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MATRIX APPLICATION OF POWER INCREASING SEQUENCES
TO INFINITE SERIES AND FOURIER SERIES

Ş. Yıldız UDC 517.54

We consider a generalization, under weaker conditions, of the main theorem on quasi-σ-power increasing
sequences applied to |A, ✓n|k summability factors of infinite series and Fourier series. We obtain some
new and known results related to the basic summability methods.

1. Introduction

Definition 1.1. A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive
increasing sequence (cn) and two positive constants M and N such that Mcn  bn  Ncn (see [1]).

Definition 1.2. A positive sequence (Xn) is said to be a quasi-σ-power increasing sequence if there exists
a constant K = K(σ, X) ≥ 1 such that

KnσXn ≥ mσXm

for all n ≥ m ≥ 1.

Every almost increasing sequence is a quasi-σ-power increasing sequence for any nonnegative σ but the
converse is not true for σ > 0 (see [13]). For any sequence (λn), we can write

∆

2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1.

Definition 1.3. A sequence (λn) is said to be sequence of bounded variation denoted by (λn) 2 BV if

1X

n=1

|∆λn| < 1.

Let
X

an be a given infinite series with partial sums (sn). By u↵n and t↵n we denote the n th Cesàro means
of order ↵ with ↵ > −1 for the sequences (sn) and (nan), respectively, i.e., (see [8])

u↵n =

1

A↵
n

nX

v=0

A↵−1
n−vsv and t↵n =

1

A↵
n

nX

v=0

A↵−1
n−vvav,

where

A↵
n =

(↵+ 1)(↵+ 2) . . . (↵+ n)

n!
= O(n↵

), A↵
−n = 0 for n > 0.
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Definition 1.4. A series
X

an is said to be summable |C,↵|k, k ≥ 1, if (see [10, 12])

1X

n=1

nk−1
��u↵n − u↵n−1

��k
=

1X

n=1

1

n
|t↵n|k < 1.

If we take ↵ = 1, then the |C,↵|k summability reduces to the |C, 1|k summability. Let (pn) be a sequence
of positive real numbers such that

Pn =

nX

v=0

pv ! 1 as n ! 1 (P−i = p−i = 0, i ≥ 1).

A sequence-to-sequence transformation

wn =

1

Pn

nX

v=0

pvsv

defines a sequence (wn) of the Riesz mean or, simply, of the (

¯N, pn) mean of the sequence (sn) generated by the
sequence of coefficients (pn) (see [11]).

Definition 1.5. A series
X

an is said to be | ¯N, pn|k, k ≥ 1, summable if (see [2])

1X

n=1

✓
Pn

pn

◆k−1

|wn − wn−1|k < 1.

In a special case where pn = 1 for all values of n (resp., k = 1), the | ¯N, pn|k summability is the same as
the |C, 1|k

�
resp., | ¯N, pn|

�
summability.

2. Known Results

The following theorem deals with the | ¯N, pn|k summability factors of infinite series under weaker conditions.

Theorem 2.1 [7]. Let (Xn) be a quasi-σ-power increasing sequence. If the sequences (Xn), (λn), and (pn)

satisfy the conditions

λmXm = O(1) as m ! 1, (2.1)

mX

n=1

nXn|∆2λn| = O(1) as m ! 1, (2.2)

mX

n=1

Pn

n
= O(Pm), (2.3)

mX

n=1

pn
Pn

|tn|k

Xk−1
n

= O(Xm) as m ! 1, (2.4)
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mX

n=1

|tn|k

nXk−1
n

= O(Xm) as m ! 1, (2.5)

then the series
X

anλn is | ¯N, pn|k, k ≥ 1, summable.

3. Application of Absolute Matrix Summability to Infinite Series

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix with nonzero diagonal entries. Then A

defines a sequence-to-sequence transformation, which maps a sequence s = (sn) into As = (An(s)), where

An(s) =
nX

v=0

anvsv, n = 0, 1, . . . .

Definition 3.1. Let (✓n) be any sequence of positive real numbers. A series
X

an is called |A, ✓n|k, k ≥ 1,

summable if (see [14, 15])

1X

n=1

✓k−1
n

�� ¯
∆An(s)

��k < 1,

where

¯

∆An(s) = An(s)−An−1(s).

