

T.C. KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ANTİKANSER İLAÇ YÜKLÜ MANYETİK NANOPARÇACIKLARIN KANSER HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİSİ VE MOLEKÜLER KENETLEME ÇALIŞMALARI

FATMANUR ÖZÇELİK

DOKTORA TEZİ

KIRŞEHİR 2023

T.C. KIRŞEHİR AHİ EVRANÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ANTİKANSER İLAÇ YÜKLÜ MANYETİK NANOPARÇACIKLARIN KANSER HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİSİ VE MOLEKÜLER KENETLEME ÇALIŞMALARI

FATMANUR ÖZÇELİK

DOKTORA TEZİ

<u>DANIŞMAN</u> Doç. Dr. T. Raci SERTBAKAN

<u>II. DANIŞMAN</u> Prof. Dr. Serap YALÇIN AZARKAN

> KIRŞEHİR 2023

KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZ ÇALIŞMASI ETİK BEYANI

Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma ve Yayın Etiği Yönergesini okuduğumu ve anladığımı ve Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

• Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,

• Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik kurallarına uygun olarak sunduğumu,

• Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,

• Kullanılan verilerde ve ortaya çıkan sonuçlarda herhangi bir değişiklik yapmadığımı,

• Tez olarak sunduğum bu çalışmanın özgün olduğunu,

bildirir, aksi bir durumda bu konuda hakkımda yapılacak tüm yasal işlemleri ve aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim. 21/06/2023

> Öğrenci Fatmanur ÖZÇELİK

İÇİNDEKİLER DİZİNİ

İÇİND	EKILER DİZİNİ	I
TEŞEF	KKÜR	IV
ÖZET		V
ABSTI	RACT	VI
ŞEKİL	LER DİZİNİ	. VIII
SİMGI	ELER VE KISALTMALAR DİZİNİ	X
1. GİR	siş	1
1.1.	Meme Kanseri	3
1.2.	Meme Kanserinde Tedavi Yöntemleri	4
	1.2.1.Cerrahi	4
	1.2.2. Radyoterapi	5
	1.2.3. Kemoterapi	5
	1.2.4. Akıllı İlaç Sistemleri	6
	1.2.4.1. Nanoteknoloji	6
1.3.	Nanoparçacıkların Fonksiyonelleştirilmesi	7
	1.3.1.Nanoparçacıkların polimer ile fonksiyonelleştirilmesi	8
	1.3.2. Nanoparçacıklara anti-kanser molekül (ilaç, gen, antikor) yüklenmesi	9
1.4.	Poli(3-hidroksibütirat) (PHB) Yapısı ve Özellikleri	10
1.5.	İrinotekan 'ın Yapısı ve Özellikleri	11
1.6.	Moleküler Titreşim Spektroskopisi	12
	1.6.1. Molekül Titreşimleri	12
	1.6.2. İnfrared Spektroskopisi	15
	1.6.2.1. Klasik kuram	16
	1.6.2.2. Kuantum kuramı	16
	1.6.3.Raman Spektroskopisi	17
	1.6.3.1. Klasik kuram	17
	1.6.3.2. Kuantum kuramı	18
	1.6.4.Çok Atomlu Moleküllerin Titreşimleri	20
	1.6.5.Moleküllerde Titreşim Türleri	21
	1.6.5.1.Gerilme titreșimi (Stretching)	21
	1.6.5.2. Açı bükülme Titreşimleri	21
1.7.	Bilgisayar Hesaplamalı Moleküler Spektroskopi	24

