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Abstract
In this paper, via invertible radial differential operators, we characterize the closures of
the Bergman–Besov spaces in the weighted Bloch spaces on the unit ball. The results
of this paper generalize some previous results of Wen Xu and Ruhan Zhao. We first
show on the way that the Bergman–Besov space is contained in the weighted little
Bloch space.

Mathematics Subject Classification 30H30 · 30J05 · 46E15

1 Introduction

LetBn = {z : |z| ≤ 1} be the open unit ball inC
n and let Sn = {z : |z| = 1} be the unit

sphere in C
n . Let H(Bn) and H∞ denote the spaces of all and bounded holomorphic

functions on Bn , respectively.
Let ν be the normalized Lebesgue measure on Bn . When n = 1, dν(z) = d A(z) =

1
π

dxdy = 1
π

rdrdθ is the normalized area measure on the unit disc B1 = D.
For q ∈ R, we define the following measures on Bn :

dνq(z) = (1 − |z|2)qdν(z).
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For 0 < p < ∞, the Lebesgue classes with respect to νq will be denoted by L p
q .By

Proposition 2.3 [7] we know that Lebesgue classes of essentially bounded functions
on Bn with respect to νq are same for any q ∈ R, and we will denote it by L∞. Let
m be a nonnegative integer such that q + pm > −1. Then the Bergman–Besov space
B p

q consists of all f ∈ H(Bn) for which

(1 − |z|2)m ∂m f

∂zγ1
1 ...∂zγn

n
∈ L p

q

for every multi-index γ = (γ1, ..., γn) with |γ | = m.
The spaces B2

q are reproducing kernelHilbert spceswhose kernels play an important
role in the study of all Bergman–Besov spaces B p

q . Hence we follow Kaptanoğlu
[7] and use invertible radial differential operators Dt

s : H(Bn) → H(Bn) of order
t ∈ R for any s ∈ R which are compatible with the kernels. Also consider the linear
transformation I t

s defined by

I t
s f (z) = (1 − |z|2)t Dt

s f (z),

where f ∈ H(Bn).
For q ∈ R and 0 < p < ∞, the Bergman–Besov space B p

q is

B p
q = { f ∈ H(Bn) : I t

s f (z) ∈ L p
q for some s, t ∈ R satisfy q + pt > −1}.

Then ‖ f ‖B p
q

:= ∥
∥I t

s f
∥
∥

L p
q
for such s, t defines a norm on B p

q for p ≥ 1, and

quasinorm for 0 < p < 1.
It is known that each B p

q space contains all polynomials, see [9]. If q > −1,
then one can take t = 0 to get that the Bergman–Besov spaces B p

q are the weighted
Bergman spaces Ap

q = L p
q ∩ H(Bn). Also B2−1 is the Hardy space H2, B2−n is the

Drury–Arveson space and B2
−(n+1) is the Dirichlet space.

For α ∈ R, the weighted Bloch space Bα is the class of all functions f ∈ H(Bn)

such that

‖ f ‖Bα
:= sup

z∈Bn

(1 − |z|2)α|I t
s f (z)| < ∞,

for some s, t ∈ R satisfying α + t > 0. Then ‖.‖Bα
defines a norm for any such s, t .

The weighted little Bloch space Bα0 consists of functions f ∈ Bα such that

lim
|z|→1−(1 − |z|2)α|I t

s f (z)| = 0,

where s, t ∈ R satisfies α + t > 0.
It is known that Bα0 is the closure of the set of polynomials in Bα , see [8]. If α = 0,

then the spaces B0 and B00 are the usual Bloch and little Bloch spaces. Also from
definitions we have that Bα ⊂ Bβ0 ⊂ Bβ for α < β, see [8].
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It is also known that the above definitions are independent of s, t ∈ R under the
conditions α + t > 0 and q + pt > −1 (see [10]). Furthermore these definitions
are also independent of the particular type of the derivative. Namely one can use the
holomorphic gradient and the usual radial derivative in place of Dt

s , see [10,18].
In [10], Kaptanoğlu and Üreyen gave the precise inclusion relations among

Bergman–Besov spaces andweightedBloch spaces on the unit ball ofCn . They showed
that if α ∈ R, then B p

α p−(1+n) ⊂ Bα and Bα cannot be replaced by a smaller weighted
Bloch space. Hovewer, the inclusion relation between Bergman–Besov spaces and
weighted little Bloch spaces was not clear from their result. In the case of unit disc,
n = 1, it is well known that Besov spaces are contained in the little Bloch space
for 1 ≤ p < ∞. In this direction our first result is an extension of the above well
known fact. We would like to thank A. E. Üreyen for providing us with a proof of the
following theorem.

