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A NEW TYPE OF CONTRACTION VIA MEASURE

OF NON-COMPACTNESS WITH AN APPLICATION

TO VOLTERRA INTEGRAL EQUATION

Vatan Karakaya and Derya Sekman

Abstrat. Darbo �xed point theorem is a powerful tool whih is used in

many �elds in mathematis. Beause of this feature, many generalizations of

this theorem and its relations with other subjets have been investigated. Here

we introdue a generalization of an F -ontration of Darbo type mapping and

de�ne a new ontration by using both funtion lasses and uniformly onver-

gent sequenes of funtions and examine some of its properties. Afterward, we

show that the new type of ontration, whih we all F -Darbo type ontration,

has more general results than many already studied in the literature. Further-

more, we explain the results of F -Darbo type ontration mapping with an

interesting example. Finally, we give an appliation to solve the Volterra-type

integral equation with the new type ontration.

1. Introdution

The Kuratowski, Istratesu, and Hausdor� measures of nonompatness are

the main MNCs (see [5,8,9,16℄) while the axiomati de�nition given by Bana± and

Goebel [16℄ is the most widely used. Darbo [7℄ used the Kuratowski MNC to es-

tablish a �xed point theorem whih is widely known as Darbo �xed point theorem.

With the help of the Darbo �xed point theorem, the existene and uniqueness of

the �xed point of a set-valued mapping has been proved. These results regarding

�xed point theory have ahieved a wide appliation area for the solution of inte-

gral, integro-di�erential and funtional equations. The Darbo �xed point theorem

has been generalized by several researhers (see [1�3,10,11,13,17,19℄). Another

important onept applied to the Darbo �xed point theorem is the F -ontration
de�ned by Wardowski [21℄. Cosentino and Vetro [6℄ proved that the Darbo ontra-

tion mapping satis�es the F -ontration onditions and showed that F -ontration
mapping has a solution for integral equations.
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In this study, we de�ne a new F -Darbo type ontration under funtions hav-

ing ertain onditions. Also, we investigate how a new F -Darbo type ontration

behaves under the sequenes of funtions used by Kirk [14℄, Kirk and Xu [15℄,

Karakaya et al. [12℄. Besides, we examin existene of �xed point aording to the

onditions of this new F -Darbo type ontration mapping. Considering the hy-

pothesis of theorems that we proved, we onstrut an interesting example using the

sequenes of funtions. Finally, we show that the new ontration has a solution

for the Volterra-type integral equation.

2. Preliminaries

We will now give notations and preliminaries used in the sequel of this artile.

Let A be nonempty subset of the Banah spae. We de�ne Ā and co(A) the losure
and losed onvex hull of A, respetively. Also, we denote B(X) and RC(X)
the family of all nonempty bounded subset of X and the subfamily onsisting

all relatively ompat subset of X , respetively. We denote by R the set of all

real numbers, by R+
the set of all positive real numbers, by R

+
0 the set of all

nonnegative real numbers and by N the set of all positive integers. Furthermore, let

kerµ = {A ∈ B(X) : µ(A) = 0} denotes the kernel of the mapping µ : B(X) → R+

(see [4℄).

Definition 2.1 (see [4℄). Let X be a Banah spae and B(X) the family of

bounded subset of X . A map µ : B(X) → R+
whih satis�es the following:

(M1) The family kerµ is nonempty and kerµ ⊂ RC(X),
(M2) A ⊂ B implies µ(A) 6 µ(B),
(M3) µ(Ā) = µ(A),
(M4) µ(co(A)) = µ(A),
(M5) µ(λA + (1− λ)B) 6 λµ(A) + (1− λ)µ(B) for all λ ∈ [0, 1],
(M6) Let (An) be a sequene of losed sets in B(X) suh that Ak+1 ⊂ Ak for

all k ∈ N and limk→∞ µ(Ak) = 0, then intersetion set A∞ =
⋂

∞

k=1 Ak is

nonempty and A∞ ⊂ kerµ.

