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Abstract
Decisions that are based on the future climate data, and its consequences are significantly important for many sectors such 
as water, agriculture, built environment, however, the performance of model outputs have direct influence on the accuracy of 
these decisions. This study has focused on the performance of three bias correction methods, Delta, Quantile Mapping (QM) 
and Empirical Quantile Mapping (EQM) with two reference data sets (ERA and station-based observations) of precipitation 
for 5 single CMIP6 GCM models (ACCESS-CM2, CNRM-CM6-1-HR, GFDL-ESM4, MIROC6, MRI-ESM2-0) and ensem-
ble mean approach over Turkey. Performance of model-bias correction method-reference data set combinations was assessed 
on monthly basis for every single station and regionally. It was shown that performance of GCM models mostly affected by 
the region and the reference data set. Bias correction methods were not detected as effective as the reference data set over 
the performance. Moreover, Delta method outperformed among the other bias correction techniques for the computation that 
used observation as reference data while the difference between bias correction methods was not significant for the ERA-
based computations. Besides ensemble approach, MIROC6 and MRI-ESM2-0 models were selected as the best performing 
models over the region. In addition, selection of the reference data sets also found to be a dominant factor for the prediction 
accuracy, 65% of the consistent performance at the stations achieved by the ERA reference used bias correction approaches.
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Introduction

Climate change is a fact now both globally and regionally, 
and this is evident with intensification in the hydrological 
cycle, increasing temperature, changing trends among oth-
ers. This has impacted many sectors including engineering 
design and agricultural management (Ombadi et al. 2018). 
Moreover, these hydrological variables such as tempera-
ture, precipitation, evaporation are time and space depend-
ent (Taylan and Aydin, 2018), and this makes prediction 
or modeling a complex phenomenon. Making precise deci-
sions for the future climate and its consequences are directly 

related with the accuracy of model outputs. Global Climate 
Models (GCMs) that are the basic source of information for 
climate change and climate change induced impact assess-
ment. GCMs provides information of climate change both 
for local and global scale, yet it is rarely preferred to directly 
use this information because of the large errors in GCM 
simulations relative to historical observations and the coarse 
spatial resolution while impact studies require generally finer 
scales (Ramirez-Villegas et al. 2013; Navarro-Racines et al. 
2015).

The 6th phase of Coupled Model Intercomparison Project 
(CMIP); CMIP6, promises certain developments when com-
pared to CMIP5, its predecessor. The reason behind these 
developments is the quantification of the natural or human 
induced radiative forcing, incorporation of the aerosol and 
land-use effects (Eyring et al. 2016; Stouffer et al. 2017; Liu 
et al. 2020; Wyser et al. 2020; Bağcaci et al. 2021). Although 
CMIP 6 data are relatively new, there is an increasing inter-
est regarding the application of newest projections (Checa-
Garcia et al. 2018; Fu et al. 2020; Luo et al. 2020; Lin and 
Chen 2020; Monerie et al. 2020; Ngoma et al. 2021). While 
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these studies revealed different results considering the per-
formance between the CMIP6 and the CMIP5 results over 
their study regions, Bağcaci et al. (2021) indicated that 
CMIP6 products outperform CMIP5 in terms of accuracy 
of precipitation statistics particularly that emerges the need 
to update the results of impact studies with the most recent 
data for Turkey.

Future climatic conditions have significant contribution to 
the knowledge, but acquiring this information is sophisti-
cated, and the most up-to-date instrument for examining 
the future climate is Global Circulation Models (GCMs). 
Climate change projections become more relevant and 
meaningful when their reference simulations are taken into 
account however, large uncertainties may exist in the model 
simulations, and focusing just on the changes may lead to the 
ignorance of the systematic errors (Nissan et al. 2019; Gold-
enson et al. 2021; Jose and Dwarakish 2022). Consequently 
the inclusion of reference period into the analyses is vital, 
especially if more than one model is employed, to stabi-
lize the various models' predictions and applications such as 
bias correction or downscaling, which use historical obser-
vation to calibrate model findings, are used in this respect to 
generate better-fit climate projections (Chen et al. 2013; Stel-
lingwerf et al. 2021; Hosseinzadehtalaei et al. 2021).

