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A NEW TYPE OF CONTRACTION VIA MEASURE

OF NON-COMPACTNESS WITH AN APPLICATION

TO VOLTERRA INTEGRAL EQUATION

Vatan Karakaya and Derya Sekman

Abstra
t. Darbo �xed point theorem is a powerful tool whi
h is used in

many �elds in mathemati
s. Be
ause of this feature, many generalizations of

this theorem and its relations with other subje
ts have been investigated. Here

we introdu
e a generalization of an F -
ontra
tion of Darbo type mapping and

de�ne a new 
ontra
tion by using both fun
tion 
lasses and uniformly 
onver-

gent sequen
es of fun
tions and examine some of its properties. Afterward, we

show that the new type of 
ontra
tion, whi
h we 
all F -Darbo type 
ontra
tion,

has more general results than many already studied in the literature. Further-

more, we explain the results of F -Darbo type 
ontra
tion mapping with an

interesting example. Finally, we give an appli
ation to solve the Volterra-type

integral equation with the new type 
ontra
tion.

1. Introdu
tion

The Kuratowski, Istrates
u, and Hausdor� measures of non
ompa
tness are

the main MNCs (see [5,8,9,16℄) while the axiomati
 de�nition given by Bana± and

Goebel [16℄ is the most widely used. Darbo [7℄ used the Kuratowski MNC to es-

tablish a �xed point theorem whi
h is widely known as Darbo �xed point theorem.

With the help of the Darbo �xed point theorem, the existen
e and uniqueness of

the �xed point of a set-valued mapping has been proved. These results regarding

�xed point theory have a
hieved a wide appli
ation area for the solution of inte-

gral, integro-di�erential and fun
tional equations. The Darbo �xed point theorem

has been generalized by several resear
hers (see [1�3,10,11,13,17,19℄). Another

important 
on
ept applied to the Darbo �xed point theorem is the F -
ontra
tion
de�ned by Wardowski [21℄. Cosentino and Vetro [6℄ proved that the Darbo 
ontra
-

tion mapping satis�es the F -
ontra
tion 
onditions and showed that F -
ontra
tion
mapping has a solution for integral equations.
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In this study, we de�ne a new F -Darbo type 
ontra
tion under fun
tions hav-

ing 
ertain 
onditions. Also, we investigate how a new F -Darbo type 
ontra
tion

behaves under the sequen
es of fun
tions used by Kirk [14℄, Kirk and Xu [15℄,

Karakaya et al. [12℄. Besides, we examin existen
e of �xed point a

ording to the


onditions of this new F -Darbo type 
ontra
tion mapping. Considering the hy-

pothesis of theorems that we proved, we 
onstru
t an interesting example using the

sequen
es of fun
tions. Finally, we show that the new 
ontra
tion has a solution

for the Volterra-type integral equation.

2. Preliminaries

We will now give notations and preliminaries used in the sequel of this arti
le.

Let A be nonempty subset of the Bana
h spa
e. We de�ne Ā and co(A) the 
losure
and 
losed 
onvex hull of A, respe
tively. Also, we denote B(X) and RC(X)
the family of all nonempty bounded subset of X and the subfamily 
onsisting

all relatively 
ompa
t subset of X , respe
tively. We denote by R the set of all

real numbers, by R+
the set of all positive real numbers, by R

+
0 the set of all

nonnegative real numbers and by N the set of all positive integers. Furthermore, let

kerµ = {A ∈ B(X) : µ(A) = 0} denotes the kernel of the mapping µ : B(X) → R+

(see [4℄).

Definition 2.1 (see [4℄). Let X be a Bana
h spa
e and B(X) the family of

bounded subset of X . A map µ : B(X) → R+
whi
h satis�es the following:

(M1) The family kerµ is nonempty and kerµ ⊂ RC(X),
(M2) A ⊂ B implies µ(A) 6 µ(B),
(M3) µ(Ā) = µ(A),
(M4) µ(co(A)) = µ(A),
(M5) µ(λA + (1− λ)B) 6 λµ(A) + (1− λ)µ(B) for all λ ∈ [0, 1],
(M6) Let (An) be a sequen
e of 
losed sets in B(X) su
h that Ak+1 ⊂ Ak for

all k ∈ N and limk→∞ µ(Ak) = 0, then interse
tion set A∞ =
⋂

∞

k=1 Ak is

nonempty and A∞ ⊂ kerµ.