Theorem 2.1 (see [18℄). Let A be a nonempty, bounded, losed and onvex

subset of a Banah spae X. Let T be a ompat and ontinuous self mapping.

Then T has a �xed point in A.

Theorem 2.2 (see [7℄). Let A be a nonempty, bounded, losed and onvex

subset of a Banah spae X. Let T be a ontinuous self mapping on A. Assume

that there exists a onstant α ∈ [0, 1] suh that µ(TB) 6 αµ(B), for any subset B
of A, then T has a �xed point.

Now, let F : R+ → R be a funtion that veri�es the following onditions:

(F1) F is non-dereasing,

(F2) For eah sequene {βk}k∈N ⊂ R+
of positive numbers limk→∞ βk = 0 if

and only if limk→∞ F (βk) = −∞,

(F3) There exists α ∈ (0, 1) suh that limβ→0+ β
αF (β) = 0.
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For the funtion de�ned above, we denote with Λ the family of funtions F
that satisfy the onditions (F1)�(F3) and with ̥ the family of all funtions F that

satisfy the ondition (F1)�(F2).
Note that the funtion F : R+ → R de�ned by F (x) = lnx for all x ∈ R+

satis�es the onditions (F1)�(F3) and hene F ∈ Λ. On the other hand, the

funtion F : R+ → R de�ned by F (x) = − 1
x
for all x ∈ R+

satis�es the properties

(F1)�(F2), but it does not satisfy the property (F3) and hene F ∈ ̥ but F /∈ Λ.

Definition 2.2 (see [21℄). Let (X, d) be a metri spae. A self-mapping T on

X is alled an F -ontration if there exist F ∈ Λ and τ ∈ R+
suh that

d(Tx, T y) > 0 ⇒ τ + F (d(Tx, T y)) 6 F (d(x, y)),

for all x, y ∈ X .

We denote with Γ the family of funtion τ : R+ → R+
satisfying the ondition:

(2.1) (i) lim inf
x→a+

τ(x) > 0 for all a ∈ R
+
0 .

Moreover, let τn → τ be a uniform onvergene in n. We also denote with Γ′
the

family of uniformly onvergent sequenes of funtions τn : R
+ → R+

satisfying the

ondition:

(ii) sup
n

lim inf
x→a+

τn(x) > 0 for all a ∈ R
+
0 .

Note that the τ : R+ → R+
de�ned by τ(x) = − 1

2x for all x ∈ R+
satis�es ondition

(i) and hene τ ∈ Γ. Again, we pay attention to τn : R
+ → R+

de�ned by τn(x) =
n

1+2nx for all x ∈ R+
and n ∈ N. So, we an denote (τn) ∈ Γ′

.

Definition 2.3 (see [20℄). Let A be a non-empty, bounded, losed and onvex

subset of a Banah spae X . A self-operator T on A is alled an F -ontration of

Darbo-type mapping if there exist F ∈ Λ and τ ∈ Γ suh that

τ(µ(B)) + F (µ(TB)) 6 F (µ(B)),

for any B ⊂ A with µ(B), µ(TB) > 0 where µ is the measure of nonompatness

de�ned in X .

Let us introdue some properties of the sequenes of funtions that we will use

in the generalization of the Darbo ontration mapping throughout the work as

follows.

Definition 2.4. Let (ψn) be a sequene of funtions from R
+
0 into R

+
0 . This

sequene onverges uniformly to a funtion ψ if for every ε > 0, there is an integer

n0 suh that |ψn(x) − ψ(x)| < ε, for all x ∈ R
+
0 and n > n0, n ∈ N.

3. A new F -Darbo type ontration de�ned by funtions lasses

In this setion, �rstly we de�ne a new F -Darbo type ontration de�ned by

funtions lasses, and then we introdue F -Darbo type ontration de�ned by se-

quenes of funtions.
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Definition 3.1. Let A be a non-empty, bounded, losed and onvex subset

of a Banah spae X . Assume that the mapping ψ : R+
0 → R

+
0 is ontinuous and

satis�es ψ(x) = 0 ⇔ x = 0. Then, a self-mapping T on A is alled an F -Darbo
type ontration mapping if there exist F ∈ ̥ and τ ∈ Γ suh that

τ(µ(A)) + F (ψ(µ(TA))) 6 F (ψ(µ(A))),

for any A ⊂ X with µ(A), ψ(µ(A)), ψ(µ(TA)) > 0 where µ is measure of nonom-

patness de�ned in X .

