consider as a ¼ b ¼ 1; then we get four-

dimensional Euclidean space E4. Also for a ¼ b ¼ 1; the

profile curve u of flat rotational surface with pointwise

1-type Gauss map which is parameterized by Eq. (28)

becomes a circle and we obtain the results which are given

by Aksoyak and Yaylı[13]. Hence, the Case 3.1.1 can be

considered as a generalization of that study.

3.1.2 Case b\0

We suppose that b\0: In that case, we obtain a semi-

Riemannian metric. If we consider Eq. (23) with b\0; we

can put

x sð Þ ¼ 1

2
n l2e

h sð Þ þ l1e
�h sð Þ

� �
;

y sð Þ ¼ 1

2
n

l2ffiffiffiffiffiffiffi
�b

p eh sð Þ � l1ffiffiffiffiffiffiffi
�b

p e�h sð Þ
� �

;
ð29Þ

where h sð Þ is some smooth function, n ¼ �1 and

l ¼ l1l2. Differentiating Eq. (29) with respect to s, we

have

x0ðsÞ ¼ h0ðsÞ
ffiffiffiffiffiffiffi
�b

p
yðsÞ; y0ðsÞ ¼ h0ðsÞffiffiffiffiffiffiffi

�b
p xðsÞ: ð30Þ

By substituting Eqs. (29) and (30) into Eq. (24), we get

h sð Þ ¼ e1
ffiffiffiffiffiffiffi
�b

p
b0sþ d; d ¼ const:

And since the curve u is a unit speed curve, we have

bb20l ¼ 1:

Since b\0: then l\0: So x2 sð Þ þ by2ðsÞ\0: In that case,
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we obtain that e1 ¼ �1: Then, we can write components of

the curve u as:

x sð Þ ¼ 1

2
n l2e

�
ffiffiffiffiffi
�b

p
b0sþd þ l1e

�ð�
ffiffiffiffiffi
�b

p
b0sþdÞ

� �
;

y sð Þ ¼ 1

2
n

l2ffiffiffiffiffiffiffi
�b

p e�
ffiffiffiffiffi
�b

p
b0sþd � l1ffiffiffiffiffiffiffi

�b
p e� �

ffiffiffiffiffi
�b

p
b0sþd

� �� �
;bb20l1l2 ¼ 1:

ð31Þ

Hence, we have that the profile curve u is a family of

hyperbolas. On the other hand, by using Eq. (21) we can

rewrite the Laplacian of the Gauss map G with aðsÞ ¼ 0

and b ¼ �e1c ¼ b0 as follows:

DG ¼ 4bb20e1 ^ e2;

that is, the flat surface M is pointwise 1-type Gauss map

with the function f ¼ 4bb20 and C ¼ 0. Even if it is a

pointwise 1-type Gauss map of the first kind.

Remark 2 If we consider as a ¼ 1 and b ¼ �1; then we

get four-dimensional semi-Euclidean space E42: Also for

a ¼ 1 and b ¼ �1; the profile curve u of flat rotational

surface with pointwise 1-type Gauss map which is

parameterized by Eq. (31) coincides the profile curve of flat

rotational surface with pointwise 1-type Gauss map in E42
which is obtained by Aksoyak and Yaylı [12]. So, the Case
3.1.2 can be considered as a generalization of that study.

3.2 Case aðsÞ ¼ 1
e1sþs0

In this part, we give a common proof for the cases which b
is positive or negative. Now, we assume that aðsÞ ¼ 1

e1sþs0
:

By using cðsÞ ¼ �e1bðsÞ and Eq. (20), we get

b0 sð Þ ¼ �e1aðsÞbðsÞ ð32Þ

or we can write

b0 sð Þ
bðsÞ ¼ �e1

e1sþ s0
;

whose solution is given by

bðsÞ ¼ c
e1sþ s0j j ; c is a constant: ð33Þ

By using Eq. (21), we can rewrite the Laplacian of the

Gauss map G with the equalities cðsÞ ¼ �e1bðsÞ; b0 sð Þ ¼
�e1aðsÞbðsÞ and a0 sð Þ ¼ �e1a2 sð Þ as follows:
DG ¼ 4bb2 sð Þe1 ^ e2 þ 2ebkaðsÞbðsÞe1 ^ e3 � 2ebkaðsÞbðsÞe2 ^ e4:

ð34Þ

We suppose that the flat rotational surface M has pointwise

1-type Gauss map. From Eqs. (1) and (34), we get

4e1bb
2 sð Þ ¼f e1 þ f C; e1 ^ e2h i; ð35Þ

2e1bkaðsÞbðsÞ ¼f C; e1 ^ e3h i; ð36Þ

�2e1bkaðsÞbðsÞ ¼f C; e2 ^ e4h i: ð37Þ

Then, we have

C; e1 ^ e4h i ¼ 0; C; e2 ^ e3h i ¼ 0; C; e3 ^ e4h i ¼ 0:

ð38Þ

By using Eqs. (36) and (37), we obtain

C; e1 ^ e3h i ¼ � C; e2 ^ e4h i: ð39Þ

By differentiating the first equation in Eq. (38) with respect

to e1 and by using Eq. (12), the third equation in Eqs. (38)

and (39), we get

2aðsÞ C; e1 ^ e3h i þ bkbðsÞ C; e1 ^ e2h i ¼ 0: ð40Þ

Combining Eqs. (35), (36) and (40), we have

c 4a2 sð Þ þ 4bb2 sð Þ � f
� �

¼ 0: ð41Þ

Firstly, we consider 4a2 sð Þ þ 4bb2 sð Þ � f 6¼ 0. Then, we

get c ¼ 0 and it implies that b ¼ c ¼ 0: In that case, the

surface M becomes totally geodesic and has harmonic

Gauss map, that is, DG ¼ 0: Now, we assume that the

fuction f satisfies the following equation:

f ¼ 4a2 sð Þ þ 4bb2 sð Þ; ð42Þ

where f depends only on s. By differentiating f with respect

to s and by using Eqs. (22), (32) and (42), we get

f 0 ¼ �2e1aðsÞf : ð43Þ

By differentiating Eq. (36) with respect to e2 and by using

Eqs. (12), (22), (32), (35), (36), (42), (43) and the third

equation in Eq. (38), we have

a2b ¼ 0

or from Eq. (33) we can write

ca3 ¼ 0:

Since aðsÞ 6¼ 0, it follows that c ¼ 0. Then, we obtain that

b ¼ c ¼ 0 again. We obtain that the Gauss map of M is

harmonic.

Theorem 1 Let M be the flat rotational surface given by

the parameterization (9). Then, M has pointwise 1-type

Gauss map if and only if M is either totally geodesic or

parameterized by one of the following

(1)

X t; sð Þ ¼
l0 cos h sð Þ cos t; 1ffiffiffi

a
p l0 cos h sð Þ sin t;

l0ffiffiffi
b

p sin h sð Þ cos t; 1ffiffiffi
a

p l0ffiffiffi
b

p sin h sð Þ sin t

0
BB@

1
CCA;

where h sð Þ ¼
ffiffiffi
b

p
b0sþ d and bb20l

2
0 ¼ 1:
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(2)

X t; sð Þ ¼

1

2
n l2e

h sð Þ þ l1e
�h sð Þ

� �
cos t;

1ffiffiffi
a

p 1

2
n l2e

h sð Þ þ l1e
�h sð Þ

� �
sin t;

1

2
n

l2ffiffiffiffiffiffiffi
�b

p eh sð Þ � l1ffiffiffiffiffiffiffi
�b

p e�h sð Þ
� �

cos t;

1ffiffiffi
a

p 1

2
n

l2ffiffiffiffiffiffiffi
�b

p eh sð Þ � l1ffiffiffiffiffiffiffi
�b

p e�h sð Þ
� �

sin t

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

where h sð Þ ¼ �
ffiffiffiffiffiffiffi
�b

p
b0sþ d and bb20l1l2 ¼ 1:

Corollary 1 Let M be non-totally geodesic flat rotational

surface given by the parameterization (9). If M has point-

wise 1-type Gauss map, then the Gauss map G on M is

pointwise 1-type Gauss map of the first kind.

Corollary 2 Let M be non-totally geodesic flat rotational

surface given by the parametrization (9). If M has point-

wise 1-type Gauss map, then the profile curves of M are

circles in four-dimensional generalized space E4ab. These

curves are Euclidean ellipses or hyperbolas.

Corollary 3 Let M be non-totally geodesic flat rotational

surface given by the parametrization (9). If M has point-

wise 1-type Gauss map, then it is a part of sphere in four-

dimensional generalized space E4ab. This sphere is a

Euclidean ellipsoid or hyperboloid.
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