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Variable data structures 
and customized deep learning 
surrogates for computationally 
efficient and reliable 
characterization of buried objects
Reyhan Yurt 1, Hamid Torpi 2, Ahmet Kizilay 2, Slawomir Koziel 3,4 & Peyman Mahouti 2*

In this study, in order to characterize the buried object via deep-learning-based surrogate modeling 
approach, 3-D full-wave electromagnetic simulations of a GPR model have been used. The task is 
to independently predict characteristic parameters of a buried object of diverse radii allocated at 
different positions (depth and lateral position) in various dispersive subsurface media. This study 
has analyzed variable data structures (raw B-scans, extracted features, consecutive A-scans) with 
respect to computational cost and accuracy of surrogates. The usage of raw B-scan data and the 
applications for processing steps on B-scan profiles in the context of object characterization incur 
high computational cost so it can be a challenging issue. The proposed surrogate model referred to 
as the deep regression network (DRN) is utilized for time frequency spectrogram (TFS) of consecutive 
A-scans. DRN is developed with the main aim being computationally efficient (about 13 times 
acceleration) compared to conventional network models using B-scan images (2D data). DRN with 
TFS is favorably benchmarked to the state-of-the-art regression techniques. The experimental 
results obtained for the proposed model and second-best model, CNN-1D show mean absolute and 
relative error rates of 3.6 mm, 11.8 mm and 4.7%, 11.6% respectively. For the sake of supplementary 
verification under realistic scenarios, it is also applied for scenarios involving noisy data. Furthermore, 
the proposed surrogate modeling approach is validated using measurement data, which is indicative 
of suitability of the approach to handle physical measurements as data sources.

Keywords Artificial intelligence, Buried object characterization, Deep regression network, Ground 
penetrating radar (GPR), Surrogate modeling, Time frequency spectrogram

The analysis of subsurface medium for identification of buried objects is an important endeavor with numerous 
practical applications and consequences. One of these is identification of landmines or explosive devices, which 
pose serious threats to human life, both in the military and civilian  context1–3. In addition, identification of 
pipes, rebars, cables (electric, phone, optical fiber cables) has a great significance for (non-destructive) structural 
evaluation, subsurface mapping, as well as building  inspection4–9. At the same time, in many scenarios, the mere 
detection of the object is insufficient, and more detailed information needs to be acquired such as object location, 
orientation, and size. Thus, the estimation of object’s characteristic parameters in terms of the radius, the depth 
and the lateral position are significant aspects of buried object characterization.

One of the most popular approaches to buried object identification is the employment of ground penetrating 
radars (GPRs). GPR systems allow for accounting for anomalies in the underground medium, as well as analyz-
ing the subsurface reflections mechanisms due to the presence of a buried object. GPR has been widely applied 
in remote sensing, and it is considered a fast, convenient, efficient and reliable tool of choice for underground 
investigations and identification of buried objects based on the analysis of the reflected  signals10–12.
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The working principle of GPR-based systems is transmission and reception of electromagnetic waves using 
antennas. The key elements in a GPR system are transmitter and receiver antennas in bistatic configuration for 
sending and receiving time-domain or frequency signals. Herein, one antenna in monostatic  configuration13,14, 
which is a conventional C-Band (4–8 GHz) horn  antenna14 is moved along a synthetic aperture to scan the 
underground and to enable buried object characterization with regards to localization and radius estimation 
by using data-driven surrogate models. The scanning process is realized by moving the antenna along a scan-
ning path on the upper surface of the ground (referred to as subsurface medium). The signal received at one 
point is referred to as an A-scan, which is 1D time-varying amplitude signal. After the scanning process along 
the entire path has been completed, all received A-scan signals are merged into a B-scan (2D data)  image15. For 
the purpose of GPR-based identification, the buried object in subsurface medium is often defined as a perfect 
electrical conductor (PEC) and of a cylindrical shape like a rebar, a pipeline or a wire (energy, signal or optical 
cable). It produces a hyperbolic signature (pattern) in B-scan6. Identification of hyperbolic pattern’s is the widely 
applied technique for object detection, determining its position, and prediction of the object dimension (radius or 
diameter for a cylindrical shape) by using numerical, analytical and artificial intelligence (AI)  methods3,7,16–24. In 
the literature, numerous modeling approaches with various data types such as B-scan images, extracted features 
and hyperbolic signatures have been developed and applied to characterize reflected signals of the object buried 
in the subsurface medium. B-scans have led to successful results but also incur considerable computational 
burden related to a construction of respective surrogate models, which is a limitation of the approaches that rely 
on B-scan images. To mitigate this and other issues of GPR-based object identification, several approaches have 
been developed that employ a variety of signal pre-processing methods as well as efficient surrogate modeling 
techniques to represent the data acquired by the system.

In order to examine the reflected signals owing to the presence of an object, and to extract object-related 
features such as shape, depth, lateral position, and size, specialized techniques are applied to the received sig-
nals before launching the object identification process. These are known as pre-processing methods. One of 
the most common pre-processing approaches is background subtraction, which removes direct wave and the 
air-ground surface echoes. This affects to a great extent the performance of characterization procedures in terms 
of predicting geometrical and physical parameters, material type and object  shape15–17,19–22,24–26. Other clutter 
reduction (pre-processing) methods include principal component analysis (PCA)15,27–29, morphological com-
ponent analysis (MCA)30, singular value decomposition (SVD)15,29, independent component analysis (ICA)15,29, 
as well as ICA with multifractal  spectrum31. In addition to clutter removing, another pre-processing application 
of PCA is feature extraction, which aims at dimensionality reduction of the B-scan image (2-D data)32,33. The 
latter is beneficial from the point of view of representing data using surrogate modeling methods. In particular, 
it improves computational efficiency of object characterization process by diminishing the expenses associated 
with a construction of the underlying surrogate model. Furthermore, feature extraction techniques are applied 
for material classification of the object, using geometrical features such as minor and major axes, along with 
principal components (PCs); also statistical features (SFs) such as mean, variance and kurtosis, etc. In conjunc-
tion to these, support vector machines (SVM) and neural network (NN)  classifiers32 are often employed as well. 
Similarly, identification of buried materials has been carried out using SVM and extracted statistical features (SFs) 
from fractional domain-envelope  curve34. In another study, statistical features (variance, deviation, kurtosis and 
skewness) extracted from the reflected signals in noisy environment for classification of the material type have 
been compared with the spectral  features8. Also, after pre-processing B-scan data hyperbola is fitted by using 
segmentation curvature  features35 and other features have been extracted for object classification. Furthermore, 
the features extracted from a reflected wave in time and frequency domain have been used for discrimination 
of air, water, conductor materials in a classification approach and estimation of depth and radius in a regression 
approach by using k-Nearest Neighbor (k-NN)  model36.

Dou et al.17, employed a Column-Connection-Clustering (C3) algorithm after pre-processing of B-scans to 
identify the hyperbola; the C3 outputs are classified for hyperbolic identification using the NN  model17. In addi-
tion to investigating hyperbolic signatures after the pre-processing operations, hyperbolic extraction through 
deep learning based model, Single Shot Multibox Detector (SSD)6 has been utilized for identification of buried 
objects and determining their positions. In another  study16, hyperbolic curve identification has been carried out 
in the pre-processed B-scan image for object detection, classification of material type and localization with the 
help of genetic algorithms (GAs).  In18, a classification-based machine learning framework incorporating wavelet 
scattering and SVM in a cascaded structure has been proposed for pipeline identification, localization and diam-
eter estimation from reconstructed GPR profiles. A substituted hyperbolic summation method using hyperbola 
has been developed to obtain focused GPR B-scan  image14. In another study, after removing subsurface reflections 
the extracted hyperbola from the B-scan profiles in terms of a vector including amplitude and time generated 
by the Hilbert transform (HT) is utilized to arrange inputs of a NN in cascaded architecture for buried object 
 characterization9. Furthermore, the hyperbolic signatures are taken out of the background subtracted B-scan 
images by using linear regression algorithm, and used for inputs of deep learning based Modified-Multilayer-
Perceptron (M2LP)37 surrogate model to obtain characteristic parameters of the object.