The multi-model ensemble approach is a simpler method; 
however, taking an average from the climate model often 
hides the model-related uncertainties of future projections 
and gives a false impression of increased confidence in 
projection. However, these modeling systems cannot deter-
mine the sub-grid-based processes (topography, lad use, 
land–water boundary) in detail to obtain the required output 
for smaller scales such as regional or local (Kara et al. 2016; 
Kundzewicz et al. 2014, 2016). To address this problem, 
dyanamical or statistical downscaling and/or bias correction 
techniques are needed to improve GCM-derived hydromete-
orological outputs. The bias correction technique is mostly 
applied to remove the systematic biases inherited by the cli-
mate models. As climate models often are at a coarse resolu-
tion and can't represent the sub-grid processes, downscaling 
methods (dynamical or statistical) are employed. Consid-
ering the improving GCM output performance regionally 
or locally, statistical downscaling methods and their imple-
mentations related to hydrological impact studies have been 
subject of interest in many reseacrh (Sunyer et al. 2015). 
Among these methods, Delta, Quantile Mapping (QM) and 
Empirical Quantile Mapping (EQM) methods were selected 
to downscale 5 CMIP6 GCM models at the city central sta-
tions in Turkey which is situated mostly on the Anatolian 
plateau in Western Asia, and is bordered on the west by the 
Aegean Sea, on the north by the Black Sea, and on the south 
by the Mediterranean Sea.

The aim of this study is to investigate the effects of differ-
ent bias correction techniques over the GCM outputs and to 

explore the best model and bias correction techniques for the 
stations by using observation data sets over Turkey. The sta-
tion data used for bias correction for a point-grid correction 
while ERA5 data is used for 'grid-grid' correction with GCM 
results, and both corrected GCM results were compared with 
observed point data.

This paper is organized as follows. “Materials and meth-
ods” section introduces the study area, station list, data 
source and reviews the methodology, in particular the sta-
tistical downscaling (Delta, the Quantile Mapping (QM), the 
Empirical Quantile Mapping (EQM)) methods and perfor-
mance criteria. “Results and discussion” section reveals the 
results of bias correction methods and their performance, 
GCM performance, reference data set performance and their 
relationship over the study region and provides a discussion. 
“Conclusions and remarks” section provides final remarks.

Materials and methods

Study area

Turkey is situated mostly on the Anatolian plateau which 
is in Western Asia. The coordinates of the country are 36° 
and 42° N and 26° and 45° E. Turkey has borders with the 
Mediterranean Sea, the Aegean Sea and the Black Sea in the 
South, West and North, respectively. The total land surface 
area is 783,562 km2. In general, it has a mild Mediterranean 
climate, however, because of complex topography, moun-
tain positions, sea effect, etc., different climate conditions 
arise. The coastal areas experience milder climates, on the 
other hand mountains like Taurus and North Anatolian lay 
parallel to the sea and block the sea effects to pass into the 
inland areas (Atalay et al. 2008; Seventh National Com-
munication of Turkey Under The UNFCCC 2018). This 
induces limited precipitation and continental climate con-
ditions for the inland area with cold winters and dry-hot 
summers (Amjad et al. 2020). The eastern coast of the Black 
Sea region has the highest amount of rainfall, with annual 
rainfall over 2200 mm, while Central Anatolia has an annual 
rainfall around 400 mm in Turkey.

Datasets

Figure 1. shows the meteorological stations of the city cent-
ers that used in this study. The study stations were selected 
from the central city stations to obtain the maximum length 
of continuous data. The daily and monthly precipitation 
data at 81 meteorological stations for the 1961 and 2020 
period are obtained from the Turkish State Meteorological 
Service (TSMS) however, because of the missing continu-
ous record at some of the stations and historical projections 
of the GCMs end in the year of 2014, 1965-2014 period is 
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chosen for the analyses and Eskisehir, Karabuk and Sirnak 
stations were excluded because of the missing data or insuf-
ficient data length therefore 78 meteorological stations were 
used for the analyses. Furthermore, ERA5 monthly aver-
aged precipitation data on single levels from 1979 to present 
was also used as reference data set for the bias correction 
process (Hersbach et al. 2020; CDS 2021; Muñoz-Sabater 
et al. 2021). ERA5 is ECMWF's fifth generation reanalysis 
of global climate and weather over the last 4 to 7 decades 
and it is currently available since 1950 (final release and 
timely updates after 1979) which replaced the ERA interim 
(CDS 2021).  