		1.7.1.Moleküler Mekanik Metodlar	.25
		1.7.2. Elektronik Yapı Metodları	.27
		1.7.2.1.Ab-Initio moleküler orbital yöntemleri:	.27
		1.7.2.2.Yarı deneysel (Semi Emprical) metotlar:	.27
	1.8.	Kuantum Mekaniksel Enerji İfadeleri ve Yoğunluk Fonksiyon Teorisi.	.29
		1.8.1. Karma yoğunluk fonksiyon teorisi	.30
		1.8.2. B3LYP Karma Yoğunluk Fonksiyon Metodu	.30
		1.8.3. Temel Setler ve 6-31G(D) Temel Seti	.31
2.	ÖNC	CEKİ ÇALIŞMALAR	.33
3.	MAT	FERYAL VE METOT	.37
	3.1.	Teorik Hesaplamalar	.37
	3.2.	Deneysel Çalışmalar	.41
		3.2.1. Materyal	.41
		3.2.2. Metot	.42
		3.2.2.1. MCF-7 hücre hatlarının geliştirilmesi	.42
		3.2.2.2. 2B hücre kültürlerinde sitotoksisite analizi	.42
		3.2.2.3. Manyetik nanoparçacıklara İrinotekan (Irinotecan) yüklenmesi	.42
		3.2.2.4. İlaç yüklü nanoparçacıkların karakterizasyonu	.42
		3.2.2.5. İlacın nanoparçacıkların salımı	.43
		3.2.2.6. Moleküllerin çizimi ve enerjilerinin hesaplanması	.43
		3.2.2.7. Moleküler kenetleme analizi	.43
		3.2.2.8. Moleküler dinamik (MD) simülasyon analizi	.43
4.	ARA	ŞTIRMA BULGULARI VE TARTIŞMA	.45
	4.1.	Moleküllerin Geometrik Parametreleri	.45
		4.1.1. PHB (Poli-3-Hidroksibutirat) Molekülü	.45
		4.1.1.1. PHB molekülünün moleküler geometri hesaplamaları	.46
		4.1.2. İrinotekan (Irinotecan)	.49
		4.1.2.1. İrinotekan (Irinotecan) molekülünün moleküler geometri hesaplamaları	50
		4.1.3. Bağlı İrinotekan ve PHB molekülünün moleküler geometri hesaplamaları	.65
	4.2.	MOLEKÜLLERİN TİTREŞİM İŞARETLEMELERİ	.82
		4.2.1. PHB (poli-3-hidroksibutirat) molekülünün titreşim işaretlemeler	i82
		4.2.2. İrinotekan (Irinotecan) molekülünün titreşim işaretlemeri	.85
		4.2.3. Bağlı İrinotekan ve PHB molekülünün titreşim işaretlemeleri	.89

Ö.	7CF(~Mis	113
6.	КАУ	NAKLAR	
5.	SON	UÇ VE ÖNERİLER	105
	4.8.	Moleküler Dinamik (MD) Simülasyon Çalışması	103
	4.7.	Moleküler Kenetleme Çalışması (Molecular Docking)	100
	4.6.	XTT Testi	97
	4.5.	SEM Gözlemleri ve EDX Sonuçları	96
	4.4.	Homo Lumo Analizi	93
	4.3.	Moleküler Elektrostatik Potansiyel (MEP)	92

TEŞEKKÜR

Doktoraya başlamamda ve doktora ders sürecinde kendilerini tanıdığım günden bu yana gösterdikleri sakin ve sabırlı hali ile her zaman bana örnek olmalarının yanı sıra bir bilim insanının nasıl çalışması gerektiğini öğrendiğim değerli danışmanlarım Doç. Dr. T. Raci SERTBAKAN'a ve Prof. Dr. Serap YALÇIN AZARKAN'a büyük bir içtenlikle teşekkür ederim. Tezimin her aşamasında gerek sorularımla gerekse alt ayda bir yapılan tez izleme komitesi sunumlarında tezin şekillenmesinde ve nihai hale gelmesinde katkıları olan değerli jüri üyelerim Prof. Dr. M. Tahir GÜLLÜOĞLU, Prof. Dr. Mustafa KURT, Prof. Dr. Hülya ÖZTÜRK ve Doç. Dr. Akif ÖZBAY'a teşekkürlerimi içtenlikle sunarım.

Tezi yazma sürecimde sorularıma verdiği cevaplar ile bana destek olan Prof. Dr. YUSUF ERDOĞDU hocama teşekkür ederim.

Tezimi, maddi manevi destekleriyle beni hiçbir zaman yalnız bırakmayan kıymetli babam Nurettin ÖZÇELİK, annem Asiye ÖZÇELİK, kardeşlerim Ayşenur Yüsra BOZ, İrem Nur ÖZÇELİK 'e ve kedim Tarçın'a ithaf ederim.