For buried object recognition by means of B-scan data, deep learning models (DL) have demonstrated consid-
erable achievement, particularly convolutional neural network (CNN)  frameworks3,7,19,21,22,25,38. In a framework 
including CNN and LSTM (long-short term memory) in a cascaded  configuration3, 3D GPR data created with 
cross and along axes are investigated for recognition of buried explosive object and discrimination between target 
and non-target alarms. In another investigation aiming at detection of a cylindrical  object7, CNN is used together 
with the LSTM network. Also, objects are categorized into nine varied diameters in the extracted hyperbola 
sections using B-scan  data7 created through gprMax simulation  tool39,40. In a  study25, dedicated deep learning 
framework involving CNN model has been employed along with the SVM classifier rather than softmax layer 
for classification of the object shape, the soil type and object’s material type. Another methodology, reported in 
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 studies41,42, is lining detection by means of permittivity mapping of structures in the subsurface structures via 
specialized CNN, and deep neural network models. Also, time frequency domain and its  features43 have been 
used with neural network for tunnel lining. Yet another approach employing deep neural network  architectures44 
has been used to acquire permittivity inversion of geometrical configurations of buried objects. In addition to 
this methodology, subsurface pipes have been detected and localized on GPR image with deep learning based 
back projection  algorithm45 and subsurface targets with different shapes could be reconstructed with deep 
learning  networks46,47.

Characterization of buried objects in terms of their detection and identification is only one of possible 
tasks considered in the literature. Other problems include estimation of characteristic features such as material 
shape and material type classification, object localization, estimation of dielectric properties of the subsurface 
medium, and classification and or quantification of the object  size24,25,32. To solve these tasks, AI-based surrogate 
modelling techniques are proposed, particularly those consisting of cascaded  networks4,9,24. In an example case 
study, B-scan images generated by means of gprMax  tool39,40 are pre-processed, and windowing operation is 
applied on pre-processed B-scan images to extract the amplitudes most related with the  object24. The extracted 
amplitudes, the outcomes of material type classification, hyperbola curvature, and the depth of the object are 
utilized as inputs to estimate the object dimension through Gaussian process (GP)  regression24. A regression 
 framework4 has been presented to estimate the water content of subsurface, the depth, and the radius, based 
on the compressed reflected signals. This methodology provides a demonstration of cascaded configuration of 
models, with water content and depth from the regression parameters being handled independently of each other, 
and the radius being dependent on the other predicted  characteristics4. A-scans are handled as inputs for buried 
object  characterization4,5 to generate 2,000 training samples thereby improving the prediction performance. 
Furthermore, a study of buried object characterization with the A-scan  analysis48 and by using unprocessed 
sparse training data set including a vector (A-scan and number of A-scan combination) has been presented. In 
the mentioned works, the A-scan analysis is used as a practical processing method that can significantly reduce 
the computational burden of data  generation4,5,48.

The state-of-the-art analysis presented above indicates that characterization of buried objects is a multi-aspect 
problem addressed using a large variety of data types and dataset configurations. On the one hand, utilization of 
complex data structures enables extraction of more comprehensive information about the object, in particular, 
its special allocation and/or estimation of its orientation and size. On the other hand, it increases the numerical 
challenges as well as computational costs associated with data processing and building workable representations 
(surrogate models). Various combinations of data structures and modeling methods offer different trade-offs with 
respect to the mentioned factors. Notwithstanding, the techniques that offer improved computational efficiency 
while being able to handle complex data structures of different types, are yet to be developed.

This work addresses the issues outlined in the previous paragraph and deficiencies of the existing surrogate-
assisted buried object identification methodologies. In particular, the focus is on reducing the computational cost 
of creating surrogate models for object characterization and improving their reliability. In order to investigate 
the matter, variable data structures are taken into account for buried object characterization. These include (I) 
the commonly used data type of received reflected signals in the form of B-scans (2D data), (II) the extracted 
features from raw time signals as PCs and SFs (mean, variance, standard deviation, skewness and kurtosis), and 
(III) consecutive A-scans (1D data). Data generation and management affects the computational cost of data 
handling, in particular, constructing behavioral surrogate models, which is also a problem for surrogate models 
created from experimental data, as gathering of large numbers of samples is either extremely costly or even 
prohibitive. Furthermore, data augmentation should not be applied in association with regression approaches 
(as opposed to classification approaches), because each input scenario represents a mapping to a unique output. 
Hence, augmentation leads to unreliable prediction results. The major goal of this work is to introduce fast and 
accurate surrogate modeling approaches and propose a novel deep regression network (DRN) that enables a 
reliable prediction of characteristic parameters of the object independently from each other, and simultaneously 
with time frequency spectrogram (TFS) data. Furthermore, characteristic parameters are estimated without any 
clutter reduction method and using linearly-sampled sparse training data set. In addition to presenting a novel 
model with a unique-methodological approach, specifically, transforming consecutive A-scans to TFS data, the 
benchmarking results with the state of the art techniques from the literature are presented in terms of estimating 
characteristic parameters of the buried object. The object characterization process is applied independently from 
the dielectric features of subsurface media (the type of subsurface medium), in detail these features are not used 
in input and output of the surrogate models.

The main contributions of this study can be summarized as follows.

 (I) The development of data diversification approaches, followed by producing new data sets from raw 
time signals. These offer an alternative to approaches commonly employed in the literature (image 
processing, hyperbola investigations on B-scan images, feature-based object characterization in clas-
sification approach);

 (II) The development of data driven surrogate modeling technique for buried object characterization 
involving sparse linear sampling scenarios, without using any clutter reduction operations and B-scan 
image processing. In particular, background subtraction or removing ground reflections might be 
a challenging issue for buried object scenarios that involve in more than one dielectric features of 
dispersive subsurface media. Herein, four different subsurface media are taken in consideration to 
analyze the effect of complexity arising from the environments with different dielectric permittivity 
(not considered as a surrogate model input).
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 (III) The development of a novel surrogate modeling framework, DRN using a new data type of received 
reflected signals. The presented approach capitalizes on features extracted in the time and frequency 
domain in the form of TFS data transforming from consecutive A-scans instead of concatenated 
A-scans version (B-scan). When the proposed method DRN is used with TFS data structure, it provides 
computational efficiency with regards to low computational cost and high achievement.

The remaining part of the paper is organized as follows. Section “Buried object characterization task. GPR 
model and data structures” explains formulation of the buried object characterization task, configuration of the 
GPR model, description of the utilized data sets, as well as definition of the object characterization case studies 
considered throughout the work. Variable data structures for buried object characterization in terms of estima-
tion performance and computational cost are also investigated in this section. Section “Data driven surrogate 
models”, elaborates on the proposed data driven surrogate modeling approach, specifically a DRN framework 
customized for TFS data. Also, customized DRN framework with TFS data is the proposed methodology for 
the solution of defined problem in this study. Section “Surrogate modeling for buried object characterization” 
discusses validation of the proposed surrogate modeling approach, as well as investigates its operation under 
noisy data and measurement data. Section “Conclusion” concludes the work.

Buried object characterization task
GPR model and data structures
This section explains the formulation of the underground object characterization task, and introduces the com-
putational model of the data acquisition system, GPR employed as the major object identification tool. The 
datasets utilized for training and testing of the surrogate models for different case studies are also discussed. In 
addition to the contributions presented in the article, some basic information is also presented in this section so 
that readers from all disciplines can better understand the subject.

