PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 111(125) (2022), 111-121 DOI: https://doi.org/10.2298/PIM2225111K

A NEW TYPE OF CONTRACTION VIA MEASURE
OF NON-COMPACTNESS WITH AN APPLICATION
TO VOLTERRA INTEGRAL EQUATION

Vatan Karakaya and Derya Sekman

ABsTrACT. Darbo fixed point theorem is a powerful tool which is used in
many fields in mathematics. Because of this feature, many generalizations of
this theorem and its relations with other subjects have been investigated. Here
we introduce a generalization of an F-contraction of Darbo type mapping and
define a new contraction by using both function classes and uniformly conver-
gent sequences of functions and examine some of its properties. Afterward, we
show that the new type of contraction, which we call F-Darbo type contraction,
has more general results than many already studied in the literature. Further-
more, we explain the results of F-Darbo type contraction mapping with an
interesting example. Finally, we give an application to solve the Volterra-type
integral equation with the new type contraction.

1. Introduction

The Kuratowski, Istratescu, and Hausdorff measures of noncompactness are
the main MNCs (see [518l[9][16]) while the axiomatic definition given by Banas and
Goebel [16] is the most widely used. Darbo [7] used the Kuratowski MNC to es-
tablish a fixed point theorem which is widely known as Darbo fixed point theorem.
With the help of the Darbo fixed point theorem, the existence and uniqueness of
the fixed point of a set-valued mapping has been proved. These results regarding
fixed point theory have achieved a wide application area for the solution of inte-
gral, integro-differential and functional equations. The Darbo fixed point theorem
has been generalized by several researchers (see [TH3LI0,AT,T3LA7,19]). Another
important concept applied to the Darbo fixed point theorem is the F-contraction
defined by Wardowski [21]. Cosentino and Vetro [6] proved that the Darbo contrac-
tion mapping satisfies the F-contraction conditions and showed that F-contraction
mapping has a solution for integral equations.

2020 Mathematics Subject Classification: 45D05; 47TH08; 47TH09; 47H10.

Key words and phrases: Volterra-type integral equation, Darbo fixed point theorem, F-con-
traction, measure of noncompactness, sequences of functions.

Communicated by Gradimir Milovanovic.

111



112 KARAKAYA AND SEKMAN

In this study, we define a new F-Darbo type contraction under functions hav-
ing certain conditions. Also, we investigate how a new F-Darbo type contraction
behaves under the sequences of functions used by Kirk [14], Kirk and Xu [15],
Karakaya et al. [I2]. Besides, we examin existence of fixed point according to the
conditions of this new F-Darbo type contraction mapping. Considering the hy-
pothesis of theorems that we proved, we construct an interesting example using the
sequences of functions. Finally, we show that the new contraction has a solution
for the Volterra-type integral equation.

2. Preliminaries

We will now give notations and preliminaries used in the sequel of this article.
Let A be nonempty subset of the Banach space. We define A and ¢o(A) the closure
and closed convex hull of A, respectively. Also, we denote B(X) and RC(X)
the family of all nonempty bounded subset of X and the subfamily consisting
all relatively compact subset of X, respectively. We denote by R the set of all
real numbers, by RT the set of all positive real numbers, by R(')" the set of all
nonnegative real numbers and by N the set of all positive integers. Furthermore, let
kerpp = {A € B(X) : u(A) = 0} denotes the kernel of the mapping p: B(X) — RT
(see []).

DEFINITION 2.1 (see [4]). Let X be a Banach space and B(X) the family of
bounded subset of X. A map p: B(X) — RT which satisfies the following:

1) The family ker p is nonempty and ker u C RC(X),

2) A C B implies p(A) < pu(B),

3) w(A) = pu(A),

4) p(co(A)) = p(A),

5) p(AMA+ (1= X)B) < Au(A) + (1 — Nu(B) for all A € [0,1],

6) Let (A,,) be a sequence of closed sets in B(X) such that Ap41 C A for
all £k € N and limy_, o u(Ag) = 0, then intersection set Ay, = ﬂ;ozl Ay is
nonempty and A, C ker p.
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THEOREM 2.1 (see [18]). Let A be a nonempty, bounded, closed and convex
subset of a Banach space X. Let T be a compact and continuous self mapping.
Then T has a fized point in A.

