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Abstract The susceptible-infected-recovered (SIR) epidemic model of childhood disease is ana-

lyzed in the present framework with the help of q-homotopy analysis transform method (q-

HATM). The considered model consists the system of three differential equations having fractional

derivative, and the non-linear system exemplifies the evolution of childhood disease in a population

and its influence on the community with susceptible, infected and recovered compartment. The pro-

jected method is a mixture of q-homotopy analysis method and Laplace transform. Two distinct

explanatory cases are considered, and corresponding simulations have been demonstrated in terms

of plots for different value of the order. The present investigation elucidates that the projected both

derivative and technique play a vital role in the analysis and illustrate the behaviour of diverse

mathematical models described with differential equations in human disease.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Childhood diseases become the most deliberate infective dis-

eases in recent years. In the eighteenth century, Swiss physicist
and mathematician Bernoulli proposed and cultivated the con-
cept of modelling for disease evolution [1] by considering

mathematics as an essential tool, which provides the origin
to the development of modern epidemiology. Later in the
twentieth century, Ross [2] established the modelling of infec-
tious disease and elucidates the behaviour of epidemic models

with the law of mass action. These models are recently widely

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2021.07.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pundikala.veeresha@christuniversity.in
mailto:viru0913@gmail.com
mailto:viru0913@gmail.com
mailto:eilhan@ahievran.edu.tr
mailto:prakashadg@gmail.com
mailto:hmbaskonus@gmail.com
mailto:gaowei@ynnu.edu.cn
https://doi.org/10.1016/j.aej.2021.07.015
https://doi.org/10.1016/j.aej.2021.07.015
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2021.07.015
http://creativecommons.org/licenses/by-nc-nd/4.0/


1748 P. Veeresha et al.
applied to analyse the epidemiological processes that contain
the transmission of the contagious disease. The mathematical
model can aid us in the transmission and dynamical behaviour

of childhood diseases [3–8].
Rubella, poliomyelitis and measles are the more familiar

childhood diseases [9,10]. These diseases usually influence the

children, due to the population of the child is extremely large
in prone to the disease as relate to the adults [9]. Particularly,
measles is an extremely virulent disease and is instigated by res-

piratory infection of Morbilli-virus. Further, the population
can be mainly distributed into two classes: mature and prema-
ture populations. The premature population consider the fixed
duration to become mature, which is called a maturation

delay. In the dynamics of disease, the diseases are doesn’t
spread rapidly but instead require some duration in the body,
known as the latent period of the diseases. However, after

WHO originated the Expanded Program on Immunization
[11] the effort of vaccination is widely started to all children
began in the year 1974. In this connection, mathematical mod-

els play an important role in sympathetic the nature of trans-
mission of the diseases and help us analyse the behaviour of
disease affecting children. Further, the mathematical models

can help us capture the growth of the diseases, and these mod-
els can provide diverse methods to control its propagation.

The concept of differential calculus was begun in the 17th
century in order to study the phenomena described with the

rate of change. Later, it considered an essential tool to examine
and predict all most natural phenomena. Within the frame of
differential calculus, the epidemic models and their corre-

sponding consequences are effectively examined. In order to
study the evolution of the virus and its exponential growth
through leaving beings are efficiently exemplified. However,

recently many investigators pointed out that classical calculus
is not an effective and accurate tool to investigate and model
non-linear and complex phenomena.

Soon after the birth of classical calculus, the concept of
fractional calculus (FC) was originated. But lately, it magne-
tized the attention of many researchers while analysing phe-
nomena related to a long-range, random walk, non-

Markovian processes and anomalous diffusion [12–16]. More
preciously, from the last three decades due to the growth of
new computational tools associate with computers and novel

mathematical methods, many researchers hired FC to study
and illustrate some interesting consequences of real-world
models [17–26]. For instance, authors in [17] presented

detained and interesting results of fractional calculus while
investigating the models related to nanotechnology. For the
Fokas-Lenells equation, the optical solitons and other solu-
tions have been investigated by Esen et al. in [18] chaos anal-

ysis and asymptotic stability is derived in [19] with fractional
order, authors in [20] analysed the mathematical model of can-
cer chemotherapy effect in Caputo fractional derivatives, the

dynamics of a fractional epidemiological model with disease
infection is studied with equilibrium analysis in [21]. Recently,
FC is magnetizing the attention of the researchers and also

study of diverse mathematical models in order to predict the
corresponding consequences [27–29].

