Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (April-June 2020) 90(2):251-257

https://doi.org/10.1007/s40010-018-0565-8

CrossMark

@

RESEARCH ARTICLE

Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via

Generalized Quaternions

Ferdag Kahraman Aksoyak' - Yusuf Yayli’

Received: 1 June 2016/Revised: 14 November 2018/ Accepted: 27 November 2018/ Published online: 18 December 2018

© The National Academy of Sciences, India 2018

Abstract In this paper, we determine a rotational surface
by means of generalized quaternions and study this flat
rotational surface with pointwise 1-type Gauss map in four-
dimensional generalized space [Eiﬁ. Also, for some special
cases of o and f, we obtain the characterizations of flat
rotational surfaces with pointwise 1-type Gauss map in
four-dimensional Euclidean space F* and four-dimensional
pseudo-Euclidean space E‘z‘.
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1 Introduction

Quaternions first introduced by Hamilton are a number
system that is a generalization of the complex numbers in
four-dimensional space. A real quaternion ¢q is defined as
q=qo+ qii + q2j + g3k where qo, q1, g2, g3 are real
numbers and 1, i, j, k are the basis elements which satisfy
i? =j> =k*> = ijk = —1. The set of quaternions H with
these basis elements {1,i,j,k} is isomorphic to four-di-
mensional vector space R*. There are three fundamental
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operations on H: addition, scalar multiplication and
quaternion multiplication. The addition and scalar multi-
plication are defined same as the addition and scalar mul-
tiplication on R* but the quaternion multiplication is
determined by distributive law and the multiplication rule
between the basis elements of H. The set of quaternions
H is a real vector space with these addition and scalar
multiplication. Also, it is an associative and non-commu-
tative four-dimensional Clifford algebra with together
quaternion multiplication.

The set of all unit quaternions forms 3-sphere S°. It is a
Lie group that is isomorphic to the group SU(2) and double
covering the group SO(3) , the group of three-dimensional
rotations. On the other hand, any quaternions can be rep-
resented as the terms of 4 x 4 real matrices. The matrix
representation of a unit quaternion is a real orthogonal 4 x
4 matrix of determinant 1. So, a unit quaternion could be
used to represent the rotations in R*. Since the rotations in
three-dimensional space and four-dimensional space can be
expressed by quaternions, they are commonly used in
computer graphics, computer vision, robotics, computer
simulations, orbital mechanics, etc.

Quaternions were generalized, and a brief introduction
of generalized quaternions was given by Pottman and
Wallner [1]. Recently, their some algebraic properties were
studied by Jafari [2]. Jafari and Yayl [3, 4] described the
rotations in three-dimensional generalized linear space [Eiﬁ
and four-dimensional generalized linear space [Ei; by
means of generalized quaternions. Also, Arslan et al. [5]
studied rotational surfaces in n-dimensional Euclidean
space.

Let G(n, m) be a Grassmannian manifold consisting of
all oriented n-planes through the origin of E™.

The Gauss map G of an n-dimensional submanifold M
of m-dimensional Euclidean space E” is a smooth map
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which carries a point p in M into the n-plane through the
origin in ™ obtained by translating parallelly the tangent
space at p of M, that is, it is a smooth map which carries a
point p in M into G(n, m). The Grassmannian manifold
G(n, m) is canonically embedded in

NTE™ [EN,N = (7:) Hence, the Gauss map is defined

by G:M — G(n,m) CEY, G(p)= (et A...Neu)(p).
Chen and Piccinni [6] studied submanifolds with finite type
Gauss map.

A submanifold M of a Euclidean or pseudo-Euclidean
space is said to have pointwise 1-type Gauss map if
satisfies

AG =f(G+C) (1)

for some nonzero smooth function f on M and some con-
stant vector C. A submanifold with pointwise 1-type Gauss
map is said to be of the first kind if the vector C in Eq. (1)
is zero vector. Otherwise, pointwise 1-type Gauss map is
said to be of second kind. Rotational surfaces in Euclidean
space and pseudo-Euclidean space with pointwise 1-type
Gauss map were recently studied [7-10]. Also tensor pro-
duct surfaces with pointwise 1-type Gauss map were
recently studied [11].

In this paper, we determine a rotational surface via
generalized quaternions and study this flat rotational sur-
face with pointwise 1-type Gauss map in four-dimensional
generalized linear space [E:/;- Also, for some special cases
of o and f3, we obtain the characterizations of flat rotational
surfaces with pointwise 1-type Gauss map in four-dimen-
sional Euclidean space E* and four-dimensional pseudo-
Euclidean space E‘Z‘ which are given by Aksoyak and Yayh
[12, 13].