Theorem 1.1 Let α ∈ R and 0 < p < ∞. Then the Bergman–Besov space B p
α p−(n+1)

is strictly contained in the weighted little Bloch space Bα0.

In [2], Anderson, Clunie and Pommerenke asked the closure of the space of all
bounded analytic functions H∞ in the Bloch norm. This problem is still an open
problem. The motivation for this type of work is a result of Peter Jones that gives a
description of the closure of BMOA in the Bloch spaceB (see Theorem 9 of [1] and [6]
for proof). There has been many results on this topic, namely to determine the closure
of various subspaces of the Bloch space in the Bloch norm, see [3–5,11,14–16].

If X is a subspace of the weighted Bloch space Bα , then CBα
(X) will denote the

closure of X in the Bα-norm, and the distance from f ∈ Bα to the subspace X in the
Bα-norm will be denoted by distBα

( f , X).
Let α ∈ R and ε > 0. If f ∈ H(Bn), we define the level set 
α,t

ε ( f ) by


α,t
ε ( f ) = {z ∈ Bn : (1 − |z|2)α|I t

s f (z)| ≥ ε},

where s, t ∈ R with α + t > 0.
For the closure problem, our result is the following theorem.

Theorem 1.2 Let 1 ≤ p < ∞, α ∈ R, q ≤ α p − (n + 1) and choose t ∈ R such that
0 < α + t . If f ∈ Bα , then the following conditions are equivalent:

(i) f ∈ Bα0.
(ii) f ∈ CBα

(B p
q ).

(iii) For every ε > 0, ∫



α,t
ε ( f )

(1 − |z|2)−(n+1)dν(z) < ∞.

The holomorphic Besov spaces Bp(Bn) defined by Zhu in [18] are our Bergman–
Besov spaces B p

−(n+1) for p ≥ 1 (see [7] p.∼392). In [15] Xu gave distance estimates
for Besov spaces Bp. In our case, if α = 0, then we have the usual Bloch space B0,
and Besov spaces B p

−(n+1) for p ≥ 1. Hence Theorem 1.2 includes Xu results (see

Theorem 3 of [15]). Further, if we are in the unit disc, i.e. n = 1, then B p
−2 are Besov
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spaces on the unit disc. These spaces are denoted by Bp by Zhao in [16]. Theorem 1.2
generalizes Theorem 8 of [16] to higher dimensions.

If q > α p − (n +1), then there is no inclusion relation between B p
q and Bα , hence,

we consider the closure of B p
q ∩ Bα in the weighted Bloch norm. By Kaptanoğlu and

Üreyen’s result, if q > α p − 1, then the closure of B p
q ∩ Bα in the weighted Bloch

norm is trivial. It remains to consider the case α p − (n + 1) < q ≤ α p − 1. In this
case, we have the following result.

Theorem 1.3 Let 1 ≤ p < ∞, α ∈ R, α p − (n + 1) < q ≤ α p − 1 and choose t ∈ R

such that α + t > 0. If f ∈ Bα , then the following conditions are equivalent:

(i) f ∈ CBα
(B p

q ∩ Bα).
(ii) There exists t0 ≥ t with α + t0 > n and q + pt0 > −1 such that for every ε > 0,

∫



α,t0
ε ( f )

(1 − |z|2)q−α pdν(z) < ∞.

The paper is organized as follows. In Sect. 2, we give some background on
Bergman–Besov spaces. In Sect. 3 we will give some required lemmas and in Sect. 4,
we prove Theorem 1.1 as Theorem 4.1. In the final section we prove Theorem 1.2 as
Theorem 5.1.

Throughout this paper, we will write f � g if there exists a constant C such that
f ≤ Cg. Also, the symbol f ≈ g means that f � g � f .