Theorem 2.1 (see [18℄). Let A be a nonempty, bounded, 
losed and 
onvex

subset of a Bana
h spa
e X. Let T be a 
ompa
t and 
ontinuous self mapping.

Then T has a �xed point in A.

Theorem 2.2 (see [7℄). Let A be a nonempty, bounded, 
losed and 
onvex

subset of a Bana
h spa
e X. Let T be a 
ontinuous self mapping on A. Assume

that there exists a 
onstant α ∈ [0, 1] su
h that µ(TB) 6 αµ(B), for any subset B
of A, then T has a �xed point.

Now, let F : R+ → R be a fun
tion that veri�es the following 
onditions:

(F1) F is non-de
reasing,

(F2) For ea
h sequen
e {βk}k∈N ⊂ R+
of positive numbers limk→∞ βk = 0 if

and only if limk→∞ F (βk) = −∞,

(F3) There exists α ∈ (0, 1) su
h that limβ→0+ β
αF (β) = 0.
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For the fun
tion de�ned above, we denote with Λ the family of fun
tions F
that satisfy the 
onditions (F1)�(F3) and with ̥ the family of all fun
tions F that

satisfy the 
ondition (F1)�(F2).
Note that the fun
tion F : R+ → R de�ned by F (x) = lnx for all x ∈ R+

satis�es the 
onditions (F1)�(F3) and hen
e F ∈ Λ. On the other hand, the

fun
tion F : R+ → R de�ned by F (x) = − 1
x
for all x ∈ R+

satis�es the properties

(F1)�(F2), but it does not satisfy the property (F3) and hen
e F ∈ ̥ but F /∈ Λ.

Definition 2.2 (see [21℄). Let (X, d) be a metri
 spa
e. A self-mapping T on

X is 
alled an F -
ontra
tion if there exist F ∈ Λ and τ ∈ R+
su
h that

d(Tx, T y) > 0 ⇒ τ + F (d(Tx, T y)) 6 F (d(x, y)),

for all x, y ∈ X .

We denote with Γ the family of fun
tion τ : R+ → R+
satisfying the 
ondition:

(2.1) (i) lim inf
x→a+

τ(x) > 0 for all a ∈ R
+
0 .

Moreover, let τn → τ be a uniform 
onvergen
e in n. We also denote with Γ′
the

family of uniformly 
onvergent sequen
es of fun
tions τn : R
+ → R+

satisfying the


ondition:

(ii) sup
n

lim inf
x→a+

τn(x) > 0 for all a ∈ R
+
0 .

Note that the τ : R+ → R+
de�ned by τ(x) = − 1

2x for all x ∈ R+
satis�es 
ondition

(i) and hen
e τ ∈ Γ. Again, we pay attention to τn : R
+ → R+

de�ned by τn(x) =
n

1+2nx for all x ∈ R+
and n ∈ N. So, we 
an denote (τn) ∈ Γ′

.

Definition 2.3 (see [20℄). Let A be a non-empty, bounded, 
losed and 
onvex

subset of a Bana
h spa
e X . A self-operator T on A is 
alled an F -
ontra
tion of

Darbo-type mapping if there exist F ∈ Λ and τ ∈ Γ su
h that

τ(µ(B)) + F (µ(TB)) 6 F (µ(B)),

for any B ⊂ A with µ(B), µ(TB) > 0 where µ is the measure of non
ompa
tness

de�ned in X .

Let us introdu
e some properties of the sequen
es of fun
tions that we will use

in the generalization of the Darbo 
ontra
tion mapping throughout the work as

follows.

Definition 2.4. Let (ψn) be a sequen
e of fun
tions from R
+
0 into R

+
0 . This

sequen
e 
onverges uniformly to a fun
tion ψ if for every ε > 0, there is an integer

n0 su
h that |ψn(x) − ψ(x)| < ε, for all x ∈ R
+
0 and n > n0, n ∈ N.