2 Preliminaries

The set of generalized quaternions, denoted by H,g, is
defined by

Haﬂ = {q = ‘]O+qll+42]+513k7 Clr S Ra 1= 07 17273}7
where i, j, k are quaternionic units which satisfy the
equalities

iz = O{ajz = _/5a k2 = —Oiﬁ,
ij=k=—ji,jk = fi = —kj,ki = oj = —ikand o, § € R.

By choosing o and f there are the following special cases:

1. If @ = f =1 is considered, then H,g is the algebra of
real quaternions.

2. Ifa=1, = —1isconsidered, then H, is the algebra
of split quaternions.
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3. Ifa=1, p=0is considered, then H,s is the algebra
of semi-quaternions.

4. Ifa=—1,p = 0is considered, then H,; is the algebra
of split semi-quaternions.

5. If « = f =0 is considered, then H,z is the algebra of
1 —quaternions.

Forany p = po + pii +paj + psk and g = qo + q1i + gaj +
g3k in H,g, the addition rule for generalized quaternions is
defined as:

p+qg=po+qo)+pi+q)i+P2+aq)i+ P+ gk

and the multiplication of a generalized quaternion g =
qo + q1i + q>j + g3k by a real scalar c is defined as:

cq = cqo + cqii + cqoj + cqsk.

H,p is a real vector space according to this addition and
scalar multiplication.

Generalized quaternion product is defined as:
Pq = (Poqo — op1q1 — Bp2g2 — ofp3qs)

+ (P190 + poq1 — Bp3qa + Bp2g3)i

+ (P2q0 + 9p3q1 + pog2 — %p1g3)j

+ (P3q0 — P21 + P1g2 + pog3 )k

or it could be expressed as:

Po — ap1 - Bp2 — ofp3 q0

P Po — Bp3 Bp2 q
pq =

P2 op3 Po — up q2

pP3 —D2 P1 Po q3

(2)

The generalized quaternion product has an associative and
distributive property on the addition, but it has not the
commutative property in general.

The conjugate of a generalized quaternion ¢ is denoted
by ¢ and defined by ¢ = g9 — q1i — ¢»j — g3k. The norm of
a  generalized quaternion ¢ is defined as:
Ny = qd = g5 + oqi + b5 + %fq3.

Let u = (ug,u1,up,u3), v= (vo,vi,v2,v3) € R* and «,
f € R. The generalized inner product u and v is defined by

g(u,v) = (u, v)mﬁ: ugvo + owmyvy + Puyvy + afuzvs
or it could be written

1 0

g(u,v) =o' v =u'G.

o o O
S ™ © <O

o
0
0 of

So the vector space on R* equipped with generalized scalar

product is called four-dimensional generalized space and
denoted by Edy = (R, (), ) [3].
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If o= f =1, then Ej; is four-dimensional Euclidean
space [E*.

Ifa=1, = -1, then [Eiﬁ is four-dimensional pseudo-
Euclidean space Fj.

A matrix Ayy4 is called semi-orthogonal matrix in four-
dimensional generalized space [Eiﬁ if ATGA=G and
detA = 1. The set of all semi-orthogonal matrices is called
rotational group in [Eiﬁ [3].

Let [Eiﬁ be four-dimensional generalized space. Then,
the metric tensor g in Ej; has the form
g = dxj + adx} + Bdx3 + afda,
where (xg,x1,%2,x3) is a standard rectangular coordinate
system in [Eiﬁ.

Let M be a two-dimensional submanifold of four-di-
mensional generalized space [Eiﬁ. We denote Levi-Civita
connections of [Eiﬁ and M by V and V, respectively. Let
e1, ez, e3,eq be an adapted local orthonormal frame in [Eiﬁ
such that ey, e, are tangent to M and e3, e4 normal to M. We
use the following convention on the ranges of indices:
1<ijk,...<2,3<r,s,t,...<4, 1<A,B,C,...<4.

Let w, be the dual-1 form of e4 defined by ws(X) =
(ea,X) and ¢4 = (es,ea) =+ 1. Also, the connection
forms wyp are defined by

dey = E EpARER,
B
where wup + wps = 0. Then, we have
2 4
e __ r
Vi =Y goglee+ Y ehier (3)
j=1 r=3
and
2 4
ey __ __ S 5. Cs Cs
Ve = E ajhkjej + Dy, Dy = E ey (ex)er, (4)
Jj=1 r=3

where D is the normal connection and hj, are the coeffi-
cients of the second fundamental form .