The biological models that modelled and described with the

help of arbitrary order differential equations have demon-
strated an appreciation in analysing SIR epidemic models
and their corresponding behaviour. Many researchers devel-
oped and analysed these models using diverse techniques with
the aid of classical and fractional order derivatives [30–32].
Moreover, researchers considered fractional-order derivatives
to examine the distinct class of problems in comparison with

integer-order, and they prove that arbitrary order derivatives
are more effective while exemplifying the behaviour of the
models [33–45].

In the present investigation, we considered an efficient and
highly methodical scheme called q-HATM, which proposed by
Singh et al. [46] with the assist of the homotopy analysis

method (HAM) [47] and Laplace transform. The considered
solution procedure is a mixture of two well-known algorithms
to find the solution for non-linear differential and integral
equations with conserving new polynomials, perturbatinga

given system, discretising and extracting any basis. Forthe last
three years, the considered scheme is effectively and widely
employed by many researchers to find the solution for the dif-

ferential equations exemplifying various models and phenom-
ena associated with fractional calculus and presented the
numerical simulation to confirm the methods accuracy [48–57].

The rest of the present investigation is presented as: the
basic and fundamental notions are recalled in the next section.
The discussion about the considered SIR model is presented in

Section 3. The basic procedure of the considered method is
presented in Section 4, and then it has been employed in Sec-
tion 5 for the considered system. In Section 6, the results and
discussion on achieved results and their corresponding conse-

quences captured in figures are presented, and then finally,
the concluding remarks of the present study are illustrated.

2. Preliminaries

Here, we present the basic notion of FC and Laplace
transform.

Definition 1. The Riemann-Liouville integral of a function
f tð Þ 2 Cd d � �1ð Þ having fractional order (l > 0) is defined as
JlfðtÞ ¼ 1
CðlÞ

R t

0
ðt� #Þl�1

fð#Þd#;
J0f tð Þ ¼ fðtÞ:

ð1Þ

Definition 2. The derivative of f 2 Cn
�1 in Caputo fractional-

order is defined as
Dl
t f tð Þ ¼

dnf tð Þ
dtn

; l ¼ n 2 N;

1
Cðn�lÞ

R t

0
t� #ð Þn�l�1

fðnÞ #ð Þd#; n� 1 < l < n; n 2 N:

(

ð2Þ

Definition 3. Let Dl
t f tð Þ be a Caputo fractional derivative, then

the Laplace transform (LT) is presented as
L Dl
t f tð Þ

� � ¼ slF sð Þ �
Xn�1

r¼0

sl�r�1f rð Þ 0þð Þ; n� 1 < l � nð Þ; ð3Þ

where F sð Þ is LT of fðtÞ.
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3. Mathematical model of the childhood disease in Caputo

fractional derivatives

In this segment, we study the system of three fractional-order

differential equations describing the epidemic model of child-
hood disease (see Fig. 1). Here, we consider N tð Þ denotes the
total population strength with time t. In the proposed model,

susceptible group, an infected group, and quarantined or
removed group are respectively symbolized by S tð Þ; I tð Þ and
R tð Þ. Here, we assumed that the birth rate is not equal to the
natural death charge l in the population; hence the population

size N is accurately not constant. Here, pð0 < p < 1Þ designates
the citizens vaccinated fraction at the birth of each year and
citizens are born into the population at a fixed-birth rate a.
An average contact rate is denoted by b; and the infected indi-
vidual recovers rate is represented by d. Now, we consider the
system of differential equation elucidating the above phe-

nomenon [58]

ds

dt
¼ 1� pð Þa� bSI� aS; ð4Þ

di

dt
¼ bSI� gþ að ÞI; ð5Þ

dr

dt
¼ paþ gI� aR: ð6Þ

The considered model is analysed by authors in [59] and
presented some stimulating in terms of qualitative analysis.