3. A new F -Darbo type 
ontra
tion de�ned by fun
tions 
lasses

In this se
tion, �rstly we de�ne a new F -Darbo type 
ontra
tion de�ned by

fun
tions 
lasses, and then we introdu
e F -Darbo type 
ontra
tion de�ned by se-

quen
es of fun
tions.
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Definition 3.1. Let A be a non-empty, bounded, 
losed and 
onvex subset

of a Bana
h spa
e X . Assume that the mapping ψ : R+
0 → R

+
0 is 
ontinuous and

satis�es ψ(x) = 0 ⇔ x = 0. Then, a self-mapping T on A is 
alled an F -Darbo
type 
ontra
tion mapping if there exist F ∈ ̥ and τ ∈ Γ su
h that

τ(µ(A)) + F (ψ(µ(TA))) 6 F (ψ(µ(A))),

for any A ⊂ X with µ(A), ψ(µ(A)), ψ(µ(TA)) > 0 where µ is measure of non
om-

pa
tness de�ned in X .

Let the fun
tions ψ, ψn : R
+
0 → R

+
0 be 
ontinuous. We shall assume that (ψn)

is non-de
reasing that is, ψn 6 ψn+1. Also it satis�es the 
ondition

(3.1) ψn(x) 6 ψ(x) 6 x,

for all n ∈ N and for every x ∈ R
+
0 .

Definition 3.2. Let A be a non-empty, bounded, 
losed and 
onvex subset

of a Bana
h spa
e X . Assume that (ψn) and (τn) are two uniformly 
onvergent

sequen
es of fun
tions su
h that ψn → ψ and τn → τ . Also, let the sequen
e of

fun
tions ψn : R
+
0 → R

+
0 be 
ontinuous. Then, a self-mapping T on A is 
alled an

F -Darbo type 
ontra
tion mapping if there exist F ∈ ̥ and (τn) ∈ Γ′
su
h that

(3.2) τn(µ(A)) + F (ψn(µ(TA))) 6 F (ψn(µ(A))),

for any A ⊂ X with µ(A), ψn(µ(A)), ψn(µ(TA)) > 0 for all n ∈ N where µ is

measure of non
ompa
tness de�ned in X .

Theorem 3.1. Let A be a nonempty, bounded, 
losed and 
onvex subset of a

Bana
h spa
e X. Assume that T is a 
ompa
t and 
ontinuous self-mapping on

A. Suppose that there exist F ∈ ̥ and τ ∈ Γ su
h that T is an F -Darbo type


ontra
tion mapping under the 
onditions of De�nition 3.1. Then T has a �xed

point in A.

Proof. At the �rst step of proof, we assume that there exists a sequen
e (Ak)
whi
h is nonempty, 
losed and 
onvex subset of A su
h that

(3.3) TAk ⊂ Ak ⊂ Ak−1 for all k ∈ N.

Now, let A0 = A and let (Ak) be sequen
e with initial element A0 su
h that

Ak = co(TAk−1) for all k ∈ N. From (3.3), it is easy to see that TA0 ⊂ A0. Again

from the 
ondition (3.3) and the de�nition of (Ak), we have

TAk ⊂ Ak imply Ak+1 = co(TAk) ⊂ Ak,

and after one step, we 
an write that TAk+1 ⊂ TAk ⊂ Ak. From the de�nition of

the measure of non
ompa
tness, if there exists a number k su
h that µ(Ak) = 0
then Ak is a 
ompa
t set. Under the 
onditions of Theorem 2.1, sin
e T is 
ompa
t

and 
ontinuous self mapping on Ak, we get that T has a �xed point in Ak and so

in A.
On the other hand, we suppose that µ(Ak) > 0 for all k ∈ N and prove

µ(Ak) → 0 as k → ∞. By 
onsidering (3.3), it 
an be seen that µ(Ak) is de
reasing
and hen
e it 
onverges to a real number r > 0.
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From the property of the fun
tion τ given in (2.1), there exist r > 0 and k0 ∈ N

su
h that τ(µ(Ak)) > r for all k > k0. We 
onsider together with (M4) of De�nition

2.1, then we 
an write that

τ(µ(Ak)) + F (ψ(µ(Ak+1))) = τ(µ(Ak)) + F (ψ(µ(co(TAk))))

= τ(µ(Ak)) + F (ψ(µ(TAk)))

6 F (ψ(µ(Ak))).

After the 
al
ulation done above, we have

τ(µ(Ak)) + F (ψ(µ(Ak+1))) 6 F (ψ(µ(Ak)))

F (ψ(µ(Ak+1))) 6 F (ψ(µ(Ak)))− τ(µ(Ak))

F (ψ(µ(Ak+1))) 6 F (ψ(µ(Ak)))− r

F (ψ(µ(Ak))) 6 F (ψ(µ(Ak−1)))− r

.