If we define a covariant differentiation V# of the second
fundamental form /4 on the direct sum of the tangent bundle
and the normal bundle TM & T+M of M by

(Vxh)(Y,Z) = Dxh(Y,Z) — h(VxY,Z) — h(Y,VxZ)

for any vector fields X, Y and Z tangent to M, then we have

the Codazzi equation

(Vxh)(Y,Z) = (Vyh)(X,Z) (5)

and the Gauss equation is given by

(RX,Y)Z,W) = (h(X, W), h(Y,2Z)) — (h(X, Z), h(Y, W)),
(6)

where the vectors X, Y, Zand W are tangent to M and R is

the curvature tensor associated with V. The curvature
tensor R associated with V is defined by

R(X,Y)Z =VxVyZ — VyVxZ — VixyZ.

For any real function f on M, the Laplacian Af of fis given
by

Af = —g Z(VN@V;J - VNVZ;f) (7)

1
The Gaussian curvature K of M in [E;‘_ﬁ is given by
4
K= e(hihy — hihy,). (8)
s=3
Also if Gaussian curvature of M vanishes identically, i.e.,
K = 0, the surface M is called flat.

3 Flat Rotation Surfaces with Pointwise 1-Type
Gauss Map Via Generalized Quaternions

In this section, by using generalized quaternions we
determine a rotational surface in four-dimensional gener-
alized space [Eiﬂ. If we choose generalized quaternions p
and g in Eq. () as p= cost+i\/%sint and
q = x(s) +jy(s), we obtain following rotational surface in

X(t,s)
cost x sin ¢ 0 0
s — ——si
Vo
1
- 7& sin ¢ cost 0 0
0 0 cost — % sint
1
0 0 ﬁsint cost
x(s)
0
NONN
0

M:X(t,s) = (x(s) cost, \/L&x(s) sint, y(s) cost, %y(‘v) sin t) ,
©)

where o is positive real constant and @(s) =
(x(s),0,y(s),0) is the profile curve of M. We choose a
moving frame ey, e;, e3, e4 such that ey, e, are tangent to M
and e3, e4 are normal to M as follows:

@ Springer



254 F. Kahraman Aksoyak, Y. Yayli
_ 1 RUIUN Ve er = — exna(s)ey + eer fuib(s)es,
e = > > x(s) sint, —=x(s) cos 1, o ! 2
&1 (¥ (s) Jrlﬁy () ( Ve Ve,e1 = — &g fuib(s)ey,
=(s) Sinf»ﬁ)’(s) cos f>7 V:elez = gna(s)e; — &1 fnib(s)ey,
1 , 1, .. Ve,e2 = — gerfinle(s)es,
e = X (s) cost,—=x'(s) sint, 2 12
(P 4007 (o Vies = — oipuibls)er — sofuials)es .
/ o, Ve,e3 = & fnic(s)es,
Y(s)eos l’ﬁy (s)sin t)’ o €4 = e2Ib(s)es + eexfnilals)es,
e3 = ! <fﬁy’(s) cost, f%y’(s) sinz, v~eze4 = &1pnib(s)er,
(e p06)?) where
1 / /
X'(s) cost,—=x'(s) sint |, _ x(s)x'(s) + By(s)y'(s)
\1/& ) B “= (2(s) + By*(s)) (13)
= aB) + HR0)) (-rsint storcost b(s) = XOW ) —x((s) (14)

x(s)sint, — %x(s) cos t) ,

where f is nonzero real constant. It is easily seen that
(e1,e1) = &1, (€2,€2) = &2, (€3,€3) = &3 = &2, (€4, €4)

= &4 = 881,

where ¢, & and ¢ are signatures of x*(s)+ By*(s),
(X'(s))*+B(Y(s))* and f, respectively. Then, we have the
dual 1-forms as:

w1 = &1/e1(x2(s) + py2(s))drand

Wy = 52\/32((x’(s))2+ﬁ(y’(s))2)ds.

By a direct computation, we can obtain coefficients of the
second fundamental form and the connection forms as:

B, = puib(s), b3, =0, h3, = —Puic(s),

Wiy =0, by = —puib(s), gy = 0. (10)
and

wip = — ena(s)or, o3 = & frib(s)oi,

w1y = — 6nAb(s)wy, w3 = —&fric(s)ma, (11)
Wy = — &1 puAb(s)wy, w34 = —& frilals)o;.