Let the funtions ψ, ψn : R
+
0 → R

+
0 be ontinuous. We shall assume that (ψn)

is non-dereasing that is, ψn 6 ψn+1. Also it satis�es the ondition

(3.1) ψn(x) 6 ψ(x) 6 x,

for all n ∈ N and for every x ∈ R
+
0 .

Definition 3.2. Let A be a non-empty, bounded, losed and onvex subset

of a Banah spae X . Assume that (ψn) and (τn) are two uniformly onvergent

sequenes of funtions suh that ψn → ψ and τn → τ . Also, let the sequene of

funtions ψn : R
+
0 → R

+
0 be ontinuous. Then, a self-mapping T on A is alled an

F -Darbo type ontration mapping if there exist F ∈ ̥ and (τn) ∈ Γ′
suh that

(3.2) τn(µ(A)) + F (ψn(µ(TA))) 6 F (ψn(µ(A))),

for any A ⊂ X with µ(A), ψn(µ(A)), ψn(µ(TA)) > 0 for all n ∈ N where µ is

measure of nonompatness de�ned in X .

Theorem 3.1. Let A be a nonempty, bounded, losed and onvex subset of a

Banah spae X. Assume that T is a ompat and ontinuous self-mapping on

A. Suppose that there exist F ∈ ̥ and τ ∈ Γ suh that T is an F -Darbo type

ontration mapping under the onditions of De�nition 3.1. Then T has a �xed

point in A.

Proof. At the �rst step of proof, we assume that there exists a sequene (Ak)
whih is nonempty, losed and onvex subset of A suh that

(3.3) TAk ⊂ Ak ⊂ Ak−1 for all k ∈ N.

Now, let A0 = A and let (Ak) be sequene with initial element A0 suh that

Ak = co(TAk−1) for all k ∈ N. From (3.3), it is easy to see that TA0 ⊂ A0. Again

from the ondition (3.3) and the de�nition of (Ak), we have

TAk ⊂ Ak imply Ak+1 = co(TAk) ⊂ Ak,

and after one step, we an write that TAk+1 ⊂ TAk ⊂ Ak. From the de�nition of

the measure of nonompatness, if there exists a number k suh that µ(Ak) = 0
then Ak is a ompat set. Under the onditions of Theorem 2.1, sine T is ompat

and ontinuous self mapping on Ak, we get that T has a �xed point in Ak and so

in A.
On the other hand, we suppose that µ(Ak) > 0 for all k ∈ N and prove

µ(Ak) → 0 as k → ∞. By onsidering (3.3), it an be seen that µ(Ak) is dereasing
and hene it onverges to a real number r > 0.
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From the property of the funtion τ given in (2.1), there exist r > 0 and k0 ∈ N

suh that τ(µ(Ak)) > r for all k > k0. We onsider together with (M4) of De�nition

2.1, then we an write that

τ(µ(Ak)) + F (ψ(µ(Ak+1))) = τ(µ(Ak)) + F (ψ(µ(co(TAk))))

= τ(µ(Ak)) + F (ψ(µ(TAk)))

6 F (ψ(µ(Ak))).

After the alulation done above, we have

τ(µ(Ak)) + F (ψ(µ(Ak+1))) 6 F (ψ(µ(Ak)))

F (ψ(µ(Ak+1))) 6 F (ψ(µ(Ak)))− τ(µ(Ak))

F (ψ(µ(Ak+1))) 6 F (ψ(µ(Ak)))− r

F (ψ(µ(Ak))) 6 F (ψ(µ(Ak−1)))− r

.

.

