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1 Introduction

Let T0,

(T0 f )(x) = lim
ε↓0

∫

y∈Rn ,|y|≥ε

�(y/|y|)
|y|n f (x − y) dy, x ∈ R

n, (1.1)

with

� ∈ C1(Sn−1),

∫

Sn−1

�(σ) dσ = 0, (1.2)
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2 M. Rosenthal, H. Triebel

be the classical Calderón–Zygmund operators, where f ∈ dom T0 = D(Rn) =
C∞

0 (R
n). Let 1 < p < ∞. Then there is a constant c = cp > 0 such that

‖T0 f |L p(R
n)‖ ≤ c ‖ f |L p(R

n)‖, for all f ∈ dom T0 = D(Rn). (1.3)

This is a cornerstone of harmonic analysis in R
n since more than 60 years beginning

with [5]. There are numerous papers and books dealing with various generalizations
of (1.1)–(1.3). The related classical theory in L p(R

n) may be found in [34, Chapter
II], [35, Chapters VI, VII] and [37, Chapter XI]. Furthermore, a lot of attention has
been paid to the question to which extent one can replace L p(R

n), 1 < p < ∞, in
(1.3) by other spaces on R

n (more or less related to L p-spaces). In particular one tries
to reduce mapping properties for T0 in more general spaces to (1.3) combined with

|(T0 f )(x)| ≤ c
∫

Rn

| f (y)|
|x − y|n dy, f ∈ D(Rn), x �∈ supp f. (1.4)

This transference method goes back to [33] and had been elaborated afterwards with
respect to Morrey spaces by [10,13,19]. We refer in particular to the most recent paper
[26] where arguments of this type have been applied to Morrey-type spaces based on
so-called grand Lebesgue spaces. But the step from the Lebesgue spaces L p(R

n),
1 < p < ∞, to local Morrey spaces Lr

p(R
n) and global Morrey spaces Lr

p(R
n)

where 0 ≤ n
p + r < n

p (defined below) by transference arguments causes a serious
problem which must be treated with greater care than in some related papers. Since
D(Rn) is dense in L p(R

n), 1 < p < ∞, one can extend T0 according to (1.1)–(1.3)
by completion to L p(R

n). By transference arguments we try to prove (1.3) with global
Morrey spaces Lr

p(R
n) in place of L p(R

n). But D(Rn) is not dense in Lr
p(R

n),
1 < p < ∞, 0 < n

p + r < n
p , as shown at the beginning of Sect. 2.2. Rescue comes

from the recent paper [1] which rises harmonic analysis in many respects, including
the Calderón–Zygmund theory, from L p(R

n), 1 < p < ∞, to the global Morrey
spaces Lr

p(R
n), 1 < p < ∞, 0 ≤ n

p + r < n
p , based on the crucial observation that

D(Rn) is dense in the predual of Lr
p(R

n) (which is described in [1] explicitly with the
help of Hausdorff capacities and Muckenhoupt weights). We are not interested here
in the predual of Lr

p(R
n), but in the predual of this predual. This is the completion of

D(Rn) in Lr
p(R

n), denoted as
◦
Lr

p(R
n). Hence Lr

p(R
n) is the bidual of

◦
Lr

p(R
n),

◦
Lr

p(R
n)′′ = (

◦
Lr

p(R
n)′)′ = Lr

p(R
n), 1 < p < ∞, 0 ≤ n

p
+ r <

n

p
.

This restores the above-described situation for T0 in L p(R
n). The rest is a matter of

duality.
A linear bounded operator T acting in Lr

p(R
n), hence T : Lr

p(R
n) ↪→ Lr

p(R
n), is

called an extension of T0 to Lr
p(R

n) if it coincides on D(Rn) with (1.1). Similarly for
◦
Lr

p(R
n) and Lr

p(R
n). It is the main aim of this paper to prove the following assertion.
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Calderón–Zygmund operators in Morrey spaces 3

Theorem 1.1 Let T0 be given by (1.1), (1.2) with dom T0 = D(Rn). Let 1 < p < ∞,
0 ≤ n

p + r < n
p .

