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Polymers of Intrinsic Microporosity (PIMs) are increasingly

recognized as membrane materials for molecular separation

applications due to their unique structural and functional

properties. Development of electrospun PIMs further improved

the practical use of PIM polymers. PIM nanofibers produced by

electrospinning could be an effective membrane material to

handle various environmental concerns owing to their high

surface area, high hydrophobicity and high adsorption abilities.

In addition, highly selective electrospun PIMs could be

produced by simple modification methods to obtain specific

interactions with desired species. Versatility of electrospun

PIMs provides a unique advantage of producing various novel

fibrous membranes by electrospinning method for a range of

potential applications. Therefore, this review aims to discuss

the recent progress of electrospun PIMs, their properties and

future directions in various applications.
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Introduction
The invention of Polymers of Intrinsic Microporosity

(PIMs) was achieved almost two decades ago, and since

that time they have sparked a significant interest in devel-

opingfunctionalpolymermembranes [1].PIMsare aclass of

polymers that could be produced by incorporating highly

rigid contortion centers into polymer chains while prevent-

ing the conformational freedom. This unusual molecular

design enables the production of solution processable poly-

mers with high free volumes and interconnect micropores
www.sciencedirect.com 
[2]. PIM-1, is the first synthesized PIM polymer, shows a

decent separation ability in various membrane separation

applications [3,4]. The success of PIM-1 in separation

facilitates a considerable achievement in the synthesis of

numerous PIM polymers [5–9]. While the major focus was

producing dense membranes of PIMs until 2014, a new

focus has emerged after the introduction of PIM-1 fibrous

membrane by electrospinning technique [10].

Electrospinning is a straightforward method to produce

ultrafine nanofibers from a range of polymers [11]. Poly-

mer nanofibers produced by electrospinning could have a

huge potential in dealing with various challenges, includ-

ing environmental, health and energy owing to their

characteristic features such as high interconnected poros-

ity, high surface area and lightweight [12]. The develop-

ment of electrospun PIM nanofibers has become a

research hotspot since the remarkable features of PIMs

such as high porosity, hydrophobicity, and the affinity for

organic species could be exploited more efficiently in the

fibrous membrane form than that of dense membrane

form [13–15]. Hence, electrospun PIM nanofibers have

enhanced the practical use of PIMs in the past two-three

years. This review will overview the recent progress of

electrospun PIM nanofibers, their preparations, applica-

tions and future perspectives.

Electrospinning Polymers of Intrinsic
Microporosity (PIM) nanofibers
Electrospinning is a simple and cost-effective method

that exploits the interaction between the liquid and the

electrical field to produce fibers with diameters from a few

nanometers to micrometers within a short time. Basic

electrospinning set-up is composed of high voltage power

supply, syringe pump, a spinneret with needle nozzle and

a collector (Figure 1a). Several parameters could affect

the properties of nanofibers, such as polymer solubility

and molecular weight, solution concentration and con-

ductivity, applied voltage, flow rate, distance, tempera-

ture and humidity. These parameters are strongly related

to each other and, thus, changing one parameter may

require changing a range of parameters. Using an appro-

priate solvent has the paramount importance to produce

nanofibers as it directly influences the surface tension and

the conductivity of the polymer solutions [11].

PIMs exhibit excellent solubility in several common

organic solvents, and they could be modified for a specific
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(a) Basic electrospinning set up, (b) chemical structures of electrospun PIMs.
target by straightforward chemical modifications [16,17].

These features make them promising candidates for

electrospinning. Although various PIM structures have

been reported in the form of dense membranes for a broad

range of applications, only a few PIMs have been pro-

duced in the form of electrospun fibrous membranes

[10,13–15,18]. Electrospinning Polymers of Intrinsic

Microporosity was first achieved by Bonso et al. [10].

They managed to produce electrospun PIM-1 nanofibers

using tetrachloroethane (TCE) solvent. Afterwards, other

groups focused on the electrospinning of PIM-1 by using

same solvent as well as using different solvent mixtures

due to the toxic nature of TCE solvent [19,20]. Conve-

nient synthesis of PIM-1 from commercially available

monomers made it appealing for various studies in a short

time [21–24]. Meanwhile, electrospinning modified PIM-

1 has also attracted attention, as the affinity of PIM-1

could be easily tailored by modifying the nitrile group in

the polymer backbone [13,15,18,25]. Additionally, elec-

trospinning PIM-2 and a new generation PIM polymer

PIM-EA-TB have been accomplished recently [14,26].