2 Background on Bergman–Besov Spaces

For an n-tuple of nonnegative integers γ = (γ1, ..., γn), we willl write γ ! = ∏n
i=1 γi !

and |γ | = ∑n
i=1 γi . If we are given a point z = (z1, ..., zn) ∈ C

n, then we will write
zγ = ∏n

i=1 zγi
i . With this notation, for every f ∈ H(Bn), we can find coefficients

f̂ (γ ) ∈ C such that

f (z) =
∑

γ

f̂ (γ )zγ ,

where the sum is taken over all n-tuple of nonnegative integers. Furhermore, for k ∈ N,

we can write

fk(z) =
∑

|γ |=k

f̂ (γ )zγ

and hence we get

f (z) =
∞
∑

k=0

fk(z).

This is called homogeneous expansion of f .
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The spaces B2
q are reproducing kernel Hilbert spaces whose kernels play a big role

in the study of all B p
q .

Definition 2.1 For q ∈ R and z, w ∈ Bn , the Bergman–Besov kernels are

Kq(z, w) :=
{

1
(1−〈z,w〉)1+n+q = ∑∞

k=0
(1+n+q)k

k! 〈z, w〉k q > −(1 + n)

2F1(1, 1; 1 − (n + q); 〈z, w〉) = ∑∞
k=0

k!〈z,w〉k

(1−(n+q))k
, q ≤ −(1 + n)

where 2F1 is the usual hypergeometric function and (a)b = �(a+b)
�(a)

is the Pochhammer
symbol.

The kernel Kq is the reproducing kernel of the Hilbert space B2
q .

Definition 2.2 For any s, t ∈ R the radial differential operator Dt
s defined on H(Bn)

by

Dt
s f (z) :=

∞
∑

k=0

dk(s, t) fk(z) :=
∞
∑

k=0

ck(s + t)

ck(s)
fk(z),

where ck(s) is the coefficient of 〈z, w〉k in Kq(z, w) (see [10]).

With this definition, it is known that

D0
s = I , Du

s+t Dt
s = Dt+u

s , (Dt
s)

−1 = D−t
s+t

for any s, t, u.

A nice property for the radial differential operator Dt
s is the identity

Dt
q Kq(z, w) = Kq+t (z, w)

for any q, t , where differentiation is performed on the variable z (see [10]).
In [10], Kaptanoğlu and Üreyen gave the precise inclusion relations among

Bergman–Besov spaces and Bloch-type spaces on the unit ball of C
n . Namely, they

proved the following theorems.

Theorem 2.3 (Theorem 1.5 of [10]) Given B p
q , we have the inclusions

B
<

1+q
p

⊂ B p
q ⊂ B 1+n+q

p
,

where the symbol B
<

1+q
p

denotes any one of the spaces Bb with b <
1+q

p .

An equivalent statement of Theorem 2.3 is the following: Given Bα , the inclusions
B p

α p−(1+n) ⊂ Bα ⊂ B p
>α p−1 hold.

Theorem 2.4 (Theorem 1.6 of [10]) Let B p
q be given.
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(i) If p ≤ P, then B p
q ⊂ B P

Q if and only if

1 + n + q

p
≤ 1 + n + Q

P
.

(ii) If P < p, then B p
q ⊂ B P

Q if and only if

1 + q

p
<

1 + Q

P
.

3 Some Lemmas

In this section, we will give some known lemmas that we need in order to prove
Theorem 1.2. First, we begin with the following integral estimate of Rudin.

Lemma 3.1 (Proposition 1.4.10 of [13]) Suppose c > 0 and t > −1. Then

∫

Bn

(1 − |w|2)t dν(w)

|1 − 〈z, w〉|n+1+t+c
≈ 1

(1 − |z|2)c
.

We will also use the following Minkowski integral inequality which exchanges the
order of integration.

Lemma 3.2 (Theorem 3.3.5 of [12]) Let (X ,A, μ) and (Y ,B, λ) be σ -finite measure
spaces and let f (x, y) be an A × B measurable function. If 1 ≤ p < ∞, then

( ∫

Y

( ∫

X
| f (x, y)|dμ(x)

)p

dλ(y)

)1/p

≤
∫

X

( ∫

Y
| f (x, y)|pdλ(y)

)1/p

dμ(x).