Here we use monthly precipitation outputs of 5 CMIP6 
models (Eyring et al. 2016; O’Neill et al. 2016) that are 
available in the Copernicus web site. The logic behind 
selecting these specific 5 GCMs is three of these models 
ranked in top 5, and all 5 models were ranked in top ten out-
performed CMIP6 models for precipitation in Bağçaci et al. 
(2021) which considers 1045 meteorological observation 
stations over Turkey. The names of the model, corresponding 

institution and horizontal resolution of the CMIP6 models 
are given in Table 1.

Efficiency criteria

To assess the relative performance of the methods against 
observation data, combination of two metrics; Pearson’s cor-
relation coefficient (r) and the index of agreement (d) were 
computed on a monthly scale to explore the model perfor-
mance, reference data sets and the bias correction methods.

First, the Pearson r coefficient was computed to identify 
the agreement between the modeled and the observed data. 
Moreover, the Index of Agreement (d) (Willmott 1981) that 
varies between 0 and 1, was used to measure the degree 
of model prediction error. A value of 1 indicates an exact 
agreement (perfect fit) while a value of 0 means no match 
(no correlation).

The index of agreement “d”, is the ratio of the mean 
square error and the potential error, calculated by Eq. (2) 
where O and P represent the observed and the predicted 

Fig. 1   Central observation stations

Table 1   CMIP6 models used in the study

No Model Institution Resolution

1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Australia 250 km
2 CNRM-CM6-1-HR National Center for Meteorological Research, Météo-France and CNRS laboratory, France 250 km
3 GFDL-ESM4 NOAA/ Geophysical Fluid Dynamics Laboratory, USA 100 km
4 MIROC6 The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-

Earth Science and Technology, Japan
250 km

5 MRI-ESM2-0 Meteorological Research Institute, Tsukuba, Ibaraki 305–0052, Japan 100 km
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values. More details of these well-known metrics can be 
found in Pereira et al. (2018), Willmott et al. (2012), Ullah 
et al. (2018).

Statistical downscaling

There are many downscaling methods that can be 
encountered in the literature. In this study the sim-
ple Delta approach and the CDF matching based Quantile 
Mapping (QM) (Panofsky and Briar 1968) and Empirical 
Quantile Mapping (EQM) (Boe et al. 2007; Wetterhall et al. 
2012) methods were used.

To summarize the process, observed data cumulative 
distribution function (CDFobs) and model data cumulative 
distribution function (CDFmod) were constructed by the QM 
method. Then a transfer function (h) is derived from the two 
CDFs, and by applying, the transfer function model data 
are converted to unbiased by equaling the model cumula-
tive frequency to the observed cumulative frequency, so its 
new distribution equals the distribution of the observation 
(Wuthiwongyothin et al. 2020). This transformation can in 
general be formulated as Eq. (3) where Po and Pm denote 
observed and modeled precipitation, respectively, and Fm is 
the CDF of Pm, Fo−1 is the inverse CDF (or quantile func-
tion) corresponding to Po (Piani et al. 2010; Gudmundsson 
et al. 2012).

In addition, instead of assuming parametric distributions 
to solve Eq. (3), empirical quantiles are also a common 
approach to solve Eq. (3) by using the empirical CDF of 
observed and modeled values and for more details about 
this procedure refer to Wood et al. (2004), Boe et al. (2007), 
Wetterhall et al. (2012), Themeßl et al. (2011, 2012), Gud-
mundsson 2014, Gudmundsson et al. (2012).

Furthermore, the Delta method of SD approaches, which 
is relatively simple compared with the other methods was 
also used (Maraun et al. 2010; Themeßl et al. 2012; Salehnia 
et al. 2019; Beyer et al. 2020). Also called direct method; 
with modest data requirements relatively simple and easy to 
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use delta-approach is capable of incorporating the change 
signal of GCM to observed precipitation and obtain a new 
set of data (Hay et al. 2000; Wetterhall et al. 2012; Salehnia 
et al. 2019). In this study, Eq. (5) is used to calculate the 
downscaled precipitation data regarding the delta method.

In this equation, where P is downscaled precipitation 
data, P

o
 indicates the mean observed precipitation, P

m
 is the 

mean precipitation data over the GCM historical run. Com-
putations were performed by SD GCM tool (Agrimetsoft 
2018) and R software (R Core Team 2021).