Particularly, they specify that the considered system is of the
endemic or die out are two categories. Also, the disease-free
equilibrium E0 is derived with respect to lost two equations

and the equilibrium with vaccination reproduction number,
are respectively presented as follows

E0 ¼ 1� p; 0ð Þ and Rv ¼ b 1� pð Þ
gþ a

:

Further, the disease-free equilibrium is locally stable if
Rv < 1. Most importantly, authors in [59] derived the condi-

tions for thenumber of infectives initiates to surgeup to that
process is earlier than the quantity of susceptible being added
to the population.

In this paper, we modified the above system by including
the effect of memory effect, nonlocality and hereditary by
introducing the Caputo fractional derivative in the place of
the time-derivative, and which are presented as follow
Fig. 1 Flow chart of the considered SIR model with S (black), I

(Red) and R (blue). (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of

this article.)
Dl
t S ¼ 1� pð Þa� bSI� aS;

Dl
t I ¼ bSI� gþ að ÞI; 0 < l � 1;

Dl
t R ¼ paþ gI� aR;

ð7Þ

with initial conditions

S 0ð Þ ¼ N1; I 0ð Þ ¼ N2;R 0ð Þ ¼ N3: ð8Þ
4. Fundamental idea of the proposed scheme

Here, we consider differential equation with fractional order to
present the procedure of the considered method

Dl
t v x; tð Þ þRv x; tð Þ þNv x; tð Þ ¼ f x; tð Þ; 0 < l � 1; ð9Þ

where Dl
t v x; tð Þ symbolize the derivative with fractional deriva-

tive in Caputo sense forv x; tð Þ. By applying LT on Eq. (9), one
can get

slL v x; tð Þ½ � �
Xn�1

k¼0

sl�k�1v kð Þ x; 0ð Þ þL Rv x; tð Þ½ �

þL Nv x; tð Þ½ �
¼ L f x; tð Þ½ �: ð10Þ
After simplification, the Eq. (10) reduces to

L v x; tð Þ½ � � 1

sl

Xn�1

k¼0

sl�k�1vk x; 0ð Þ

þ 1

sl
L Rv x; tð Þ½ � þL Nv x; tð Þ½ � �L f x; tð Þ½ �f g

¼ 0: ð11Þ
Now, with respect touðx; t; qÞ the non-linear operator is

presented as

N u x; t; qð Þ½ � ¼ L u x; t; qð Þ½ � � 1
sl

Pn�1
k¼0s

l�k�1u kð Þ x; t; qð Þ 0þð Þ
þ 1

sl
L Ru x; t; qð Þ½ � þ L Nu x; t; qð Þ½ � � L f x; tð Þ½ �f g;

ð12Þ
where q 2 0; 1

n

� �
. Then, we have

1� nqð ÞL u x; t; qð Þ � v0 x; tð Þ½ � ¼ �hqN u x; t; qð Þ½ �; ð13Þ
where Lis signifying LT. The following conditions are respec-

tively satisfied for q ¼ 0 andq ¼ 1
n

u x; t; 0ð Þ ¼ v0 x; tð Þ;u x; t;
1

n

� �
¼ v x; tð Þ: ð14Þ

Now, by risingq from 0 to 1
n
, then uðx; t; qÞ varies from

v0 x; tð Þ to v x; tð Þ. By applying Taylor theorem near toq, we

have

u x; t; qð Þ ¼ v0 x; tð Þ þ
X1
m¼1

vm x; tð Þqm; ð15Þ

where

vm x; tð Þ ¼ 1

m!