4 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. We first give an example of a function
that is in the weighted little Bloch space Bα0 but not in the Bergman–Besov space
B p

α p−(n+1) for α ∈ R. Our candidate is a function constructed by Kaptanoğlu and

Üreyen(see Example 3.4. of [10]).
Recall that a sequence {nk} of positive integers has Hadamard gaps if there exists

c > 1 such that nk+1 ≥ cnk for all k ≥ 1.
Let 0 < p < ∞ and set q := α p − (n + 1). Define

Gqp(z) :=
∑

k

2k(1+q)/pW2k (z), z ∈ Bn,

where Wm are the Ryll–Wojtaszczyk polynomials with the properties

‖Wm‖L∞(σ ) = 1 and ‖Wm‖L p(σ ) � 1, 0 < p < ∞.
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Here σ is the normalized Lebesgue measure on Sn .
Then

∑

k

(2k)−(1+q)
∥
∥
∥2k(1+q)/pW2k (z)

∥
∥
∥

p

L p(σ )
�

∑

k

(2k)−(1+q)2k(1+q) = ∞

Thus by Theorem 3.3 of [10], Gqp /∈ B p
q . On the other hand

sup
k

(2k)−α
∥
∥
∥2k(1+q)/pW2k (z)

∥
∥
∥

L∞(σ )
= sup

k
(2k)−α2k(1+q)/p

∥
∥W2k (z)

∥
∥

L∞(σ )

= sup
k

2k((1+q)/p−α) < ∞,

since 1+q
p < α. Hence by Theorem 3.3 of [10], Gqp ∈ Bα. Furthermore

lim
k→∞(2k)−α

∥
∥
∥2k(1+q)/pW2k (z)

∥
∥
∥

L∞(σ )
= lim

k→∞ 2k(
1+q

p −α) = 0,

since 1+q
p − α = − n

p . Hence by Proposition 63 of [17], Gqp ∈ Bα0.

Theorem 4.1 Let α ∈ R and 0 < p < ∞. Then the Bergman–Besov space B p
α p−(n+1)

is strictly contained in the weighted little Bloch space Bα0.

Proof By Theorem 2.3 of [10], it is enough to show that B p
α p−(n+1) ⊂ Bα0 for α = 0.

Let f ∈ B p
−(n+1). Then for any real number s, D1

s f (z) ∈ B p
p−(n+1). It follows from

Corollary 6.5 of [9] that

lim
|z|→1−(1 − |z|2)|D1

s f (z)| = 0.

Thus f ∈ B00 and B p
−(n+1) ⊆ B00. The above function Gqp(z) ∈ Bα0 \ B p

q , where
q = α p − (n + 1). That finishes the proof. ��

5 Proof of Theorem 1.2

Recall that, given α ∈ R, we know from Theorem 2.3 that B p
α p−(n+1) ⊂ Bα . Thus we

can study CBα
(B p

α p−(n+1)), the closure of B p
α p−(n+1) in the weighted Bloch space Bα .

Further let f ∈ Bα and ε > 0. Recall that the level set 
α,t
ε ( f ) for f is


α,t
ε ( f ) = {z ∈ Bn : (1 − |z|2)α|I t

s f (z)| ≥ ε},

where s, t ∈ R with α + t > 0. Let χ

α,t
ε ( f ) be the characteristic function of the set


α,t
ε ( f ). With this notation, Theorem 1.2 repeated is the following.

Theorem 5.1 Let 1 ≤ p < ∞, α ∈ R, q ≤ α p − (n + 1) and choose t ∈ R such that
0 < α + t . If f ∈ Bα , then the following conditions are equivalent:
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(i) f ∈ Bα0.
(ii) f ∈ CBα

(B p
q ).

(iii) For every ε > 0,

∫



α,t
ε ( f )

(1 − |z|2)−(n+1)dν(z) < ∞. (1)

Proof Theorem 2.4 implies that B p
q ⊂ B p

α p−(n+1) whenever q ≤ α p − (n +1). Hence

it is enough to prove theorem only for q := α p − (n + 1). Since B p
q contains all

polynomials, and it is known that the closure of the set of polynomials in the weighted
Bloch space Bα is just the weighted little Bloch space Bα0, we obtain that the closure
of B p

q in Bα contains Bα0. On the other hand, by Theorem 1.1, B p
q ⊂ Bα0. It is clear

that the closure of B p
q in Bα is contained in Bα0. Thus Bα0 equals to the closure of B p

q
in Bα , and so statement (i) is equivalent to statement (ii).