If we take

✓n =

Pn

pn
,

then we obtain the |A, pn|k-summability (see [16]). At the same time, if we take

✓n = n,

then we get the |A|k-summability (see [18]). Moreover, if we take

✓n =

Pn

pn
and anv =

pv
Pn

,

then we have the | ¯N, pn|k-summability. Furthermore, if we take

✓n = n, anv =

pv
Pn

, and pn = 1

for all values of n, then the |A, ✓n|k-summability reduces to the |C, 1|k-summability (see [10]). Finally, if we take

✓n = n and anv =

pv
Pn

,

then we obtain the |R, pn|k-summability (see [3]).
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4. Main Results

The Fourier series play an important role in various areas of applied mathematics and mechanics. Recently,
some papers devoted to the absolute matrix summability of infinite series and Fourier series have been published
(see [5, 6, 19–21]). The aim of the present paper is to generalize Theorem 2.1 for the |A, ✓n|k-summability method
for these series.

Given a normal matrix A = (anv), we associate two lower semimatrices ¯A = (ānv) and ˆA = (ânv) as fol-
lows:

ānv =

nX

i=v

ani, n, v = 0, 1, . . . ,

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . .

It is worth noting that ¯A and ˆA are, respectively, the well-known matrices of series-to-sequence and series-
to-series transformations. Thus, we get

An(s) =

nX

v=0

anvsv =

nX

v=0

ānvav (4.1)

and

¯

∆An(s) =
nX

v=0

ânvav. (4.2)

By using this notation, we arrive at the following theorem:

Theorem 4.1. Let k ≥ 1 and let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, . . . , (4.3)

an−1,v ≥ anv for n ≥ v + 1, (4.4)

n−1X

v=1

1

v
ân,v+1 = O(ann). (4.5)

Suppose that (Xn) is a quasi-σ-power increasing sequence and that (✓nann) is a nonincreasing sequence. If the
sequences (Xn), (λn), and (pn) satisfy the conditions (2.1)–(2.3) of Theorem 2.1 and

mX

n=1

✓k−1
n aknn

|tn|k

Xk−1
n

= O(Xm) as m ! 1, (4.6)

mX

n=1

(✓nann)
k−1 |tn|k

nXk−1
n

= O(Xm) as m ! 1, (4.7)

then the series
X

anλn is |A, ✓n|k, k ≥ 1, summable.
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Note that if we take

A = (

¯N, pn) and ✓n =

Pn

pn
,

then conditions (4.6), (4.7) are reduced to (2.4), (2.5). In addition, condition (4.5) is satisfied by condition (2.3).
Therefore, we arrive at Theorem 2.1.

We need the following lemmas to prove our theorem:

Lemma 4.1 [17]. It follows from the conditions (4.3) and (4.4) of Theorem 4.1 that

n−1X

v=0

| ¯∆anv|  ann,

ân,v+1 ≥ 0,

m+1X

n=v+1

ân,v+1 = O(1).

Lemma 4.2 [4]. Under the conditions of Theorem 2.1, the following relations are true:

nXn|∆λn| = O(1) as n ! 1,

1X

n=1

Xn|∆λn| < 1.

Proof of Theorem 4.1. Let (In) denote the A-transform of the series
X1

n=1
anλn. Thus, by (4.1) and (4.2),

we find

¯

∆In =

nX

v=1

ânvavλv.

Applying Abel’s transformation to this sum, we obtain

¯

∆In =

nX

v=1

ânvavλv
v

v
=

n−1X

v=1

∆

✓
ânvλv

v

◆ vX

r=1

rar +
ânnλn

n

nX

r=1

rar

=

n−1X

v=1

∆

✓
ânvλv

v

◆
(v + 1)tv + ânnλn

n+ 1

n
tn

=

n−1X

v=1

¯

∆anvλvtv
v + 1

v
+

n−1X

v=1

ân,v+1∆λvtv
v + 1

v
+

n−1X

v=1

ân,v+1λv+1
tv
v
+ annλntn

n+ 1

n

= In,1 + In,2 + In,3 + In,4.
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To complete the proof of Theorem 4.1, by Minkowski’s inequality, it is sufficient to show that

1X

n=1

✓k−1
n |In,r|k < 1 for r = 1, 2, 3, 4.

First, by applying Hölder’s inequality with indices k and k0, where k > 1 and
1

k
+

1

k0
= 1, we get

m+1X

n=2

✓k−1
n |In,1|k 

m+1X

n=2

✓k−1
n

(
n−1X

v=1

����
v + 1

v

����
�� ¯
∆anv

�� |λv||tv|
)k

= O(1)

m+1X

n=2

✓k−1
n

n−1X

v=1

�� ¯
∆anv

��|λv|k|tv|k
(

n−1X

v=1

�� ¯
∆anv

��
)k−1

.