Results and discussion

In this study, statistical indices of r and d were calculated 
for the bias corrected precipitation values based on observed 
and ERA precipitation reference data with three bias cor-
rection methods, namely, Delta, QM and EQM for the 78 
meteorological stations in Turkey. The value of Pearson's 
correlation coefficient (r) varies between 1 and -1, with +1, 
0, and -1 indicating complete positive, uncorrelated, and 
completely negative correlations, respectively. Classification 
maps regarding the (r) coefficient (0.0-0.2; 0.2-0.3; 0.3-0.4; 
and ≥ 0.4) were created in QGIS software for easy and accu-
rate interpretation.

Moreover, d (index of agreement) values that are closer 
to 1.00 accepted as higher agreement of the bias corrected 
results. These analyses were conducted at monthly time 
scale for single (5 models) and ensemble model approach.

Figure 2 shows the Pearson coefficient distribution with 
ensemble mean for three methods for the study area. These 
results show that there are both overperformed and under-
performed agreement between the station-observed precipi-
tation data and the bias corrected precipitation data. The 
Eastern regions, together with Aegean and Mediterranean 
costs of Turkey showed a better performance for the bias 
corrected monthly precipitation for all methods. However, 
Delta and QM methods exhibited a better performance 
compared with the EQM approach. Furthermore, all three 
methods with ensemble model approach showed a weaker 
performance for the Black Sea region, especially Middle 
and Eastern black sea regions showed no sign of consider-
able agreement. Besides, Central Anatolia exhibited a bet-
ter performance compared with the Black Sea coasts and 
the Thrace part of the Marmara region. The r values of all 
regions were also calculated and given in Table 2. As shown 
in Table 2, the average r values ranged from 0.27 to 0.60 for 
Delta; from 0.25 to 0.52 for EQM and ranged from 0.26 to 
0.59 for QM methods regionally and Delta 0.043-0.64; EQM 
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0.055-0.58; QM 0.04-0.63 for 78 single stations. According 
to the ensemble analyses results, bias corrected precipita-
tion data are consistent with the station-observed precipita-
tion data for Eastern Anatolian, Aegean and Mediterranean 
coasts for Turkey.

Furthermore, the analyses were conducted for every 
single model and bias correction method by using both 
observed station based and gridded data sets as reference 
period. In this approach, it was also possible to explore the 
model and method performance separately. In Fig. 3, the 

result of the ERA-based reference analyses, and in Fig. 4, 
the results of observation-based reference analyses can 
be seen. The bias corrected data r values showed similar 
results for the single model evaluation with ERA refer-
ence data. On the other hand, the performance of ensemble 
model approach was generally better than the single model 
evaluation.

In can be seen from Table 3 that 50, 37 and 47 of 78 sta-
tions exhibited consistent results with the ensemble mean 
approach by using Delta, EQM and QM methos. Among 
these methods, Delta method exhibited a better performance 
while QM method also revealed similar results. On the other 
hand, EQM method did not perform well with the ensemble 
approach compared to others.

Further, single model performance also compared with 
the ensemble mean approach. Model, bias correction method 
and reference data set performance can be seen separately 
in Figs. 3 and 4 and Tables 4 and 5. Ensemble approach 
showed a significant better performance compared to sin-
gle model approach for every reference data set (ERA and 
observation) and bias correction method (Delta, EQM, QM) 
and ensemble approach outperformed and revealed better 
correlation results. For instance, ACCESS model revealed 
better performance at the 33 stations for Era and 20 sta-
tions for observed reference data set for the Delta method. 
Furthermore, the model also exhibited better performance 
at the 33 and 32 stations for Era and 15 and 14 stations for 
observed reference data set for the EQM and QM methods, 
respectively. Besides single and ensemble model approach 
comparison, there is also a significant difference determined 
between two reference data sets, namely, Era and observa-
tion. For all bias correction methods, Era-based bias cor-
rected data outperformed the bias corrected data that used 
observation data as reference for the ACCESS model. ERA5 
gridded observation data can probably better represent the 
region while it is not possible to find a fully representation 
of the area with a single or few stations as Haerter et al. 
(2015) mentioned.