(ii)→ (iii): Let f ∈ CBα
(B p

q ) and ε > 0. Then there exists a function g ∈ B p
q such

that ‖ f − g‖Bα
≤ ε

2 for some s, t1 ∈ R satisfying α + t1 > 0. By our assumption
α + t > 0, we can take t1 = t . Given such t ∈ R, let p0 > p be such that p0 > n

α+t .

Set q0 = α p0−(n+1).Then q0+ p0t > −1 and by Theorem 2.4, we have B p
q ⊂ B p0

q0 .

Also for such s, t ∈ R with α + t > 0, let z ∈ Bn . Then since

(1 − |z|2)α|I t
s f (z)| ≤ (1 − |z|2)α|I t

s ( f (z) − g(z))| + (1 − |z|z)α|I t
s g(z)|,

we have that


α,t
ε ( f ) ⊆ 


α,t
ε
2

(g).

Hence, since g ∈ B p
q ⊂ B p0

q0 , we have

∞ >

∫

Bn

|I t
s g(z)|p0(1 − |z|2)q0dν(z)

≥
∫



α,t
ε
2

(g)

[(1 − |z|2)α|I t
s g(z)|]p0(1 − |z|2)q0−α p0dν(z)

≥
(ε

2

)p0
∫



α,t
ε
2

(g)

(1 − |z|2)q0−α p0dν(z)

≥
(ε

2

)p0
∫



α,t
ε ( f )

(1 − |z|2)q0−α p0dν(z).

Thus,
∫



α,t
ε ( f )

(1 − |z|2)−(n+1)dν(z) < ∞.
(iii) → (ii): Fix ε > 0 and let f ∈ Bα satisfy (1). Since α + t > 0, choose s ∈ R

such that α < s +1. Then by (4) in [8] for f ∈ Bα , we have the integral representation

f (z) = (1 + s + t)n

n!
∫

Bn

Ks(z, w)(1 − |w|2)s+t Dt
s f (w)dν(w). (2)



Closures of Bergman–Besov Spaces... Page 9 of 13 100

Let f (z) := f1(z) + f2(z), where

f1(z) = (1 + s + t)n

n!
∫



α,t
ε ( f )

Ks(z, w)(1 − |w|2)s+t Dt
s f (w)dν(w)

and

f2(z) = (1 + s + t)n

n!
∫

Bn�

α,t
ε ( f )

Ks(z, w)(1 − |w|2)s+t Dt
s f (w)dν(w).

The proof will be done once we show that ‖ f2‖Bα
� ε and f1 ∈ B p

q . Under the
condition α + t > 0, the norms on Bα are equivalent. So we can take s, t for which
(2) holds. Then, since Dt

s Ks(z, w) = Ks+t (z, w), we obtain

|Dt
s f2(z)| =

∣
∣
∣
∣

(1 + s + t)n

n!
∫

Bn�

α,t
ε ( f )

Dt
s Ks(z, w)(1 − |w|2)s+t Dt

s f (w)dν(w)

∣
∣
∣
∣

=
∣
∣
∣
∣

(1 + s + t)n

n!
∫

Bn�

α,t
ε ( f )

Ks+t (z, w)(1 − |w|2)s+t Dt
s f (w)dν(w)

∣
∣
∣
∣

≤ ε
(1 + s + t)n

n!
∫

Bn

|Ks+t (z, w)|(1 − |w|2)s−αdν(w).

By our choice of s, t , notice that s + t > α + t − 1 > −1 > −(1 + n). Hence by the
definition of the reproducing kernel,

Ks+t (z, w) = 1

(1 − 〈z, w〉)1+n+s+t
.

Therefore,

|Dt
s f2(z)| ≤ ε

(1 + s + t)n

n!
∫

Bn

(1 − |w|2)s−α

|1 − 〈z, w〉|1+n+s+t
dν(w)

� ε
(1 + s + t)n

n!
1

(1 − |z|2)α+t
,

where the second inequality follows from Lemma 3.1 with s −α > −1 and α+ t > 0.
This implies that f2(z) ∈ Bα and ‖ f − f1‖Bα

= ‖ f2‖Bα
� ε

(1+s+t)n
n! . This also

implies that f1 ∈ Bα .
Now we are going to show that f1(z) ∈ B p

q . Let t1 ∈ R be such that q + pt1 > −1.
Since s does not appear in this condition we can take s ∈ R for which (2) holds.