By using

∆ânv = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v

and relations (4.3) and (4.4), we get

n−1X

v=1

| ¯∆anv| =
n−1X

v=1

|anv − an−1,v| =
n−1X

v=1

(an−1,v − anv)

=

n−1X

v=0

an−1,v − an−1,0 −
nX

v=0

anv + an0 + ann

= 1− an−1,0 − 1 + an0 + ann  ann.

Further, since
m+1X

n=v+1

| ¯∆anv|  avv,

we obtain

m+1X

n=2

✓k−1
n |In,1|k = O(1)

m+1X

n=2

✓k−1
n ak−1

nn

(
n−1X

v=1

| ¯∆anv||λv|k|tv|k
)

= O(1)

mX

v=1

|λv|k−1|λv||tv|k
m+1X

n=v+1

(✓nann)
k−1| ¯∆anv|

= O(1)

mX

v=1

(✓vavv)
k−1|λv|k−1|λv||tv|k

m+1X

n=v+1

| ¯∆anv|
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= O(1)

mX

v=1

(✓vavv)
k−1 1

Xk−1
v

|λv||tv|kavv

= O(1)

m−1X

v=1

∆|λv|
vX

r=1

✓k−1
r akrr

|tr|k

Xk−1
r

+O(1)|λm|
mX

v=1

✓k−1
v akvv

|tv|k

Xk−1
v

= O(1)

m−1X

v=1

|∆λv|Xv +O(1)|λm|Xm

= O(1) as m ! 1,

by virtue of the hypotheses of Theorem 4.1 and Lemmas 4.1 and 4.2. Moreover, we find

m+1X

n=2

✓k−1
n |In,2|k 

m+1X

n=2

✓k−1
n

(
n−1X

v=1

|v + 1

v
||ân,v+1||∆λv||tv|

)k

= O(1)

m+1X

n=2

✓k−1
n

(
n−1X

v=1

ân,v+1|∆λv||tv|
Xv

Xv

)k

= O(1)

m+1X

n=2

✓k−1
n

(
n−1X

v=1

ân,v+1|∆λv|Xv
1

Xk
v

|tv|k
)(

n−1X

v=1

ân,v+1|∆λv|Xv

)k−1

= O(1)

m+1X

n=2

✓k−1
n ak−1

nn

(
n−1X

v=1

ân,v+1|∆λv|Xv
1

Xk
v

|tv|k
)(

m−1X

v=1

|∆λv|Xv

)k−1

= O(1)

mX

v=1

v|∆λv|
1

Xk−1
v

1

v
|tv|k

m+1X

n=v+1

(✓nann)
k−1ân,v+1

= O(1)

mX

v=1

(✓vavv)
k−1v|∆λv|

1

Xk−1
v

1

v
|tv|k

m+1X

n=v+1

ân,v+1

= O(1)

mX

v=1

v(✓vavv)
k−1|∆λv|

1

vXk−1
v

|tv|k

= O(1)

m−1X

v=1

∆(v|∆λv|)
vX

r=1

(✓rarr)
k−1 |tr|k

rXk−1
r

+O(1)m|∆λm|
mX

r=1

(✓rarr)
k−1 |tr|k

rXk−1
r
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= O(1)

m−1X

v=1

|∆(v|∆λv|)|Xv +O(1)m|∆λm|Xm

= O(1)

m−1X

v=1

vXv|∆2λv|+O(1)

m−1X

v=1

Xv|∆λv|+O(1)m|∆λm|Xm

= O(1) as m ! 1,

by virtue of the hypotheses of Theorem 4.1 and Lemmas 4.1 and 4.2.
Furthermore, as in In,1, we get

m+1X

n=2

✓k−1
n |In,3|k 

m+1X

n=2

✓k−1
n

(
n−1X

v=1

|ân,v+1||λv+1|
|tv|
v

)k

= O(1)

m+1X

n=2

✓k−1
n

(
n−1X

v=1

|ân,v+1||λv+1|k
|tv|k

v

)(
n−1X

v=1

1

v
ân,v+1

)k−1

= O(1)

m+1X

n=2

✓k−1
n ak−1

nn

n−1X

v=1

|λv+1||λv+1|k−1 |tv|k

v
ân,v+1

= O(1)