@muðx; t; qÞ
@qm

jq¼0: ð16Þ

At the specific choice ofv0 x; tð Þ,nand �h, the series (12) con-

verges atq ¼ 1
n
. Then

v x; tð Þ ¼ v0 x; tð Þ þ
X1
m¼1

vm x; tð Þ 1

n

� �m

: ð17Þ
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With the assist of Eq. (13), we have

L½vm x; tð Þ � kmvm�1 x; tð Þ� ¼ �hRm v!m�1

� �
; ð18Þ

where the vectors are defined as

v!m ¼ v0 x; tð Þ; v1 x; tð Þ; � � � ; vm x; tð Þf g: ð19Þ
On applying inverse LTto Eq. (18), it reduces to

vm x; tð Þ ¼ kmvm�1 x; tð Þ þ �hL�1 Rm v!m�1

� �� �
; ð20Þ

where

Rm v!m�1

� � ¼ L vm�1 x; tð Þ½ � � 1� km
n

� � Pn�1
k¼0s

l�k�1v kð Þ x; 0ð Þ þ 1
sl
L f x; tð Þ½ �

� 	
þ 1

sl
L Rvm�1 þHm�1½ �;

ð21Þ
and

km ¼ 0;m � 1;

n;m > 1:



ð22Þ

In Eq. (21), Hmis homotopy polynomial and which is
defined as

Hm ¼ 1

m!

@mu x; t; qð Þ
@qm

� �
q¼0

andu x; t; qð Þ

¼ u0 þ qu1 þ q2u2 þ � � � : ð23Þ
By the help of Eqs. (20) and (21), we have

vm x; tð Þ ¼ km þ �hð Þvm�1 x; tð Þ � 1� km
n

� �
L�1ðPn�1

k¼0s
l�k�1v kð Þ x; 0ð Þ

þ 1
sl
L f x; tð Þ½ �Þ þ �hL�1 1

sl
L Rvm�1 þHm�1½ �
 �

:

ð24Þ
Using Eq. (24), we can find the terms of vm x; tð Þ. The q-

HATM solution is presented as

v x; tð Þ ¼
X1
m¼0

vm x; tð Þ: ð25Þ
5. q-HATM solution for the system of fractional-order epidemic

model of childhood disease

Here, we demonstratethe solutions for model (7) with distinct
parameters. Consider the system of the equation describing the
fractional-order SIR epidemic model of childhood disease

Dl
t S ¼ 1� pð Þa� bSI� aS;

Dl
t I ¼ bSI� gþ að ÞI;

Dl
t R ¼ paþ gI� aR;

ð26Þ

with initial conditions

S 0ð Þ ¼ S0; I 0ð Þ ¼ I0;R 0ð Þ ¼ R0: ð27Þ
Taking LT on Eq. (26) and then using the Eq. (27), we get

L S tð Þ½ � � 1
s
S0ð Þ � 1

sl
L 1� pð Þa� bSI� aSf g ¼ 0;

L I tð Þ½ � � 1
s
I0ð Þ � 1

sl
L bSI� gþ að ÞIf g;

L R tð Þ½ � � 1
s
R0ð Þ � 1

sl
L paþ gI� aRf g:

ð28Þ

Now, we present the non-linear operator Nas
N1 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ �
¼ L u1 t; qð Þ½ � � 1

s
S0ð Þ � 1

sl
Lf 1� pð Þa� bu1 t; qð Þu2 t; qð Þ � au1 t; qð Þg;

N2 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ �
¼ L u2 t; qð Þ½ � � 1

s
I0ð Þ � 1

sl
Lfbu1 t; qð Þu2 t; qð Þ � gþ að Þu2 t; qð Þg;

N3 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ �
¼ L u3 t; qð Þ½ � � 1

s
R0ð Þ � 1

sl
L paþ gu2 t; qð Þ � au3 t; qð Þf g:

:

ð29Þ
At H tð Þ ¼ 1, the m-th order deformation equation is

defined as

L Sm tð Þ � kmSm�1 tð Þ½ � ¼ �hL�1 R1;m S
!