Chemical structures of electrospun PIMs are depicted in

Figure 1b and Table 1 summarizes the electrospinning

studies performed on PIM polymers, electrospinning

parameters and the properties of electrospun PIMs.

PIMs exhibit high surface area and hydrophobic nature,

which makes them suitable for adsorption and separation

applications. These properties could be further improved
Current Opinion in Chemical Engineering 2022, 36:100793 
by producing nanofibers with a smaller diameter. PIM

nanofibers obtained from various studies reveal a broad

range of average fiber diameters from 0.7 to 10 mm as

displayed in Table 1. This significant disparity is mainly

originated from the different precursor polymers.

Depending on the molecular weight of the polymer,

electrospun PIM-1s and modified PIM-1s could be pro-

duced between 0.5 and 2.5 mm diameter range without

the necessity of any additives. Average fiber diameters of

electrospun PIM nanofibers could be further reduced up

to 160 nm by the addition of tetraethyl ammonium bro-

mide salt into spinning solution [33]. Moreover, the

temperature and the relative humidity have a negligible

effect on the electrospinning PIM polymers, facilitating

convenient use of these polymers in the electrospinning

applications [33].

The hydrophobic nature of electrospun PIMs could be

further improved by using highly fluorinated PIM poly-

mer, PIM-2, which shows a superhydrophobicity with a

water contact angle of 155 � 6�. Superhydrophobicity

could also be attained by chemical modification [34].

These membranes have an excellent ability to repel water

and separate organic compounds and oils from water

mixtures. High surface area usually arises from the struc-

ture of PIMs; however, it could be affected from the

spinning conditions. While some groups claimed the

BET surface area of electrospun PIMs are higher than

that of powder forms. In some studies, electrospun PIMs
www.sciencedirect.com
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Table 1

Summary of the electrospinning studies performed on PIM nanofibers and the properties of electrospun PIMs

Electrospun

PIM sample

Solventa Concentration

(wt %)

Applied

voltage

(kV)

Distance

(cm)

Flow rate

(mL/h)

Collector

(S/R-

rpm)b

Average fiber

diameter

(mm)

Contact

angle (u)

BET surface

area

(m2g�1)

Reference

PIM-1

TCE

10 10�15 n.a. 1�2 R-300 1.7 � 0.3 n.a. 546 [10]

10 10�12 17 0.6 R-100 1.7 132 � 8 n.a. [21]

7�10 10�12 17 0.6 R-100 1.7 n.a. 1114 [22]

10 10�12 17 0.6 R-100 n.a. n.a. n.a. [27]

23 11�12 18 0.5 R-2000 2.07 � 0.5 134 � 8 767 [23]

10�15 10�15 15�20 3.6 n.a. 5�7 n.a. 545 [24]

8�12 14�18.2 20 1 R-600 1�10 n.a. n.a. [28]

THF/DMF (9:1)
5�10 15�25 8�16 5�10 S 2�5 135 n.a. [19]

10 15 15 2 S n.a. n.a. 650 [29�]
TCE/THF(7:3) n.a. 16 15 3 S n.a. n.a. 712 [30�]
THF/toluene 5 10�15 15 1�2 S 1.8�4.6 n.a. 660�745 [20]

Hydrolyzed

PIM-1

DMF 40�120 10�15 10�15 0.3�0.6 S 0.76 � 0.09–

1.21 � 0.15

n.a. 25�320 [18]

Amidoxime

PIM-1 DMF
40 12 15 0.5 S 1.69 � 0.34 128 � 7 306 [13]

40 10�20 20 n.a. S 1.7 n.a. 605 [31�]
DMSO 15�30 15�25 10�20 0.12�0.9 S 0.7�1.4 121�132 n.a. [32]

PIM-2 TCE 43 12 18 0.6 R-1000 5.5 � 1.5 155 � 6 580 [14]

PIM-EA-TB CHCl3/n-Propyl

lactate

(10:0�5:5)

20 16–25 10–30 0.6–6 S 4.7–7.9 126 n.a. [26]

a Tetrachloroethane (TCE), tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl sulfoxide (DMSO).
b S; Stationary collector, R; Rotating Collector and the numbers represent rotation speed of the collector (rpm).
show similar or lower BET surface area compared to their

powder forms [13,18,23]. The discrepancy is possibly due

to the difference in spinning conditions; thus, a range of

BET surface have been reported for electrospun PIMs as

shown in Table 1. In addition to these remarkable prop-

erties, PIMs exhibit high thermal stability and high char

yields which make them particularly interesting candi-

date for all types of electrochemical applications

[10,35,36]. Therefore, research interest has also been

directed to the production of carbon electrodes from

electrospun PIM nanofibers [37–39,40�].