mX

v=1

|tv|k

v

1

Xk−1
v

|λv+1|
m+1X

n=v+1

(✓nann)
k−1ân,v+1

= O(1)

mX

v=1

(✓vavv)
k−1 |tv|k

v

1

Xk−1
v

|λv+1|
m+1X

n=v+1

ân,v+1

= O(1)

mX

v=1

(✓vavv)
k−1 1

Xk−1
v

|λv+1|
|tv|k

v

= O(1) as m ! 1,

by virtue of the hypotheses of Theorem 4.1 and Lemmas 4.1 and 4.2.
Finally, as in In,1, we get

mX

n=1

✓k−1
n |In,4|k = O(1)

mX

n=1

✓k−1
n aknn|λn|k|tn|k

= O(1)

mX

n=1

✓k−1
n aknn|λn|k−1|λn||tn|k
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= O(1)

mX

n=1

✓k−1
n aknn

1

Xk−1
n

|λn||tn|k

= O(1) as m ! 1,

by virtue of hypotheses of the Theorem 4.1 and Lemmas 4.1 and 4.2.
Theorem 4.1 is proved.

5. Application of the Absolute Matrix Summability to Fourier Series

Let f be a periodic function with period 2⇡ integrable (L) over (−⇡,⇡). Without loss of generality, the con-
stant term in the Fourier series of f can be set equal to zero and, hence,

f(x) ⇠
1X

n=1

(an cosnx+ bn sinnx) =
1X

n=1

Cn(x),

where

a0 =
1

⇡

⇡Z

−⇡

f(x)dx, an =

1

⇡

⇡Z

−⇡

f(x) cos(nx)dx,

bn =

1

⇡

⇡Z

−⇡

f(x) sin(nx)dx.

We can write

φ(t) =
1

2

�
f(x+ t) + f(x− t)

 
,

φ↵(t) =
↵

t↵

tZ

0

(t− u)↵−1φ(u) du, ↵ > 0.

It is well known that if φ1(t) 2 BV(0,⇡), then tn(x) = O(1), where tn(x) is the (C, 1)-mean of the se-
quence (nCn(x)) (see [9]).

By using this fact, Bor established the following main result for the trigonometric Fourier series:

Theorem 5.1 [7]. Let (Xn) be a quasi-σ-power increasing sequence. If φ1(t) 2 BV(0,⇡) and the se-
quences (pn), (λn), and (Xn) satisfy the conditions of Theorem 2.1, then the series

X
Cn(x)λn is | ¯N, pn|k,

k ≥ 1, summable.

By using Theorem 5, we arrive at the following result for the |A, ✓n|k-summability.

Theorem 5.2. Let A be a positive normal matrix satisfying the conditions of Theorem 4.1. Also let (Xn) be
a quasi-σ-power increasing sequence. If φ1(t) 2 BV(0,⇡) and the sequences (pn), (λn), and (Xn) satisfy the
conditions of Theorem 4.1, then the series

X
Cn(x)λn is |A, ✓n|k, k ≥ 1, summable.
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6. Applications

We can apply Theorems 4.1 and 5.2 to the weighted mean in which A = (anv) is defined as follows:

anv =

pv
Pn

with 0  v  n, where Pn = p0 + p1 + . . .+ pn.

Thus, we get

ānv =

Pn − Pv−1

Pn
and ân,v+1 =

pnPv

PnPn−1
.

Hence, the results presented in what follows can be easily verified.

7. Conclusions

1. If we take

✓n =

Pn

pn

in Theorems 4.1 and 5.2, then we have a result dealing with the |A, pn|k-summability.

2. If we take

✓n = n

in Theorems 4.1 and 5.2, then we obtain a result dealing with the |A|k-summability.

3. If we take

✓n =

Pn

pn
and anv =

pv
Pn

in Theorems 4.1 and 5.2, then we get Theorems 2.1 and 5.1, respectively.

4. If we take

✓n = n, anv =

pv
Pn

, and pn = 1

for all values of n in Theorems 4.1 and 5.2, then we arrive at a new result for the |C, 1|k-summability.

5. If we take

✓n = n and anv =

pv
Pn

in Theorems 4.1 and 5.2, then we deal with the |R, pn|k-summability.
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19. Ş. Yıldız, “A new theorem on absolute matrix summability of Fourier series,” Publ. Inst. Math. (Beograd) (N.S.), 102(116), 107–111

(2017).
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