Considering the CNRM model, it is possible to observe 
the behavior of the previous model (ACCESS) in this one 
as well. Total number of satisfactory results among the 78 
stations are two times of the observation data-based bias cor-
rection results for the Era-based results. When these results 
of two models were examined, it can be concluded that bias 
correction method is less effective over the results of Era-
based approach while Delta method showed better perfor-
mance for the observation-based bias correction results. 
GFDL model results showed the significant performance of 
Era compared to observation-based results again. Regarding 
this model, Delta approach can be pronounced as better than 
EQM and QM for the observation reference set-based results 
while Delta and QM revealed the same performance for the 
Era reference-based results.

Fig. 2   Pearson coefficient (r) distribution with ensemble GCM mean 
with station-based reference data from 1965 to 2014 for three bias 
correction methods

Table 2   Regional average r values for bias correction methods

Region Delta EQM QM

Aegean Average 0.52 0.47 0.51
Black Sea Average 0.27 0.25 0.26
Central Anatolia Average 0.44 0.37 0.42
Eastern Anatolia Average 0.49 0.43 0.49
Marmara Average 0.38 0.34 0.37
Mediterranean Average 0.52 0.44 0.51
Southeastern Anatolia Average 0.60 0.52 0.59
All stations min–max range 0.043–0.64 0.055–0.58 0.04–0.63
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MIROC and MRI results exhibited also similar results 
in terms of reference data set performance. These two 
models also revealed the highest total number of satisfac-
tory results (164 and 163 in Table 4) for the study area. 
When reference data sets analyzed separately, MIROC 
outperformed with a total number of 112 for Era and MRI 
outperformed with a total number of 64 for observation-
based bias correction results. MIROC model results 
showed that this model also outperformed for the Delta, 
EQM and QM bias correction methods with the Era-based 
reference data while observation-based reference data used 
bias correction methods exhibited better performance for 
the MRI model.

Performance of the models, bias correction methods and 
reference data sets were also investigated in a regional scale. 
IoA metric was used to for this purpose.

Index of agreement (IoA) values derived from ensemble 
model approach in Table 6, and the Era and observed pre-
cipitation data are shown in Tables 7 and 8. To obtain and 
reflect the regional results, average of stations in the region 
were computed.

Considering the ensemble mean approach, Southeastern, 
Mediterranean and Aegean Regions presented the highest 
model accuracy among the other regions for all bias cor-
rection methods. These regions were followed by Eastern 
and Central Anatolia. Furthermore, Quantile mapping bias 
correction method was found to be the outperformed method 
for all regions for the ensemble mean approach.

The IoA values revealed higher values for the Southeast-
ern Anatolia and smaller values for the Black Sea regions 
among all the 7 geographical regions for all bias correction 
methods and reference data sets. Mediterranean, Aegean and 
Eastern Anatolian regions also showed satisfactory results. 
Among these models, ensemble mean approach again out-
performed for most of the cases. Furthermore, Era-based 
references data used bias correction results also revealed 
better performance in comparison with their observation-
based reference data used equivalents.

Besides, the spread of the index values for three bias 
correction methods can be seen from Figure 5. Black Sea 
region showed wider range of IoA values than the other 
regions while Southeastern region exhibited a fairly small 

Fig. 3   Pearson coefficient (r) distribution with ERA5 (reanalysis) reference data from 1980 to 2014 for three bias correction methods and five 
GCMs
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variability. The behavior of the stations revealed similar 
variability for all the bias correction methods. The vari-
ability within the region is also important since the average 
can be affected from the outlier values in that region and 
cause overestimated or underestimated regional average. 
According to IoA analyses, it can be concluded that there 
is an acceptable agreement between observed and bias cor-
rected data especially for the Southeastern, Mediterranean 
and Aegean Regions regardless of the reference data set or 
bias correction method.