Haziran, 2023

Fatmanur ÖZÇELİK

ÖZET

DOKTORA TEZİ

ANTİKANSER İLAÇ YÜKLÜ MANYETİK NANOPARÇACIKLARIN KANSER HÜCRELERİ ÜZERİNDEKİ SİTOTOKSİK ETKİSİ VE MOLEKÜLER KENETLEME ÇALIŞMALARI

Fatmanur ÖZÇELİK

KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

Danışman: Jüri: Doç. Dr. T. Raci SERTBAKAN Yıl: 2023, Sayfa: 113 Prof. Dr. M. Tahir GÜLLÜOĞLU Prof. Dr. Mustafa KURT Prof. Dr. Hülya ÖZTÜRK Doç. Dr. Akif ÖZBAY Prof. Dr. Serap Yalçın AZARKAN

İkinci Danışman

Bu çalışmada bir antikanser ajan olan İrinotekan (Irinotecan) yüklü PHB (poli-3hidroksibutirat) ile kaplanmış demir oksit nanoparçacıklarının kanserli hücreler üzerindeki etkisinin belirlenmesi amaçlanmaktadır. Çalışmada İrinotekan (Irinotecan) ve PHB (poli-3-hidroksibutirat) moleküllerinin 3 boyutlu çizimleri, Gauss View/5.0 paket programı ile optimizasyonu ise Gaussian/09 paket programı ile yapıldı. Daha sonra bu yapıların bağlanma bölgelerini belirlemek için Gauss View/5.0 paket programı ile MEP haritaları oluşturuldu. Origin85 programı ile de teorik IR ve Raman spektrumları çizildi. İrinotekan (Irinotecan) ve PHB (poli-3-hidroksibutirat) moleküllerinin geometrik yapı parametreleri, moleküllerin en kararlı yapısındaki bağ uzunlukları, bağ açıları ve bağlanma enerjileri gibi özellikleri teorik olarak hesaplandı. İlaç yüklü nanoparçacıklar, Biodraw ve Gaussian programlarında tamamlanıp hesaplandı. Bu yapıların anti-apoptotik proteinlerle moleküler kenetleme ve dinamik analizleri yapıldı. Aynı zamanda PHB (poli-3-hidroksibutirat) kaplı nanopartiküller nanotaşıyıcı sistemler olarak in situ sentezlendi ve İrinotekan (Irinotecan) ilacı yüklendi. Nanopartikülün ilaç yükleme kapasitesi, ilaç salınımı ve stabilitesi analiz edildi. Nanoparçacık, ilaç ve ilaç yüklü nanoparçacıkların sitotoksisitesi in vitro XTT analizleri ile test edildi. In-vitro analizde meme kanseri hücreleri üzerinde IC50 belirlendi. Hedef proteinler olan İrinotekan (Irinotecan), nanopartiküller ve İrinotekan (Irinotecan) yüklü nanopartiküllerin farklı sınıfları üzerinde in-silico analiz ve moleküler kenetleme çalışmaları yapıldı. Analiz sonucunda İrinotekan (Irinotecan) yüklü PHB kaplı nanopartiküllerin kansere karşı etkili olduğu ve potansiyel bir ilaç olma ihtimalinin yüksek olduğu görüldü.

Anahtar Kelimeler: İrinotekan (Irinotecan), PHB (poli-3-hidroksibutirat), meme kanseri hücresi, titreşim spektrumları, Molecular Docking, Moleküler dinamik

ABSTRACT

Ph.D. THESIS

CYTOXIC EFFECT OF ANTI-CANCER DRUG-LOADED MAGNETIC NANOPARTICLES ON CANCER CELLS AND MOLECULAR DOCKING STUDIES

Fatmanur ÖZÇELİK

KIRSEHIR AHI EVRAN UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF PHYSICS

Supervisor:

Jury:

II.Supervisor:

Assoc. Prof. Dr., T. Raci SERTBAKAN Year: 2023 Pages: 113 Prof. Dr. M. Tahir GÜLLÜOĞLU Prof. Dr. Mustafa KURT Prof. Dr. Hülya ÖZTÜRK Assoc. Prof. Dr. Akif ÖZBAY Prof. Dr. Serap YALÇIN AZARKAN