THEOREM 2.2 (see [7]). Let A be a nonempty, bounded, closed and convex
subset of a Banach space X. Let T be a continuous self mapping on A. Assume
that there ezists a constant o € [0,1] such that p(TB) < au(B), for any subset B
of A, then T has a fixed point.

Now, let F': RT — R be a function that verifies the following conditions:

(F1) F is non-decreasing,

(F2) For each sequence {B}tren C RT of positive numbers limg_, o Bx = 0 if
and only if limy_, oo F(Bk) = —

(F'3) There exists o € (0,1) such that limg_,o+ S*F(8) = 0.
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For the function defined above, we denote with A the family of functions F
that satisfy the conditions (F'1)—(F3) and with f the family of all functions F' that
satisfy the condition (F'1)-(F2).

Note that the function F: R — R defined by F(z) = Inz for all z € R
satisfies the conditions (F1)-(F3) and hence F € A. On the other hand, the
function F: RT™ — R defined by F(z) = 7; for all x € RT satisfies the properties
(F1)—(F2), but it does not satisfy the property (F3) and hence F € f but F ¢ A.

DEFINITION 2.2 (see [21]). Let (X, d) be a metric space. A self-mapping 7" on
X is called an F-contraction if there exist F' € A and 7 € R such that

d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(d(x,y)),
for all z,y € X.
We denote with I' the family of function 7: R™ — R™T satisfying the condition:

(2.1) (1) limmi£1£+ 7(z) > 0 for all a € R .

Moreover, let 7,, — 7 be a uniform convergence in n. We also denote with IV the
family of uniformly convergent sequences of functions 7,,: RT™ — R* satisfying the
condition:

(1) suplim inf 7,(z) >0 for all a € R{.
n r—a™t

Note that the 7: RT™ — RT defined by 7(z) = —5- for all # € RT satisfies condition

(i) and hence 7 € T'. Again, we pay attention to 7,,: R™ — R* defined by 7,(z) =

17557 for all z € R* and n € N. So, we can denote (7,,) € T".

DEFINITION 2.3 (see [20]). Let A be a non-empty, bounded, closed and convex
subset of a Banach space X. A self-operator T' on A is called an F-contraction of
Darbo-type mapping if there exist F' € A and 7 € T" such that

T(w(B)) + F(u(T'B)) < F(u(B)),

for any B C A with u(B), (T'B) > 0 where u is the measure of noncompactness
defined in X.

Let us introduce some properties of the sequences of functions that we will use
in the generalization of the Darbo contraction mapping throughout the work as
follows.

DEFINITION 2.4. Let (1) be a sequence of functions from R{ into R7. This
sequence converges uniformly to a function ) if for every € > 0, there is an integer
no such that |, (z) — ¥ (x)| < ¢, for all 2 € R{ and n > ng, n € N.

3. A new F-Darbo type contraction defined by functions classes

In this section, firstly we define a new F-Darbo type contraction defined by
functions classes, and then we introduce F-Darbo type contraction defined by se-
quences of functions.
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DEFINITION 3.1. Let A be a non-empty, bounded, closed and convex subset
of a Banach space X. Assume that the mapping ¢: Rf — R{ is continuous and
satisfies ¥(z) = 0 & x = 0. Then, a self-mapping T on A is called an F-Darbo
type contraction mapping if there exist F' € F and 7 € I such that

T(1(A)) + F(@((TA))) < F($(n(A))),

for any A C X with u(A), ¥ (u(A)),¥(w(TA)) > 0 where u is measure of noncom-
pactness defined in X.

