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A B S T R A C T   

The literature has been increasingly examining the existence of possible compatibility or conflict hypotheses 
between biofuels and food security in recent years. While current research outputs do not provide a consensus, 
the new evidence can guide sustainable development policies. In this context, this paper investigates the co- 
movements between fuel ethanol production and corn prices for the US employing oil production, population, 
and real exchange rate control variables via the Morlet wavelet analysis from 1990:m1 to 2021:m4. The results of 
the analysis provide empirical evidence for the dynamics of the relationship between ethanol production and 
corn prices in the short and long term. However, the striking output of this paper is that increases in corn prices 
have followed increases in fuel ethanol production in the US markets since 2010. Especially in the long-term 
(from 2010:m3 to 2019:m12), the increase in ethanol production caused an increase in corn prices. From a 
sustainable development perspective, this paper points to the existence of a conflict between ethanol production 
and corn prices in the US over the past decade.   

1. Introduction 

Global warming and climate change are still the most important 
global problems that the world should face. The global community 
continues to experience the economic, social, political, and environ-
mental impacts of climate change [1]. Theoretical and empirical studies 
reveal that the source of the problem is greenhouse gas emissions 
(especially CO2) based on fossil fuel use [2–4]. The effects of fossil re-
sources are not limited to greenhouse gas emissions. Fossil fuels cause 
various pollutant gas emissions such as nitrogen oxides (NOx), sulfur 
oxides (SOx), carbon monoxide (CO), volatile organic compounds 
(VOCs), dust, and other particles, causing acid rain, soil pollution, and 
surface water and underground water emissions leads to changes in 
water quality [5]. This unsustainable situation causes significant pres-
sure on political leaders to combat global warming and climate change 
[6]. On the other hand, currently, fossil resources such as oil, natural 
gas, and coal are the main natural resources to meet the energy demand 
in the world [7]. To cope with global warming and climate change and 
to reduce greenhouse gas emissions, the transition and transformation to 
renewable-clean energy in societies is now a necessity [8]. 

Biofuels are considered a promising alternative to replace fossil re-
sources and transition to a sustainable energy system [9]. Biofuels, 
especially ethanol and biodiesel, offer great potential in combating 
climate change, energy security, sustainability of the transportation 
sector, increasing agricultural diversity, and supporting rural develop-
ment [10]. Biofuels have three types of production technologies: first, 
second, or third-generation biofuels. First-generation biofuels are pro-
duced from various agricultural raw materials, primarily corn and sugar 
cane. Second-generation biofuels are obtained from non-food crops 
(lignocellulosic materials) such as wheat straw, and sugarcane meal. 
Third-generation biofuels are produced from algae, yeast, fungi, and 
cyanobacteria [5]. However, the dependence of biofuel production on 
agricultural raw materials can lead to fierce competition or a conflict 
between food demand and biofuel production. Assuming agricultural 
land is stable, the transition from food production to biofuel production 
may adversely affect the supply and price of commodities such as sug-
arcane, sugar beet, cassava, corn, rapeseed, soybeans, palm oil, and 
wheat [6]. In recent years, there has been a public concern and question 
marks about the potential effects of biofuel production on food security 
[11]. 
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When the literature on the relationship between biofuel production 
and food is evaluated, findings that support two opposing hypotheses, 
compatibility, and conflict, are observed. According to the conflict 
approach, biofuel production and incentives cause the use of agricul-
tural raw materials for food production for energy production, and a 
transition from food agriculture to energy agriculture [12]. As the bio-
fuel market expands, the use of water, fertilizer, farm machinery, capi-
tal, pesticides, and labor required for agri-food production is likely to 
shift to energy generation [13]. Therefore, biofuel production can put 
serious pressure on food prices and the security of supply. According to 
the compatibility approach, biofuel production indirectly affects food 
supply positively by lowering oil prices. Biofuels are economically 
feasible and the most viable-competitive option to replace fossil fuels 
[14]. The main input of product processing and transportation processes 
in the food and agriculture sector is crude oil [13]. The increase in oil 
prices has a direct effect on food prices due to cost pressure and indi-
rectly through the exchange rate channel [15,16]. Table 1 presents the 
empirical literature results on the biofuel-food relationship. According 
to the literature findings (i) the first group of papers shows that biofuel 
production causes pressure on food supply, security, and prices and 
supports the conflict approach [13,17–21]. (ii) The second group shows 
that biofuels do not have a significant effect on food, but even positively 
affect food supply and security (Compatibility approach supported) [6, 
22–27]. (iii) There is no consensus on the biofuel-food relationship in 
the literature [13,25,28,29]. In terms of sustainability, new evidence or 
information on biofuel-food competition has become increasingly 
important in the literature. 

From the relevant importance, this paper aims to investigate the co- 
movements between fuel ethanol production and corn prices for the US 
employing oil production, population, and real exchange rate control 
variables via the wavelet analysis from 1990:m1 to 2021:m4. The 
method followed estimates the relationships between ethanol and corn 
prices in periods corresponding to both low frequency and high fre-
quency, considering all possible structural changes between the co- 
movements of the variables. 

The organization of the paper is as follows. After the introduction, 
the importance of the research, motivation, and contributions are pre-
sented in the second section. The third section gives information about 
the method. The fourth section provides data and summary statistics. 
The fifth section reports the estimation outputs. The sixth section depicts 
discussion and political implications. The final section presents the 
conclusion. 

2. Importance of research, motivation, and contributions 

The importance of the research topic of this paper, motivation, and 
contributions are fourfold in terms of literature and policy 
recommendations. 

First, the studies launched on the relationship between biofuels and 
food have very close links with the United Nations Sustainable Devel-
opment Goals (SDGs). The use of biofuels is directly related to the blue 
economy, climate action, clean and sustainable energy transformation, 
circular economy, inclusive development, and prosperity [30–32]. 
Food-biofuel research is also directly related to the fight against poverty 
and hunger, and the objectives of responsible production and con-
sumption [33–36]. Food security is one of the biggest challenges for the 
global community. It is reported that around 700 million people 
worldwide do not have access to healthy food [7]. 

On the other hand, there are few papers in the literature that discuss 
the relationship between biofuels and food within the scope of the SDGs 
[5]. Moreover, empirical evidence for the relationships between biofuels 
and food is insufficient. Current research covers the last decade (see 
Table 1). This paper contributes to the literature by revealing new in-
formation about the short-term and long-term dynamics between 
ethanol production and corn prices using the wavelet transform method. 
The empirical outputs of the paper are extensively evaluated in the final 

Table 1 
Literature summary.  

Author Time span Method Country/ 
region 

Findings 

Serra et al. 
[17] 

1980–2008 Vector error 
correction 
model (VEC) 

USA The strong 
relationship 
between 
ethanol and 
corn prices 
and between 
gasoline and 
corn prices 

Tokgoz et al. 
[18] 

2005–2030 International 
model for policy 
analysis of 
agricultural 
commodities 
and trade 

Different 
regions 

Biofuels 
positively 
influence 
food prices. 