In this study, it is aimed to determine the effect of iron oxide nanoparticles coated with PHB (poly-3-hydroxybutyrate) loaded with Irinotecan (Irinotecan), an anticancer agent, on cancerous cells. In the study, 3-dimensional drawings of Irinotecan (Irinotecan) and PHB (poly-3-hydroxybutyrate) molecules were made with the Gauss View/5.0 package program, and the optimization with the Gaussian/09 package program. Then, MEP maps were created with the Gauss View/5.0 package program to determine the binding sites of these structures. Theoretical IR and Raman spectra were drawn with the Origin85 program. The geometrical parameters of irinotecan (Irinotecan) and PHB (poly-3-hydroxybutyrate) molecules, their properties such as bond lengths, bond angles and binding energies in the most stable structure of the molecules were calculated theoretically. Drug-loaded nanoparticles were completed and calculated in Biodraw and Gaussian programs. Molecular coupling and dynamic analysis of these structures with anti-apoptotic proteins were performed. At the same time, PHB (poly-3-hydroxybutyrate) coated nanoparticles were synthesized in situ as nanocarrier systems and the drug Irinotecan (Irinotecan) was loaded. The drug loading capacity, drug release and stability of the nanoparticle were analyzed. The cytotoxicity of nanoparticles, drugs and drug loaded nanoparticles was tested by in vitro XTT assays. IC50 was determined on breast cancer cells in in-vitro analysis. In-silico analysis and molecular coupling studies were performed on different classes of nanoparticles loaded with target proteins, Irinotecan (Irinotecan), nanoparticles and Irinotecan (Irinotecan). As a result of the analysis, it was seen that PHB coated nanoparticles loaded with Irinotecan (Irinotecan) are effective against cancer and have a high probability of being a potential drug.

Keywords: Irinotecan, PHB (poli-3-hidroksibutirat), breast cancer cell, vibration spectra, Molecular Docking, Molecular dynamic

TABLOLAR DİZİNİ

Tablo 1.1. E	lektromanyetik spektrum bölgeleri1	3
Tablo 1.2. İı	nfrared spektral bölgeler1	5
Tablo 1.3. E	nerji türevlerinin fiziksel büyüklüklere göre dağılımı2	9
Tablo 3.1.	Kanser hücreleri için kullanılan kimyasal ve reaktifler4	1
Tablo 4.1. P	HB molekülünün bağ uzunlukları ve bağ açıları4	7
Tablo 4.2. İr	inotekan molekülünün bağ uzunluk ve bağ açıları5	1
Tablo 4.3.	Bağlı İrinotekan ve PHB molekülünün bağ uzunluk ve bağ açıları.6	6
Tablo 4.4.	PHB molekülünün titreşim frekansları	4
Tablo 4.5.	İrinotekan molekülünün titreşim frekansları	8
Tablo 4.6.	Bağlı İrinotekan ve PHB molekülünün titreşim frekansları	9
Tablo 4.7.	PHB molekülünün EDX spektrumunun sonuçları9	6
Tablo 4.8.	PHB -İrinotekan EDX spektrumu sonuçları	7
Tablo 4.9. A	nti-apoptotik proteinlerle İrinotekan molekülünün bağlanma enerjisi sonuçları10	0
Tablo 4.10.	Anti-apoptotik proteinlerle ilaç yüklü nanoparçacık molekülünün kenetlenme enerjisi	1