Dt1
s f1(z) = (1 + s + t)n

n!
∫



α,t
ε ( f )

Dt1
s Ks(z, w)(1 − |w|2)s+t Dt

s f (w)dν(w)

= (1 + s + t)n

n!
∫



α,t
ε ( f )

Ks+t1(z, w)(1 − |w|2)s+t Dt
s f (w)dν(w)
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So,

∫

Bn

∣
∣(1 − |z|2)t1 Dt1

s f1(z)
∣
∣

p
(1 − |z|2)qdν(z) =

∫

Bn

∣
∣Dt1

s f1(z)
∣
∣

p
(1 − |z|2)q+pt1dν(z)

≤
[
(1 + s + t)n

n!
]p[ ∫



α,t
ε ( f )

( ∫

Bn

|Ks+t1(z, w)|p(1 − |w|2)p(s+t)

|Dt
s f (w)|p(1 − |z|2)q+pt1dν(z)

)1/p

dν(w)

]p

≤
[
(1 + s + t)n

n!
]p

‖ f ‖p
Bα

[ ∫



α,t
ε ( f )

(∫

Bn

|Ks+t1(z, w)|p

(1 − |w|2)p(s−α)(1 − |z|2)q+pt1dν(z)

)1/p

dν(w)

]p

=
[
(1 + s + t)n

n!
]p

‖ f ‖p
Bα

[ ∫



α,t
ε ( f )

(1 − |w|2)s−α

( ∫

Bn

(1 − |z|2)q+pt1

|1 − 〈z, w〉|p(1+n+s+t1)
dν(z)

)1/p

dν(w)

]p

,

where the first inequality follows fromLemma 3.2 and the second one follows from the
fact that f ∈ Bα . Above the last equation follows from the definition of the reproducing
kernel since t1 > n

p − α implies that s + t1 > α − 1+ n
p − α = −1+ n

p > −(n + 1).
In order to apply Lemma 3.1 to the integral

∫

Bn

(1 − |z|2)q+pt1

|1 − 〈z, w〉|p(1+n+s+t1)
dν(z),

we write p(1+ n + s + t1) = 1+ n +q + pt1 + p(1+ n + s)− 1− n −q. Now recall
that q = α p − (1+n). Hence p(1+n + s + t1) = 1+n +q + pt1+ p(1+n + s −α).
Since 1 + n + s − α > n ≥ 1, we can apply Lemma 3.1 with c = p(1 + n + s − α).
Thus ∫

Bn

(1 − |z|2)q+pt1

|1 − 〈z, w〉|p(1+n+s+t1)
dν(z) � 1

(1 − |w|2)p(1+n+s−α)
.

Therefore,

∫

Bn

∣
∣(1 − |z|2)t1 Dt1

s f1(z)
∣
∣p

(1 − |z|2)qdν(z)

�
[
(1 + s + t)n

n!
]p

‖ f ‖p
Bα

[ ∫



α,t
ε ( f )

(1 − |w|2)s−α

(1 − |w|2)1+n+s−α
dν(w)

]p

=
[
(1 + s + t)n

n!
]p

‖ f ‖p
Bα

[ ∫



α,t
ε ( f )

(1 − |w|2)−(n+1)dν(w)

]p

which is finite by (1). So f1 ∈ B p
q . This finishes the proof.

��
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We obtain the following corollaries from Theorem 5.1.

Corollary 5.2 Let 1 ≤ p < ∞, α ∈ R, q ≤ α p − (n + 1) and choose t ∈ R such that
0 < α + t . If f ∈ Bα , then the following quantities are equivalent in the sense of ≈ :

(i) distBα
( f ,Bα0),

(ii) distBα
( f , B p

q ),

(iii) inf{ε : χ



α,t
ε ( f )

(z)

(1−|z|2)n+1 dν(z) is a finite measure}.
Corollary 5.3 Let 1 ≤ p1 < p2 < ∞. Then

distBα
( f , B p1

α p1−(n+1)) = distBα
( f , B p2

α p2−(n+1)).

Next we prove Theorem 1.3. Since the proof of this theorem is similar to the proof
of Theorem 5.1, we will only give the skecth of the proof. The novelty here is that one
needs sufficiently higher order derivatives.