Monteiro et al. 
[19] 

1980–2007 Ordinary least 
squares (OLS) 

USA and 
Brazil 

Ethanol 
production 
increases food 
prices in 
Brazil and 
does not 
affect food 
prices in the 
USA. 

Bahel et al. 
[20] 

– General 
equilibrium 
model 

– Biofuels 
increase food 
prices. 

To and 
Grafton [37] 

1981–2013 Autoregressive 
models 

USA Food prices 
are positively 
related to 
biofuels and 
oil prices. 

Koizumi [21] – OLS China, 
Thailand, 
Indonesia, 
Brazil, 
Malaysia, 
USA 

Biofuel 
production 
negatively 
influences 
food security. 

Dick and 
Wilson [38] 

1995–2010 Partial 
equilibrium 
analysis 

Nigeria Ethanol 
production 
negatively 
affects food 
security and 
land use. 

Martinez et al. 
[39] 

2010–2030 Predictions with 
the system 
dynamics model 

Colombia Biofuel 
production 
raises food 
prices. 

Lima et al. 
[40] 

2000–2016 Detrended 
partial cross- 
correlation 

Brazil A strong and 
positive 
correlation 
between 
ethanol and 
sugar prices. 

Maitah et al. 
[41] 

2008–2016 Cointegration 
analysis 

Brazil Ethanol 
production 
positively 
affects food 
prices. 

Gilbert and 
Mugera [42] 

2000–2016 Regression 
method with the 
structural break 

USA Ethanol 
production 
enhances corn 
prices. 

Ajanovic [22] 2000–2007 Comparative 
analysis with 
various statistics 

The USA 
and Europe 

Biofuels have 
little impact 
on food 
prices. 

Gilbert [23] 1970–2008 Granger 
causality 

Global data Biofuels do 
not affect 
commodity 
prices. 

Zilberman 
et al. [24] 

– Simulations and 
other theory- 

– Food prices 
are not 

(continued on next page) 
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section under the SDGs links. Thus, the paper can guide the development 
of sustainable development policies. 

Second, currently, radical increases in global food prices are 
observed after the COVID-19 pandemic. The pandemic shock has 
devastating effects on food supply-demand dynamics and the food 
supply chain. Policy authorities began to impose restrictions on the food 
trade. International organizations such as the World Food Program 
(WFP), Food and Agriculture Organization (FAO), and International 
Food Policy Research Institute (IFPRI) are constantly calling for the 
abandonment of practices that will disrupt food trade balances [45]. 
Moreover, with globalization, energy, food, agriculture, and financial 
markets have become unprecedentedly interconnected. The interde-
pendence between markets also pushes food prices upwards [46]. 
Therefore, the stability of food prices is one of the main agendas of the 
global society today [47]. However, even before the pandemic, global 
food prices had an upward trend. The global food price index value rose 
from 97.7 in 2003 to 201.4 in 2008, and 174.6 in 2017. Therefore, 

revealing the dynamics that drive global food prices is critical for the 
development of policies to ensure price stability [13]. Until recent years, 
the existing literature explained the increases in food prices with dy-
namics such as economic growth, population, urbanization, changes in 
precipitation and temperature regime, global warming and climate 
change, lack of agricultural land, or oil prices [48–51]. More specific 
indicators should be focused on to explain the reason for changes in 
global food prices. Is ethanol production in the USA a significant reason 
for the increase in corn prices? The related research question may help 
understand food price dynamics. Searching for an answer to a relevant 
research question is an important motivation for the creation of this 
paper. 

Third, this paper focuses on the US ethanol market for research. This 
is a reasonable choice. The USA continues to lead the global biofuel 
industry with increasing demand for ethanol. The United States pro-
duced 6521 million gallons of ethanol in 2007, increasing to 15,379 
million gallons in 2017. The USA accounts for about 60% of global 
ethanol production [52]. The USA is also a leading country in biofuel 
support and incentives. Comprehensive biofuel support and incentives 
such as the Environmental Protection Agency (EPA), Renewable Fuel 
Standard (RFS), and Low Carbon Fuel Standard (LCFS) play an impor-
tant role in the growth of the ethanol market. Corn ethanol is an 
important renewable fuel in the USA, with its contributions to reducing 
greenhouse gas emissions from the transportation sector, energy secu-
rity, agricultural gains, and rural development [53]. Although some 
studies suggest that the increase in global corn prices is due to the US 
ethanol market, there is a research gap on this issue [54]. Thus, this 
research can provide useful policy implications about the US ethanol 
market and its impact on food prices. 

There have been papers that focus directly on the ethanol market for 
the past few years. For example, Dutta et al. [55] examine the links 
between the corn and ethanol markets in the United States with 
GARCH-jump models. The findings show that ethanol price changes 
respond positively to maize market volatility shocks after controlling for 
the impact of oil price uncertainty. It also reveals that the effect of 
volatility in paper corn prices on US ethanol prices is asymmetrical. In 
the other paper focusing on the ethanol market in Brazil, Dutta and 
Bouri [56] evaluate the effect of carbon emission prices on ethanol 
prices with GARCH-jump models. According to the findings, (i) carbon 
emission prices positively affect Brazilian ethanol prices. (ii) Increasing 
emissions prices cause an increase in the price of ethanol. (iii) 
Time-varying jumps occur in the ethanol price index. (iv) The effect of 
emissions prices on the ethanol market is asymmetrical. Bouri et al. [57] 
estimate ethanol price volatility by considering structural breaks in the 
US ethanol market. Forecasts show that the persistence of price volatility 
tends to decrease under structural breaks. On the other hand, this paper 
uses the wavelet transform method to estimate the ethanol-corn price 
relationship and differs from other papers in the literature in this 
respect. Existing research frequently demonstrates the effects of energy 
on food prices using correlation analyses, time series, and panel data 
models [13]. Such parameter calculations are average conditional esti-
mators and do not change over time and frequency [58]. The wavelet 
transform method is a robust estimator and has significant advantages 
over other methods. The method provides information on real exchange 
rate, oil, and population control variables, as well as possible causal 
relationships between variables in the entire sample and all sub-samples 
about ethanol-corn prices. It also captures dynamic co-movements and 
causality at different time frequencies [59]. The following section pro-
vides detailed information about the method. 

One can observe, throughout the literature, the applications of fre-
quency and/or frequency-time analyses such as Fourier transform (FT) 
analyses, FT causality analyses, discrete wavelet transform (DWT), shift- 
invariant discrete wavelet transform (SIDWT), maximum overlap 
discrete wavelet transform (MODWT) and continuous wavelet (CWT). 

FT can analyze the cyclical nature of a time series in the frequency 
domain. However, under FT, the time domain properties of a time series 

Table 1 (continued ) 

Author Time span Method Country/ 
region 

Findings 

based 
calculations 

affected by 
biofuels. 

Tyner [43] Different 
periods 

Graphical 
analysis 

USA, 
Europe, 
and Brazil 

Increases in 
food prices 
are not 
related to 
biofuels. 

Bentivoglio 
et al. [28] 

2007–2013 VEC, Granger 
causality 

Brazil Food prices 
are not 
influenced by 
the ethanol 
market. 