(i) Let � be not identically zero. Then there is no linear and bounded extension of
T0 to the local Morrey space Lr

p(R
n).

(ii) There is a linear and bounded extension T of T0 to
◦
Lr

p(R
n),

T : ◦
Lr

p(R
n) ↪→ ◦

Lr
p(R

n).

(iii) There are linear and bounded extensions T of T0 to the global Morrey spaces
Lr

p(R
n),

T : Lr
p(R

n) ↪→ Lr
p(R

n).

We collect in Sect. 2 some definitions and preliminaries. The proof of the Theorem
will be given in Sect. 3. In Sect. 4 we add some comments and further references.

2 Definitions and preliminaries

2.1 Definitions

We use standard notation. Let N be the collection of all natural numbers and N0 =
N ∪ {0}. Let R

n be Euclidean n-space, where n ∈ N. Put R = R
1. Let S

n−1 =
{x ∈ R

n : |x | = 1} be the unit sphere in R
n . Let S(Rn) be the Schwartz space of

all complex-valued rapidly decreasing infinitely differential functions on R
n and let

S′(Rn) be the space of all tempered distributions on R
n . Let D(Rn) = C∞

0 (R
n) be the

collection of all functions f ∈ S(Rn) with compact support in R
n . As usual D′(Rn)

stands for the space of all distributions in R
n . Furthermore, L p(R

n)with 1 ≤ p < ∞,
is the standard complex Banach space with respect to the Lebesgue measure, normed
by

‖ f |L p(R
n)‖ =

⎛
⎝

∫

Rn

| f (x)|p dx

⎞
⎠

1/p

.

Similarly L p(M)where M is a measurable subset of R
n . As usual Z is the collection of

all integers; and Z
n where n ∈ N denotes the lattice of all points m = (m1, . . . ,mn) ∈

R
n with m j ∈ Z. Let Q j,m with j ∈ N0 and m ∈ Z

n be the usual cubes in R
n ,

n ∈ N, with sides of length 2− j parallel to the axes of coordinates and 2− j m as the
lower left corner. As usual, L loc

p (R
n) collects all locally p-integrable functions, hence

f ∈ L p(M) for any bounded measurable set M in R
n .

Definition 2.1 Let 1 ≤ p < ∞ and 0 ≤ n
p + r < n

p .
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4 M. Rosenthal, H. Triebel

(i) Then Lr
p(R

n) collects all f ∈ L loc
p (R

n) such that

‖ f |Lr
p(R

n)‖ = sup
J∈N0,M∈Zn

2J ( n
p +r)‖ f |L p(Q J,M )‖

is finite.
(ii) Then Lr

p(R
n) collects all f ∈ L loc

p (R
n) such that

‖ f |Lr
p(R

n)‖ = sup
J∈Z,M∈Zn

2J ( n
p +r)‖ f |L p(Q J,M )‖ (2.1)

is finite.

Remark 2.2 These are the well-known local Morrey spaces Lr
p(R

n) and global Morrey

spaces Lr
p(R

n). They are Banach spaces. Of course, L−n/p
p (Rn) = L p(R

n). Let
wγ (x) = (1+|x |2)γ /2, γ ∈ R, and let L p(R

n, wγ ), 1 ≤ p < ∞, be the corresponding
L p-space, normed by

‖ f |L p(R
n, wγ )‖ = ‖wγ f |L p(R

n)‖, 1 ≤ p < ∞, γ ∈ R.

Then it follows from

Lr
p(R

n) ↪→ Lr
p(R

n) ↪→ Lp(R
n) = L−n/p

p (Rn) ↪→ L p(R
n, wγ ) ↪→ S′(Rn)

if γ < −n/p that all spaces can be considered in the framework of S′(Rn). We used
arguments of this type in [39, p. 22] to reduce periodic function spaces to weighted
function spaces. The above spaces are usually attributed to Morrey [18]. But Morrey
himself (and also high-ranking mathematicians including John Nash, Jürgen Moser
and Olga Ladyshenskaya following this path) were only interested in related integral
inequalities in connection with smoothness properties (Hölder-continuity) of solutions
of nonlinear elliptic and parabolic equations. The reformulation in terms of function
spaces goes back to Campanato, Brudnyi and Peetre in the 1960s, [2,3,6,7,22,23]
using quite similar notation as in the above Definition 2.1. Nowadays also some other
notation are in common use, in particular

Lr
p(R

n) = Mu,p(R
n) and Lr

p(R
n) = Mu,p(R

n) with r = −n/u,

1 < p ≤ u < ∞. Further references and properties may be found in [40, Chapter 3],
in particular characterizations of Lr

p(R
n) in terms of wavelets. This will not be needed

here.