Theorem 5.4 Let 1 ≤ p < ∞, α ∈ R, α p − (n + 1) < q ≤ α p − 1 and choose t ∈ R

such that α + t > 0. If f ∈ Bα , then the following conditions are equivalent:

(i) f ∈ CBα
(B p

q ∩ Bα).
(ii) There exists t0 ≥ t with α + t0 > n and q + pt0 > −1 such that for every ε > 0,

∫



α,t0
ε ( f )

(1 − |z|2)q−α pdν(z) < ∞.

Proof To show first direction, suppose f ∈ CBα
(B p

q ∩ Bα) and ε > 0. Then there
exists a function g ∈ B p

q ∩Bα such that ‖ f − g‖Bα
≤ ε

2 for some s, t0 ∈ R such that
α + t0 > 0. In particular, we can take t0 ≥ t + n

p . Then for such t0, as before one can

show that 
α,t0
ε ( f ) ⊆ 


α,t0
ε
2

(g). Note that q + pt0 > α p − (n + 1) + pt + n > −1.

Now, similar to the proof of Theorem 5.1, since g ∈ B p
q one can also show that

∫



α,t0
ε ( f )

(1 − |z|2)q−α pdν(z) < ∞.

To prove other direction, fix ε > 0 and let f ∈ Bα satisfy

∫



α,t0
ε ( f )

(1 − |z|2)q−α pdν(z) < ∞,

for some t0 ≥ t , where α + t0 > n and q + pt0 > −1 hold. Since α + t0 > 0,
choose s ∈ R such that α < s + 1. Then f can be written as in (2). Following the
procedure of Theorem 5.1, we can write f (z) = f1(z) + f2(z). Now it is easy to see
that ‖ f2‖Bα

� ε which also imples that f1 ∈ Bα . Proof will be done once we show
that f1 ∈ B p

q , i.e. we need to show that

∫

Bn

∣
∣I t0

s f1(z)
∣
∣p

(1 − |z|2)qdν(z) < ∞.



100 Page 12 of 13 N. G. GÖğüŞ, F. Yilmaz

One can show this by using the facts f , f1 ∈ Bα , and Fubini Theorem, and Lemma
3.1. ��
Corollary 5.5 If 1 ≤ p < ∞, α ∈ R and α p − (n + 1) < q ≤ α p − 1, then
Bα0 � CBα

(B p
q ∩ Bα).

Proof There exists a function fα ∈ B p
q ∩ Bα\Bα0 (cf. [10, Example 3.2]). ��
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10. Kaptanoğlu, H.T., Üreyen, A.E.: Precise inclusion relations among Bergman–Besov and Bloch–
Lipschitz spaces and H∞ on the unit ball of C

N . Math. Nachr. 291(14–15), 2236–2251 (2018)
11. Manhas, J.S., Zhao, R.: Closures of Hardy and Hardy–Sobolev spaces in the Bloch type space on the

unit ball. Compl. Anal. Oper. Theory 12(5), 1303–1313 (2018)
12. Okikiolu, G.O.: Aspects of the Theory of Bounded Integral Operators in L p-Spaces. Academic Press,

New York (1971)
13. Rudin, W.: Function theory in the unit ball of C

n . Classics in Mathematics. Springer, Berlin, 2008.
Reprint of the 1980 edition

14. Tjani, M.: Distance of a Bloch function to the little Bloch space. Bull. Austral. Math. Soc. 74(1),
101–119 (2006)

15. Xu, W.: Distances from Bloch functions to some Möbius invariant function spaces in the unit ball of
C

n . J. Funct. Spaces Appl. 7(1), 91–104 (2009)



Closures of Bergman–Besov Spaces... Page 13 of 13 100

16. Zhao, R.: Distances from Bloch functions to some Möbius invariant spaces. Ann. Acad. Sci. Fenn.
Math. 33(1), 303–313 (2008)

17. Zhao, R., Zhu K.: Theory of Bergman spaces in the unit ball of C
n . Mem. Soc. Math. Fr. (N.S.),

(115):vi+103 pp. (2009)
18. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball, Volume 226 of Graduate Texts in Mathe-

matics. Springer, New York (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Closures of Bergman–Besov Spaces in the Weighted Bloch Spaces on the Unit Ball
	Abstract
	1 Introduction
	2 Background on Bergman–Besov Spaces
	3 Some Lemmas
	4 Proof of Theorem 1.1
	5 Proof of Theorem 1.2 
	Acknowledgements
	References