Dutta [25] 2003–2016 Autoregressive 
distributed lag 
model and 
causality 
analysis 

Brazil Ethanol price 
fluctuations 
do not affect 
sugar prices, 
whereas sugar 
prices affect 
ethanol 
prices. 

Taghizadeh 
et al. [26] 

2000–2016 VEC Eight Asian 
countries 

Oil prices and 
biofuel prices 
respectively 
explain 65% 
and 2% of the 
increases in 
food prices. 

Shrestha et al. 
[44] 

1991–2016 Machine 
learning 

USA Global food 
prices are 
strongly 
affected by 
crude oil and 
population. 
Increases in 
food prices 
are not 
associated 
with biofuels. 
Biofuels do 
not change 
agricultural 
land use. 

Subramaniam 
et al. [6] 

2011–2016 Generalized 
method of 
moments 

51 
countries 

Biofuels do 
not affect 
food prices. 
Biofuels 
increase food 
security. 

Bilgili et al. 
[13] 

1981–2008 Wavelet analysis USA Biofuels 
reduce food 
prices over 
the period 
2011–2017.  
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might be lost. FT and wavelet transform are commonly used methods in 
frequency analyses. The FT is a suitable method for the analysis of sta-
tionary time series. FT Granger causality analyses also require stationary 
time series variables. For instance, Breitung and Candelon [60] conduct 
causality tests in the frequency domain to observe if there exists a cau-
sality from term spread to economic growth by employing I(1) variables 
of growth and spread. However, taking differences in a time series to 
reach stationarity might also result in losses in the original time series. 
Differencing (with the possibility of throwing information away) may 
not provide gain in asymptotic efficiency and can not capture the 
long-run relationship between the variables [61]. So, the FT may not be 
an efficient method for researchers using non-stationary time series. For 
this reason, this paper used the wavelet transformation technique, which 
allows the analysis of non-stationary time series. 

Wavelet analysis is a technique using a mathematical representation 
of the Fourier transform together with a new feature of the transform 
called scaling. Wavelet has the advantage of localizing signals both in 
the time and frequency domain simultaneously. The wavelet transforms, 
as the best technique for the non-stationary time series, are filtered into 
different frequency bands, which are divided into segments in the time 
domain. 

DWT computes the transform for a very special discrete choice of the 
parameter values for time and frequency. This provides a very efficient 
and simple iterative procedure to compute the transform. The DWT 
applications, hence, are popular due to their simplicity and low 
computational cost [62–64]. 

As opposed to the DWT, SIDWT is time-invariant which provides 
some translation in time even after applying a “signal extension” pro-
cess. Bekiros and Marcellino’s paper [65] follows the SIDWT method-
ology and relies on wavelet multiresolution analysis to investigate the 
dependence structure and predictability of currency markets across 
different timescales. Their research presents an invariant discrete 
wavelet transform that contains no phase shifts and enables multiscale 
point-to-point comparison. 

We employed continuous wavelet transform (CWT) and partial 
continuous wavelet transform (PCWT) analyses. CWT requires more 
computational time — but provides researchers with large freedom in 
selecting the wavelets, while this choice is more limited in the discrete 
setting. CWT can make it much easier to interpret the results obtained 
and to draw conclusions from the data. The MODWT can be considered a 
compromise between the DWT and the CWT as it is a redundant trans-
form, because while it is efficient with the frequency parameters it is not 
selective with the time parameters, but is not as redundant as the CWT 
[63,66]. Finally, the PCWT methodology provides us with the employ-
ment of some most relevant control variables in the wavelet model. 
Instead of bivariate models, the employment of control variables as well 
as main variables leads us to better defined(specified) models. The 
methodology section will present CWT in detail through relevant 
functions. 

3. Methodology 

The wavelet analysis is a widely used frequency-analysis technique 
[67–72]. Wavelet analysis is a method that allows frequencies to eval-
uate their correlation levels at different frequency scales and at different 
moments in time. In practice, each time series is decomposed at different 
frequencies in a time-frequency space, and this decomposition can be 
done using different wavelet transforms [73]. Thus, wavelet transforms 
can be provided not only the time-varying power spectrum but also the 
phase spectrum needed for coherence calculation [74]. 

Continuous wavelet transform (CWT) is used to transform the signal 
with a resolution appropriate to its scale and provides both spectral and 
temporal information [75] between a given signal x(t) and the wavelet 
function ̃α*

τ,&(t) . The CWT of {X} ∈ L2(R) with relating to wavelet ̃α*
τ,&(t)

is written as follows: 

Wx(τ,&)(t)= 1
/

̅̅̅̅
&

√
∫ ∞

− ∞
x(t)α̃*

(t − τ
&

)
dt

{
& ∕= 0
τ,& ∈ R (1) 

In Eq. (1), the Wx(τ,&) represents wavelet coefficients at translation 
(τ) and scale (&) in the time-scale band. The asterisk (*) indicates the 
complex conjugate. The term 1/

̅̅̅̅
&

√
denotes the normalization param-

eter providing unit variance of wavelet. The term & is the scaling 
parameter, which depicts the position in the frequency domain of the 
wavelet. The term τ is the translation parameter, which checks the 
location of the wavelet in the time domain. 

Morlet wavelet transform, one type of the CWT, is defined as a set of 
functions in the form of small waves created by dilations and trans-
lations as a tapering sine wave by a Gaussian [76]. The Morlet wavelet 
was first formulated by Grossmann and Morlet [77] as follows. 

α̃ω0(t)= π− 1
4eiω0 te− (t2/2) (2) 

Here, the term ω represents the central frequency term of the Morlet 
wavelet α̃ω0(t). For examining the covariance between two-time series, 
Torrence and Compo [78] defined xt and yt, with continuous wavelet 
transforms Wx and Wy, as is given in Eq. (3). 

Wxy(τ,&)=Wx(τ,&)Wy
*(τ,&) (3) 

The wavelet coherency of two-time series W x(τ,&) and W y(τ,&)

can be defined as follows [63]. 

Kxy(τ,&)=

⃒
⃒S

(
Wxy(τ,&)

)⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S
(
|Wxx(τ,&)|S

( ⃒
⃒Wyy(τ,&)

⃒
⃒
))√ (4) 

Here, the Kxy demonstrates the correlation, it ranges from strong 
consistency to no coherency (1–0) in both time and frequency bands. 
Parameter S is the smoothing parameter that restricts the coherency 
from being an optimal performance at all scales and times. 

The wavelet phase difference between {X} and {Y} can be obtained 
with the complex-valued δxy (t) functions as indicated by Eq. (5). 

δxy(τ,&)= tan− 1
(

Tm
(
Wxy(τ,&)

)

Ke
(
Wxy(τ,&)

)

)

(5) 

Ke(.)  and  Tm(.) in Eq. (5) are respectively the real, and imaginary 
parts of the Wxy, and hence the co- and quadrature wavelet spectra of 
x(t) and y(t). 