m�1; I
!

m�1; R
!

m�1

h in o
;

L Im tð Þ � kmIm�1 tð Þ½ � ¼ �hL�1 R2;m S
!

m�1; I
!

m�1; R
!

m�1

h in o
;

L½Rm tð Þ � kmRm�1 tð Þ� ¼ �hL�1 R3;m S
!

m�1; I
!

m�1; R
!

m�1

h in o
;

ð30Þ
where

R1;m S
!

m�1; I
!

m�1; R
!

m�1

h i
¼ L Sm�1 tð Þ½ � � 1� km

n

� �
1
s
S0ð Þ � 1

sl
L 1� pð Þa� b

Pm�1
i¼0 SiIm�1�i � aSm�1

n o
;

R2;m S
!

m�1; I
!

m�1; R
!

m�1

h i
¼ L Im�1 tð Þ½ � � 1� km

n

� �
1
s
I0ð Þ � 1

sl
L b

Pm�1
i¼0 SiIm�1�i � gþ að ÞIm�1

n o
;

R3;m S
!

m�1; I
!

m�1; R
!

m�1

h i
¼ L Rm�1 tð Þ½ � � 1� km

n

� �
1
s
R0ð Þ � 1

sl
Lfpaþ gIm�1 � aRm�1g:

ð31Þ

By employing inverse LT on Eq. (30), we get

Sm tð Þ ¼ kmSm�1 tð Þ þ �hL�1 R1;m S
!

m�1; I
!

m�1; R
!

m�1

h in o
;

Im tð Þ ¼ kmIm�1 tð Þ þ �hL�1 R2;m S
!

m�1; I
!

m�1; R
!

m�1

h in o
;

Rm tð Þ ¼ kmRm�1 tð Þ þ �hL�1 R3;m S
!

m�1; I
!

m�1; R
!

m�1

h in o
:

ð32Þ
Using the initial conditions and the above system, we have

S1 tð Þ ¼ ða� pa� ðaþ bQ0ÞS0Þ
�htl

C½lþ 1� ;

I1 tð Þ ¼ ð�Q0ðaþ g� bS0ÞÞ
�htl

C½lþ 1� ;

R1 tð Þ ¼ gQ0 þ a p� R0ð Þð Þ �htl

C lþ 1½ � ;

S2 tð Þ ¼ a� pa� aþ bQ0ð ÞS0ð Þ �h nþ �hð Þtl
C lþ 1½ � þ �htl

C 2lþ 1½ �
� ðtlb2�hQ2

0S0 þ að �1þ pð Þðtla�h

�C 1þ l½ �Þ þ tla�hS0Þ
þ tlb�hQ0 �1þ pð Þaþ 3aþ gð ÞS0 � bS2

0

� �Þ;
I2 tð Þ ¼ �Q0 aþ g� bS0ð Þð Þ �h nþ �hð Þtl

C lþ 1½ � � �h2Q0t
2l

C 2lþ 1½ � ð�a2

þ aðð�1þ pÞb� 2gÞ � g2

þbð3aþ 2gþ bQ0ÞS0 � b2S2
0Þ;



Table 1 The effect of the vaccination for distinct parameters [44].

Case Comments S0 I0 R0 a b g p

I Disease eradication 1 0 0 0:8 0:003 0:4 0:9

II No eradication 0:8 0:2 0 0:8 0:03 0:4 0:0

Fig. 2 Response of q-HATM solution with respect to t for

ið Þ S tð Þ; iið Þ I tð Þ; iiið Þ R tð Þ at n ¼ 1 and �h ¼ �1 for the Case I

with diverselusing Table 1.

Fig. 3 Nature of obtained solution for

ið Þ S tð Þ; iið Þ I tð Þ; iiið Þ R tð Þ at n ¼ 1 and l ¼ 1 for the Case I

with distinct�h using Table 1.