Let the functions v, 1, : Rf — R be continuous. We shall assume that (),,)
is non-decreasing that is, ¥, < ¥,+1. Also it satisfies the condition

(3.1) Yn(z) <P(z) <,
for all n € N and for every z € R{.

DEFINITION 3.2. Let A be a non-empty, bounded, closed and convex subset
of a Banach space X. Assume that (¢,,) and (7,,) are two uniformly convergent
sequences of functions such that v,, — ¥ and 7, — 7. Also, let the sequence of
functions v, : Ry — R be continuous. Then, a self-mapping 7' on A is called an
F-Darbo type contraction mapping if there exist F' € F and (7,) € I such that

(3-2) Tn(1(A)) + F(¢n(u(T A))) < F(¢hn(1(A))),

for any A C X with u(A), ¢¥n((A)), Yn(u(TA)) > 0 for all n € N where pu is
measure of noncompactness defined in X.

THEOREM 3.1. Let A be a nonempty, bounded, closed and convex subset of a
Banach space X. Assume that T is a compact and continuous self-mapping on
A. Suppose that there exist ' € F and 7 € T' such that T is an F-Darbo type
contraction mapping under the conditions of Definition B.I. Then T has a fized
point in A.

PROOF. At the first step of proof, we assume that there exists a sequence (Ay)
which is nonempty, closed and convex subset of A such that

(3.3) TA, C Ay C Ay_q for all k € N.

Now, let Ag = A and let (Ax) be sequence with initial element Ay such that
A =co(TAg—1) for all k € N. From (B3), it is easy to see that T Ay C Ap. Again
from the condition (33) and the definition of (A), we have

TA, C Ag imply Ak—i—l = @(TAk) C Ayg,

and after one step, we can write that T'Ax11 C T Ay C Ai. From the definition of
the measure of noncompactness, if there exists a number k such that p(Ax) = 0
then Ay is a compact set. Under the conditions of Theorem 2] since T is compact
and continuous self mapping on Ay, we get that T has a fixed point in A; and so
in A.

On the other hand, we suppose that u(Ax) > 0 for all & € N and prove
u(Ag) — 0 as k — oco. By considering (83)), it can be seen that p(Ay) is decreasing
and hence it converges to a real number r > 0.
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From the property of the function 7 given in ([2.1]), there exist » > 0 and kg € N
such that 7(u(Ag)) = r for all k > k. We consider together with (M4) of Definition
211 then we can write that

T(u(Ak)) + F((u(Aps1))) = 7(1(Ax)) + F($(u(co(T Ar))))
=7(u(Ax)) + F((u(T Ax)))
< F(¥((Ar)))
After the calculation done above, we have
T(u(Ax)) + F((u(Ar1))) < F(P(p(Ax)))
F(p(u(Art1))) < F((u(Ar))) — 7(1(Ak))
F(p(u(Ag11))) < F((u(Ax))) —r
F(p(u(Ar))) < F((p(Ar-1))) —

for all k > kg. By with the same idea, we get

F(u(TAr))) < F(@(p(Ar))) < FO((Ap-1))) —r
<. S F(u(Ary))) — (k= ko),

for all k£ > ko and so limy_,0o F(¢(1(Ag))) = —o0.

From (F2), we have limy_, o ¥(pt(Ax)) = 0, from the property of ¢, we get
w(Ag) — 0 as k — oo. Moreover, we obtain that since limg_, o pt(Ax) = 0, then
the intersection set Ao, = ﬂ;ozl Ay, is nonempty and A, C ker yu. We can consider

Theorem 2.1l again, hence we conclude that T has a fixed point in A, and then in
A. O

THEOREM 3.2. Let A be a monempty, bounded, closed and convex subset of a
Banach space X. Assume that T' is a compact and continuous self-mapping on A.
Suppose that there exist F € F and (1,,) € IV such that T is an F-Darbo type
contraction mapping under the conditions of Definition B.2. Then T has a fized
point in A.