4. Data and summary statistics 

This paper investigates the co-movements between fuel ethanol 
production and corn prices for the US employing oil production, popu-
lation, and real exchange rate control variables via the Morlet wavelet 
analysis from 1990:1 to 2021:4. Corn prices (U.S. Dollars per bushel), 
real exchange rate, and population (total) data are obtained from the 
United States Department of Agriculture National Agricultural Statistics 
Service (USDA NASS) and the US, Bureau of Labor Statistics. Ethanol 
(Trillion Btu) and oil production (Thousand Barrels) data is obtained 
from the US, Energy Information Administration (EIA). Table 2 shows 
descriptive statistics. The trend graphs of the variables are shown in 

Table 2 
Summary statistics.  

Statistics Fuel 
ethanol 
product. 

Corn 
price 

Oil 
production 

Population Real 
exchange 
rate 

Mean 50.35 3.21 214619.17 294675.08 109.57 
Median 28.61 2.79 196,992 296,472 109.46 
Std. Dev. 42.87 1.32 60281.99 24423.48 8.44 
Minimum 3.92 0.29 119,208 248,743 93.06 
Maximum 119.99 7.63 400,219 331,126 129.03 
Observation 376 376 376 376 376  
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figures from 1 to 5 to provide visual information. 
From Fig. 1 to Fig. 5., there are trend graphs of the US fuel ethanol 

production, the US corn price, the US oil production, the US population, 
and the US real exchange rate variables, respectively. Figs. 1, 3 and 4 
indicate that the fuel ethanol production, oil production, and population 
tend to increase for the whole sample period. According to Fig. 5 it is 
seen that the real exchange rate data points fluctuate around the average 
until the end of the period. One may observe from Fig. 2 that realized 
data points of corn price demonstrate more severe fluctuations than fuel 
ethanol production data do. Table 3 reveals the trend equations of the 
variables. 

Although CWT does not require unit root tests as it can analyze 
nonstationary time series, one might wonder if the variables have unit 
roots with structural breaks. We conducted Lumsdaine-Papell unit root 
tests considering structural breaks The outputs yield that except for 
population, all variables are found stationary in differences I(1) with 
two breaks (Appendix A). We performed Lumsdaine-Papell unit root 
tests considering structural breaks through RATS program lines. The 
program code and output are as follows. The outputs reveal that except 
for population, all variables are found stationary in differences with two 
breaks. We launched also the Lee-Strazicich unit root test with structural 
breaks and LS found DPOPULATION I(1) as well. Later, we analyzed the 
cumulative sum of recursive residuals or the cumulative sum of OLS 
residuals to determine to test whether there is a structural break. Under 
the null hypothesis, the cumulative sum of residuals will have a mean of 
zero. We found that the main variables of ethanol production and corn 
price and control variables have structural breaks by rejecting the null 
hypothesis of no structural breaks at 1% levels (Appendix B). 

5. Estimation output 

In this paper, we investigate the co-movements of the US fuel ethanol 
production and the US corn price through the Morlet wavelet analysis. 
Fig. 6 shows the wavelet analysis of fuel ethanol production and corn 
prices. Fig. 9 illustrates the wavelet analysis between fuel ethanol pro-
duction and corn prices with the inclusion of the control variables of oil 
production, population, and real exchange rate in the model. 

Thick black curves in Fig. 6 and 7 show the cone of influences 
introducing the border distortions. In the colour bar, the dark blue 
colour demonstrates the weakest consistency, and the dark red colour 
represents the strongest consistency. Figs. 7 and 10 yield the phase 
difference outputs in 1–3 frequency bands, and Figs. 8 and 11 reveal the 
phase difference results in 3–8 frequency bands. 1–3 frequency bands 
display lead-lag correlations in relatively short-term cycles and 3–8 
frequency bands exhibit lead-lag correlations in relatively longer-term 
cycles. One might define the lead variable as the variable which can 
predict the shifts in the lagging variable. Or, one may consider a lead-lag 
relationship a causality relationship between the variables.  

The interpretation of the outputs of figures step by step:  

1 We consider blue regions weak associations between the variables 
and red regions strong associations between the variables 
(1995–2001, 2012–2015, and 2018–2021 at 1–3 year cycle).  

2 After observing the strong associations between the variables 
(Fig. 6), we analyze phase difference outputs at the 1–3 frequency 
band (Fig. 7) and the 3–8 frequency band (Fig. 8). In this step, (a) 
lead-lag relations between the variables and (b) negative or positive 
associations between the leading variable and lagging variable are 
monitored through phase difference analyses which show lead-lag 
relations and positive/negative associations between the variables. 

According to Figs. 6 and 7, (a) corn price is leading fuel ethanol 
production and a reduction in ethanol production is associated with corn 
prices during 1995–2001, (b) fuel ethanol production is leading corn 
prices and declines in corn prices are associated with increases in fuel 
ethanol production for the period 2012–2015, (c) fuel ethanol produc-
tion is again leading corn prices and increases in corn prices are 
accompanied by increases in fuel ethanol production for the period 
2018–2021. Since Fig. 6 does not reveal strong movement between the 
variables at a 3–8-year cycle, it will not be meaningful to interpret Fig. 8. 

One might, however, claim that the wavelet estimation output is 
given in Fig. 6 cannot capture the co-movements between the variables 
well. Since the relationship between the fuel ethanol production and 
corn price is not demonstrated in the wavelet coherence analysis, the 
control variables (oil production, population, and real exchange rate) 
will be included in the model and the partial wavelet coherence analysis 
will be launched. 

With the control variables, the outputs of partial wavelet analyses are 
given in Fig. 9. And, the phase difference analyses are given in Fig.s. 10 
and 11. As Fig. 10 expresses the leading-lagging correlations in the 
short-term cycle (frequency of 1–3 years), Fig. 11 exhibits the lead-lag 
association between the variables in the long-term cycle (frequency of 
3–8 years). 

When Figs. 9, and Fig 10 are evaluated simultaneously at 1–3 fre-
quency band (sort term), the main outcomes are as follows:  

• In the period 1991:1–1999:7, there exists a negative association 
between the variables and the corn prices lead ethanol production. A 

Fig. 1. The US fuel ethanol production. Data source: EIA.  
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decrease in ethanol production is associated with increases in corn 
prices.  

• In the periods 2005:3–2011:12, and 2018–2019, there is a positive 
association between the variables, and fuel ethanol production leads 
to corn prices. An increase in fuel production is accompanied by an 
increase in corn price. 

When Figs. 9, and Fig 11 are evaluated simultaneously (3–8 fre-
quency band/long term):  

• In the periods 1992:1–1995:10, and from 2010:3 to the end of the 
sample, fuel ethanol production is the leading variable, and corn 

price is the lagging variable. An increase in ethanol production is 
accompanied by increases in corn price.  

• In the periods 1995:11–1996:1, and 2007:1–2008:2, there exist 
positive co-movements. Corn prices are leading. An increase in corn 
prices is accompanied by an increase in fuel ethanol production. 

In summary, one might observe from the wavelet coherence analyses 
that.  

(a) In the shorter term (1–3 year cycle), during 2005–2011and 
2018–2019, ethanol production is the leading variable as corn 

Fig. 2. The US corn price. Data source: USDA NASS.  

Fig. 3. The US oil production. Data source: EIA.  