Problem formulation
Herein, the problem considered is a prediction of characteristic parameters of a buried object with cylindrical 
shape simultaneously and independently from each other. The parameters of interest include the object radius R, 
depth D, and lateral position P. The diagram of a two-dimensional GPR model (data acquisition system) shown 
in Fig. 1 also explains the meaning of the parameters of the object to be characterized.

Configuration of GPR model
Data acquisition scenarios
In this work, the object characterization problem is addressed using a GPR model. The GPR system consists of 
the three main components: transmitting and receiving antenna, cylindrical PEC object, and subsurface medium. 
For the purpose of data acquisition, the GPR model (including the buried object) is evaluated by means of 3D 
full wave electromagnetic (EM) analysis. A C-band pyramidal horn antenna has been used as transmitting/
receiving antenna in monostatic  configuration14. The antenna is placed in a close proximity of the air-ground 
surface. A Modulated-Gaussian signal (center frequency-6 GHz) is used as the transmitted signal. In this case, 
t = 12 ns. The buried object is modelled as cylindrical PEC object such as a wire, a pipe, or a rebar. The subsurface 
domain dimensions are defined as 400 × 300 × 500 mm. Figure 2 shows a 3D view of the data acquisition system.

The subsurface is assumed to be a dispersive subsurface medium and its dielectric properties are defined by 
the extended Debye  model49 according to the percentage of water content. It is assumed as a basic one for a GPR 
system. However, it should be mentioned that the main contribution of the work is to propose a fast and accurate, 
computationally efficient data driven surrogate modeling approach with a new data structure, TFS for estimation 
of characteristic parameters of a buried object independently from each other, and simultaneously with different 
subsurface media in terms of dielectric features. The dielectric features of subsurface media can be described as

where t0 is the relaxation time, [εs, ε∞] relative permittivity at zero frequency and relative permittivity at infinite 
frequency, whereas σ the soil conductivity. Four varied types of soil media are chosen in accordance with their 
water content of 0.2%, 2.8%, 5.5% and 6.2%49 via this model. The specific media parameters have been gathered 
in Table 1. Also, no pre-processing techniques were applied to eliminate air-ground reflections and the effects 
coming from the underground. This is in contrast to many approaches presented in the literature because of the 
usage of techniques for background subtraction or removing ground reflections, clutter reduction.

The GPR model presented above has been used to generate data, used to construct and validate the surrogate 
models employed for object characterization. The parameter space of object type and location scenarios are 
defined in a four-dimension system [depth, lateral position, radius, water content of subsurface]. The training 
data is allocated using a rectangular grid of the size 7 × 3 × 5 × 4 in order according to the defined four-dimen-
sional system, with the total number of 420 sample points. Eventually, these sample points are used to generate 
training data set. The details can be found in Table 2. It should be emphasized that in order to ensure compu-
tational efficiency of the modeling process, a sparse dataset is used. Note that for each of 420 scenarios, sixteen 
A-scans are generated through EM analysis. For the proper performance evaluation of the proposed model and 
benchmark models, the testing data contains randomly selected 81 scenarios designated via Latin Hypercube 
Sampling (LHS)50 to prevent over-fitting of the model. The training scenarios were not used for testing the 

(1)ε = ε∞ +
εS − ε∞

1+ jwt0
+

σ

jwε0
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surrogate models. The testing dataset is entirely distinct from the training one in terms of the considered buried 
objective parameter sets.

Data structures for buried object characterization
This section discusses the various data structures used in this work in the context of GPR-based object charac-
terization. As mentioned earlier, the outcome of the GPR model are A-scans, which are time-varying normalized 
power amplitude signals (1D signals) obtained at a single point alongside the scanning axis (synthetic aperture). 
The length of the A-scan is 600 (time steps). A B-scan image is constructed by concatenating all A-scans (here, 
sixteen) gathered along the aperture.

In the literature, different arrangements of data structures have been used to solve the inverse GPR problems, 
including B-scan images (2D data), extracted features, as well as the A-scan signals, as outlined in Sect. 1. In this 
work, three types of data structures are considered as briefly discussed in following sections Case 1- raw 2D data 
(B-scans), Case 2- features extracted from raw time signals, Case 3- 1D data set of raw time signals (consecutive 
A-scans) and their relevance from the point of view of improving the computational efficiency and reliability of 
the object characterization process are analyzed. The following cases are considered: Case 1 – raw 2D time signal, 
Case 2 – features extracted from raw time signal, and Case 3 – raw 1D A-scan signal.

Case 1 – raw 2D data (B-scans)
The primary data type considered in this work is raw B-scan data. Raw time signals in the form of 2D data are 
generated by combining all A-scans obtained along the synthetic aperture, as indicated in Fig. 3 for sample sce-
narios. The raw B-scan is represented as a matrix E = [Eij], with i = 1, …, 600, and j = 1, …, 16. B-scan consists of 
received reflected normalized power amplitudes for 600 time steps and 16 positions of the transmitting/receiving 
antenna at the along axis.

Figure 1.  Buried object identification, explanation of terms. The parameters to be identified include R (object 
radius), D (object depth), and P (lateral position).



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14898  | https://doi.org/10.1038/s41598-024-65996-0

www.nature.com/scientificreports/

Case 2 – features extracted from raw time signals
The second type of data considered in this work are features extracted from raw B-scan data. This data includes 
principal components (PCs) as well as selected statistical features. A part of extracted features includes PCs of 
B-scan, which are extracted using PCA, similarly as in  studies32,33. As mentioned earlier, raw B-scan data has 
the size of 600 × 16. The array of principal components of the B-scan obtained upon applying PCA has the size 
of 16 × 15. The rows correspond to the subsequent A-scans, whereas the columns are the components. Figure 4 
shows the example of PCs extracted from a B-scan for exemplary scenarios. Apart from the PCs, statistical 
features (SFs) are extracted as follows

Figure 2.  GPR model configuration in 3D-view utilized in this work to solve the buried object characterization 
task. Shown are the transmitting/receiving antenna, subsurface domain, and a cylindrical PEC buried object.

Table 1.  Extended Debye  parameters49 of the four types of subsurface media employed in this work. The main 
distinguishing parameter is water content.

Subsurface case WC % εs ε∞ t0[ns] σ [ �−1
m

−1]

1 0.2 4.814 4.507 0.82 6.06⋅10–4

2 2.8 6.75 5.503 2.28 2.03⋅10–3

3 5.5 8.63 6.023 1 5.15⋅10–3

4 6.2 9.14 5.93 0.8 6.7⋅10–3

Table 2.  Design of the training data set for data driven surrogates solving the considered GPR problem.