PROOF. Since the set iteration, which is the first part of this theorem is
similar to the proof given in Theorem Bl we omit it. Now, we assume that
sup,, 7 (1(Ag)) = r for all k > k. For all n, k € N, we have

Tn(1(Ak)) + F(n(1(Ak+41))) = Tn(1(Ar)) + F (¢hn (n(co(T Ax))))
= T (u(Ax)) + F (b (u(T Ax)))
< F(¢n (pu(Ar)))-
After this step, we get

Tn((Ar)) + F(@n(p(Ari1))) < F(¢n(u(Ar)))
Fn(p(Ari1))) < F(n(u(Ar))) — mn(1(Ar))
Fn(1(Ar11))) < F(@n(p(Ax))) — 7
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F(n(1(Ar)))

< F(n(p(Ax-1))) —
F(n(p(Ag-1))) <

F
F(ipn(u(Ar-2))) =7

Therefore, we obtain that F (¢, (u(TAk))) < F(tn(pu(4k,))) — (k — ko)r, for all
k > ko. As a result, we get limy_, o0 F'(¢n(1(Ar))) = —oo. From (F2), we have
limg—y 00 ¥n ((Ak)) = 0. Also, since limg_, o0 ¥ (u(Ag)) = 0 and ¥, — 1 uniformly
in n, we obtain limg_,o0 Pn (1(Ar)) = 0 as n — oco. Here, by using property of ¢
in Definition Bl we get pu(Ax) — 0 as k& — co. Moreover, we obtain that since
limg—ooft(Ar) = 0, then the intersection set Ao = [\r—, Ak is nonempty and
Ao C ker u. Hence, we obtain that T has a fixed point in A, and A, C A. O

EXAMPLE 3.1. We will establish an example under condition (BI). Now, we
consider the following sequences of functions

n 1+ 2nx

Tn(l') - ’

1+ 2n’ n

Yn(T) =

where ¢, — 1 and 7, — 7. Also, it is easy to see ¥, () < ¥(x) < x for all n € N.
Let F: R™ — R be a mapping given by F(z) = Inx. By using (3.2)), we have

S e () < (mn)

o S (nu TA ) ( )
1+2n

Then, we can write the following inequality:

€1+2nu(A) (nu(TA)) < nu(A)
142n/ ~142n°

It is clear that the inequality verifies for every n € N. If we take limit over n, we
get Darbo contraction [7] as follows:

TA) < o p(A).

e2n

COROLLARY 3.1. In Definition B2, if we take 1, — 1, T, — T uniformly in n
and (x) = x, then we obtain the results given in [20].

4. An application of the new F-Darbo type contraction
to Volterra-type integral equation

We first consider a Volterra-type integral. After, we define that a mapping T
on BC(R{) has an F-Darbo type contraction with the aid of uniformly convergent
sequences of functions. At the same time, we show that the Volterra-type integral
equation has a solution with this new F-Darbo type contraction. Hence, we obtain
that 7" has a fixed point.



A NEW F-DARBO TYPE CONTRACTION 117

There are many Volterra-type integral equations in the literature. We use the
following form

(4.1) () = flovle) + [ M5, 0(5) ds

where M: Rf x Rf x R — R and f: Rf x R — R are continuous functions. Let
BC(R{) denote the space of all bounded and continuous functions on Ry . Also,
we consider the norm on space BCO(R{)

[l = sup{|v(2)|, = € Ry }.

Now, let us establish the modulus of continuity of the functional v on [0, H].

Let A be a nonempty bounded subset on BC(R() and H € R{. Therefore, for
v € A, we define the modulus of continuity as follows:
7

v (vye) = sup{|v(z) —v(s)| 1z, s€[0,H], |x —s| < e}.

However, we can show

Y2 (A, e) = sup{y (v,¢) : v € A} and 4 (A) = 1i£% (A e).