.

for all k > k0. By with the same idea, we get

F (ψ(µ(TAk))) 6 F (ψ(µ(Ak))) 6 F (ψ(µ(Ak−1))) − r

6 . . . 6 F (ψ(µ(Ak0 ))) − (k − k0)r,

for all k > k0 and so limk→∞ F (ψ(µ(Ak))) = −∞.

From (F2), we have limk→∞ ψ(µ(Ak)) = 0, from the property of ψ, we get

µ(Ak) → 0 as k → ∞. Moreover, we obtain that sine limk→∞ µ(Ak) = 0, then
the intersetion set A∞ =

⋂

∞

k=1 Ak is nonempty and A∞ ⊂ kerµ. We an onsider

Theorem 2.1 again, hene we onlude that T has a �xed point in A∞ and then in

A. �

Theorem 3.2. Let A be a nonempty, bounded, losed and onvex subset of a

Banah spae X. Assume that T is a ompat and ontinuous self-mapping on A.
Suppose that there exist F ∈ ̥ and (τn) ∈ Γ′

suh that T is an F -Darbo type

ontration mapping under the onditions of De�nition 3.2. Then T has a �xed

point in A.

Proof. Sine the set iteration, whih is the �rst part of this theorem is

similar to the proof given in Theorem 3.1, we omit it. Now, we assume that

supn τn(µ(Ak)) > r for all k > k0. For all n, k ∈ N, we have

τn(µ(Ak)) + F (ψn(µ(Ak+1))) = τn(µ(Ak)) + F (ψn(µ(co(TAk))))

= τn(µ(Ak)) + F (ψn(µ(TAk)))

6 F (ψn(µ(Ak))).

After this step, we get

τn(µ(Ak)) + F (ψn(µ(Ak+1))) 6 F (ψn(µ(Ak)))

F (ψn(µ(Ak+1))) 6 F (ψn(µ(Ak)))− τn(µ(Ak))

F (ψn(µ(Ak+1))) 6 F (ψn(µ(Ak)))− r
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F (ψn(µ(Ak))) 6 F (ψn(µ(Ak−1)))− r

F (ψn(µ(Ak−1))) 6 F (ψn(µ(Ak−2)))− r

.

.

.

Therefore, we obtain that F (ψn(µ(TAk))) 6 F (ψn(µ(Ak0 ))) − (k − k0)r, for all
k > k0. As a result, we get limk→∞ F (ψn(µ(Ak))) = −∞. From (F2), we have

limk→∞ ψn(µ(Ak)) = 0. Also, sine limk→∞ ψn(µ(Ak)) = 0 and ψn → ψ uniformly

in n, we obtain limk→∞ ψn(µ(Ak)) = 0 as n → ∞. Here, by using property of ψ
in De�nition 3.1, we get µ(Ak) → 0 as k → ∞. Moreover, we obtain that sine

limk→∞µ(Ak) = 0, then the intersetion set A∞ =
⋂

∞

k=1Ak is nonempty and

A∞ ⊂ kerµ. Hene, we obtain that T has a �xed point in A∞ and A∞ ⊂ A. �

Example 3.1. We will establish an example under ondition (3.1). Now, we

onsider the following sequenes of funtions

ψn(x) =
nx

1 + 2n
, τn(x) =

1 + 2nx

n
,

where ψn → ψ and τn → τ . Also, it is easy to see ψn(x) 6 ψ(x) 6 x for all n ∈ N.

Let F : R+ → R be a mapping given by F (x) = lnx. By using (3.2), we have

1 + 2nµ(A)

n
+ ln

(nµ(TA)

1 + 2n

)

6 ln
(nµ(A)

1 + 2n

)

ln e
1+2nµ(A)

n + ln
(nµ(TA)

1 + 2n

)

6 ln
(nµ(A)

1 + 2n

)

.

Then, we an write the following inequality:

e
1+2nµ(A)

n

(nµ(TA)

1 + 2n

)

6
nµ(A)

1 + 2n
.