Parameter Parameter range Step size

Depth of the buried object [mm] 100–400 50

Lateral Position of the buried the object [mm] 140–280 70

Radius of the buried object [mm] 10–50 10

Water content of the soil [%] 0.2; 2.8; 5.5; 6.2

Total # of Scenarios 420
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Figure 3.  Sample raw A-scan signals and B-scan images constructed therefrom for two scenarios. The first 
scenario consists of radius 32 mm, depth 306 mm, lateral position 214 mm, and water content of 2.8%: (a) 
raw A-scans, (b) B-scan image. The second scenario consists of radius 27 mm, depth 218 mm, lateral position 
244 mm, and water content of 5.5%: (c) raw A-scans, (d) B-scan image.
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where M is the mean, V is the variance, STD is the standard deviation, S is the skewness, K is the kurtosis. Here, 
E(x) stands for the expected value. The extracted features PCs and the SFs matrix are transformed to a 1D feature 
vector. Its size for each B-scan is 1 × 320. It should also be mentioned that other types of features can be extracted, 
such as the minimum and maximum. However, these give information about the reflections from air-ground 
boundary and are therefore irrelevant from the point of view of characteristic parameters of the object. Mean is 
the average value of normalized power amplitude (PA) for a single A-scan (cf. (2)), where N = 600 is the number 
of discrete-time samples (here, 12 ns). Variance (cf. (3)) is obtained as average amplitude of squared departures 
from the mean value. Another feature is standard deviation, cf. (4), determines the spread of the power amplitude 
in the time series. Skewness, cf. (5), evaluates the asymmetry of the PA with respect to the mean value. Finally, 
kurtosis (cf. (6)) measures the normal distribution of PA, i.e., it describes the shape of the tail histogram. It 
should be emphasized that the main aim is to achieve low computational cost by reducing data dimension and 
size. In addition, it may be possible to increase the characterization performance with the regression approach, 
as in the classification approach widely used in the literature. The feature-based data set consists of the most 
common extracted features of GPR signals used in classification studies and clutter reduction (pre-processing) 
techniques. Some features are also analyzed such as entropy, root mean square and singular values while pre-
paring the manuscript, but the feature-based data set was not successful as aimed for characteristic parameter 
estimation. Also, it was observed that addition of features is not change the object characterization performance 
so much and increase the computational cost for data handling, data set processing (feature extraction), so more 
analysis and extended feature-based data set could not be added and the commonly used features are analyzed 
for solving defined problem.

Figure 4.  Sample principal components of A-scans (A-scan ID: 4, 8, 12 and 16) for the scenario corresponding 
to radius 27 mm, depth 218 mm, lateral position 244 mm, and water content of 5.5%: (a) A-scan ID: 4, (b) 
A-scan ID: 8, (c) A-scan ID: 12 and (d) A-scan ID: 16.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14898  | https://doi.org/10.1038/s41598-024-65996-0

www.nature.com/scientificreports/

Case 3 – 1D data set of raw time signals (consecutive A-scans)
The last type of data structure considered here is raw B-scan data matrix converted into 1D consecutive A-scans. 
This operation results in a single (one dimensional) vector. Given the size of B-scans, which contain 16 pairs of 
A-scans of size 1 × 600 (recall that A-scan is a time-varying normalized power amplitude signal obtained at a 
single point along the scanning axis), the consecutive vector size is 1 × 9600 for each B-scan scenario. Figure 5 
shows some examples of consecutive A-scans for specific scenarios.

Data structures: advantages and disadvantages
As mentioned earlier, the purpose of exploring several types of data structures was to assess their relevance from 
the point of view of surrogate-assisted object characterization. In Case 1, the data sets are prepared by using 
unprocessed, raw B-scans obtained from the GPR model and used as inputs of the surrogate models. As it turns 
out, a construction of reliable data driven models is impeded by the sheer complexity of this type of data. In 
other words, although B-scans contain the most complete information about the system at hand, its handling 
(here, in terms of constructing data driven models) is intrinsic.

The second type of data in the form of features extracted from B-scans (Case 2) is used to reduce the data 
complexity, thereby facilitating its handling, also in terms of rendering accurate surrogate models. At the same 
time, the goal is to evaluate possible trade-offs between reliability and computational efficiency of object char-
acterization. It should be mentioned that the literature indicates that utilization of feature-based data does lead 
to accuracy degradation, particularly in classification  problems8,32,34,36. Finally, in Case 3, to obtain low error 
rate and improve computational efficiency, consecutive A-scans (1D raw data) are used as the input instead 
of concatenated A-scans. Another goal here is to compare performance of various surrogates by means of the 
state-of-the-art techniques. The comparison of the performances between the surrogates was not possible with 
the 2D raw data (raw B-scan). In this case, the information carried by the data is the same, yet only because its 
shape changed, an improvement has been achieved in terms of the computational cost of the training process. 
Nonetheless, this data type could not reach the prediction performance at the intended level. Furthermore, raw 
1D time signals are handled by transforming time frequency spectrogram, TFS. The aim is to take advantages of 
the properties of the data in time and frequency domain, and to ensure low computational cost by changing the 
size of data. The proposed data handling is used by a new DRN framework as explained in detail in next section, 
deep regression network (DRN) customized for time frequency spectrogram (TFS) model.

Data driven surrogate models
This section discusses the data driven surrogate models used for characterization of buried object with regards 
to estimate radius, depth and lateral position. In particular, the proposed DRN model is explained with the 
benchmark models including their configurations and hyper-parameters. In all cases,  MATLAB51 R2022a has 
been used as the primary programming environment for generating data structures, as well as training and 
testing of the models.

Deep regression network (DRN) customized for time frequency spectrogram (TFS) model
Herein, a new deep-learning-based framework is introduced. More specifically, a deep regression network (DRN) 
customized for TFS data of consecutive A-scans is developed. This model uses TFS data (2D image) obtained 
by using the short time frequency transform (STFT) of consecutive A-scans, 1D signals. STFT of 1D signals, 
a sequence of FFT of windowed of 1D signals, offers a joint distribution that enables analysis both in time and 

Figure 5.  Samples of B-scans in a form of consecutive A-scans from test data set for (a) a scenario of radius 
32 mm, depth 306 mm, lateral position 214 mm, and water content of 2.8%; (b) a scenario of radius 27 mm, 
depth 218 mm, lateral position 244 mm, and water content of 5.5%.
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frequency  domains52. In addition, the time frequency spectrogram (image, 2D data) has been utilized for clas-
sification of sound signals in some CNN-based, deep learning  investigations53. The proposed data type of received 
reflected power amplitude signal, time frequency spectrogram with DRN framework has been constructed, 
partially taking inspiration from the previously mentioned developments. The proposed surrogate model may be 
considered as similar to the networks including DL algorithms. However, the proposed DRN network structure 
presents a novel model and uses a new data structure, TFS for buried object characterization in terms of esti-
mating of the characteristic parameters in a way that is reliable and computationally efficient. Its main structure 
includes convolutional and fully connected layer blocks in a pyramidal configuration. Every block consists of a 
batch normalization (BN) layer, convolutional filter, maximum pooling layer and activation function and every 
fully connected layer block consists of fully connected layer and BN layer similar with the MLP configuration. 
Therefore, the proposed DRN network have similar features with DL and MLP but it is a new customized net-
work model for TFS data. In the literature, there are many network structures based on deep learning, and each 
of them is customized, have specific hyper parameters, kernel sizes or cardinalities.

The proposed framework includes a number of convolutional filter blocks and fully connected (FC)  layers54. 
The consecutive A-scans dimension is 1 × 9600, and a window function is selected as 32-point (32-sample seg-
ment) Kaiser  window55 with the shape factor of five. At the first stage, zero-average of consecutive A-scans are 
taken. After that, the blocks with the length of 32 are extracted from intervals which are specified by a sixteen-
sample overlap between the adjoining segments. Then, the blocks are multiplied by the Kaiser  window55, the 
purpose is to prohibit the spectral leakage while extracting the time frequency spectrogram. Subsequently, the 
length of FFT are selected as 256. Because of being symmetrical of FFT for real signals, the one-sided portion 
of the spectrogram is received. Complex numbers are converted to real numbers by taking their magnitude. 
Thus, the magnitude spectrum has been calculated to process the TFS as an image. The TFS data of consecutive 
A-scans are obtained and the dimension of the images are reduced to 128 × 128. Figure 6 shows the TFS images 
for the sample test scenarios.