.

.

for all k > k0. By with the same idea, we get

F (ψ(µ(TAk))) 6 F (ψ(µ(Ak))) 6 F (ψ(µ(Ak−1))) − r

6 . . . 6 F (ψ(µ(Ak0 ))) − (k − k0)r,

for all k > k0 and so limk→∞ F (ψ(µ(Ak))) = −∞.

From (F2), we have limk→∞ ψ(µ(Ak)) = 0, from the property of ψ, we get

µ(Ak) → 0 as k → ∞. Moreover, we obtain that sin
e limk→∞ µ(Ak) = 0, then
the interse
tion set A∞ =

⋂

∞

k=1 Ak is nonempty and A∞ ⊂ kerµ. We 
an 
onsider

Theorem 2.1 again, hen
e we 
on
lude that T has a �xed point in A∞ and then in

A. �

Theorem 3.2. Let A be a nonempty, bounded, 
losed and 
onvex subset of a

Bana
h spa
e X. Assume that T is a 
ompa
t and 
ontinuous self-mapping on A.
Suppose that there exist F ∈ ̥ and (τn) ∈ Γ′

su
h that T is an F -Darbo type


ontra
tion mapping under the 
onditions of De�nition 3.2. Then T has a �xed

point in A.

Proof. Sin
e the set iteration, whi
h is the �rst part of this theorem is

similar to the proof given in Theorem 3.1, we omit it. Now, we assume that

supn τn(µ(Ak)) > r for all k > k0. For all n, k ∈ N, we have

τn(µ(Ak)) + F (ψn(µ(Ak+1))) = τn(µ(Ak)) + F (ψn(µ(co(TAk))))

= τn(µ(Ak)) + F (ψn(µ(TAk)))

6 F (ψn(µ(Ak))).

After this step, we get

τn(µ(Ak)) + F (ψn(µ(Ak+1))) 6 F (ψn(µ(Ak)))

F (ψn(µ(Ak+1))) 6 F (ψn(µ(Ak)))− τn(µ(Ak))

F (ψn(µ(Ak+1))) 6 F (ψn(µ(Ak)))− r



116 KARAKAYA AND SEKMAN

F (ψn(µ(Ak))) 6 F (ψn(µ(Ak−1)))− r

F (ψn(µ(Ak−1))) 6 F (ψn(µ(Ak−2)))− r

.

.

.

Therefore, we obtain that F (ψn(µ(TAk))) 6 F (ψn(µ(Ak0 ))) − (k − k0)r, for all
k > k0. As a result, we get limk→∞ F (ψn(µ(Ak))) = −∞. From (F2), we have

limk→∞ ψn(µ(Ak)) = 0. Also, sin
e limk→∞ ψn(µ(Ak)) = 0 and ψn → ψ uniformly

in n, we obtain limk→∞ ψn(µ(Ak)) = 0 as n → ∞. Here, by using property of ψ
in De�nition 3.1, we get µ(Ak) → 0 as k → ∞. Moreover, we obtain that sin
e

limk→∞µ(Ak) = 0, then the interse
tion set A∞ =
⋂

∞

k=1Ak is nonempty and

A∞ ⊂ kerµ. Hen
e, we obtain that T has a �xed point in A∞ and A∞ ⊂ A. �

Example 3.1. We will establish an example under 
ondition (3.1). Now, we


onsider the following sequen
es of fun
tions

ψn(x) =
nx

1 + 2n
, τn(x) =

1 + 2nx

n
,

where ψn → ψ and τn → τ . Also, it is easy to see ψn(x) 6 ψ(x) 6 x for all n ∈ N.

Let F : R+ → R be a mapping given by F (x) = lnx. By using (3.2), we have

1 + 2nµ(A)

n
+ ln

(nµ(TA)

1 + 2n

)

6 ln
(nµ(A)

1 + 2n

)

ln e
1+2nµ(A)

n + ln
(nµ(TA)

1 + 2n

)

6 ln
(nµ(A)

1 + 2n

)

.