It is lear that the inequality veri�es for every n ∈ N. If we take limit over n, we
get Darbo ontration [7℄ as follows:

µ(TA) 6
1

e2µ(A)
µ(A).

Corollary 3.1. In De�nition 3.2, if we take ψn → ψ, τn → τ uniformly in n
and ψ(x) = x, then we obtain the results given in [20℄.

4. An appliation of the new F -Darbo type ontration

to Volterra-type integral equation

We �rst onsider a Volterra-type integral. After, we de�ne that a mapping T
on BC(R+

0 ) has an F -Darbo type ontration with the aid of uniformly onvergent

sequenes of funtions. At the same time, we show that the Volterra-type integral

equation has a solution with this new F -Darbo type ontration. Hene, we obtain
that T has a �xed point.
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There are many Volterra-type integral equations in the literature. We use the

following form

(4.1) ν(x) = f(x, ν(x)) +

∫ x

0

M(x, s, ν(s)) ds,

where M : R+
0 × R

+
0 × R → R and f : R+

0 × R → R are ontinuous funtions. Let

BC(R+
0 ) denote the spae of all bounded and ontinuous funtions on R

+
0 . Also,

we onsider the norm on spae BC(R+
0 )

‖ν‖ = sup{|ν(x)|, x ∈ R
+
0 }.

Now, let us establish the modulus of ontinuity of the funtional ν on [0, H ].
Let A be a nonempty bounded subset on BC(R+

0 ) and H ∈ R
+
0 . Therefore, for

ν ∈ A, we de�ne the modulus of ontinuity as follows:

γH(ν, ε) = sup{|ν(x)− ν(s)| : x, s ∈ [0, H ], |x− s| 6 ε}.

However, we an show

γH(A, ε) = sup{γH(ν, ε) : ν ∈ A} and γH0 (A) = lim
ε→0

γH0 (A, ε).

Hene, we obtain that γ0(A) = limH→+∞ γH0 (A). Also, for �xed x ∈ R
+
0 , we an

write A(x) = {ν(x) : ν ∈ A}. Now, we an de�ne the measure of nonompatness

on the family of all nonempty bounded subset of BC(R+
0 ) as follows:

(4.2) µ(A) = γ0(A) + lim sup
x→∞

diamA(x),

where diamA(x) = sup{|ν(x)− η(x)| : η, ν ∈ A}.
Let us onsider the operator T on BC(R+

0 ) de�ned by

(4.3) (Tν)(x) = f(x, ν(x)) +

∫ x

0

M(x, s, ν(s)) ds,

for all x ∈ R
+
0 .

After these preliminaries, we have to show that existene of a solution of (4.1)

is equivalent to the problem of existene of a �xed point of (4.3).

Using the explanation mentioned above, we an give the following theorem.

Theorem 4.1. Let T be an operator on BC(R+
0 ) de�ned by (4.3) and assume

that the following onditions are satis�ed:

(i) the funtion x→ f(x, 0) is an element of the spae BC(R+
0 ).

(ii) let ψn → ψ be a sequene of funtions on R
+
0 and uniform onvergene

in n and ψn(x) 6 ψ(x) 6 x for all n ∈ N and for all x ∈ R
+
0 . Also

τn : R
+
0 → R

+
0 is a sequene of funtions and τn → τ uniform onvergene

in n. Therefore, there exists (τn) ∈ R
+
0 for all n ∈ N suh that for eah

x ∈ R
+
0 and for all ν, η ∈ R, hene we have

|f(x, ν)− f(x, η)| 6 e−τn(x)ψn(|ν − η|).
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(iii) there exist ontinuous funtions ϑ, ξ : R+
0 → R

+
0 suh that

lim
x→+∞

ϑ(x)

∫ x

0

ξ(s) ds = 0, and |M(x, s, ν(s))| 6 ϑ(x)ξ(s),

for all x, s ∈ R
+
0 suh that s 6 x and for all ν ∈ R.

(iv) there exists a positive r0 > 0 and ℓ where

ℓ = sup
x>0

{

|f(x, 0)|+ ϑ(x)

∫ x

0

ξ(s) ds

}

.