The DRN model developed to represent the data comprises of seven major blocks as demonstrated with its 
configuration in Fig. 7. The input layer takes the TFS data with the size of 128 × 128 × 1. After that the four major 
blocks including convolutional layers extract features from TFS data and down sample the extracted features. 
Another layers in the major blocks are batch normalization (BN)56 and Leaky ReLU layer which is used for 
activation function. These layers apply the following data processing operations to extracted features from TFS 
data. The last layer of the major blocks, pooling layer divides the data into pool and reduces the data maximum 
of each pool. In the fifth block, global average pooling  layer57 is performed by computing average values in 
each dimension of input data. Thus, a feature vector with the size of 1 × 1 × 256 is derived from the TFS data. As 
demonstrated in Fig. 7, the numbers of filters of the convolutional layers between 32 and 256 in the last convo-
lutional block in a pyramidal configuration. Each convolutional layer contains 3 × 3 filters and 2-strided except 
the first convolutional layer, it is 1-strided for feature extraction of TFS data. Also, each maximum pooling layer 
contains 2-strided 3 × 3 filters for reduction of extracted features in the convolutional layers. Subsequently, within 
the sixth block, the feature vector is processed; this block is of pyramidal shape and contains layers of the sizes 
from 512 neurons down to 64 neurons in the FC layer. In the last block, the input is converted to characteristic 
parameters of the object to be characterized (radius, depth and lateral position) through three-neuron FC layer 
and the regression layer.

Figure 6.  Samples of the TFS image of consecutive A-scans from the test data set for: (a) a scenario of radius 
32 mm, depth 306 mm, lateral position 214 mm, and water content of 2.8%; (b) a scenario of, radius 27 mm, 
depth 218 mm, lateral position 244 mm, and water content of 5.5%.
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Benchmark models
This subsection outlines the benchmark models employed to perform comparisons with the proposed DRN with 
TFS surrogate methodology used for buried object characterization. The benchmark models consist of  MLP12,17,18, 
GP  regression24,  CNN3,19,42,58, and  SVRM59. A brief explanation of all these models are below.

CNN (Convolutional neural network)
CNN is a deep learning-based  technique6,21,41,42,44. Its major ability is to automate feature extraction from input 
by means of convolutional filters. These filters are placed in the main layers of the CNN architectures, referred 
to as convolutional layers. CNN model configuration consists of a variety of blocks which are used together, 
such as a convolutional layer, a pooling layer, a BN layer and the activation function, lastly a fully connected 
(FC) layer. In this work, architecture of the benchmark CNN model varies according to dimension of the input 
data as CNN-2D and CNN-1D. In CNN models, the configuration and the hyper-parameters are defined as: 
a convolutional layer (in three blocks) after the BN layer, and activation function which is selected as ReLU 
layer, a pooling layer involved in the last convolutional layer. The layer following the convolutional blocks is a 
FC layer with three neurons corresponding to the network outputs. The final layer, the regression layer, is used 
to estimate the outputs, specifically, radius, depth and lateral position. The remaining user-defined parameters, 
like the number of the filters in the convolutional layers (32, 64, 128) and the size, also the pooling layer are 
designated as regards literature  recommendations3. Furthermore, the size of the filters is arranged according to 
dimensionality of data sets in the analyzed cases.

MLP (Multi-layer perceptron)
The  MLP9,12,17,18,60 model is utilized in this work with the following properties. The activation functions are 
used as log-sigmoid and the model is constructed with two hidden layers including 16 and 32 hidden neurons, 

Figure 7.  The architecture of the proposed DRN framework customized for time frequency spectrogram.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14898  | https://doi.org/10.1038/s41598-024-65996-0

www.nature.com/scientificreports/

respectively. Furthermore, the MLP model is trained by the Levenberg–Marquardt algorithm with the maximum 
epoch number equal to 500.

SVRM (Support vector regression machine)
Another benchmark surrogate model is SVRM which is involved in the class of supervised statistical learning 
 techniques16,18,32,59. Herein, SVRM hyper-parameters are identified using Bayesian optimization. The kernel 
function which is selected as a Gaussian function for Case 3 and Radial Basis Function (RBF) for Case 2 is one 
of the important components SVRM.

GP regression (Gaussian process regression)
The last model for benchmarking is Gaussian process (GP) regression. The main working principle of GP regres-
sion technique is generalizing Gaussian-Probability-Distributions to  functions24,61. For this analysis, the selected 
kernel function is “matern 3/2”62 for numerical experiments, and the block coordinate descent method is used 
for estimation with the block size of 200. The selection of hyper-parameters is a significant part of AI based data 
driven surrogate modelling. Herein, Bayesian-Optimization is applied to obtain optimum hyper-parameters. 
The K-fold technique with K = 10 is used for validation.

Surrogate modeling for buried object characterization
Experimental results
This section discusses the results of verification experiments using the surrogates (the proposed DRN with TFS 
and benchmark methods). The performance of predicting buried object parameters is measured using Mean 
Absolute Error (MAE) expressed in millimeters, and Relative Mean Error (RME) expressed in percent. Both 
error metrics are described as follows

N: the total # of samples, Ti: Target, Pi: model prediction, for the ith sample of test data set.
Table 3 represents the statistical results obtained for ten independent runs of each dataset cases and each 

surrogate model. Apart from the aforementioned error metrics, the training times and the required processing 
time for the test data are also shown. The analysis of the results allows us to formulate a number of observa-
tions. As it can be noted, the processing time for Case 1 (2D data) is the highest. At the same time, it ensures 
reasonably good predictive power. Extracting and processing features, associated with dimensionality reduction 
leads to a decrease of the model training time as observed for Case 2. However, the prediction performance is 
compromised as compared to Case 1. The employment of the sequential form of A-scans in characterization 
analysis is associated with high computational cost for some of the benchmark techniques, which is similar to 
that for Case 1, whereas prediction performance is insufficient. At the same time, the results demonstrate that 
estimation of characteristic parameters of the buried object with TFS image of consecutive A-scans using the 
proposed DRN framework is the best option, which allows for maintaining satisfactory computational efficiency 
as well as improved prediction performance (low error metrics) as compared to other types of data sets. Figure 8 
demonstrates the training progress of proposed framework by showing the loss values versus the (training) 

(7)MAE =
1

N
×

N
∑

i=1

|Ti − Pi|

(8)RME =
1

N
×

N
∑

i=1

|Ti − Pi|

|Ti|

Table 3.  Prediction performance and computational costs for all considered surrogate models. Shown are 
averaged performance figures and the corresponding standard deviations computed for 10 different runs.

Case Model
MAE
[mm]

RME
[%]

Training-time
[min]

Evaluation duration of a single 
input data [ms]

Case 1 (2D data, B-scans) CNN-2D 12.7 ± 0.8 13.6 ± 1.0 229.0 ± 5.0 18.9 ± 1.2

Case 2 (Extracted Features)

CNN-2D 17.8 ± 0.9 16.3 ± 0.9 9.0 ± 1.1 7.4 ± 2.2

CNN-1D 21.2 ± 0.7 19.0 ± 1.3 9.0 ± 1.0 6.5 ± 1.3

MLP 37.6 ± 2.5 33.8 ± 2.9 29.4 ± 1.2 1.7 ± 0.7

SVRM 36.8 ± 1.8 43.7 ± 3.5 0.6 ± 0.1 0.4 ± 0.1

GP regression 31.4 ± 0.9 31.3 ± 3.4 1.5 ± 0.1 0.3 ± 0.1

Case 3 (1D data, Consecutive A-scans)

DRN with TFS
[This work] 3.6 ± 0.2 4.7 ± 0.6 18.3 ± 0.7 7.7 ± 0.6

CNN-1D 11.8 ± 0.5 11.6 ± 0.6 187.6 ± 6.1 17.6 ± 2.7

MLP 43.1 ± 3.4 31.4 ± 1.5 360.5 ± 9.1 1.7 ± 0.4

SVRM 26.1 ± 1.1 24.2 ± 0.8 9.4 ± 0.6 3.5 ± 0.3

GP regression 22.9 ± 0.1 21.6 ± 0.2 6.1 ± 0.6 1.1 ± 0.1
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iteration number. Furthermore, Table 4 demonstrates the error metrics obtained for individual characteristic 
parameters, computed for Case 3 analysis and the best performance-wise run out of the ten independent runs 
performed. Moreover, Fig. 9 represents the geometrical configurations of selected example test scenarios in terms 
of compatibility among the estimated characteristic parameters by using the proposed DRN with TFS surrogate 
model and target values.