Sayfa No

ŞEKİLLER DİZİNİ

		-	
Şekil	1.1. Di	ünya'da Kanser Türlerinin Görülme Sıklığı	3
Şekil	1.2. Di	ünya'da Kanser Türlerini Mortalite Oranlarının Dağılımı	4
Şekil	1.3.	Multifonksiyonel nanoparçacık	8
Şekil	1.4.	PHB'nin kimyasal yapısı	11
Şekil	1.5.	İrinotekan (Irinotecan)'ın kimyasal yapısı	12
Şekil	1.6. İk	i atomlu bir molekül için titreşim, dönü ve elektronik geçişler	14
Şekil	1.7.	Raman Saçılması	19
Şekil	1.8.	Raman Olayının Kuantum Mekaniksel Gösterimi	19
Şekil	1.9.	Gerilme titreşimleri	21
Şekil	1.10.	Açı bükülme titreşimi	22
Şekil	1.11.	Açı bükülme titreşimi (makaslama)	22
Şekil	1.12.	Açı bükülme titreşimi (sallanma)	22
Şekil	1.13.	Açı bükülme titreşimi (dalgalanma)	23
Şekil	1.14.	Açı bükülme titreşimi (kıvırma)	23
Şekil	1.15.	Açı bükülme titreşimi (burulma)	24
Şekil	1.16.	Düzlem dışı açı bükülme titreşimi	24
Şekil	1.17.	Bilgisayar Hesaplama Metotlarının Alanları	25
Şekil	3.1 . İk	i atomlu bir molekülde elektronik enerjinin atomlar arasındaki mesafeye bağımlılığı.	38
Şekil	3.2. Po	otansiyel enerji yüzeyindeki lokal minimum, maksimum ve eyer noktası	39
Şekil	4.1.	PHB molekülünün kimyasal yapısı	45
Şekil	4.2. PH	IB molekülünün optimize moleküler yapısı	46
Şekil	4.3.	İrinotekan molekülünün optimize moleküler yapısı	51
Şekil	4.4. Ba	ağlı İrinotekan ve PHB moleküllerinin optimize moleküler yapısı	65
Şekil	4.5.	PHB molekülünün sırasıyla deneysel ve teorik (B3LYP/6- 311++G(d,p) FT–IR spektrumları	83
Şekil	4.6.	İrinotekan molekülünün sırasıyla deneysel ve teorik (B3LYP/6-31G) FT–IR spektrumları	86
Şekil.	4.7.	Referans makaledeki deneysel ve teorik FT-IR spektrumları	86

Sayfa No

Şekil 4.8.	İrinotekan molekülünün sırasıyla deneysel ve teorik Raman	87
Şekil 4.9.	Referans makaledeki deneysel Raman spektrumu	87
Şekil 4.10.	Deneysel 50 µl, 200 µl ve teorik (B3LYP/6-31G) Bağlı İrinotekan (Irinotecan) ve PHB (poli-3-hidroksibutirat) molekülünün FT–IR spektrumları	91
Şekil 4.11. H	PHB molekülünün MEP haritası	92
Şekil 4.12. İ	rinotekan molekülünün MEP haritası	93
Şekil 4.13. I	PHB molekülünün 3 boyutlu HOMO ve LUMO enerji aralıkları	94
Şekil 4.14.	İrinotekan molekülünün 3 boyutlu HOMO ve LUMO enerji aralıkları	95
Şekil 4.15.	PHB EDX spektrumu	96
Şekil 4.16.	PHB SEM görüntüsü	96
Şekil 4.17	PHB-Irinotecan EDX spektrumu	97
Şekil 4.18.	PHB-Irinotecan SEM görüntüsü	97
Şekil 4.19.	İrinotekan yükleme grafiği	97
Şekil 4.20.	Salım grafiği	98
Şekil 4.21.	İlaç Toksisitesi	98
Şekil 4.22.	İlaç yüklü nanoparçacık toksisitesi	99
Şekil 4.28.	AKT-1 proteini ve İrinotekan bağlı PHB kaplı nanoparçacıkların molekülün dinamik sonuçları	.104

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler	Açıklama
h	Planck sabiti
E	Molekülün toplam enerjisi
Ĥ	Hamiltonyen işlemcisi
λ	Dalga boyu
ν	Frekans
μ	Elektriksel dipol moment
α	Kutuplanabilme yatkınlığı
ψ	Dalga fonksiyonu
E_{GER}	Gerilme enerjisi
E _{BÜK}	Bükülme enerjisi
E _{BUR}	Burulma enerjisi
E _{V.D.WAALS}	Van Der Walls enerjisi
E _{ELEK}	Elektronik enerji
E^T	Toplam enerji
E^V	Çekirdek-elektron çekim ve çekirdek çiftleri arasındaki itme
	potansiyel enerjisi
E^{J}	:Elektron-elektron itme terimi
E^X	Değiş-tokuş enerjisi
E^{C}	Korelasyon enerjisi
E^{XC}	Değiş-tokuş ve korelasyon enerjisi
E _{B3LYP}	B3LYP enerjisi
E_{B3LYP}^{XC}	B3LYP değiş-tokuş ve korelasyon enerjisi
E_{LDA}^X	Yerel değiş-tokuş enerjisi
E_{B88}^X	Becke 88 değiş-tokuş enerjisi
E_{VWN3}^{C}	Vosko, Wilk, Nussair korelasyonu
E_{LYP}^{C}	LYP korelasyon enerjisi
γ	Gerilme titreșimi
δ	Açı bükülme titreşimi
τ	Burulma