Applications of electrospun PIMs
PIMs have attained considerable attention because of

their exceptional adsorption and separation abilities,

and PIM-1 has always engrossed most of this attention

due to its remarkable affinity to organic species. It takes

up a significant amount of gas molecules and small

molecules from liquid media. This affinity can be tailored

for desired molecules with the proper modification meth-

ods. Satilmis et al. [17] revealed that neutral affinity of

PIM-1 could be directed towards cationic species by

simple hydrolysis and it could also be shifted to anionic

species with amine and ethanolamine modifications

[6,41]. The idea of producing a solution processable

adsorbent with high adsorption capacity along with a high

selectivity makes these polymers perfect candidates for

water treatment applications in various forms. However,

as it is the case for most polymeric membranes, dense

membranes have intrinsic limitations, as they tend to

show low flux, high energy cost, and high fouling
www.sciencedirect.com 
potential. Electrospun fibrous membranes could over-

come these limitations and exceed the performance of

conventional dense membranes [12]. Therefore, the

major focus became the adsorption applications for elec-

trospun PIMs in their as-spun forms. Additionally, their

thermal stability coupled with high surface area enabled

their use in carbonized forms for electrochemical applica-

tions. Table 2 presents the studies performed on electro-

spun PIMs, the composition of electrospun fibrous mem-

branes and their applications in their as-spun and

carbonized forms.

Adsorptive properties of electrospun PIMs was first inves-

tigated by Zhang et al. [21]. They prepared a series of

electrospun PIM-1/polyhedral oligomeric silsesquioxane

(POSS) membranes to enhance the hydrophobicity of

PIM-1 and successfully used these membranes to remove

oily products from water. They also showed that both

PIM-1 and PIM-1/POSS membranes could adsorb

organic contaminants from organic solvents [21,22]. Fol-

lowing that, Satilmis et al. [23] investigated the removal of

aniline from air and water by using various forms of PIM-1

samples including powder, dense and fibrous membranes.

The study showed that the aniline adsorption capacity of

PIM-1 fibers was greater than that of PIM-1 powder and

dense membranes from air. The maximum aniline

adsorption capacity of PIM-1 fibers was found to be

818 mg g�1 from air. Besides, they also demonstrated that

the adsorption occurs much faster in PIM-1 fibers than the

PIM-1 dense membrane when the adsorption is per-

formed in water. Aniline removal ability of PIM-1 fibers
Current Opinion in Chemical Engineering 2022, 36:100793
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Table 2

Composition of electrospun PIMs and their applications

Form of the electrospun

PIMs

Composition of fibrous membrane Application Reference

As-spun PIM-1/POSS Adsorption of oil soluble contaminants, oil–water separation [21]

PIM-1 Adsorption of dyes from non-aqueous media [22]

PIM-1 Adsorption of aniline from air and water [23]

PIM-1 Adsorption of carbendazim and phenol from methanol [24]

Pd coated PIM-1 Reduction of nitroaromatic compounds [28]

PIM-1/PAN/MOF Adsorption/filtration and catalysis [29�]
PIM-1 CO2/N2 adsorption [20]

PIM-1/MOF Hydrogen adsorption/storage [30�]
HPIM-1 Adsorption of dyes and heavy metals from water [27]

HPIM-1 Adsorption of dyes from water [18]

HPIM-1/HMDI Adsorption of organic compounds and oil/water separation [34]

ZnO decorated HPIM-1 Adsorption and photocatalytic degradation of organic compounds

from water

[42,43��]

Amine PIM-1 Adsorption of organic compounds from water [15]

Amidoxime PIM-1 Adsorption of uranyl ions from water [13]

Amidoxime PIM-1 Air filtration [32]

Amidoxime PIM-1 Detoxifying organophosphorus and SO2 adsorption [31�]
PIM-2 Adsorption of organic compounds [14]

PIM-EA-TB Air filtration [26]

Carbonized c-PIM-1 Supercapacitor [10]

Pt decorated c-PIM-1 Gas diffusion electrode for polymer electrolyte membrane fuel cells [37,39]