As mentioned earlier and indicated by the results in Table 3, the best results are obtained for Case 3 (consecu-
tive A-scans). Consequently, further performance analysis is carried out in details for this case only. More specifi-
cally, individual error metrics are investigated for all characteristic parameters, as well as the compare predicted 
characteristic parameters with their target values. The error values for the DRN framework are 3.1 [mm] (MAE) 
and 3.9% (RME), which is the average for the three considered characteristic parameters (radius, depth and lateral 
position). The best benchmark model, CNN-1D, demonstrates considerably worse prediction performance with 
the average error values of 11.4 mm (MAE) and 11.3% (RME), which is almost three times as high.

More detailed information concerning the experimental setup is provided. For Case 3 (1 × 9600 1D consecu-
tive A-scans) the MLP model could not be constructed with the used hardware configuration due to insufficient 
RAM capacity. Consequently, down sampling was applied at 10-percent rate, so that the data was re-scaled to the 
size of 1 × 960. For SVRM (Case 3), the determined hyper-parameters of Gaussian kernel functions in optimal 
follow as: Kernel scale of 0.5527, Box-constraint of 981.36, and Epsilon 1.8628. The proposed DRN framework 
employs the Adam  optimizer63, which is a backpropagation algorithm, for reduction of the computational cost 
of the deep learning-based surrogate model  training64. In this model, the maximum epoch number is selected as 
500 and the batch size is used as 64. In addition, shuffling is applied to TFS data in the proposed DRN in every 

Figure 8.  The train loss of DRN model customized for TFS data versus iteration number.

Table 4.  Performance benchmarking of the proposed surrogate and counterpart models for the targeted 
characteristic parameters belong to the Case 3 (data shown for the best out of ten independent runs).

Model Characteristic MAE [mm] RME [%]
Average
MAE [mm]

Average
RME [%]

DRN with TFS [This work]

Depth 4.2 2.0

3.1 3.9Lateral position 2.8 1.4

Radius 2.2 8.3

CNN-1D

Depth 14.7 6.6

11.4 11.3Lateral position 14.9 7.2

Radius 4.7 20.1

MLP

Depth 47.4 15.7

22.9 21.0Lateral position 14.1 23.4

Radius 7.1 32.6

SVRM

Depth 52.5 26.6

25.1 23.4Lateral position 13.8 6.7

Radius 8.9 36.8

GP regression

Depth 47.3 23.4

22.8 21.4Lateral position 13.9 6.8

Radius 7.3 34.1
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epoch. While training of the CNN model, the same batch size and Adam  optimizer64 is applied as those used for 
the DRN model in order to make an accurate and fair comparison. Furthermore, the learning rate is set to value 
of  10–3 until the selected epoch number reached (here, 500).

The error metrics reported in Table 4 indicate that the proposed DRN surrogate model working with TFS data 
outperforms all benchmark methods by a large margin. Furthermore, the predictions concerning characteristic 
parameters of buried object made by the proposed surrogate are very much satisfactory. Table 5 provides another 
demonstration of the model performance, in the form of a comparison between actual object parameters and 
predictions yielded by the proposed and benchmark models, for selected scenarios. Again, the predictions of 
the presented DRN framework with customized TFS data are significantly closer to the true values than those 
obtained using other methods, for all considered cases. In Fig. 10, geometrical configurations of the actual and 
predicted characteristic parameters are represented for selected test scenarios in the form of a comparison 
between the proposed DRN framework (a version using TFS data of consecutive A-scans) and the benchmark 
models with consecutive A-scans (Case 3). As it can be observed, the proposed DRN surrogate with TFS yields 
consistent results with close proximity among the actual and the predicted and location/size of the object. This 

Figure 9.  The geometrical configurations of the characteristic parameters belonging the target and predicted 
by DRN with TFS (the proposed surrogate model). The surrogate-predicted and the target objects indicated 
via the light- and dark-grey shade, respectively. The following geometrical configurations have been shown: 
(a) R = 16 mm, D = 379 mm, and P = 198 mm, (b) R = 34 mm, D = 320 mm, and P = 165 mm, (c) R = 50 mm, 
D = 268 mm, and P = 276 mm, (d) R = 24 mm, D = 195 mm, and P = 182 mm.

Table 5.  Predicted characteristic parameters versus actual values for the proposed DRN surrogate customized 
for TFS and the comparison methods for some test scenarios.

Scenario
ID Model D P R Error (D, P, R) [mm]

1

True value 155 224 38 –

DRN with TFS [This work] 146 224 40 9, 0, − 2

CNN− 1D 176 260 39 − 21, − 36, − 1

MLP 309 238 34 − 154, − 14, 4

SVRM 180 228 46 − 25, − 4, − 8

GP regression 184 220 39 − 29, 4, − 1

2

True Value 110 178 32 –

DRN with TFS
[This work] 113 175 30 − 3, 3, 2

CNN− 1D 105 147 26 5, 31, 6

MLP 103 229 29 7, − 51, 3

SVRM 164 187 40 − 54, − 9, − 8

GP regression 159 198 38 − 49, − 20, − 6

3

True Value 211 225 15 –

DRN with TFS
[This work] 209 232 17 2, − 7, − 2

CNN− 1D 234 217 25 − 23, 8, − 10

MLP 367 185 29 − 156, 40, − 14

SVRM 363 209 21 − 152, 16, − 6

GP regression 339 210 30 − 128, 15, − 15
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corroborates the relevance of the proposed approach to buried object characterization. Furthermore, the results 
obtained for the benchmark studies reported in the  literature4,6,7,24,37,48 have been compared to the approach 
proposed in this study, and reported in Table 6. The compared methodologies have been mentioned in the 
introduction section. The table contains statistical results, the samples in training data sets and the dimensions 
of scanning subsurface domain corresponding to compared studies.

Deep regression network model for time frequency spectrogram using noisy data
This section discusses further verification of the proposed data structure and surrogate model using a new noisy 
data set, which is generated by adding random  noise7,22,31,42,65–68 to consecutive A-scans. The purpose is to analyze 
the internal and environmental noise effects of the GPR system. In the literature, different purposes have been 

Figure 10.  The geometrical configurations of the characteristic parameters belonging the targets and predicted 
by DRN with TFS (the proposed surrogate model) with the comparison network models. The surrogate-
predicted and the target objects indicated via the light- and dark-grey shade, respectively: The first scenario: [34, 
193, 110], (a) DRN with TFS, (b) CNN-1D; The second scenario: [21, 361, 189], (c) DRN with TFS, (d) MLP; 
The third scenario: [26, 244, 299], (e) DRN with TFS, (f) SVRM; The fourth scenario: [34, 193, 110], (g) DRN 
with TFS, (h) GP regression. All the predicted parameters in [mm] in order of [R, D, P].

Table 6.  Comparison between the proposed DRN surrogate customized for TFS and the counterpart 
methodologies.