Then, we 
an write the following inequality:

e
1+2nµ(A)

n

(nµ(TA)

1 + 2n

)

6
nµ(A)

1 + 2n
.

It is 
lear that the inequality veri�es for every n ∈ N. If we take limit over n, we
get Darbo 
ontra
tion [7℄ as follows:

µ(TA) 6
1

e2µ(A)
µ(A).

Corollary 3.1. In De�nition 3.2, if we take ψn → ψ, τn → τ uniformly in n
and ψ(x) = x, then we obtain the results given in [20℄.

4. An appli
ation of the new F -Darbo type 
ontra
tion

to Volterra-type integral equation

We �rst 
onsider a Volterra-type integral. After, we de�ne that a mapping T
on BC(R+

0 ) has an F -Darbo type 
ontra
tion with the aid of uniformly 
onvergent

sequen
es of fun
tions. At the same time, we show that the Volterra-type integral

equation has a solution with this new F -Darbo type 
ontra
tion. Hen
e, we obtain
that T has a �xed point.



A NEW F -DARBO TYPE CONTRACTION 117

There are many Volterra-type integral equations in the literature. We use the

following form

(4.1) ν(x) = f(x, ν(x)) +

∫ x

0

M(x, s, ν(s)) ds,

where M : R+
0 × R

+
0 × R → R and f : R+

0 × R → R are 
ontinuous fun
tions. Let

BC(R+
0 ) denote the spa
e of all bounded and 
ontinuous fun
tions on R

+
0 . Also,

we 
onsider the norm on spa
e BC(R+
0 )

‖ν‖ = sup{|ν(x)|, x ∈ R
+
0 }.

Now, let us establish the modulus of 
ontinuity of the fun
tional ν on [0, H ].
Let A be a nonempty bounded subset on BC(R+

0 ) and H ∈ R
+
0 . Therefore, for

ν ∈ A, we de�ne the modulus of 
ontinuity as follows:

γH(ν, ε) = sup{|ν(x)− ν(s)| : x, s ∈ [0, H ], |x− s| 6 ε}.

However, we 
an show

γH(A, ε) = sup{γH(ν, ε) : ν ∈ A} and γH0 (A) = lim
ε→0

γH0 (A, ε).

Hen
e, we obtain that γ0(A) = limH→+∞ γH0 (A). Also, for �xed x ∈ R
+
0 , we 
an

write A(x) = {ν(x) : ν ∈ A}. Now, we 
an de�ne the measure of non
ompa
tness

on the family of all nonempty bounded subset of BC(R+
0 ) as follows:

(4.2) µ(A) = γ0(A) + lim sup
x→∞

diamA(x),

where diamA(x) = sup{|ν(x)− η(x)| : η, ν ∈ A}.
Let us 
onsider the operator T on BC(R+

0 ) de�ned by

(4.3) (Tν)(x) = f(x, ν(x)) +

∫ x

0

M(x, s, ν(s)) ds,

for all x ∈ R
+
0 .

After these preliminaries, we have to show that existen
e of a solution of (4.1)

is equivalent to the problem of existen
e of a �xed point of (4.3).

Using the explanation mentioned above, we 
an give the following theorem.

Theorem 4.1. Let T be an operator on BC(R+
0 ) de�ned by (4.3) and assume

that the following 
onditions are satis�ed:

(i) the fun
tion x→ f(x, 0) is an element of the spa
e BC(R+
0 ).

(ii) let ψn → ψ be a sequen
e of fun
tions on R
+
0 and uniform 
onvergen
e

in n and ψn(x) 6 ψ(x) 6 x for all n ∈ N and for all x ∈ R
+
0 . Also

τn : R
+
0 → R

+
0 is a sequen
e of fun
tions and τn → τ uniform 
onvergen
e

in n. Therefore, there exists (τn) ∈ R
+
0 for all n ∈ N su
h that for ea
h

x ∈ R
+
0 and for all ν, η ∈ R, hen
e we have

|f(x, ν)− f(x, η)| 6 e−τn(x)ψn(|ν − η|).
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(iii) there exist 
ontinuous fun
tions ϑ, ξ : R+
0 → R

+
0 su
h that

lim
x→+∞

ϑ(x)

∫ x

0

ξ(s) ds = 0, and |M(x, s, ν(s))| 6 ϑ(x)ξ(s),

for all x, s ∈ R
+
0 su
h that s 6 x and for all ν ∈ R.