Robust future results are essential to make concrete 
assessments for many sectors in a continuously changing 
climate. Methods like statistical downscaling or bias cor-
rection improve the GCM results and attempt to capture 

Fig. 4   Pearson coefficient (r) distribution with station-based (point) reference data from 1965 to 2014 for three bias correction methods and five 
GCMs

Table 3   Distribution of stations based on the bias correction methods 
for the ensemble approach for (r) ≥ 0.4

Model DELTA EQM QM

Ensemble Mean 50/78 37/78 47/78

Table 4   Distribution of stations—bias correction methods vs. models 
for (r) ≥ 0.4

Model/Reference Data DELTA EQM QM Total

ACCESS 53 48 46 147
Reanalyses 33 33 32 98
Station 20 15 14 49
CNRM 52 40 43 135
Reanalyses 31 29 30 90
Station 21 11 13 45
GFDL 58 45 52 155
Reanalyses 36 31 36 103
Station 22 14 16 52
MIROC 60 52 52 164
Reanalyses 37 37 38 112
Station 23 15 14 52
MRI 60 51 52 163
Reanalyses 35 30 34 99
Station 25 21 18 64
Total 283 236 245
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the regional or local climate characteristics to some extent. 
These methods, however, indicate different results for differ-
ent conditions such as region, reference data sets or climatic 

variable of interest e.g., precipitation or temperature. For 
instance, Tong et al. (2021) stated that seasonal variations 
and the variable that is chosen to be corrected can affect 
the bias correction quality and notices the probability that 
bias correction can change the simulated signal. This may 
be one of the reasons that model, and method performances 
show variations among the regions in this study since these 
regions differentiate in terms of annual and seasonal precipi-
tation patterns. Bağçaci et al. (2021) mentioned the lack of 
accuracy of the macro models due to the mid or small-scale 
climatic regions. Furthermore, they revealed that model 
skills may depend on period or region which ultimately 
may cause projection performance to be model, space or 
time specific. Kundzewicz et al. (2016) also presented the 
potential reasons of inconsistencies between observations 
and projections which may increase the uncertainty for the 
regional and local scale studies.

Beyer et al. (2020) reported that the delta method as the 
promising bias correction method while quantile mapping 
is said to be a poor choice which they applied for a con-
siderable large global dataset. Furthermore, Enayati et al. 
(2021) explored that quantile mapping methods cannot 
always overcome the systematic errors especially over the 
regions that have significantly diverse topographic varia-
tions. In this study, delta method also revealed promising 
results. Yet, here only three bias correction methods were 
used meanwhile method choice is a primary determinant 
over the climate change assessment as Gunavathi and Sel-
vasidhu (2021) stated. Nevertheless, it can be suggested that 

Table 5   Distribution of stations reference data sets vs. bias correction 
methods for (r) ≥ 0.4

Bias Correction 
Method/Model

Reanalyses Station Total

DELTA 172 111 283
ACCESS 33 20 53
CNRM 31 21 52
GFDL 36 22 58
MIROC 37 23 60
MRI 35 25 60
EQM 160 76 236
ACCESS 33 15 48
CNRM 29 11 40
GFDL 31 14 45
MIROC 37 15 52
MRI 30 21 51
QM 170 75 245
ACCESS 32 14 46
CNRM 30 13 43
GFDL 36 16 52
MIROC 38 14 52
MRI 34 18 52
Total 502 262 764

Table 6   Regional average of 
IoA results for bias correction 
methods for ensemble approach 
Region

Ensemble Delta Ensemble EQM Ensemble QM

Aegean 0.67 0.67 0.70
Black Sea 0.48 0.54 0.55
Central Anatolia 0.61 0.62 0.65
Eastern Anatolia 0.65 0.66 0.69
Marmara 0.58 0.60 0.62
Mediterranean 0.67 0.65 0.70
South Eastern Anatolia 0.73 0.70 0.75

Table 7   Regional average of IoA results for bias correction methods with Reanalyses reference data

ACCESS CNRM GFDL MIROC MRI

Region DELTA EQM QM DELTA EQM QM DELTA EQM QM DELTA EQM QM DELTA EQM QM

Aegean 0.61 0.61 0.61 0.65 0.65 0.64 0.64 0.64 0.63 0.66 0.67 0.66 0.65 0.65 0.64
Black Sea 0.46 0.47 0.47 0.48 0.49 0.49 0.49 0.49 0.49 0.46 0.48 0.47 0.52 0.53 0.52
Central Anatolia 0.60 0.61 0.60 0.61 0.61 0.61 0.63 0.63 0.62 0.58 0.58 0.58 0.59 0.60 0.58
Eastern Anatolia 0.66 0.66 0.67 0.64 0.64 0.63 0.68 0.68 0.67 0.65 0.65 0.65 0.66 0.66 0.66
Marmara 0.50 0.51 0.52 0.55 0.55 0.55 0.55 0.55 0.54 0.60 0.62 0.61 0.59 0.60 0.59
Mediterranean 0.68 0.67 0.66 0.64 0.64 0.63 0.66 0.66 0.65 0.67 0.68 0.67 0.66 0.66 0.66
South Eastern Anatolia 0.70 0.71 0.72 0.69 0.68 0.67 0.71 0.70 0.70 0.70 0.69 0.69 0.70 0.69 0.69
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increasing the complexity of the methods does not always 
mean an improvement, based on the bias correction results 
in this study.