Then T has a �xed point in BC(R+
0 ).

Proof. In the �rst step, we have to show that the operator T is well-de�ned

and ontinuous on D(r0) = {ν ∈ BC(R+
0 ) : ‖ν‖ 6 r0}. From (4.3) and by the

onditions on f and M , we infer that (Tν) is ontinuous for ν ∈ BC(R+
0 ). So, we

have

|(Tν)(x)| =

∣

∣

∣

∣

f(x, ν(x)) − f(x, 0) + f(x, 0) +

∫ x

0

M(x, s, ν(s)) ds

∣

∣

∣

∣

6 |f(x, ν(x)) − f(x, 0)|+ |f(x, 0)|+

∣

∣

∣

∣

∫ x

0

M(x, s, ν(s)) ds

∣

∣

∣

∣

6 e−τn(x)ψn(|ν(x)|) + |f(x, 0)|+ ϑ(x)

∫ x

0

ξ(s) ds

6 e−τn(x)ψn(|ν(x)|) + ℓ

where ℓ is given by ondition (iv). To show that T (D(r0)) ⊂ D(r0), we take

J = supn e
−τn(x)

suh that J < 1, ℓ = r0(1− J) and ψn(‖ν‖) 6 ‖ν‖ for all n ∈ N.

Also, taking supremum aording to x and onsidering ontinuity ψn and ‖ν‖ 6 r0,
we have

‖Tν‖ 6 e−τn(x)ψn(‖ν‖) + ℓ 6 e−τn(x)‖ν‖+ ℓ

6 sup
n
e−τn(x)‖ν‖+ ℓ 6 J‖ν‖+ ℓ 6 Jr0 + ℓ 6 r0.

Hene, it an be seen that T de�nes from D(r0) into D(r0). Now, let us take ε > 0
so that, ψn(‖ν − η‖) 6 ‖ν − η‖ 6 ε, we get

|(Tν)(x)− (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|)

+

∫ x

0

|M(x, s, ν − η(s)) −M(x, s, ν − η(s))| ds

6 e−τn(x)ψn(|ν(x) − η(x)|)

+

∫ x

0

|M(x, s, ν(s))| ds +

∫ x

0

|M(x, s, η(s))| ds.

By using ondition (ii) and for all x ∈ R
+
0 , we also have

(4.4) |(Tν)(x) − (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|) + 2ϑ(x)

∫ x

0

ξ(s) ds.
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Besides, by ondition (iii), there exists a positive number H suh that

(4.5) 2ϑ(x)

∫ x

0

ξ(s) ds < ε for all x > H.

As a result, from (4.4) and (4.5), we make inferene that

(4.6) |(Tν)(x)− (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|) + 2ϑ(x)

∫ x

0

ξ(s) ds < 2ε,

for all x > H . Then, by using the modulus of ontinuity mentioned above, we an

write

γH(M, ε) = sup{|M(x, s, ν(s)) −M(x, s, η(s))| : x, s ∈ [0, H ],

ν, η ∈ [−r0, r0], |v − η| 6 ε}.

Sine M(x, s, ν(s)) is a uniformly ontinuous funtion on [0, H ]× [0, H ]× [−r0, r0],
we onlude that limε→0 γ

H(M, ε) = 0. Again from (4.4), for an arbitrarily x ∈
[0, H ], we have

|(Tν)(x)− (Tη)(x)| 6 e−τn(x)ψn(|ν(x) − η(x)|)

+

∫ x

0

|M(x, s, ν(s)) −M(x, s, η(s))| ds

6 ε+

∫ x

0

γH(M, ε) ds = HγH(M, ε) + ε.