Kısaltmalar Açıklama

B3LYP	LYP korelasyon enerjili 3 parametreleri Becke-Lee Yang karma				
	metodu				
HF	Hartree-Fock metodu				
DFT	Yoğunluk fonksiyon teorisi				
MM	Moleküler mekanik metotlar				
SCF	Self Consistent Field (Öz uyumlu alan)				
SQM	Scaled quantum mechanic				
TED	Total energy distrubution (Toplam enerji dağılımı)				
MESP	Moleküler Elektrostatik Potansiyel				
номо	Highest Occupied Molecular Orbital				
LUMO	Lowest Unoccupied Molecular Orbital				
MINDO	Modified Neglect of Diatomic Overlap				
AM1	Austin Model 1				
PM3	Parametric Model 3				
Ab-initio	Temel ilkelere dayanan kuantum kimyasal Hesaplamalar				
РНВ	Poli-3-hidroksibutirat				
MNP	Manyetik nanoparçacık				
WHO	World Health Organization (Dünya sağlık örgütü)				
2B	2 boyutlu				
РНА	Polihidroksialkanoat				
SEM	Scanning Electron Microscope				
FTIR	Fourier Dönüşümlü Kızılötesi Spektroskopisi				
MD	Moleküler dinamik				
EDX	Energy Dispersive X-Ray Analysis				
MCF-7	Michigan Cancer Foundation-7				
BPPE	SPPE Black Pomegranate Peel Extract				
BPPE-CC	MNP Black Pomegranate Peel Extract Loaded With Chitosan-				
	Coated Magnetic Nanoparticles				

1. GİRİŞ

Meme kanseri, dünya çapında kadınlarda en sık teşhis edilen kanserlerden biridir. Süt üretimi için lobül adı verilen bezlerden ve lobülleri meme ucuna bağlayan kanallardan oluşan meme dokusunda başlayan tüm kadın kanser vakalarının %16'sını oluşturur. Memenin geri kalanı yağ, bağ ve lenf dokusundan oluşur. Meme kanserinin orijin olarak duktal ve lobüler olmak üzere iki tipi vardır. Vakaların %80-90'ı duktal karsinom, %10-20'si lobüler karsinomdur (Sarkar ve Mandal, 2011).

Geleneksel kanser tedavisinde kullanılan üç ana tedavi vardır: cerrahi, radyoterapi ve kemoterapi. Kemoterapi, meme kanseri hastalarının tedavisi için çok önemlidir.

Kemoterapi ilaçlarının en küçük molekülleri bile kanser hücrelerini öldürebilir. Ancak seçici olmamaları nedeniyle sağlıklı doku ve hücrelere de yan etkileri vardır. Dayanılmaz ağrılara da neden olabildikleri iyi bilinmektedir. Sonuç olarak, kanser tedavisi için yeni yaklaşımlara ve yöntemlere acilen ihtiyaç duyulmaktadır (Qin ve ark., 2019).

Farklı özelliklerinin bir sonucu olarak çeşitli amaçlar için kullanılan çok sayıda nanopartikül vardır. Bunlar arasında nanokil türleri, manyetit (Fe₃O₄) ve hematit (Fe₂O₃) gibi demir bazlı nanopartiküller, kübik bor nitrür, politetrafloroetilen (PTFE), nano gümüş, titanyum dioksit, magnezyum oksit ve fulleren sayılabilir (Gürsel, 2022).

Manyetik alanlar kullanılarak manipüle edilebilen bir nanoparçacık sınıfı olan manyetik nanoparçacıklar (MNP), genellikle manyetik bir malzemeden (demir, nikel, kobalt gibi) ve işlevselliğe sahip bir kimyasal bileşenden oluşur. (Ansari ve ark., 2022).