Moreover, combining Egs. (3), (4), (10) and (11) we have
covariant differentiation with respect to e; and e, as
follows:

@ Springer

sy = L) =X () 15)
2 ((¢(5))+B0(5))")
1
%(s) = ’
\/82((x’(S))2+ﬁ(y’(S))2) (16)
Als) Zﬁ-

Without loss of generality, we assume that the profile curve
@ is parameterized by its arc-length, that is,

(W(s))*+B(/ (5))*= 1. (17)

In that case, we have that ¢; = 1. From Egs. (2) and (10),
we obtain Gaussian curvature K of M as:

K = —pb(s)(c(s) + &1b(s)). (18)

Furthermore, by using Egs. (5), (6) and after some
computations we have Gauss and Codazzi equations for

d'(s) + e1a*(s) = Pb(s)(c(s) + e1b(s)) (19)
and

b'(s) = —(2e1a(s)b(s) + a(s)c(s)), (20)
respectively.

By using Egs. (7), (12) and with straightforward com-
putation, the Laplacian AG of the Gauss map G = e; A e;
is computed as:

AG = B(3b*(s) + *(s))er Aea
+ &g BA(=D'(s) + &1 (s))er N e3
— eeiflra(s)(e1b(s) —c(s))ea A ey
+ 2ee1pb(s)(e1b(s) + c(s))es A ey

(21)
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Now, we determine the flat rotational surfaces in [Ei/j with
the pointwise 1-type Gauss map.

Suppose that the rotational surface M given by the
parameterization (9) is flat. From Eq. (18), we obtain that
b(s) =0 or &b(s)+c(s) =0. We assume that & b(s) +
c(s) # 0. Then, b(s) is equal to zero and Eq. (20) implies
that a(s)c(s) = 0. Since &b(s) + ¢(s) # 0, it implies that
c(s) is not equal to zero. Then, we obtain as a(s) = 0. In
that case, by using Eqgs. (13) and (14) we obtain that ¢(s) =
(x(s),0,¥(s),0) is a constant vector. This is a contradiction.
Therefore, c(s) = —¢&1b(s) for all 5. From Eq. (19), we get

d(s) + eia*(s) =0 (22)
whose trivial solution and non-trivial solution are

a(s) =0

and

1

o &18 + So ’
respectively.

3.1 Case a(s) =0

We assume that a(s) = 0. By Eq. (20), we obtain that b =
by is a constant. So, we have ¢ = —¢gby. In that case, by
using Eqs. (13), (14) and (15), x and y satisfy the following
differential equations:

x*(s) + By*(s) = pisaconstant, (23)
xX(8)y'(s) = X' (s)y(s) = erbop, (24)
($)Y(5) = ¥ ()" (s) = —exbo. (25)

3.1.1 Case >0

We assume that f > 0. Then, we obtain a Riemannian
metric. Equation (23) is always positive. In that case, we
have ¢ = 1. We can choose u in Eq. (23) as u = u%, where
U 1s a nonzero real constant. So, by using Eq. (23) we can
put

x(s) = pycos 0(s), y(s) = \'l;%sm 0(s). (26)
By differentiating Eq. (26), we get
= VB ) ndy(s) = 0. (@7

where 0(s) is some angle function. By substituting
Egs. (26) and (27) into Eq. (24), we have

s) = /Bbos + 6,

On the other hand, since the curve ¢ is a unit speed curve,
from Eq. (17) we have

ﬁboﬂo =

Then, we can write components of the curve ¢ as:
x(s) = cos(\/ﬁbos + 5),

Ho
¥(s) = Lhsin(/Bbos + ), B3
VB T
Hence, we obtain that the profile curve ¢ is a family of
ellipse. On the other hand, by using Eq. (21) we can rewrite
the Laplacian of the Gauss map G with a(s) =0 and
b= —&1Cc = bo

AG = 4pb}G

6 = const.

(28)

that is, the flat surface M is pointwise 1-type Gauss map
with the function f =4pb} and C =0, even if it is a
pointwise 1-type Gauss map of the first kind.

Remark 1 If we consider as o = f§ = 1, then we get four-
dimensional Euclidean space E*. Also for « = f = 1, the
profile curve ¢ of flat rotational surface with pointwise
1-type Gauss map which is parameterized by Eq. (28)
becomes a circle and we obtain the results which are given
by Aksoyak and Yayli[13]. Hence, the Case 3.1.1 can be
considered as a generalization of that study.