Fig. 4. The US population. Data source: U.S. Bureau of Economic Analysis.  
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Fig. 5. The US real exchange rate. Data source: USDA NASS.  

Table 3 
Trend equations.  

Variables Trend 
Graph 

Trend Equation 

Fuel ethanol 
product. 

Fig. 1. -4E-10 × 3 + 4E-05 × 2 - 1.6931x + 21,637 

Corn price Fig. 2. -2E-11 × 3 + 2E-06 × 2 - 0.0842x + 1068.4 
Oil production Fig. 3. 4E-07 × 3 - 0.0364 × 2 + 1226.4× - 1E+07 
Population Fig. 4. -7E-09 × 3 + 0.0007 × 2 - 10.098x +

131,911 
Real exchange rate Fig. 5. 2E-10 × 3 - 2E-05 × 2 + 0.761× - 9571.8 

Source: Author’s calculation 

Fig. 6. Wavelet coherence (Fuel ethanol product, corn price). Notes: (a) Fig. 6 
presents the wavelet coherency between fuel ethanol production and corn 
prices; (b) The vertical axis includes cycles of 1, 2, 4, 6, and 8 years; (c) the 
horizontal axis shows the monthly period from January 1990 to April 2021; (d) 
The thick black curves show the cone of influences introducing the border 
distortions; (e) In the color bar, the dark blue colour demonstrates the weakest 
consistency, and the dark red colour represents the strongest consistency. 

Fig. 7. 1–3 frequency band.  

Fig. 8. 3–8 frequency band. Notes: Description of phase difference figures.  

Fig. 9. Partial wavelet coherence (Fuel ethanol product, corn price//oil pro-
duction, population, real exchange rate). 

Fig. 10. 1–3 frequency band.  

Fig. 11. 3–8 frequency band.  
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prices are lagging. And, an increase in corn prices is associated 
with an increase in ethanol production.  

(b) In the longer term (3–8 year cycle), especially for the period; from 
2010 till the end of the sample, ethanol production is again the 
leading variable as corn prices are lagging. And, an increase in 
corn prices is associated with an increase in ethanol production. 

Eventually, the striking output of partial wavelet computation is that 
increases in corn prices follow the increases in fuel ethanol production 
since 2010 in the US markets. Especially in the long-term (from 2010:m3 
to 2019:m12), the increase in ethanol production caused an increase in 
corn prices. Table 4 reports summary information on co-movements and 
causal relationships between ethanol production and corn prices. In 
other words, Table 4 is the summary of the analysis results in Figs. 9–11. 
Table 4 is evaluated in general, there is a negative co-movement be-
tween the variables in the period 1991:7–1999:7, which shows the phase 
angles π, π/2 in 1–3 frequency bands, while there is a positive co- 
movement in the other periods (2005:3–2011:12; 2018:12–2019:12; 
1992:1–1995:10 2010:3–2019:12; 1995:11–1996:1; 2007:1–2008:2). 
(i) In the phase difference where there is a negative co-movement in the 
1~3 frequency bands, the increase in corn price in the period 
1991:7–1999:7 causes (leads) a decrease in fuel ethanol production. (ii) 
The increase in fuel ethanol production in the phase angle π/2,0 in the 
1–3 frequency bands (2005–2011, and 2018–2019 periods) causes 
(leads) an increase in corn price. (iii) In the phase difference where there 
is a positive co-movement in the 3–8 frequency bands, the increase in 
fuel ethanol production in the period 1992:1–1995:10, and 
2010:3–2019:12 causes (leads) an increase in corn prices. (iv) The in-
crease in corn prices in the phase angle 0,-π/2 in the 3–8 frequency 
bands (1995:11–1996:1, and 2007:1–2008:2 periods) causes (leads) an 
increase in fuel ethanol production. 

In some seminal papers in the literature, the frequencies are deter-
mined through short-term cycles (1–2 year or 1–3 year frequency bands) 
and long-term cycles (2–4 year or 3–7, or 3–8 year frequency bands) as 
given in Aguiar-Conraria, Soares [79]. The business cycle frequencies 
might range from 1.5 to 8 years and hence the frequencies might be 
chosen in the range of 1.5–8 or 8+ year time periods or similar periods 
(time cycles) as is explained in Gallegati and Gallegati [80], 
Aguiar-Conraria and Soares [79], Kilian and Park [81], and Baumeister 
and Peersman [82]. 

Hence, in summary, frequencies were chosen to observe the co- 
movements between the variables within the range of the short time 
cycle and long-term cycles. Short-term cycles (or highest frequency) 
might represent spot prices as well and long-term cycles (lower fre-
quencies) might refer also to the future prices in the markets. Producers, 
consumers, and government authorities in the ethanol and corn markets 
need to follow rationally both short-run and long-run cycles to assess the 
market data, price assessments for major export positions, crop forecasts 
in key exporting countries, based on weather conditions, and many 
other factors and market trends [83–87]. For instance, Demirer et al. 
[86] reach the evidence that ethanol has a positive impact on both price 

and volatility in the corn market (especially in the spot and the shorter 
maturity futures contracts). It is clear that the futures prices of 
bio-ethanol and the two agricultural commodities, corn, and sugarcane, 
have stronger co-volatility spillovers than their spot price counterparts. 
Chang et al. [87] reach the evidence that the futures prices of 
bio-ethanol and corn and sugarcane follow stronger co-volatility spill-
overs than their spot price counterparts. 

Throughout wavelet coherency estimations one might consider Fre-
quency domain causality tests as well to compare with the outputs of 
wavelet coherency analyses. The results are given in Appendix C. 

We obtained also (a) Decomposition trees from estimated CWT 
computations by Shannon entropy at different levels (1, 2, 3, 4, and 5) 
and (b) Best Level Decomposition trees by Shannon entropy. Computing 
the best tree makes the de-noising calculations more efficient. The 
outputs are presented in Appendix D. 

6. Discussion, and political implications 

Biofuels attract attention as an important alternative source against 
concerns about energy supply, energy security, and environmental 
pollution. Technical and economic feasibility studies show biofuels as an 
important and potential renewable resource in terms of sustainability. 
The fact that it has a high storage capacity and does not have a reserve 
problem further increases the importance of biofuels [14,88]. However, 
the increase in global food prices observed in recent years raises con-
cerns about biofuels. Although researchers have identified many vari-
ables that affect food prices, oil prices or production shocks are the most 
prominent indicators. On the other hand, its fluctuations in the energy 
market and the food market always attract great attention in the liter-
ature [46]. The literature has been following the impact of oil produc-
tion or price shocks on food prices since the oil price shocks of the 1970s 
[89,90]. The upward trend in global food prices has been observed in the 
last two decades. There has been a sharper rise in the last ten years. In 
the same period, a serious decrease is observed in oil prices, especially 
after 2011 [13]. In the same period, there was an unprecedented in-
crease in global biofuel production, especially in the USA, China, and 
Brazil. The arguments that biofuel production may be another important 
reason for the increase in food prices are consistent. Some papers 
advocate views to the contrary. The compatibility approach emphasizes 
that biofuel production lowers fossil energy prices and lowers food 
production costs. 