Kontrollü ilaç salınımı, biyoalgılama, manyetik rezonans görüntüleme (MRI) ve hipertermi kanser tedavisi gibi birçok tıbbi uygulamada Manyetik Nanoparçacıkların (MNP) kullanımı artmıştır (Farzin ve ark., 2020). Peptitler ve nükleik asitler gibi ilaçlar ve biyoaktif maddelerle daha fazla "işlevselleştirildiğinde", MNP'ler hücre ve doku bariyerlerini aşan ve organa özgü terapötik ve teşhis yöntemleri sunan farklı parçacıklı sistemler oluşturur (Shubayev ve ark., 2009).

Ek olarak, in vivo manyetik özellikler ve MNP aktivitesi, insan vücudundaki belirli bir hedef için kabul edilebilirliklerini artırmak üzere güvenli ve biyouyumlu bir kaplama uygulanarak özelleştirilebilir. Bu kaplama, fonksiyonel ligandların entegrasyonuna yardımcı olan yüzey kimyasını değiştirerek, MNP'lerin çok işlevli olmasını sağlamaktadır (Farzin ve ark., 2020).

Bu çalışmada biyouyumlu kaplama olarak PHB (poli-3-hidroksibutirat) seçildi ve MNP'ler bu polimerle kaplandı. Bu biyopolimer grubunun en yaygın kullanılan üyeleri,

Poli-3-hidroksibütirat (PHB) ve hidroksivalerat (PHB-HV) kopolimerleridir. Doğal hammaddelerden bakteriler tarafından biyosentetik olarak üretilirler ve farklı koşullar altında mikroorganizmalar tarafından kolayca parçalanabilirler (Maia ve ark., 2004).

PHB, yenilenebilir kaynaklardan düşük etkili bir biyoteknolojik süreçle elde edilen, erime sıcaklığı civarında termal olarak bozunan, biyolojik olarak uyumlu ve toksik olmayan, tamamen biyolojik olarak parçalanabilen yarı kristalli bir termoplastiktir (Costa ve ark., 2014). PHB, MNP'leri kaplamak için sıklıkla kullanılan sentetik polimerlerden biridir. MNP'lere hidrofilik bir yüzey verir ve topaklanmalarını en aza indirir. Böylece PEG kaplama, makrofajlar tarafından fagositozunu azaltarak MNP'lerin dolaşım süresini arttırır (Gunduz ve ark., 2014).

Bu çalışmada manyetik alan altında hedefleme potansiyeline sahip yeni sentezlenmiş PHB kaplı MNP'ler (PHB-MNP'ler) FTIR ve TEM analizleri ile karakterize edilmiştir. İrinotekan antikanser ilacı PHB'lerle kaplanmış MNP'lere yüklendikten sonra farklı pH'larda yükleme etkinlikleri ve ilaç salımları araştırıldı. Ayrıca, MCF-7 (Michigan Cancer Foundation-7 (insan meme adenokarsinomu) hücre hattı üzerinde Irinotecan yüklü PHB-MNP'lerin in vitro sitotoksisite analizi yapılmıştır. Aynı zamanda bu sistem moleküler kenetleme analizi ile anti-apoptotik proteinlere bağlanma enerjileri hesaplanmıştır. İrinotekan (Irinotecan) (CPT-11), bitkiden (Camptotheca acuminata) türetilen bileşik kamptotesinin yarı sentetik bir türevidir. Kamptotesin ve analogları/türevleri, antitümör aktivitelerini topoizomeraz I'e bağlanarak sergiliyor gibi görünmektedir. Bu enzim, DNA replikasyonu ve transkripsiyonundaki temel adımlar olan aşırı sarmal DNA'nın bölünmesini ve yeniden kapanmasını katalize etmektedir. Kamptotesinin DNA'dan salınmasını engelleyen topoizomeraz I'e bağlanmasıdır. Progresif replikasyon enzimleri, kamptotesin-topoizomeraz 1-DNA kompleksi ile çarpışarak hücre ölümüne yol açabilecek çift sarmallı DNA kırılmalarına neden olmaktadır. Bu sitotoksik aktivite zamana bağlıdır ve hücre döngüsünün S fazına özgüdür. İrinotekan (Irinotecan), kolorektal, yumurtalık, küçük hücreli olmayan akciğer ve meme kanseri dahil olmak üzere in vitro ve in vivo karsinom modellerinde antitümör aktivite göstermiştir (Wiseman ve Markham, 1996).