A new numerical investigation of fractional order susceptible-infected-recovered epidemic model 1751
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R2 tð Þ ¼ ðgQ0 þ aðp� R0ÞÞ
�h nþ �hð Þtl
C lþ 1½ �

þ ða p �tla�hþ C 1þ l½ �ð Þ þ tla�hR0ð Þ
Fig. 4 �h-curves drawn for ið Þ S tð Þ; iið Þ I tð Þ; iiið Þ R tð Þ with

n ¼ 1 and t ¼ 0:01 for Case I at differentl using Table 1.
�tlg�hQ0 2aþ g� bS0ð ÞÞ �htl

C 2lþ 1½ � ;

S3 tð Þ ¼ a� pa� aþ bQ0ð ÞS0ð Þ �h nþ �hð Þ2tl
C lþ 1½ � þ �h2ðnþ �hÞtl

C 2lþ 1½ �
� ðtlb2�hQ2

0S0 þ að �1þ pð Þðtla�h
Fig. 5 Nature of q-HATM solution with t for

ið Þ S tð Þ; iið Þ I tð Þ; iiið Þ R tð Þ at �h ¼ �1; n ¼ 1 and using Table 1

for the Case II with diversel.



Fig. 6 Nature of obtained solution for

ið Þ S tð Þ; iið Þ I tð Þ; iiið Þ R tð Þ at n ¼ 1; l ¼ 1 and using Table 1

for the Case II with diverse�h.

Fig. 7 �h-curves drown for ið Þ S tð Þ; iið Þ I tð Þ; iiið Þ R tð Þ at n ¼ 1

and t ¼ 0:01 for the Case II with distinctl using Table 1.

A new numerical investigation of fractional order susceptible-infected-recovered epidemic model 1753
�C 1þ l½ �Þ þ tla�hS0Þ
þ tlb�hQ0 �1þ pð Þaþ 3aþ gð ÞS0 � bS2

0

� �Þ;
þð 1

C 3lþ 1½ � ð�ð�1þ pÞaðt2la2�h2 � tla�hC½1þ l� þ C½1þ 2l�Þ

þ 1

C lþ 1½ �2 t
l�hðð�1

þpÞabC lþ 1½ �3Q0 þ tl�hð�bC½2lþ 1�Q0ðaþ g� bS0Þðð�1

þ pÞaþ ðaþ bQ0ÞS0Þ
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þC lþ 1½ �2ð�ð�1þ pÞabQ0ð2aþ bQ0Þ � ða3 þ bQ0ðað5aþ b

� pbÞ þ 3ag

þg2 þ bQ0ð4aþ gþ bQ0ÞÞÞS0 þ 2b2Q0ð2aþ gþ bQ0ÞS2
0

� b3Q0S
3
0ÞÞÞÞÞ�htl;

I3 tð Þ ¼ �Q0 aþ g� bS0ð Þð Þ �h nþ �hð Þ2tl
C lþ 1½ � � �h2 nþ �hð ÞQ0t

2l

C 2lþ 1½ � ð�a2

þ aðð�1þ pÞb� 2gÞ � g2

þbð3aþ 2gþ bQ0ÞS0 � b2S2
0Þðtl�hQ0ð�

tl aþ gð Þ�h
C 3lþ 1½ �

� ða aþ b� pbð Þ þ 2agþ g2

þbS0 �3a� 2g� bQ0 þ bS0ð ÞÞ

þ bðt
l�h aþ g� bS0ð Þ �1þ pð Þaþ aþ bQ0ð ÞS0ð Þ

C lþ 1½ �2C lþ 1½ �

þ tl�hS0

C 3lþ 1½ � a aþ b� pbð Þ þ 2agþ g2 þ bS0 �3a� 2g� bQ0 þ bS0ð Þ� �

þ 1

C 3lþ 1½ � ð� �1þ pð ÞaC lþ 1½ � þ tl�hð �1þ pð Þa aþ bQ0ð Þ

þ ða2 þ bQ0ð3aþ g

þbQ0ÞÞS0 � b2Q0S
2
0ÞÞÞÞÞ�htl;