Our findings show that ethanol production in the USA has had an 
increasing effect on corn prices after 2010. Ethanol production in the 
USA in the last decade is an important reason for the increase in corn 
prices. Our outputs are similar to the findings of papers supporting the 
conflict approach [13,17–21]. We can argue that there are two possible 
reasons behind these results, both theoretical and political. The pressure 
of ethanol production on corn prices can be explained by the deterio-
ration in supply and demand balances. Demand-side arguments 
emphasize that the reason for food price increases is not only popula-
tion, urbanization, and increased nutritional needs, but also increasing 
demand for biofuels. According to this approach, the main sources of 
raw materials for biofuel production are agricultural products such as 
corn, sugar, sugarcane, wheat, straw, sorghum, rice, potatoes, rye, and 
barley. With the biofuel production boom, agricultural raw materials 
that were previously produced for the food sector are diverted to the 
energy sector. Hence, additional demand from the energy sector puts 
pressure on food prices, and food prices may rise [21]. Supply-side ar-
guments draw attention to biofuel and food competition. The growth in 
the biofuels market leads to competition with the food market in the use 
of land, water, fertilizers, agricultural physical capital, pesticides, and 
labor. Competition triggers the rise in food prices by causing difficulties 
in using inputs and increasing costs in food production [91]. Therefore, 
the increase in food prices through supply and demand-side channels of 
biofuels is in line with theoretical expectations. 

In the political context, the possible reason for ethanol production to 

Table 4 
Summary of partial wavelet coherence analysis results.  

Term Periods Phase Co- 
movement 

Causality 

1–3 1991:7–1999:7 π, π/2 ¡ corn prices → fuel 
ethanol production 

1–3 2005:3–2011:12 
2018:1–2019:12 

π/2,0 + fuel ethanol 
production → corn 
prices 

3–8 1992:1–1995:10 
2010:3–2019:12 

π/2,0 + fuel ethanol 
production → corn 
prices 

3–8 1995:11–1996:1 
2007:1–2008:2 

0,- 
π/2 

+ corn prices → fuel 
ethanol production  
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increase corn prices in the USA is renewable energy incentives and 
subsidies. In the USA, especially ethanol is the most prominent fuel 
among renewable energy sources to meet the increasing energy demand 
and sustainable economy [92]. Ethanol is a first-generation biofuel, and 
its main raw material is corn. The federal government’s directive of 
ethanol production for renewable fuel standards affects the supply and 
consumption of corn for food. Some studies argue that corn prices in-
crease due to ethanol production and incentives [93]. 

Although biofuels compete with the food market, they are un-
doubtedly a very important renewable energy source for a sustainable 
energy transformation. Incentives, support, and subsidies from govern-
ments for biofuel production are indispensable. However, the pressures 
of biofuels on food can be alleviated with some optimistic approaches. 
Practices that will increase efficiency in the use of agricultural lands can 
direct the production of more food, energy, and raw materials. Re-
searchers confirm that innovative farming practices, agricultural tech-
nology advances, and large-scale agricultural investments in recent 
years have resulted in tremendous yield increases in land use [94]. The 
second optimistic implication is the fact that biofuels can lower food 
production costs by reducing fossil fuel prices, especially crude oil pri-
ces. It underlines the increasing use of biofuels in the transportation 
sector as a possible reason for the decline in oil prices over the last 
decade [95]. 

Finally, advances in biofuel technologies also have critical implica-
tions for biofuel-food competition. The world has now reached the third 
generation of biofuel technologies. First-generation biofuels are pro-
duced with agricultural products such as corn, sugarcane, soy, mush-
rooms and sunflowers. The most serious objections to biofuels are that 
these products are used as fuel raw materials and cause a food crisis. 
While the raw material of second-generation biofuels is wheat straw, 
cellulose, wood and biomass wastes, algae are among the third- 
generation biofuel raw material sources. The need for raw materials to 
produce second and third-generation biofuels is not large enough to put 
pressure on food production, and its energy efficiency is much higher 
than for first-generation biofuels [96–98]. Hence, second and 
third-generation biofuels appear to be an important option for renew-
able energy conversion. Considering that ethanol is mostly produced 
from corn in the USA, it can be stated that agricultural wastes, corn 
stalks, trees or algae are much more suitable sources for ethanol pro-
duction. After all, this paper suggests that policy authorities consider 
possible pressures on food prices when developing strategies for biofuel 
production. 

7. Conclusion 

This paper examines the co-movements and causal relationships 
between fuel ethanol production and corn prices for the United States 
using Morlet wavelet analysis from 1990:m1 to 2021:m4. Oil produc-
tion, population, and real exchange rate control variables are included 
in the model as control variables. Estimations provide insights into the 
dynamics of the relationship between ethanol production and corn 
prices in the short and long term. The striking output of the paper is that 

since 2010, increases in fuel ethanol production in the US markets are 
followed by increases in corn prices. In the long run, from 2010:m3 to 
2019:m12, the increase in ethanol production is observed to drive the 
increase in corn prices. Our findings confirm that there is a conflict or 
trade-off relationship between the ethanol market and corn prices in the 
USA. Biofuels have a central role in energy security, climate change, and 
rural development goals. As alternative and competitive fuels to fossil 
fuels, it is critical for a clean and sustainable energy transition. However, 
this research provides robust evidence that biofuels affect food security 
by putting pressure on food prices. The output of the paper has impor-
tant implications for ethanol investors and policymakers. First, demand 
and supply-side approaches in the biofuel-food competition should be 
considered in all their dimensions. Second, renewable energy incentives 
and subsidies from governments are critical to a renewable energy 
transition. More efficient use of farmland prerequisites for related sup-
ports can alleviate the pressure of biofuel production on food prices. 
Third, developments in second and third-generation biofuel technolo-
gies are promising for the future renewable energy transformation. 

There is no doubt that more research is needed on the biofuel-food 
relationship. Future research may initiate research on other important 
Chinese and Brazilian markets besides the US market. Researchers can 
test conflict or compatibility approaches with different empirical 
methods. Within the framework of the interaction between global 
markets, the effects of biofuels on food can be focused on. Finally, 
empirical research, particularly in biofuel markets, may consider long- 
range dependence. Long-range dependence is a phenomenon that can 
occur in the analysis of spatial or time-series data and is related to the 
increasing time interval or the spatial distance between points and the 
rate of deterioration of the statistical dependence of two points [99]. 
Hence, papers that take long-range dependence into account can provide 
new and robust information to the literature on the biofuel-food nexus. 
All initiatives will guide a more sustainable global society. 
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Appendix 

Appendix A. Lumsdaine-Papell Unit Root Tests considering structural breaks  

Table A1 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
ETHANOL  

Variable Coefficient T-Stat 

Y{1} − 0.1701 − 4.1788 
DT(2004:12) 0.1973 4.1822 
DT(2010:03) − 0.2072 − 4.8043 

(continued on next page) 
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Table A1 (continued ) 