NiOOH/Ni(OH)2 decorated c-PIM-

1

Electrochemical water splitting [38]

c-PIM-1, c-Hydrolyzed PIM-1, c-

Amine

PIM-1, c-Amidoxime PIM-1

Catalysis of oxygen reduction reaction [40�]
from water was found to be 161.2 mg g�1 which indicates

that the adsorption performance of PIM-1 fibers could

compete with some high-performance resins in aniline

adsorption. Decontamination studies further continued

using PIM-1 fibers to remove carbendazim and phenol

contaminants from liquid media [24]. High adsorption

capacity of PIM-1 fibers was further facilitated by deco-

rating PIM-1 fibers with palladium nanoparticles to cata-

lyze the p-nitrophenol reduction into p-aminophenol

structure. This approach has shown that catalytic activity

of Pd decorated PIM-1 fibers was greater than that of two

high-performance commercial polymers [28]. Wang et al.
[29�] used layer by layer spinning method to produce

PIM-1/PAN/UiO-66 fibrous membranes to obtain excel-

lent particle filtration efficiency. The same group also

produced porous PIM-1 fibers using solvent/non-solvent

mixtures during the electrospinning [20]. The produced

porous PIM-1 fibers showed excellent CO2 adsorption/

desorption stability indicating the potential of PIM-1

fibers in gas capture. On the other hand, Bambalaza

et al. [30�] have performed a different approach to exploit

PIM-1 fiber in gas capture. They produced a monolith

structure by compressing UiO-66 particles with PIM-1

fibers under high pressure and the resulting product

showed enhanced H2 uptake at high pressure.

Electrospinning PIM-1 fibers has still some limitations

due to the toxic spinning solvent (TCE) used to obtain
Current Opinion in Chemical Engineering 2022, 36:100793 
smooth fibers. At this point, electrospun modified PIM-1s

were introduced not only to avoid toxic spinning solvent

but also to tailor the adsorptive properties of PIM-1 fibers.

Satilmis et al. [18] reported the systematic hydrolysis of

PIM-1 (HPIM-1) and electrospinning HPIM-1 fibers

with various degree of hydrolysis. The membranes were

subsequently used to filtrate cationic dye; methylene blue

from water by only using gravity as a driving force. They

have also tailored the selectivity towards anionic species

by producing electrospun amine modified PIM-1 fibrous

membrane [15]. Morphology of amine PIM-1 fibers

showed extreme stability after several adsorption/desorp-

tion cycles due to the insolubility of the fibers. The same

group also used a crosslinker during the electrospinning to

improve the properties of HPIM-1 fibrous membranes

[34]. Resulting insoluble membranes showed superhy-

drophobic characters and they were successively used in

organic adsorption and oil–water separation applications.

HPIM-1 fibers were further used as a template to grow

ZnO nanorods by atomic layer deposition (ALD) method.

Ranjith et al. [43��] facilitated the adsorptive properties of

HPIM-1 in photocatalytic degradation of organic con-

taminants. Electrospun amidoxime PIM-1 fibers also

showed promising results in uranyl ion removal from

water and air filtration studies [13,31�,32]. Recently,

highly fluorinated superhydrophobic PIM-2 fibrous mem-

brane was also introduced [14]. The organic and oil

adsorption capacity of fibrous membrane was greater than
www.sciencedirect.com
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that of dense membrane in liquid adsorption. Further-

more, it is also possible to produce flexible, self-standing

and high surface area carbon nanofibers from electrospun

PIMs [10,37,38,40�]. Electrospun carbonized PIMs have

been used in various electrochemical applications as

summarized in Table 2. The applications of electrospun

PIMs are not limited to these examples. It could be

further improved by blending with other organic/inor-

ganic molecules, polymers, and nanoparticles to meet the

requirements of various other industrial applications such

as biotechnology, food processing, textile and sensor.

Conclusions and future directions
Electrospun PIM nanofibers have great potential to pro-

vide some unique solutions in dealing with emerging

environmental challenges such as air and water pollutions

owing to their excellent molecular separation abilities.

Although the development of electrospun PIMs is still in

its early stages, recent studies have shown the potential of

electrospun PIMs in various separation and purification

applications. Highly porous, self-standing and flexible

fibrous membranes of PIMs could also have a bright

future in electrochemical applications. Developing elec-

trospun PIMs with superior properties could be possible

by incorporating other high-performance materials with

PIM structures in the future. Currently, the major limita-

tion of these membranes is their lab scale productions.

Industrial productions and applications of these mem-

branes are still prevented as they do not fully correspond

to the requirements of green chemistry. Further studies

should be performed to produce simple, cost-effective

and large-scale synthesis of PIMs in a green solvent. Also,

electrospinning PIM nanofibers from environmentally

friendly solvents should be explored along with their

performance, stability and reusability evaluations for

industrial applications.
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