Hence, we obtain that vo(A) = limy_ 100 74 (A). Also, for fixed x € RJ, we can
write A(z) = {v(z) : v € A}. Now, we can define the measure of noncompactness
on the family of all nonempty bounded subset of BC(R{) as follows:
(4.2) w(A) = v (A) + lim sup diam A(x),
r—00
where diam A(z) = sup{|v(x) — n(z)| : n,v € A}.
Let us consider the operator T on BC(R{) defined by

(4.3) (Tv)(z) = f(z,v(z)) + /Oﬂf M(z,s,v(s))ds,

for all z € R{.

After these preliminaries, we have to show that existence of a solution of (1))
is equivalent to the problem of existence of a fixed point of ([A3]).

Using the explanation mentioned above, we can give the following theorem.

THEOREM 4.1. Let T be an operator on BC(RY) defined by @3) and assume
that the following conditions are satisfied:
(i) the function x — f(z,0) is an element of the space BC(R).
(i) let ¥, — ¥ be a sequence of functions on Ra’ and uniform convergence
in n and Y, (r) < P(x) < = for all n € N and for all x € RS. Also
Tn Ra’ — Ra’ is a sequence of functions and T, — T uniform convergence
in n. Therefore, there exists (1,,) € Ra’ for all n € N such that for each
T € RS‘ and for all v,n € R, hence we have

|f(z,v) = f(z,n)| < e ™ (jv —n)).
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(iii) there ewist continuous functions 9,&: R — R such that

Tr—r+o0

lim ¥(x) /Omg(s) ds =0, and |M(z,s,v(s))| < I x)E(s),

for all x,s € RY such that s < x and for all v € R.
(iv) there exists a positive ro > 0 and ¢ where

= s {110+ 0(0) [ ().

Then T has a fived point in BC(RY).

PROOF. In the first step, we have to show that the operator T is well-defined
and continuous on D(rg) = {v € BO(R{) : ||v]| < ro}. From (&3) and by the
conditions on f and M, we infer that (Tv) is continuous for v € BC(R{). So, we
have

|@W@nf@mu»ﬂ%m+ﬂ%m+[fMuﬁww»@

< |f(z,v(2) = (2, 0)] + [ f (2, 0)] +

/Om M(z, s, v(s)) ds

<e @y ((v(@)]) + | f(2,0)| + 9 (=) /OI £(s)ds

<e By, (lv(z)]) + ¢

where £ is given by condition (iv). To show that T(D(rg)) C D(rg), we take
J =sup,, e~ ™) such that J < 1, £ = ro(1 — J) and 4, (||v|) < ||v| for all n € N.
Also, taking supremum according to x and considering continuity v, and ||v| < ro,
we have

e ]+ ¢
Jv|| +€ < Jrg+ £ < ro.

ey (|lvl) + ¢

< <
<supe @ |y|| +£ <
n

Hence, it can be seen that T defines from D(rg) into D(r¢). Now, let us take ¢ > 0
so that, ¥ ([[v = nll) <[l =0l <e, we get

|(Tv)(z) — (Tn) ()] < e ™y, (Jv(z) — n(=)])
+ ; |M(x,s,v—mn(s)) — M(x,s,v—mn(s))|ds

< e @y (lu(z) — ()
+/O M (z, 5, v(s))| ds +/O M (. 5,n(s))]| ds.

By using condition (ii) and for all z € R{, we also have

44)  [(Tv)(x) = (Tn)(@)] < e (lv(e) —n(@)]) +20(x) /Ox £(s) ds.
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Besides, by condition (iii), there exists a positive number H such that
(4.5) 219(30)/ E(s)ds<e forallx > H
0

As a result, from ([@4]) and (@3], we make inference that

(4.6) |(Tv)(@) — (Tn)(2)] < e ™y (Jv(x) — n(2)]) + 20() /OIE(S) ds < 2e,

for all x > H. Then, by using the modulus of continuity mentioned above, we can
write