(iv) there exists a positive r0 > 0 and ℓ where

ℓ = sup
x>0

{

|f(x, 0)|+ ϑ(x)

∫ x

0

ξ(s) ds

}

.

Then T has a �xed point in BC(R+
0 ).

Proof. In the �rst step, we have to show that the operator T is well-de�ned

and 
ontinuous on D(r0) = {ν ∈ BC(R+
0 ) : ‖ν‖ 6 r0}. From (4.3) and by the


onditions on f and M , we infer that (Tν) is 
ontinuous for ν ∈ BC(R+
0 ). So, we

have

|(Tν)(x)| =

∣

∣

∣

∣

f(x, ν(x)) − f(x, 0) + f(x, 0) +

∫ x

0

M(x, s, ν(s)) ds

∣

∣

∣

∣

6 |f(x, ν(x)) − f(x, 0)|+ |f(x, 0)|+

∣

∣

∣

∣

∫ x

0

M(x, s, ν(s)) ds

∣

∣

∣

∣

6 e−τn(x)ψn(|ν(x)|) + |f(x, 0)|+ ϑ(x)

∫ x

0

ξ(s) ds

6 e−τn(x)ψn(|ν(x)|) + ℓ

where ℓ is given by 
ondition (iv). To show that T (D(r0)) ⊂ D(r0), we take

J = supn e
−τn(x)

su
h that J < 1, ℓ = r0(1− J) and ψn(‖ν‖) 6 ‖ν‖ for all n ∈ N.

Also, taking supremum a

ording to x and 
onsidering 
ontinuity ψn and ‖ν‖ 6 r0,
we have

‖Tν‖ 6 e−τn(x)ψn(‖ν‖) + ℓ 6 e−τn(x)‖ν‖+ ℓ

6 sup
n
e−τn(x)‖ν‖+ ℓ 6 J‖ν‖+ ℓ 6 Jr0 + ℓ 6 r0.

Hen
e, it 
an be seen that T de�nes from D(r0) into D(r0). Now, let us take ε > 0
so that, ψn(‖ν − η‖) 6 ‖ν − η‖ 6 ε, we get

|(Tν)(x)− (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|)

+

∫ x

0

|M(x, s, ν − η(s)) −M(x, s, ν − η(s))| ds

6 e−τn(x)ψn(|ν(x) − η(x)|)

+

∫ x

0

|M(x, s, ν(s))| ds +

∫ x

0

|M(x, s, η(s))| ds.

By using 
ondition (ii) and for all x ∈ R
+
0 , we also have

(4.4) |(Tν)(x) − (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|) + 2ϑ(x)

∫ x

0

ξ(s) ds.
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Besides, by 
ondition (iii), there exists a positive number H su
h that

(4.5) 2ϑ(x)

∫ x

0

ξ(s) ds < ε for all x > H.

As a result, from (4.4) and (4.5), we make inferen
e that

(4.6) |(Tν)(x)− (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|) + 2ϑ(x)

∫ x

0

ξ(s) ds < 2ε,

for all x > H . Then, by using the modulus of 
ontinuity mentioned above, we 
an

write

γH(M, ε) = sup{|M(x, s, ν(s)) −M(x, s, η(s))| : x, s ∈ [0, H ],

ν, η ∈ [−r0, r0], |v − η| 6 ε}.

Sin
e M(x, s, ν(s)) is a uniformly 
ontinuous fun
tion on [0, H ]× [0, H ]× [−r0, r0],
we 
on
lude that limε→0 γ

H(M, ε) = 0. Again from (4.4), for an arbitrarily x ∈
[0, H ], we have

|(Tν)(x)− (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|)

+

∫ x

0

|M(x, s, ν(s)) −M(x, s, η(s))| ds

6 ε+

∫ x

0

γH(M, ε) ds = HγH(M, ε) + ε.