Remark 2.3 We mention two simple well-known properties which will be of some
use for us later on. Let λ > 0 and f ∈ Lr

p(R
n). Then
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Calderón–Zygmund operators in Morrey spaces 5

‖ f (λ·) |Lr
p(R

n)‖ = sup
J∈Z,M∈Zn

2
J
(

n
p +r

)
⎛
⎜⎝

∫

0≤yl−2−J Ml≤2−J

| f (λy)|p dy

⎞
⎟⎠

1/p

= λr sup
J∈Z,M∈Zn

(λ−12J )

(
n
p +r

)
⎛
⎜⎝

∫

0≤yl−λ2−J Ml≤λ2−J

| f (y)|p dy

⎞
⎟⎠

1/p

∼ λr ‖ f |Lr
p(R

n)‖.

Hence, Lr
p(R

n) is (essentially) homogeneous of degree r . Let T0 be given by (1.1) and
f ∈ D(Rn). With λ > 0 one has

(T0 f (λ·))(x) = lim
ε↓0

∫

|y|≥ε

�(y/|y|)
|y|n f (λx − λy) dy = (T0 f )(λx).

Hence, T0 is homogeneous of degree zero.

2.2 Preliminaries

Let 1 ≤ p < ∞ and 0 < n
p + r < n

p . Let f (x) = |x |r if |x | ≤ 1 and f (x) = 0 if
|x | > 1. Then f ∈ Lr

p(R
n) and one has for some c > 0 and all g ∈ L∞(Rn),

2J ( n
p +r)

⎛
⎜⎝

∫

Q J,0

| f (x)− g(x)|p dx

⎞
⎟⎠

1/p

≥ c > 0, J ≥ Jg ∈ N.

In particular, {g ∈ L∞(Rn), supp g compact} is a subset of Lr
p(R

n), but not dense.

Definition 2.4 Let 1 < p < ∞ and 0 ≤ n
p + r < n

p . Then
◦
Lr

p(R
n) is the completion

of D(Rn) in Lr
p(R

n).

Remark 2.5 By the above observation one has
◦
Lr

p(R
n) �= Lr

p(R
n) if 0 < n

p + r < n
p .

This is well known and goes back to [24] and has also been mentioned in [44] (essen-
tially with the same counter-example as above) and in [1]. It makes sense to interpret

the dual spaces
◦
Lr

p(R
n)′ of

◦
Lr

p(R
n) in the context of the dual pairings (D(Rn), D′(Rn))

or, likewise, (S(Rn), S′(Rn)). This dual space has been determined in [1] explicitly
with the help of Muckenhoupt weights and Hausdorff capacities. A detailed descrip-
tion of this dual space will not be needed here. But as mentioned in [1] the set of all

continuous functions with compact support is a dense subset in
◦
Lr

p(R
n)′. From the

explicit norm given there it follows that D(Rn) is also dense in
◦
Lr

p(R
n)′. Then it makes
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6 M. Rosenthal, H. Triebel

sense to deal again with the dual of
◦
Lr

p(R
n)′ in the context of the above-mentioned

distributional pairings with the following outcome.

Proposition 2.6 Let 1 < p < ∞ and 0 < n
p + r < n

p . Then

◦
Lr

p(R
n)′′ = (

◦
Lr

p(R
n)′)′ = Lr

p(R
n). (2.2)

Remark 2.7 It extends L−n/p
p (Rn)′′ = L p(R

n)′′ = L p(R
n), 1 < p < ∞, to the

Morrey spaces Lr
p(R

n). This remarkable assertion is due to [1, Section 3.2]. There
one finds the necessary norm equivalences combined with references to [29,44]. The
observation (2.2) is the counterpart of

cmo(Rn)′ = h1(R
n) and h′

1(R
n) = bmo(Rn). (2.3)

Here h1(R
n) = F0

1,2(R
n) is the inhomogeneous version of the Hardy space H1(R

n).