3.1.2 Case <0

We suppose that f<0. In that case, we obtain a semi-
Riemannian metric. If we consider Eq. (23) with <0, we
can put

1 —0(s
5¢ (#26%) + e >) ,

1(0) = 3¢ e - S

where 0(s) is some smooth function, &= +1 and
W = pu,. Differentiating Eq. (29) with respect to s, we
have

¥(s) = 0/(5)/=By(s), /(s) = 2k x(s). (30)

9(s)> | (29)

By substituting Eqgs. (29) and (30) into Eq. (24), we get
0(s) = &1/—Pbos + 8, & = const.

And since the curve ¢ is a unit speed curve, we have
By = 1.

Since f<0. then u<0. So x*(s) + By*(s) <O0. In that case,
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we obtain that &g = —1. Then, we can write components of
the curve ¢ as:

1 S :
X(S) _ Eé(uze—\/—_ﬁhoﬁ—o + Mle—(—\/jﬁhox-%—()))7

W) = % é< \/#‘_27 o~/ Pous o _ % e—(—\/—-ﬁhox+d))7 PO = 1.
(31)

Hence, we have that the profile curve ¢ is a family of
hyperbolas. On the other hand, by using Eq. (21) we can
rewrite the Laplacian of the Gauss map G with a(s) =0
and b = —¢gjc = by as follows:

AG = 4fbke; A ey,

that is, the flat surface M is pointwise 1-type Gauss map
with the function f =4Bb3 and C =0. Even if it is a
pointwise 1-type Gauss map of the first kind.

Remark 2 If we consider as « = 1 and f = —1, then we
get four-dimensional semi-Euclidean space E‘Z‘. Also for
o=1 and f = —1, the profile curve ¢ of flat rotational
surface with pointwise 1-type Gauss map which is
parameterized by Eq. (31) coincides the profile curve of flat
rotational surface with pointwise 1-type Gauss map in [E‘z1
which is obtained by Aksoyak and Yayli [12]. So, the Case
3.1.2 can be considered as a generalization of that study.

3.2 Case a(s) = 1

£15+50

In this part, we give a common proof for the cases which f§
is positive or negative. Now, we assume that a(s) = —!

e15+s0
By using c(s) = —e&1b(s) and Eq. (20), we get o
b'(s) = —e1a(s)b(s) (32)
or we can write
b(s)  —&
b(s) es+so’
whose solution is given by
Y .

b(s) = ———, yisaconstant.

(s) |8]S—|-S()| / (33)

By using Eq. (21), we can rewrite the Laplacian of the

Gauss map G with the equalities c¢(s) = —&;b(s), b (s) =

—e1a(s)b(s) and d'(s) = —e&1a*(s) as follows:

AG = 4pb(s)ey A es + 2eBla(s)b(s)er A es — 2eBla(s)b(s)es A ey.
(34)

We suppose that the flat rotational surface M has pointwise

1-type Gauss map. From Eqs. (1) and (34), we get

481[”72(5) :f81 +f<C,€1 A 62), (35)
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2¢1Bra(s)b(s) =f(C,e; A e3), (36)

—2¢1la(s)b(s) =f(C, ez A eq). (37)

Then, we have

(C,e; Neq) =0, (C,exNe3) =0, (C,e3Nes)=0.
(38)

By using Egs. (36) and (37), we obtain

(C,e; Nez) = —(C ez N ey). (39)

By differentiating the first equation in Eq. (38) with respect
to e; and by using Eq. (12), the third equation in Egs. (38)
and (39), we get

2a(s)(C, e A es) + pAb(s)(C,e; Aey) = 0. (40)
Combining Egs. (35), (36) and (40), we have
7(4d*(s) + 4pb*(s) — f) = 0. (41)

Firstly, we consider 4a?(s) + 48b*(s) —f # 0. Then, we
get y =0 and it implies that b = ¢ = 0. In that case, the
surface M becomes totally geodesic and has harmonic
Gauss map, that is, AG = 0. Now, we assume that the
fuction f satisfies the following equation:

f =4d(s) + 4pb*(s), (42)

where f depends only on s. By differentiating f with respect
to s and by using Egs. (22), (32) and (42), we get
= —2¢a(s)f.