R3 tð Þ ¼ ðgQ0 þ aðp� R0ÞÞ
�h nþ �hð Þ2tl
C lþ 1½ �

þ ða p �tla�hþ C 1þ l½ �ð Þ þ tla�hR0ð Þ

�tlg�hQ0 2aþ g� bS0ð ÞÞ �h nþ �hð Þtl
C 2lþ 1½ � þ ð 1

C 3lþ 1½ � ðaðpðt
2la2�h2

� tla�hC½1þ l� þ C½1þ 2l�Þ

�t2la2�h2R0Þ � t2lb2g�h2Q2
0S0 þ t2lg�h2Q0ð3a2 þ g2 þ aðb� pb

þ 3gÞ

�2bð2aþ gÞS0 þ b2S2
0ÞÞÞ�htl;

..

.

We can get the rest of the term in a similar way. The q-

HATM series solution for the FBM equation considered in
Eq. (26) is given by

S tð Þ ¼ S0 tð Þ þP1
m¼1Sm tð Þ 1

n

� �m
;

I tð Þ ¼ I0 tð Þ þP1
m¼1Im tð Þ 1

n

� �m
;

R tð Þ ¼ R0 tð Þ þP1
m¼1Rm tð Þ 1

n

� �m
:

ð33Þ
6. Results and discussion

Here, the new series solutions have been evaluated in the pre-
sent investigation for the SIR epidemic model of childhood
disease in order to demonstrate the efficiency of the propped
method. In Table 1, we present the two special cases which
are considered in the present investigation with specific values

of the parameters. Figs. 2 and 5 illustrated the nature of q-
HATM solutions of the susceptible group SðtÞ, infected group
IðtÞ, and removed or quarantined group R tð Þwith distinct

Brownian motion and standard motion l ¼ 1ð Þ for Case I
and Case II, respectively and from the plots, it is confirmed
that the proposed fractional epidemic model has some interest-

ing behaviour. The behaviour of q-HATM solution for diverse
�his cited in Figs. 3 and 6 respectively for Case I and II, and
which help us to identify the effect of the homotopy parameter.
The �h-curves are drowned for diverse a and which respectively

presented in Figs. 4 and 7 to analyse the behaviour of the
achieved results for the projected model considered in two
cases with �hð Þ. The line segment in the horizontal positionof

the �h-curves indicates the convergence region of the obtained
solution.

In Case I, we can observe from the plots that as time

increases the susceptible group SðtÞ is increasing and removed
group R tð Þis decreases, but the infected group I tð Þð Þ is remain
constant due to our initial approach I0 tð Þ ¼ 0ð Þ. Further, in
Case II we get some of the interesting and also stimulating
results as we can see in Fig. 5. Authors in [43] considered
CFDTM to find the solution and analyse the behaviour of
the obtained solution for the proposed model. However, as

compared to the above-cited technique q-HATM is offers a
simple algorithm to find the solution for the non-linear prob-
lem, it does not require any transformation of the functions

like CFDTM. Moreover, the proposed scheme reduces massive
computation and requires less time to evaluate the terms of the
series solution.

7. Conclusion

In this paper, the solution for the fractional-order non-linear

system of differential equations describing the SIR model of
childhood diseaseis obtained with the aid of q-HATM. The
achieved solutions are illustrated in the series form, which

quickly converges to the analytical solution. From the
obtained result, we can see that the dynamic nature of the
projected model depends on time instant and time history.
These properties can be proficiently demonstrated with the

aid of the theory of FC. The graphical illustration confirms
that the model conspicuously depends on the considered
parameters and the arbitrary order, and which can stimulus

the stability of the model. Lastly, we conclude that, the con-
sidered scheme is more effective as well as highly methodi-
cal, and hence it can applyto find the solution for non-

linear differential equations exemplifying the various mecha-
nisms. Particularly, to analyse the behaviour as well as pre-
dict the dynamical growth of human diseases. These findings
may help to a better understanding of the dynamical growth

of human diseases.
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