Similarly bmo(Rn) = F0∞,2(R
n) is the inhomogeneous version of B M O(Rn). Details

and historical comments may be found in [38, pp. 37,38]. The space cmo(Rn) is the
completion of D(Rn) in bmo(Rn). Both duality assertions in (2.3) are covered by [9,
Theorems 5, 6, 9] and the literature mentioned there. We refer in this context also
to [43, Section 7.3]. This book deals with some Morrey versions As,τ

p,q(R
n) of the

nowadays well-known spaces As
p,q(R

n) with A = B and A = F . The preduals of
some spaces As,τ

p,q(R
n) are characterized in [43, Chapter 7] again with the help of some

Hausdorff capacities similarly as in [1]. Whether related counterparts of Proposition
2.6 combined with the arguments in this paper are of some use remains to be seen.

3 Proof of the Theorem

Step 1 We prove part (i). We may assume that �(σ0) > 0 for some σ0 ∈ S
n−1. Let

�(σ) > 0 for all σ ∈ S
n−1 with |σ − σ0| ≤ |σ1 − σ0| and some σ1 ∈ S

n−1, σ1 �= σ0.
Let ϕK ∈ D(Rn) with compact support in the sectoral domain

{y ∈ R
n : y = |y|σ, |σ − σ0| ≤ |σ1 − σ0|, |y| ≥ K1},

0 ≤ ϕK ≤ 1, and

ϕK (y) = 1 if {y ∈ R
n : y = |y|σ, |σ − σ0| ≤ |σ2 − σ0|, K2 ≤ |y| ≤ K }

for some σ2 ∈ S
n−1 with |σ2 − σ0| < |σ1 − σ0|, where K1, K2 and K are natural

numbers, K1 < K2 ≤ K . Then ϕK ∈ dom T0. If K1 is chosen sufficiently large then
one has by (1.1) for all x ∈ R

n with |x | ≤ 1 and some c > 0,

(T0ϕK )(x) ≥ c log K .

Hence (T0ϕK )(x) → ∞ if K → ∞, whereas ‖ϕK |Lr
p(R

n)‖ is uniformly bounded
as one checks easily. This proves part (i) of the Theorem.
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Calderón–Zygmund operators in Morrey spaces 7

Step 2 We prove part (ii). By the homogeneity properties mentioned in Remark 2.3
one may assume

f ∈ D(Rn), supp f ⊂ {y ∈ R
n : |y| < 1}. (3.1)

Furthermore, to prove the requested estimate for T0 f in the counterpart of (2.1) it is
sufficient to deal with the cubes Q J,0 or the model cubes Q J , centered at the origin
with sides of length 2−J parallel to the axes of coordinates, J ∈ Z. The possibility
to reduce the consideration to this model case follows from the translation-invariance
of Lr

p(R
n) and of T0. Let J ∈ Z and let {ϕ j }J−J0

j=−∞ ⊂ D(Rn) be a canonical dyadic
resolution of unity in R

n with

ϕJ−J0(x) = 1 if x ∈ Q J−J0 , suppϕJ−J0 ⊂ Q J−J0−1,

and

suppϕ j ⊂ Q j−1\Q j+1, j ∈ Z, j < J − J0, (3.2)

where J0 ∈ N will be chosen later on, independently of J . In particular,

J−J0∑
j=−∞

ϕ j (x) = 1, x ∈ R
n,

and

f =
J−J0∑

j=−∞
ϕ j f = f J−J0 +

J−J0−1∑
j=−∞

f j .