Methodology Subsurface dimension Training data set Depth Lateral position Size

Ref4 0.5 × 0.3 × 0.4 [m] 2000 [80%] maximum error ± 2 cm – radius, ± 6 mm accuracy

Ref6 1.0 × 0.2 [m] 2370 error < 1.5 mm and relative error < 5% error < 7 mm –

Ref7 50 × 15 [cm] 1400 – – accuracy 99.5%, classification of 9 different 
diameters

Ref24 4 × 5 [m] 100 – – size estimation, MAE 4.8 cm, Relative MAE 
6.1%

Ref37 0.4 × 0.6 [m] 500 MAE 14.4 mm, RME 4.4% MAE 9.0 mm, RME 6.4% radius, MAE 2.6 mm, RME 10.8%

Ref48 0.4 × 0.3 × 0.5 [m] 315 MAE 10.4 mm, RME 4.7% MAE 17.7 mm, RME 8.7% radius, MAE 7.7 mm, RME 34.5%

[This work] 0.4 × 0.3 × 0.5 [m] 420 MAE 4.2 mm, RME 2.0% MAE 2.8 mm, RME 1.4% radius, MAE 2.2 mm, RME 8.3%
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associated with noise incorporation, such as being closer to realistic  scenarios21,22,41,58,65, data  augmentation7,21,41,65, 
as well as testing stability and sensitivity of the studied  models31,42,66–68.

The characteristic parameters are estimated using noisy data sets generated by randomly addition white 
Gaussian  noise42. This way of incorporating noise is commonly employed in the literature. For instance, random 
Gaussian noise have been utilized to replicate field scenarios in the context of deep convolutional network mod-
eling for coastal hazard  mitigation65. In a  study67, a noise suppression method based on white Gaussian noise for 
GPR data had been presented, which is based on ensemble empirical mode decomposition (EEMD) approach. 
It should also be noted that the interior system noise of the GPR systems leads interferences with the received 
reflected signals, and it can be assumed to be similar to the white Gaussian  noise66. In addition to these studies, 
noisy data have been used verifying stability of the model and testing the sensitivity to noise by using generated 
signals with different amplitudes of white Gaussian noise  addition31,42.

The problem defined in this verification study is solved by using 20 dB and 30 dB signal-to-noise ratio (SNR) 
rates white Gaussian noisy data sets to obtain conditions, which are closer to real-world and on site  applications42. 
In Fig. 11, noisy data have been represented with different scenarios and two SNR rates of 20 dB and 30 dB. The 
noisy data sets are generated for Case 3. For the purpose of comparison, the proposed DRN framework with TFS 
data of consecutive A-scans is juxtaposed against the best benchmark model CNN-1D. The results obtained for 
both models have been presented in Table 7. In addition, the surrogate-predicted characteristic parameters have 
been compared to true parameters for selected test scenarios in Table 8. The reported error metrics indicate that 
performance of the proposed framework DRN with TFS data (average MAE of 10.1 for SNR of 30 dB and 15.8 
for SNR of 20 dB) is clearly better than the best benchmark model, CNN-1D (average MAE of 20.7.1 for SNR of 
30 dB and 25.2 for SNR of 20 dB). In other words, even though increasing the data complexity by adding noise 
has a negative impact on the overall performance of the models, the proposed approach is still the superior to 
the second-best surrogate CNN-1D.

Analysis of deep regression network model with time frequency spectrogram using measure-
ment data
This section presents a supplementary validation of the proposed modeling approach, DRN with TFS on the sub-
ject of performance for estimating characteristic parameters, by means of experimental data. The data has been 
gathered via the measurements in a “sand pool” environment, in the laboratory at Yıldız Technical University. 
Herein, it should be mentioned that collecting the experimental data is extremely laborious because of substantial 
manual efforts related to digging and accurately burying the targets, as well as adjustments/maintenance of the 
system. These obstacles are also the major causes for the use of data driven surrogate methodologies as primary 
tools in the context of buried object detection/characterization with GPR systems.

Figure 11.  B-scan images, their consecutive A-scans and TFS images constructed for two noisy scenarios. The 
first scenario belongs to SNR value of 30 dB, radius 49 mm, depth 311 mm, lateral position 141 mm, and water 
content of 0.2%: (a) B-scan image, (b) consecutive A-scans, (c) TFS image. The second scenario belongs to SNR 
value of 20 dB, radius 15 mm, depth 211 mm, lateral position 225 mm, and water content of 6.2%: (d) B-scan 
image, (e) consecutive A-scans, (f) TFS image.
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Table 7.  Prediction performance of proposed DRN with TFS and CNN-1D models for the characteristic 
parameters through noisy data sets.

Model Characteristic

SNR = 30 dB SNR = 20 dB

MAE [mm] RME [%]

Average 
MAE
[mm] MAE [mm] RME [%]

Average 
MAE
[mm]

DRN with TFS [This work]

Depth 13.1 5.4

10.1

21.6 9.4

15.8Lateral position 10.5 5.3 15.2 7.7

Radius 6.5 26.0 6.8 30.1

CNN-1D

Depth 31.5 12.4

20.7

40.7 16.4

25.2Lateral position 23.6 10.7 27.6 12.6

Radius 6.9 29.5 7.4 32.0

Table 8.  Predicted characteristic parameters of the DRN and CNN-1D models in comparison with their 
actual values for some noisy test scenarios.

Scenario
ID Model D P R Error (D, P, R) [mm]

1

True value 240 150 14 –

DRN with TFS [20 dB] [This work] 247 158 18 − 7, − 8, − 4

CNN− 1D [20 dB] 255 169 16 − 15, − 19, − 2

2

True value 160 232 45 –

DRN with TFS [30 dB] [This work] 167 232 42 − 7, 0, 3

CNN− 1D [30 dB] 130 215 33 30, 17, 12

3

True value 276 201 21 –

DRN with TFS [20 dB] [This work] 281 216 24 − 5, − 15, − 3

CNN− 1D [20 dB] 263 178 27 13, 23, − 6

4

True value 128 160 19 –

DRN with TFS [30 dB][This work] 132 164 25 − 4, − 4, − 6

CNN− 1D [30 dB] 171 145 30 − 43, 15, − 11

Figure 12.  (a) Configuration of the measurement setup and (b) the picture of the measurement environment 
utilized to generate experimental data set for the use of proposed customized deep learning based surrogate 
model.
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The main purpose here is to show that the proposed modeling approach is also feasible when used with the 
experimental measurements as a source of data. The B-scan data according to several scenarios are gathered by 
the impulse ground penetrating radar system, which is used in subsurface imaging  operations69–72. Figure 12 
demonstrates the measurement setup. Cylindrical PEC objects of different radii are buried in the subsurface. 
The experimental data are taken from inhomogeneous dry soil including a mixture of sand and small stones 
in a wooden pool, used as the scanning subsurface domain. The pool dimensions are almost 0.22 m (depth), 
1.15 m (width), and 1.40 m (length). The length of the scanning path is approximately 1.40 m. B-scan data of 
selected scenarios is collected while the measurement setup (GPR, transmitter and receiver antennas) is manu-
ally taken steps along the scanning path above the subsurface. Each B-scan data (382 × 65) consists of concat-
enated 65 received reflected (time-varying amplitude) signals, A-scans with the length of 382 (discrete time 
step). In advance of applying the proposed methodology to the measurement data for characterizing the buried 
object, raw B-scan data matrix is converted into 1D consecutive A-scans (Case 3). The consecutive vector size is 
1 × 24,830 for each B-scan scenario. Figure 13 shows a B-scan image, a sample of A-scans, and the TFS image of 
the selected scenario. The proposed novel framework utilized TFS image transformed from consecutive A-scans 
instead of concatenated form of A-scans (B-scan) as input, the size of which is 128 × 128 × 1. The outputs of the 
surrogates are the predicted characteristic parameters, i.e., radius, depth and lateral position. The measurement 
data set which is used to train and test the presented surrogate methodology and the best comparison model 
(CNN-1D) consists of 33 scenarios. The object which is buried at different positions including depth and lateral 
positions (such as 550 mm, 650 mm, 770 mm and 900 mm) has various radii (such as 10 mm, 15 mm, 20 mm, 
25 mm and 30 mm).