By differentiating Eq. (36) with respect to e, and by using
Egs. (12), (22), (32), (35), (36), (42), (43) and the third
equation in Eq. (38), we have

ab=0

(43)

or from Eq. (33) we can write
va® = 0.

Since a(s) # 0, it follows that y = 0. Then, we obtain that
b = ¢ = 0 again. We obtain that the Gauss map of M is
harmonic.

Theorem 1 Let M be the flat rotational surface given by
the parameterization (9). Then, M has pointwise 1-type
Gauss map if and only if M is either totally geodesic or
parameterized by one of the following

ey
cos 0(s) cos t ! cos 0(s) sint
s — s
Ho ’ \/&MO )
X(t,5) = p 1 ,
0 - 0 . .
~—=sinf(s)cost, —=-—~sinfl(s)sinr
g et g

where 0(s) = \/Bbos + 6 and Bbjus = 1.
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2
1 —0(s)
E (,uze + e ) cost,
- 009) ) g
uze —l— e ) sint,
\/—2 (

X(t,5) = 7
(t,5) 1 ( fo o) _ UU) cost,
\/_ ‘/_
| :
E e_e(“)> sin t

( Hy o) M
—v/=Bbos + & and Bbjup, = 1.

AN

3
1
Va2 \y=p° V=B

where 0(s) =

Corollary 1 Let M be non-totally geodesic flat rotational
surface given by the parameterization (9). If M has point-
wise 1-type Gauss map, then the Gauss map G on M is
pointwise 1-type Gauss map of the first kind.

Corollary 2 Let M be non-totally geodesic flat rotational
surface given by the parametrization (9). If M has point-
wise I-type Gauss map, then the profile curves of M are
circles in four-dimensional generalized space [Eiﬂ. These
curves are Euclidean ellipses or hyperbolas.

Corollary 3 Let M be non-totally geodesic flat rotational
surface given by the parametrization (9). If M has point-
wise I-type Gauss map, then it is a part of sphere in four-
dimensional generalized space [Eiﬁ. This sphere is a
Euclidean ellipsoid or hyperboloid.

10.

11.

12.

13.

References

. Pottman H, Wallner J (2000) Computational line geometry.

Springer, Berlin Heidelberg, New York

. Jafari M (2012) Generalized Hamilton operators and Lie groups.

Ph.D. thesis, Ankara University, Ankara, Turkey

. Jafari M, Yayli Y (2013) Rotation in four dimensions via gen-

eralized Hamilton operators. Kuwait J Sci 40(1):67-79

. Jafari M, Yayl1 Y (2015) Generalized quaternions and rotation in

3-space [Eiﬂ. TWMS J Pure Appl Math 6(2):224-232

. Arslan K, Bulca B, Kosava D (2017) On generalized rotational

surfaces in Euclidean spaces. J Korean Math Soc 54:999-1013

. Chen BY, Piccinni P (1987) Submanifolds with finite type Gauss

map. Bull Aust Math Soc 35:161-186

. Arslan K, Bayram BK, Kim YH, Murathan C, Oztiirk G (2011)

Vranceanu surface in [F* with pointwise 1-type Gauss map. Indian
J Pure Appl Math 42:41-51

. Dursun U, Turgay NC (2012) General rotational surfaces in

Euclidean space E* with pointwise 1-type Gauss map. Math
Commun 17:71-81

. Kim YH, Yoon DW (2004) Classification of rotation surfaces in

pseudo Euclidean space. J Korean Math 41:379-396

Yoon DW (2003) Some properties of the Clifford torus as rota-
tion surface. Indian J Pure Appl Math 34:907-915

Arslan K, Bulca B, Kilig B, Kim YH, Murathan C, Oztiirk G
(2011) Tensor product surfaces with pointwise 1-type Gauss map.
Bull Korean Math Soc 48:601-609

Aksoyak KF, Yayli1 Y (2015) General rotational surfaces with
pointwise 1-type Gauss map in pseudo-Euclidean space [E‘z‘.
Indian J Pure Appl Math 46(1):107-118

Aksoyak KF, Yayli Y (2016) Flat rotational surfaces with
pointwise 1-type Gauss map in [E*. Honam Math J 38:305-316

@ Springer



	Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions
	Abstract
	Introduction
	Preliminaries
	Flat Rotation Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions
	Case a(s)=0
	Case \beta \gt 0
	Case \beta \lt 0

	Case a(s)=\frac{1}{\varepsilon _{1}s+s_{0}}

	References