Obviously

‖T0 f |L p(Q J )‖ ≤ ‖T0 f J−J0 |L p(Q J )‖ +
J−J0−1∑
j=−∞

‖T0 f j |L p(Q J )‖. (3.3)

Recall that the extension of T0 maps L p(R
n) into itself. Then one has for the first term

on the right-hand side of (3.3),

2
J
(

n
p +r

)
‖T0 f J−J0 |L p(Q J )‖ ≤ c 2

J
(

n
p +r

)
‖ f J−J0 |L p(R

n)‖
≤ c 2

J
(

n
p +r

)
‖ f |L p(Q J−J0−1)‖

≤ c′ 2
(J0+1)

(
n
p +r

)
‖ f |Lr

p(R
n)‖. (3.4)

We use (1.1) with f j , j < J − J0, in place of f , and x ∈ Q J . We choose now J0 ∈ N

(independently of J ) such that x ∈ Q J and x − y ∈ Q j−1\Q j+1, j < J − J0 ensures
|y| ∼ 2− j . Then one has for x ∈ Q J by (1.1), (3.2) and Hölder’s inequality
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8 M. Rosenthal, H. Triebel

|T0 f j (x)| ≤ c 2nj‖ϕ j f |L1(R
n)‖ ≤ c′ 2

jn
p ‖ f |L p(Q j−1)‖ ≤ c′′2− jr‖ f |Lr

p(R
n)‖

and

2J ( n
p +r)‖T0 f j |L p(Q J )‖ ≤ c 2(J− j)r‖ f |Lr

p(R
n)‖. (3.5)

Since r < 0 one obtains by (3.3), (3.4) and (3.5)

‖T0 f |Lr
p(R

n)‖ ≤ c ‖ f |Lr
p(R

n)‖.

Hence T0 f ∈ Lr
p(R

n). It remains to show that T0 f ∈ ◦
Lr

p(R
n). Let f be as above and

ϕ ∈ S(Rn). Then one has by the usual dual pairing and the Fubini-Lebesgue theorem

(−1)|α|(T0 f, Dαϕ) = lim
ε↓0

∫

|y|≥ε

∫

Rn

�(y/|y|)
|y|n f (x − y)(−1)|α| Dαϕ(x) dx dy

= (T0 Dα f, ϕ).

Hence T0 f ∈ W k
p(R

n) for all k ∈ N. By embedding T0 f ∈ Lr
p(R

n) is a C∞ function.
Furthermore one has by (1.1), (1.4) and (3.1)

|(T0 f )(x)| ≤ c |x |−n if |x | ≥ 2.

Let R ≥ 2. Then one has for cubes Q J,M with Q J,M ⊂ {x ∈ R
n : |x | > R},

2J ( n
p +r)‖T0 f |L p(Q J,M )‖ ≤ c 2Jr R−n if J ∈ N0. (3.6)

Using 1 < p < ∞ and again |T0 f (x)| ≤ c/|x |n one obtains

2J ( n
p +r)‖T0 f |L p(Q J,M )‖ ≤ c 2J ( n

p +r) R−n(1− 1
p ) if − J ∈ N. (3.7)

Let ψR be a smooth cut-off function with ψR(x) = 1 if |x | ≤ R. Then ψR T0 f ∈
D(Rn) and it follows from (3.6), (3.7) with 1 < p < ∞ and 0 ≤ n

p + r < n
p ,

lim
R→∞ ‖T0 f − ψR T0 f |Lr

p(R
n)‖ = 0.

Hence T0 f ∈ ◦
Lr

p(R
n). This shows that T0 given by (1.1) with dom T0 = D(Rn) can

be extended (uniquely) to
◦
Lr

p(R
n).

Step 3 Let T with dom T = ◦
Lr

p(R
n) be the extension of T0 according to part (ii)

of the Theorem and Step 2. Then it follows from Proposition 2.6 and Banach space
theory that the bidual T ′′ = (T ′)′ with dom T ′′ = Lr

p(R
n) is an extension of T . As

for the abstract background one may consult [42, pp. 112/113] and [25, pp. 35/36].
Furthermore in Remark 4.2 below we add a comment about the so-called extension
property of Banach spaces.
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Calderón–Zygmund operators in Morrey spaces 9