Feigenwinter et al. (2018) used three reference data set 
for bias correction which are stations, RCM grided and high-
resolution grid with quantile mapping method, and they got 
satisfactory results for both. Yet, in this study it was found 
that using gridded data, ERA5, as a reference data set sig-
nificantly improved the model adjustment results. Besides, 
there are studies that only use reanalysis/gridded data to vali-
date the bias correction results such as Fauzi et al. (2020) or 
Tong et al. (2021). Era is assimilated by observations (sta-
tions) but ultimately a model, and the output values can be 
considered as the average value for the geography that grids 
cover based on the resolution. Nonetheless, Feigenwinter 
et al. (2018) also noticed that extremes or small-scale vari-
ability cannot be captured by the climate models and reveals 
that using quantile mapping might not appropriate for all 
climate impact studies. Cannon et al. (2015) claimed that 
although they are effective at removing historical biases rela-
tive to observations, quantile mapping can artificially cor-
rupt future model-projected trends and proposed to ensure 
if the method is accurate for the purpose as Feigenwinter 
et al. (2018) also stated. This is particularly important if one 
method is selected for a large area that has various climatic 
and topographic features. In addition to these, Kundze-
wicz et al. (2016) stated that flood statistics are sensitive to 
the selected bias correction techniques and Casanueva et al. 
(2020) implied that bias correction methods can affect some 
certain magnitudes such as climate change signal or trends 
which can be induced by the observational reference or the 
inconsistent resolution. They also underlined the importance 
of the high-quality observational data sets especially for 
precipitation since calibration of models intensively rely on 
the reference data sets. There is still a complex mechanism 
behind the precipitation to entirely uncover and model. Par-
ticularly, nonstationary signal of the variable of interest must 
be sustained to obtain accurate prediction for the future since 
it is now accepted that there are indisputable nonstationary 
impacts.

Regardless of the bias correction methods, Black Sea 
region of Turkey results were not efficiently adjusted, which 
accommodate an irregular terrain with various land-use and 
land-cover types and, land-sea interaction dynamics (Amjad 
et al. 2020), while Southeastern region has demonstrated the 
highest accuracy. Sariş et al. (2010) found clear evidence of 
spatially varied seasonality over Turkey for the precipitation 
regimes. They also calculated a composite regime which 
presented Southeast Anatolia as the least diverse region 
while Black Sea and Mediterranean showed the highest 
number of different regimes over the regions. This can be 
one of the reasons of differentiated bias correction results 
among the regions over Turkey.

While it is very valuable and necessary to translate the 
GCM data into local scale for long-term risk assessment of 
establishing a scientific basis for the decision making, results 
must be representative of selected area and stations in that 
area. Statistical methods, on the other hand, assume statisti-
cal relationships and cannot provide a physically consistent 
results yet they are being preferred as a result of compu-
tational simplicity. Different studies investigated and tried 
to propose a solution for these capacity problems. Salehnia 
et al. (2019) compared statistical and dynamical downscal-
ing methods and presented those dynamical downscaling 
method perform better than the statistical method for their 
study period. Tiwari et al. (2019) used a combination of 
statistical and dynamical methods and implied that better 
representation of orography, moisture and vertical pressure 
velocity in the regional climate model improved the results 
of downscaling methods, and LeRoy et al. (2021) used an 
integrated statistical dynamical downscaling method for 
high-resolution urban climate simulations. Song et al. (2021) 
interpolated the historical and projected data of the four 
nearest GCM grid points to the station's location and then 
bias corrected the interpolated data against the observed data 
using quantile mapping. Therefore, not only the selected sta-
tistical downscaling methods but it may be the statistical 
downscaling itself which cannot demonstrate a sufficient 
performance. In this study, city central stations were used, 
which may cause challenges such as heterogeneity, scale and 