By onsidering property of γH(M, ε) and from (4.6), we get that the operator T is

ontinuous on D(r0).
At this step of the proof, we prove that T has a �xed point in D(r0). Now as

the begining the proof, let A be a nonempty subset D(r0), �xed ε > 0 and H > 0,
and taking x, s ∈ [0, H ] suh that |x− s| 6 ε. Also, we have

|(Tν)(x)− (Tν)(s)| 6 |f(x, ν(x)) − f(s, ν(s))|(4.7)

+

∣

∣

∣

∣

∫ x

0

M(x, r, ν(r)) dr −

∫ s

0

M(s, r, ν(r)) dr

∣

∣

∣

∣

6 |f(x, ν(x)) − f(s, ν(x))| + |f(s, ν(x)) − f(s, ν(s))|

+

∫ x

0

|M(x, r, ν(r)) −M(s, r, ν(r))| dr

+

∫ r

s

M(s, r, ν(r)) dr

6 γH1 (f, ε) + e−τn(x)ψn(γ
H(ν, ε)) +

∫ x

0

γH1 (M, ε) dr

+ ϑ(x)

∫ x

s

ξ(r) dr 6 γH1 (f, ε) + e−τn(x)ψn(γ
H(ν, ε))

+HγH1 (f, ε) + ε sup{ϑ(s)ξ(x) : x, s ∈ [0, H ]},



120 KARAKAYA AND SEKMAN

where

γH1 (f, ε) = sup{|f(x, ν)− f(s, ν)| : x, s ∈ [0, H ], ν ∈ [−r0, r0], |x− s| 6 ε},

γH1 (M, ε) = sup{|M(x, r, ν)−M(s, r, ν)| : x, s, r ∈ [0, H ], ν∈ [−r0, r0], |x− s|6ε},

sine f and M are uniform ontinuity, we an write limε→0 γ
H
1 (f, ε) = 0 and

limε→0 γ
H
1 (M, ε) = 0. Furthermore, sine ϑ and ξ are two ontinuous funtions

on R
+
0 , we onlude that sup{ϑ(s)ξ(x) : x, s ∈ [0, H ]} is �nite. With these fats,

the inequality in (4.7) implies that ψn(γ
H
0 (TA)) 6 limε→0 e

−τn(x)ψn(γ
H(A, ε)). It

follows that ψn(γ
H
0 (TA)) 6 e−τn(x)ψn(γ

H
0 (A)) and hene

(4.8) ψn(γ0(TA)) 6 e−τn(x)ψn(γ0(A)).

From property (3.1), we have

ψn(|(Tν)(x)− (Tη)(x)|) 6 |(Tν)(x) − (Tη)(x)| 6 |f(x, ν(x)) − f(x, η(x))|

+

∫ x

0

|M(x, s, ν(s))| ds+

∫ x

0

|M(x, s, η(s))| ds

6 e−τn(x)ψn(|ν(x) − η(x)|) + 2ϑ(x)

∫ x

0

ξ(s) ds.

Using the notation of diameter of a set, we dedue that

ψn(diam(TA)(x)) 6 e−τn(x)ψn(diamA(x)) + 2ϑ(x)

∫ x

0

ξ(s) ds,

and so we get

(4.9) ψn

(

lim sup
x→∞

diam(TA)(x)
)

6 e−τn(x)ψn

(

lim sup
x→∞

diam(A)(x)
)

.

Let us take e−τn(µ(A))
as x = µ(A). Also, ombining (4.2), (4.8) and (4.9) together

with ondition (3.1), we have ψn(µ(TA)) 6 e−τn(µ(A))ψn(µ(A)). By applying to

logarithms, we an write this inequality as

ln(ψn(µ(TA))) 6 ln(e−τn(µ(A))ψn(µ(A))),

for all A ⊂ BC(R+
0 ) with µ(A), µ(TA) > 0, and after alulations, we obtain

that τn(µ(A)) + ln(ψn(µ(TA))) 6 ln(ψn(µ(A))), for all A ⊂ BC(R+
0 ) with µ(A),

µ(TA) > 0.
As a result, it an be seen that T is an F -Darbo type ontration mapping

with sequenes of funtions. Hene T has a �xed point in D(r0) whih solves the

Volterra integral equation given by (4.1) on BC(R+
0 ). �
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