4 Comments

Remark 4.1 Our arguments rely on two observations. First there is a possibility to
transfer mapping properties of operators of type (1.1) in L p-spaces, 1 < p < ∞, with
the help of decay assertions of type (1.4) to more general spaces, in our case global
Morrey spaces Lr

p(R
n). This has been done in Step 2 of the above proof. It may work

also in other similar situations. Near to us is [26], but decomposition techniques have
been used in many other papers dealing with a wide range of operators in Morrey
spaces. We refer in particular to [8,10,11,13–15,17,19,20,28,30–32,36]. Also the
original Morrey and Campanato spaces have been modified in the above context in
many respects. One may consult the recent papers [4,16,21] and the references within.
The second basic ingredient in our approach is the possibility to use the duality (2.2)
in the context of the dual pairings (D(Rn), D′(Rn)) or (S(Rn), S′(Rn)). Here we rely
on [1]. Then one can circumvent that D(Rn) is not dense in Lr

p(R
n) as mentioned

at the beginning of Sect. 2.2 and Remark 2.5. This observation seems to quite recent
and not in common use so far. It is the main aim of the present paper to describe the
interplay of these two ingredients as simple as possible.

Remark 4.2 According to [25, p. 133] a Banach space Y is said to have the extension
property if every linear bounded operator T0 : X0 ↪→ Y defined on a closed subspace
X0 of an arbitrary Banach space X admits a linear and bounded extension T : X ↪→ Y
such that its restriction to X0 coincides with T0, T |X0 = T0. We refer also to [41, p.
127]. Applied to the above situation one may think about X = Y = Lr

p(R
n) and X0 =

◦
Lr

p(R
n). But there is no abstract assertion ensuring that T0 : ◦

Lr
p(R

n) ↪→ Lr
p(R

n) can
be extended to T : Lr

p(R
n) ↪→ Lr

p(R
n). According to [25, p. 134] with a reference

to [12, p. 169] an infinite-dimensional Banach space with the extension property is
necessarily non-separable. This applies to Lr

p(R
n) as a non-separable target space,

but not to
◦
Lr

p(R
n) as an alternative separable target space. But sufficient conditions

ensuring the extension property (for Lr
p(R

n)) are apparently not known.

Remark 4.3 In [40] we dealt with the n-dimensional Navier-Stokes equations in the
context of some (inhomogeneous) global spaces As

p,q(R
n) where A ∈ {B, F} and

some related local spaces LrAs
p,q(R

n) where 0 ≤ n
p + r < n

p is adapted to the above
considerations. In particular one has

Lr
p(R

n) = LrL p(R
n) = LrF0

p,2(R
n) if 1 < p < ∞.

Then one needs the so-called Leray projector which can be reduced to the Riesz
transforms Rk ,

(Rk f )(x) = cn lim
ε↓0

∫

y∈Rn ,|y|≥ε

yk

|y|n+1 f (x − y) dy, k = 1, . . . , n.

This is a special case of (1.1). Assertions of type

Rk : As
p,q(R

n) ↪→ As
p,q(R

n), 1 < p, q < ∞, s ∈ R, (4.1)
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10 M. Rosenthal, H. Triebel

are crucial for the approach to the Navier-Stokes equations as developed in [40]. There
is no direct counterpart for the related local spaces LrAs

p,q(R
n). This negative outcome

is apparently confirmed by part (i) of the Theorem. But according to the parts (ii) and
(iii) the situation is more favorable for the related global spaces LrAs

p,q(R
n). In addition

to (4.1) we needed for the spaces As
p,q(R

n) some lifting, sharp Michlin-Hörmander
Fourier multiplier theorems, and sufficient conditions (or characterizations) ensuring
that some spaces As

p,q(R
n) are multiplication algebras. Many of the needed assertions

can be proved nowadays by using wavelet characterizations of As
p,q(R

n). The parts
(ii) and (iii) of the Theorem suggest that it might well be possible to extend the theory
as developed in [40] from As

p,q(R
n) to some spaces LrAs

p,q(R
n). For this purpose

one could try to combine relevant arguments from [40] with corresponding wavelet
expansions for the spaces LrAs

p,q(R
n) as obtained recently in [27].
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