Table 8   Regional average of IoA results for bias correction methods with Station reference data

ACCESS CNRM GFDL MIROC MRI

Region DELTA EQM QM DELTA EQM QM DELTA EQM QM DELTA EQM QM DELTA EQM QM

Aegean 0.58 0.57 0.58 0.63 0.63 0.62 0.62 0.62 0.61 0.64 0.63 0.63 0.64 0.64 0.62
Black Sea 0.41 0.41 0.41 0.47 0.48 0.47 0.49 0.50 0.49 0.49 0.50 0.49 0.52 0.53 0.52
Central Anatolia 0.58 0.57 0.57 0.58 0.57 0.58 0.60 0.59 0.59 0.53 0.54 0.54 0.59 0.58 0.58
Eastern Anatolia 0.60 0.59 0.60 0.61 0.61 0.60 0.62 0.62 0.61 0.59 0.59 0.59 0.61 0.61 0.61
Marmara 0.49 0.48 0.49 0.52 0.52 0.52 0.52 0.52 0.51 0.58 0.58 0.58 0.58 0.57 0.57
Mediterranean 0.63 0.62 0.62 0.60 0.59 0.57 0.62 0.62 0.59 0.63 0.62 0.60 0.64 0.62 0.62
South Eastern Anatolia 0.69 0.67 0.68 0.66 0.63 0.62 0.67 0.65 0.65 0.66 0.64 0.64 0.67 0.64 0.66
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Fig. 5   Regional Model evaluation by index of agreement for three methods a Delta, b EQM, c QM
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local modifications of the temperature that affect the bias 
correction performance as LeRoy et al. (2021) indicated. 
Zhang et al. (2020) recommended the ensembles of models 
to overcome variations across climatic regions. Furthermore, 
increasing the number of stations in the GCM grid may also 
increase the bias correction performance as well since rep-
resenting the reference period with a high number of station 
data may improve the spatial inconsistencies.

Conclusion and remarks

This analysis has focused on the performance of three bias 
correction method with two reference data sets of precipita-
tion (station-based observations and Era) for 5 single model 
and ensemble mean approach. Simulation performance of 
model-bias correction method-reference data set combina-
tion was assessed on monthly basis for every single station. 
Furthermore, regional analyses were added to station-based 
analyses to check and verify the results. It was shown that 
performance of models mostly affected by both region, ref-
erence data set. Bias correction methods were not detected 
as effective as the reference data set over the performance. 
While it is said to be a simple method, Delta method slightly 
outperformed among the other bias correction techniques 
for the computation that used observation as reference 
data. Considering the computations that was carried out 
with ensemble mean bias correction and single model-bias 
correction with ERA data, the difference between the bias 
correction methods was not significant. Besides ensemble 
approach, MIROC and MRI models were selected as the best 
performing models over the region. In addition, in this study 
selection of the reference data sets also found a dominant 
factor for the prediction accuracy. In this regard, an ensem-
ble of ground-based station data can be used to capture the 
whole grid area that matches the corresponding GCM grid, 
and a single time series can be obtained to represent that grid 
to bias correct. Another alternative for this is using as much 
ground-based station data as possible for a specific grid and 
averaging the bias corrected results of these ground-based 
stations in the grid to decrease the uncertainty and bias.

One of the limitations of this study was that it has used 
5 models which is not a high number. Better results may be 
obtained with different models. Furthermore, the choice of 
most appropriate bias correction technique may depend on 
the time scale of the data used (daily, monthly, etc.), model/
models combination, regions that are subject of interest and 
the reference data set. Global climate models (GCMs), in 
general, are bias corrected to better match the observations. 
However, if a GCM does not accurately simulate the under-
lying physical processes, the rest of the analyse become 
critical. On the other hand, bias correction is also criticized 
in the literature. Regarding these issues, increase in model 

resolution and ensemble prediction is another alternative. 
Furthermore, a long observational record is needed to build 
accurate statistical relationship which this relationship is 
assumed to be continue as same as history in future. Dis-
torting the nonstationary signal is another drawback of the 
bias correction methods in literature. There are, however, 
developing methods that claim to preserving the trend, or the 
observed variability. Dynamical downscaling is an alterna-
tive for statistical downscaling methods, but the required 
computational loads and costs limits the application in 
widespread.
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