H(M.e) = sup{| M (z,s,v(s)) — M(z,s,1(s))| : 2,5 € 0, H],
v,m € [*7’077”0]; |U - 77| < 5}'

Since M (x, s,v(s)) is a uniformly continuous function on [0, H] x [0, H] X [—ro, r0],
we conclude that lim. 0y (M,e) = 0. Again from (&4), for an arbitrarily z €
[0, H], we have

(Tv)(x) — (Tn) ()] < e ™D (v(z) —n(=)])

n / "M, 5,0(5)) — Mz, 5,n(s))]| ds
< e—i—/mfyH(M,e)ds = Hy" (M,e) +e.
0

By considering property of v (M, ) and from (&6), we get that the operator T is
continuous on D(rg).

At this step of the proof, we prove that T has a fixed point in D(rg). Now as
the begining the proof, let A be a nonempty subset D(rg), fixed € > 0 and H > 0,
and taking x, s € [0, H] such that | — s| < e. Also, we have

(4.7) [(Tv)(x) = (Tv)(s)| < [f (2, v(x)) = f(s,v(5))]

’/Mxru dr—/Mer ) dr

< |f(z,v(z) = fs,v(@)| + [ f(s,v(z)) — f(s,v(s))]
/ |M(x,r,v(r)) — M(s,r,v(r))|dr

+ /S M(s,r,v(r))dr

W (fre) +e Oy (y 7 (v,e)) +/0 ' (M, e) dr

e / £(r) dr <7 (f.2) + €™ @ (17 (v, 2))
+ HAH (f,2) + e sup{9(s)E(x) : .5 € [0, H]},
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where
,Y{-I(f75) = sup{|f(x,1/) - f(57l/)| 1T, s € [OaH]a Ve [—7"0,7“0], |$ - S| < 5}7

’71H(Ma 5) = Sup{|M(:L’, Ty V) - M(Sa Ty V)| 1X,8,T € [Oa H]a ve [*7’0; TO]? |:L' - S| <5},
since f and M are uniform continuity, we can write lim. o7 (f,¢) = 0 and
lim. o v (M,e) = 0. Furthermore, since ¥ and ¢ are two continuous functions
on Ry, we conclude that sup{d(s)é(z) : z,s € [0, H|} is finite. With these facts,
the inequality in (@7 implies that v, (71 (T A)) < lim._,0 e~ ™, (v7 (A, €)). Tt
follows that 1, (Y (T A)) < e~ ™ @), (71 (A)) and hence

(4.8) Un(10(TA)) < e ™ ey, (10(A)).
From property (B1J), we have

Yo ([(Tv)(z) — (T)(2)]) < [(Tv)(z) — (Tn)(2)| < |f(z,v(z) — f(z,n(2))]
+/O M (. 5, v(s))| ds +/0 M (. 5,n(s))]| ds

< e Oy (lu(z) = n(a)|) + 20(x) /O”” §(s) ds.

Using the notation of diameter of a set, we deduce that

Y (diam (T A) (z)) < e~ @y, (diam A(z)) + 20(z) /ﬂf &(s) ds,
0
and so we get

(4.9) Un ( lim sup diam (7 A) (x)) <e @y, ( lim sup diam(A) (x)) .

T—00 T—>00
Let us take e~ ™(#(A4) ag 2 = u(A). Also, combining (Z2), (&]) and ([@J) together
with condition (&I)), we have 1, (u(T A)) < e~ ™Ay, (u(A)). By applying to
logarithms, we can write this inequality as

I (1(TA))) < In(e™ ™Dy, (u(4))),

for all A ¢ BC(RY) with u(A), p(TA) > 0
that 7, (4(A)) + In(n (u(T4))) < In( (u(A)
w(TA) > 0.

As a result, it can be seen that T is an F-Darbo type contraction mapping
with sequences of functions. Hence T has a fixed point in D(ry) which solves the
Volterra integral equation given by (@I) on BC(Ry). O

, and after calculations, we obtain
), for all A € BO(R{) with pu(A),
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