The object characterization problem considered in this validation study is solved using the measurement data. 
Tables 9 and 10 show the errors of the proposed model and the best benchmark technique, CNN-1D, whereas 
Table 11 provides numerical comparisons between the model-predicted and the actual values of the characteristic 
parameters. Meanwhile, Fig. 14 shows geometrical configurations of the selected test scenarios, i.e., the predicted 
versus actual object allocation and size. In Table 9, the average errors of determining all characteristic parameters 
(depth, lateral position, radius) are obtained by taking the results of various runs of the models. According to 
the best prediction of the models (cf. Table 10), the performance of the proposed DRN framework customized 
for TFS data (average MAE of 29.6 mm) is clearly preferable with respect to object characterization quality than 
that of the comparison model, CNN-1D (average MAE of 37.2 mm). Also, the computational cost of CNN-1D is 
much higher than that of the proposed model. Figure 14 illustrates the alignment between surrogate-predicted 
and true characteristic parameters via the geometrical configurations corresponding to the selected scenarios. 
As it can be observed from the geometrical configurations, visual agreement between the target and surrogate-
predicted object size and position (depth and lateral position) is superior to the proposed model as compared to 
CNN-1D. Table 11 represents comparisons between the true and surrogate-predicted characteristic parameters 
with error values for sample test scenarios. In particular, the estimation of the characteristic parameters achieved 
via the DRN model with TFS data is satisfactory for practical purposes, as demonstrated in Table 11 and Fig. 14, 
and the proposed modeling approach is considerably more successful than the benchmark model, CNN-1D.

Figure 13.  The B-scan image along with the sample A-scans, and the TFS image constructed for a selected test 
scenario from the measurement data set. The scenario corresponds to radius of 20 mm, depth of 110 mm, and 
lateral position of 770 mm: (a) B-scan image, (b) sample A-scans, (c) TFS image.

Table 9.  Prediction performance and computational costs for proposed model, DRN with TFS and 
benchmark model, CNN-1D. Shown are averaged performance figures and the corresponding standard 
deviations computed for 10 different runs for the measurement data.

Model
MAE
[mm]

RME
[%]

Training time
[min] Processing time for a single input test data [ms]

DRN with TFS
[This work] 32.6 ± 2.3 21.0 ± 0.9 3.1 ± 0.2 30.0 ± 4.0

CNN-1D 42.0 ± 4.2 23.6 ± 0.8 28.2 ± 1.1 79.0 ± 16.0
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Table 10.  The quality of predicting characteristic parameters using the measurement data. The table shows the 
performance figures for the proposed surrogate and the benchmark model (for the best out of ten independent 
runs).

Model Characteristic MAE [mm] RME [%]
Average
MAE [mm]

Average
RME [%]

DRN with TFS [This work]

Depth 14.2 9.7

29.6 19.2Lateral position 68.7 9.1

Radius 5.7 38.7

CNN-1D

Depth 23.9 16.3

37.2 22.7Lateral position 81.0 10.1

Radius 6.5 41.7

Table 11.  Characteristic parameters predicted by the DRN with TFS and CNN-1D models in comparison to 
the actual values for test scenarios selected from the measurement data.

Scenario
ID Model D P R Error (D, P, R) [mm]

1

True value 165 900 15 –

DRN with TFS [This work] 159 863 19 6, 37, − 4

CNN-1D 137 791 17 28, 109, − 2

2

True value 170 550 20 –

DRN with TFS [This work] 148 520 20 22, 30, 0

CNN-1D 127 627 17 43, − 77, 3

3

True value 160 770 10 –

DRN with TFS [This work] 164 785 19 − 4, − 15, − 9

CNN-1D 138 746 18 22, 24, − 8

Figure 14.  The geometrical configurations of the characteristic parameters belonging the targets and predicted 
by DRN with TFS (the proposed surrogate model) with the benchmark model. Models constructed with the 
measured data. The surrogate-predicted and the target objects indicated via the light- and dark-grey shade, 
respectively: The first scenario: R = 20 mm, D = 110 mm, and P = 770 mm, (a) DRN with TFS, (b) CNN-1D; The 
second scenario: R = 10 mm, D = 100 mm, and P = 650 mm, (c) DRN with TFS, (d) CNN-1D.
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Conclusion
This work introduced a methodology for surrogate-assisted buried object characterization in terms of estimating 
characteristic parameters, specifically, radius, depth and lateral position, using several types of data structures. 
These include the commonly used data types of received reflected signals in the form of raw B-scans (2D data), 
the extracted features from raw time signals such as PCs and SFs (mean, variance, standard deviation, skew-
ness and kurtosis), as well as consecutive A-scans (1D data). The feature-based data sets are commonly used 
for classification approaches, and the feature-based dataset is employed to further investigate the performance 
of the proposed surrogate-assisted regression approach. The key performance figures of interest include the 
computational cost and reliability of the surrogate models in terms of the object characterization quality. It has 
been observed that the conventional network models using B-scan images require high computational cost and 
their performances in estimation parameters are not successful enough, so new variable data structures and 
deep learning surrogate models are investigated. In order to ensure the highest possible performance in the 
mentioned sense, a novel surrogate modeling approach with variable data structures and deep-learning-based 
framework has been introduced. Extensive investigations carried out for the aforementioned data structures 
revealed that the usage of B-scan (Case 1) is associated with high computational expenses, whereas the usage of 
extracted features (Case 2) reduces the model training time but deteriorates the object characterization quality. 
Consequently, the proposed approach focused on incorporating TFS data of consecutive raw A-scans (Case 3), 
handled and processed using DRN. The most important feature of the proposed modeling methodology includes 
computational efficiency as well as highly accurate predictions of the buried object parameters.

The proposed customized DRN model has been comprehensively trained and tested through TFS data 
obtained from a number of scenarios of cylindrical PEC object buried at different positions in various types of 
dispersive subsurface media. The proposed methodology has been compared with several benchmark models 
involving CNN-1D, SVRM, MLP, and GP regression. The outcomes with respect to the error metrics demonstrate 
superior performance of the proposed technique with the MAE as low as 3.1 mm against 11.4 mm for the best 
comparison technique, CNN-1D. Another outcome also demonstrates the requirement of low computational 
cost of the DRN with TFS framework. Thus, the proposed methodology can be considered as an accurate and 
computationally efficient approach to buried object characterization. For the sake of supplementary validation, 
the proposed DRN with TFS model has been tested using realistic scenarios with noisy data (SNR value of 20 dB 
and 30 dB), and the measurement data. Extensive numerical and experimental data, including error metrics, 
as well as comparisons between the model-predicted and actual parameters of the buried object for a number 
of test scenarios demonstrate practical utility of the introduced DRN with TFS model as well as its superiority 
over a family of state-of-the-art benchmarks models. On the other hand, the proposed methodology presents 
some limitations, in particular, characterization of objects featuring such as different material types and differ-
ent shapes. The TFS data contains features from the time and frequency domain for subsurface medium and 
buried object. As mentioned, when the environment is more complex, the features of subsurface medium have 
the same effects on time frequency spectrogram for the entire scenarios of data set and the proposed surrogate 
model can learn to discriminate features of the buried object. Also, it can be used with a larger number of char-
acteristic features in cascaded structures including classification and regression approaches together. Therefore, 
it should be emphasized that the proposed model is expandable for different subsurface media, material types 
and shapes. One of the objectives of the future work is to extend the applicability of the presented customized 
deep learning-based surrogate modeling technique for buried objects characterization in terms of featuring 
different material types and shapes.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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