Variable Coefficient T-Stat 

Constant 0.4287 0.6807 
Trend 0.0178 3.0553   

Table A2 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
CORNPRICE  

Variable Coefficient T-Stat 

Y{1} − 0.0694 − 3.3189 
DT(2004:09) 0.0033 2.2445 
DT(2011:02) − 0.0045 − 2.3984 
Constant 0.1774 2.5171 
Trend − 0.0002 − 0.4442   

Table A3Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
OILPROD  

Variable Coefficient T-Stat 

Y{1} − 0.1524 − 3.8930 
DT(1995:04) 38.2301 0.6312 
DT(2008:08) 275.0052 3.5517 
Constant 35262.5848 3.7381 
Trend − 83.2039 − 1.5108   

Table A4 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
POPULATION  

Variable Coefficient T-Stat 

Y{1} − 0.0023 − 2.7236 
DT(2007:05) − 0.1498 − 2.8755 
DT(2016:04) − 0.2328 − 3.4695 
Constant 612.5692 2.9181 
Trend 0.5229 2.4992   

Table A5 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
EXCHANGERATE  

Variable Coefficient T-Stat 

Y{1} − 0.0517 − 4.1113 
DT(2001:04) − 0.0216 − 3.5038 
DT(2010:09) 0.0240 3.7438 
Constant 5.1135 4.0379 
Trend 0.0090 3.0184  

We also conducted the Lee-Strazicich Unit Root Test with structural breaks for the Population series. Wd reached the evidence of I(1) for the 
population series.  

Table A6 
Lee-Strazicich Unit Root Test With Structural Breaks, Series 
POPULATION  

Variable Coefficient T-Stat 

S{1} − 0.0043 − 2.3999 
Constant 271.6439 217.1153 
D(1997:08) 25.3145 2.1358 
DT(1997:08) − 39.4952 − 18.4190 
D(2012:08) 51.0588 4.3222 
DT(2012:08) − 69.6131 − 47.1996  
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Table A7 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
DETHANOL  

Variable Coefficient T-Stat 

Y{1} − 3.0002 − 9.7825 
DT(2003:08) 0.0478 2.4407 
DT(2008:03) − 0.0808 − 3.9369 
Constant − 0.0160 − 0.0242 
Trend 0.0031 0.4927   

Table A8 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
DCORNPRICE  

Variable Coefficient T-Stat 

Y{1} − 1.1533 − 22.3861 
DT(2010:10) − 0.0031 − 2.3539 
DT(2015:05) 0.0062 2.6593 
Constant − 0.0229 − 0.6144 
Trend 0.0003 1.2347   

Table A9 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
DOILPROD  

Variable Coefficient T-Stat 

Y{1} − 1.9253 − 8.6018 
DT(2008:09) 97.1194 2.1927 
DT(2013:07) − 167.6646 − 2.5845 
Constant − 777.0284 − 0.5618 
Trend 1.5269 0.1559   

Table A10 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
DPOPULATION  

Variable Coefficient T-Stat 

Y{1} − 0.1060 − 3.2240 
DT(2007:01) − 0.0145 − 0.7340 
DT(2015:12) − 0.0941 − 2.0061 
Constant 30.0724 3.1697 
Trend − 0.0331 − 2.6639   

Table A11 
Lumsdaine-Papell Unit Root Test With Structural Breaks, Series 
DEXCHANGERATE  

Variable Coefficient T-Stat 

Y{1} − 0.7704 − 12.9914 
DT(1997:12) − 0.0153 − 2.1365 
DT(2003:05) 0.0105 2.2016 
Constant − 0.2876 − 1.1429 
Trend 0.0066 1.7046   
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Table A12 
Lee-Strazicich Unit Root Test With Structural Breaks, Series 
DPOPULATION  

Variable Coefficient T-Stat 

S{1} − 0.2429 − 10.9338 
Constant 19.0711 8.4337 
D(1994:02) 40.3388 4.3902 
DT(1994:02) − 13.0027 − 6.5758 
D(2005:02) 8.3818 0.9093 
DT(2005:02) 7.2182 5.8593   

Table A13 
LP Critical Values  

Sig Level Crit Value 

1%(**) − 7.1900 
5%(*) − 6.6200 
10% − 6.3700   

Table A14 
LS Critical Values  

Sig Level Crit Value 

1%(**) − 5.7416 
5%(*) − 5.1784 
10% − 4.9252  

If the T-stat of Y(1) or S1 is less than the critical value in absolute value, we can reject the null of a unit root. Throughout Lumsdaine-Papell, except 
population, all variables are found stationary in differences [I(1)] with two breaks. Lee-Strazicich unit root test with structural breaks found DPO-
PULATION I(1). as well. 

Appendix B. Cumulative Sum of Recursive Residuals or the Cumulative Sum of OLS Residuals to Determine to Test Whether There is A Structural Break 

We found that the main variables of ethanol production and corn price and control variables have structural breaks by rejecting the null hypothesis 
of no structural breaks at 1% levels. The relevant statistical outputs can be provided upon request of the potential reader.

Fig. B1. Corn_Price: Ho: No structural break  

The red line is the cumulative sum. If the red line is in the shaded area, the test would have not rejected the null hypothesis at the 5% level. The 
graph for the corn_price indicates that corn_price has a structural break(s) by rejecting the null of no structural break. 
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Fig. B2. Fuel_Ethanol: Ho: No structural break  

The red line is the cumulative sum. If the red line is in the shaded area, the test would have not rejected the null hypothesis at the 5% level. The 
graph for the fuel_ethanol reveals that fuel_ethanol has a structural break(s) by rejecting the null of no structural break.

Fig. B3. POP: Ho: No structural break  

Fig. B4. Exchange: Ho: No structural break   
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Fig. B5. Oil Prod: Ho: No structural break  

All variables are found that they have a statistically significant structural break(s) through the Cumulative sum test for parameter stability. The null 
of no structural breaks is rejected at 1% for all variables employed in partial wavelet analyses. 

Appendix C. Frequency Domain Causality Tests 

Frequency domain causality tests require stationary data. Our data were found nonstationary [I(1)]. The continuous wavelet Coherence analyses, 
on the other hand, can handle nonstationary data. That’s why we conducted wavelet Coherence analyses by employing our data at their levels. 

For example, Fourier transform analyses, which decompose functions depending on space or time into functions depending on the spatial fre-
quency or temporal frequency and which can capture the cyclical natüre of a time series analyses are efficient if the time series is stationary [62,100, 
101]. Wavelet analyses can capture transient cycles that are not stable across time and frequencies between non-stationary time series (The wavelet 
transform analyses can decompose the non-stationary time series into the time-frequency domain) [79,102]. 

However, for the potential reader to be able to follow the manuscript, frequency domain causality tests, by considering Taştan [103] and Breitung 
and Candelon [60] were conducted and the results of the analyses for comparison purposes (with Figure A1) are presented as follows.

Fig. C1. Frequency domain Granger causality test results from income to consumption (conditional on the exchange rate, oil production, and population).  

The causality tests at low frequencies are found significant since they are above the 5% line and later causality tests are found significant at w =
0,49 to w = 1.3. 