By 
onsidering property of γH(M, ε) and from (4.6), we get that the operator T is


ontinuous on D(r0).
At this step of the proof, we prove that T has a �xed point in D(r0). Now as

the begining the proof, let A be a nonempty subset D(r0), �xed ε > 0 and H > 0,
and taking x, s ∈ [0, H ] su
h that |x− s| 6 ε. Also, we have

|(Tν)(x)− (Tν)(s)| 6 |f(x, ν(x)) − f(s, ν(s))|(4.7)

+

∣

∣

∣

∣

∫ x

0

M(x, r, ν(r)) dr −

∫ s

0

M(s, r, ν(r)) dr

∣

∣

∣

∣

6 |f(x, ν(x)) − f(s, ν(x))| + |f(s, ν(x)) − f(s, ν(s))|

+

∫ x

0

|M(x, r, ν(r)) −M(s, r, ν(r))| dr

+

∫ r

s

M(s, r, ν(r)) dr

6 γH1 (f, ε) + e−τn(x)ψn(γ
H(ν, ε)) +

∫ x

0

γH1 (M, ε) dr

+ ϑ(x)

∫ x

s

ξ(r) dr 6 γH1 (f, ε) + e−τn(x)ψn(γ
H(ν, ε))

+HγH1 (f, ε) + ε sup{ϑ(s)ξ(x) : x, s ∈ [0, H ]},
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where

γH1 (f, ε) = sup{|f(x, ν)− f(s, ν)| : x, s ∈ [0, H ], ν ∈ [−r0, r0], |x− s| 6 ε},

γH1 (M, ε) = sup{|M(x, r, ν)−M(s, r, ν)| : x, s, r ∈ [0, H ], ν∈ [−r0, r0], |x− s|6ε},

sin
e f and M are uniform 
ontinuity, we 
an write limε→0 γ
H
1 (f, ε) = 0 and

limε→0 γ
H
1 (M, ε) = 0. Furthermore, sin
e ϑ and ξ are two 
ontinuous fun
tions

on R
+
0 , we 
on
lude that sup{ϑ(s)ξ(x) : x, s ∈ [0, H ]} is �nite. With these fa
ts,

the inequality in (4.7) implies that ψn(γ
H
0 (TA)) 6 limε→0 e

−τn(x)ψn(γ
H(A, ε)). It

follows that ψn(γ
H
0 (TA)) 6 e−τn(x)ψn(γ

H
0 (A)) and hen
e

(4.8) ψn(γ0(TA)) 6 e−τn(x)ψn(γ0(A)).

From property (3.1), we have

ψn(|(Tν)(x)− (Tη)(x)|) 6 |(Tν)(x) − (Tη)(x)| 6 |f(x, ν(x)) − f(x, η(x))|

+

∫ x

0

|M(x, s, ν(s))| ds+

∫ x

0

|M(x, s, η(s))| ds

6 e−τn(x)ψn(|ν(x) − η(x)|) + 2ϑ(x)

∫ x

0

ξ(s) ds.

Using the notation of diameter of a set, we dedu
e that

ψn(diam(TA)(x)) 6 e−τn(x)ψn(diamA(x)) + 2ϑ(x)

∫ x

0

ξ(s) ds,

and so we get

(4.9) ψn

(

lim sup
x→∞

diam(TA)(x)
)

6 e−τn(x)ψn

(

lim sup
x→∞

diam(A)(x)
)

.

Let us take e−τn(µ(A))
as x = µ(A). Also, 
ombining (4.2), (4.8) and (4.9) together

with 
ondition (3.1), we have ψn(µ(TA)) 6 e−τn(µ(A))ψn(µ(A)). By applying to

logarithms, we 
an write this inequality as

ln(ψn(µ(TA))) 6 ln(e−τn(µ(A))ψn(µ(A))),

for all A ⊂ BC(R+
0 ) with µ(A), µ(TA) > 0, and after 
al
ulations, we obtain

that τn(µ(A)) + ln(ψn(µ(TA))) 6 ln(ψn(µ(A))), for all A ⊂ BC(R+
0 ) with µ(A),

µ(TA) > 0.
As a result, it 
an be seen that T is an F -Darbo type 
ontra
tion mapping

with sequen
es of fun
tions. Hen
e T has a �xed point in D(r0) whi
h solves the

Volterra integral equation given by (4.1) on BC(R+
0 ). �
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