Within the range w = 0.001 and w = 0.48, ethanol Granger causes corn prices at 5% conditional on exchange rate, oil production, and population. 
As the wavelength = 2π/w, i.e., w(0.48) corresponds to the wavelength of 3.1 years or 13 quarters. 

Within the range w = 0.49 and w = 1.3 (corresponding to a wavelength between 12.8 quarters and 4.8 quarters), ethanol Granger causes corn 
prices at 10%, (conditional on the exchange rate, oil production, and population). 

The partial wavelet coherency analyses also result in strong co-movements between ethanol product and corn price at low frequencies (3–8 year 
cycle) for the period 2007–2021 (with control variables exchange rate, oil production, and population). 

The Frequency domain Granger causality test results on the other hand reveal that ethanol production does not Granger cause corn prices at high 
frequencies (from w = 1.31 to w = 3.14, corresponding to wavelength = 4.79 quarters and wavelength = 2 quarters). The partial wavelet coherency 
results, however, yield strong coherencies between ethanol product and corn price at high frequencies (1–3 year cycle) for the periods 1991:1–1999:7, 
2005:3–2011:12, and 2018–2019. 
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Table C1 
Frequency domain Granger causality tests, frequency, t stats, prob values 

Appendix D. Decomposition Trees, Denoising Analyses at Different Levels 

1- We obtained (a) decomposition trees from estimated CWT computations by Shannon entropy at different levels (1, 2, 3, 4, and 5) and (b) Best 
Level Decomposition trees by Shannon entropy. Computing the best tree makes the de-noising calculations more efficient. The below program lines in 
the wavelet package gives the best level.

Fig. D1. Level 1: Decomposition trees by Shannon entropy   
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Fig. D2. Level 2: Decomposition trees by Shannon entropy  

Fig. D3. Level 3: Decomposition trees by Shannon entropy   
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Fig. D4. Level 4: Decomposition trees by Shannon entropy  

Fig. D5. Level 5: Decomposition trees by Shannon entropy  

Best Level: Decomposition trees by Shannon entropy. 
Computing the best tree makes the de-noising calculations more efficient. The below program lines in the wavelet package gives the best level.  

• bestlevt 
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Purpose Best level tree wavelet packet analysis. 
Syntax. 
T = bestlevt(T). 
[T,E] = bestlevt(T). 
Description.  

• bestlevt is a one- or two-dimensional wavelet packet analysis function.  
• bestlevt computes the optimal complete subtree of an initial tree concerning an entropy type criterion. The resulting complete tree may be of 

smaller depth than the initial one. 

T = bestlevt(T) computes the modified wavelet packet tree T corresponding to the best level tree decomposition. 
[T,E] = bestlevt(T) computes the best level tree T, and in addition, the best entropy value E. 
The optimal entropy of the node, whose index is j-1, is E(j). 
% The current extension mode is zero-padding (see dwtmode). 
% Load signal. 
load noisdopp; x = noisdopp; % Decompose x at depth 3 with db1 wavelet, using default. 
% entropy (shannon). 
wpt = wpdec(x, 3,’db1′); 
% Decompose the packet [30]. 
wpt = wpsplt(wpt [30]); 
% Plot wavelet packet tree wpt. 
plot(wpt). 
% Compute best level tree. 
blt = bestlevt(wpt); 
% Plot best level tree blt. 
plot(blt). 
Algorithm is explained in besttree algorithm section. The only difference is that the optimal tree is searched among the complete subtrees of the 

initial tree, instead of among all the binary subtrees (Mathworks, 1984–2009, 2022). 
(©) 1984–2009 The MathWorks, Inc https://www.mathworks.com/ 
Mathworks (2022) Support, https://www.mathworks.com/support.html?s_tid = gn_supp

Fig. D6. Best Tree: Decomposition trees by Shannon entropy   
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Fig. D7. Best Level Tree: Decomposition trees by Shannon entropy 
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2- We also conducted Wavelet 1-D Multi signal analyses-Denoising at different levels. 
To observe the residuals from wavelet estimations, we used the One-Dimensional Multi signal Analysis of MatlabR2099b, a wavelet toolbox. This 

program provides us with the features of one-dimensional multisignal wavelet analysis, compression, and denoising using the Wavelet Toolbox™ 
software. The rationale is the same as in the 1-D single signal case. To view residuals, Ctrl-click the Orig. Signal, the Denoised, and the Residuals items 
in the list on the left of the Selection of Data Sets pane. The original, denoised, and residual signals are selected (3 × 91 = 273 signals). We have chosen 
the Asc. at the bottom of the Selection of Data pane to sort the signals using the Idx Sig parameter through Separate Mode. 

Selecting the ALL button in the Thresholding pane, The threshold for each level (ThrD1, …, ThrD4), the program computes and displays in the 
Selection of Data pane. Then click the Denoise button at the bottom of the Thresholding pane and by Ctrl-click the Denoised item in the list on the left 
of the Selection of Data Sets pane, the original signals, and the corresponding denoised ones are selected (3 × 91 = 273 signals). We clicked the Asc. 
button at the bottom of the Selection of Data pane to sort the signals according to the Idx Sig parameter. 

We, first, selected the first nine signals. They correspond to the original signals 1, 2, 3 the corresponding denoised signals 92, 93, 94, and the 
residuals 183, 184, and 185. Then, we need to choose the Separate Mode. 

We, later, selected the last nine signals. They correspond to the original signals 89, 90, 91 the corresponding denoised signals 180, 181, 182, and 
the residuals 271, 271, and 185. Then, we need to choose the Separate Mode. 

The output might reveal that the original signals (1, 2, 3) are depicted well by the denoised signals (92, 93, 94) and the expected values of residuals 
(183, 184, 185) are close to zero. 

The output might also yield that the original signals (89, 90, 91) are depicted well by the denoised signals (180, 181, 182) and the expected values 
of residuals (271, 271, and 185) are close to zero. 

Overall, multisignal denoising analyses can indicate that the original signals are observed well by the denoised signals and the residuals tend to be 
normally distributed and the expected values of residuals are close to zero.

Fig. D8. Superimpose mode 
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Fig. D9. Separated mode  

Fig. D10. Level 1   
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Fig. D11. Level 1: Decomposition/ Denoising  

We, first, selected the first nine signals. They correspond to the original signals 1, 2, 3 the corresponding denoised signals 92, 93, 94, and the 
residuals 183, 184, and 185. Later, we need to choose the Separate Mode.

Fig. D12. Level 2: Decomposition/ Denoising   
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Fig. D13. Level 3: Decomposition/ Denoising   
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Fig. D14. Level 4: Decomposition/ Denoising  
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Fig. D14. (continued).  
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Fig. D15. Level 5: Decomposition/ Denoising  
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Fig. D15. (continued).  
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We, later, selected the last nine signals. They correspond to the original signals 89, 90, 91 the corresponding denoised signals 180, 181, 182, and 
the residuals 271, 271, and 185. Then, we need to choose the Separate Mode. 

The output might reveal that the original signals (1, 2, 3) are depicted well by the denoised signals (92, 93, 94) and the expected values of residuals 
(183, 184, 185) are close to zero. This later output might refer to the unbiasedness of the denoising at all levels. 
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