Bu çalışmada Poli-3-hidroksibütirat, İrinotekan ve bu moleküllerin bağlı yapıları için Gaussian09 paket programı kullanılarak kuantum kimyasal hesaplamalar yapıldı. Titreşim frekansları da aynı teori düzeyinde hesaplandı. Bu frekanslar ölçeklendi ve ardından değerler deneysel Kızılötesi spektrumlarla karşılaştırıldı. Titreşim modları, PHB molekülü için 6-311++G(d,p), İrinotekan için 6-31G ve 6-31G(d,p) bağlı yapı için de 6-31 G(d,p) baz setleri kullanılarak incelendi. Ayrıca incelenen molekülün moleküler elektrostatik potansiyel (MEP) haritaları DFT yöntemi kullanılarak hesaplanıp çizildi.

1.1. Meme Kanseri

Kanser, çevresel faktörler etkisiyle hücrelerin DNA'sında ve genlerde oluşturduğu değişiklikler sonucunda kontrolsüz bir şekilde büyümesi ve anormal bir oluşum meydana getirmesidir. Bu anormal hücre oluşumu kontrolsüz büyüme, yayılma, sağlıklı dokuları istila etme ve metastaz gibi özelliklere sahip olan ve sonunda tümör adı verilen bir kütle oluşturan hastalık grubudur (Aliustaoğlu, 2009).

Meme kanseri, meme dokusundaki hücrelerin kontrolsüz bir şekilde değişip bölündüğü, tipik olarak bir yumru veya kitle ile sonuçlanan bir hastalık grubudur. Meme kanserlerinin çoğu lobüllerde (süt bezleri) veya lobülleri meme ucuna bağlayan kanallarda başlar (Society, 2019-2020)

Dünya Sağlık Örgütü Uluslararası Kanser Araştırma Ajansı (IARC) 2020 istatistiklerine göre dünyada meme kanseri yaklaşık olarak 2,3 milyon yeni vaka (%11,7) ile en sık teşhis edilen kanser türüdür (Şekil 1.1.). Sonra akciğer (%11,4), kolorektal (%10,0), prostat (%7,3) ve mide (%5,6) kanserleri bu sıralamanın başında yer almaktadır. Ülkemizde ise meme kanseri senede yaklaşık 24 bin yeni vaka ile kadınlarda en sık ölüme neden olan kanser çeşididir (WHO, 2020). Kanser türlerinin dünyadaki ölüm oranları ise Şekil 1.2. 'de verilmiştir.

Toplam: 19 292789 vaka

Şekil 1.1. Dünya'da Kanser Türlerinin Görülme Sıklığı (WHO, 2020)

Toplam: 9 958 133 ölüm

Meme kanseri ilerleyen bir hastalık olduğundan tümörün muayenede ele gelir olmadan önce tanısının konulması sonucu tedavi edilme ihtimali daha yüksek olması sebebiyle yaşam beklentisi fazladır (Köksal, 2022).

Yapılan çalışmalarda tarama programı vasıtasıyla meme kanseri tanısı almış kadınlarda sağkalım yüksek derecede iyi bulunmuştur. Erken teşhisin değeri tam da bu noktada ortaya çıkmaktadır (Eldred-Evans ve ark., 2021). Özellikle hastanın yaş, ailede meme kanseri öyküsü, genetik ve çevresel faktörler, obezite, alkol kullanımı, radyasyon maruziyeti, emzirme ve menopoz durumu, fertilite durumu, meme kanseri öyküsü ve benign meme hastalıkları gibi risk etkenleri multidisipliner olarak ele alınmalı ve meme kanseri taraması için hastalar mutlaka yönlendirilmelidir (Coughlin, 2019)

1.2. Meme Kanserinde Tedavi Yöntemleri

1.2.1.Cerrahi

Tümörün özelliklerine, yayılıp yayılmadığına (metastaz yapıp yapmadığına) ve hastanın kişisel tercihlerine bağlı olarak, meme kanseri cerrahisinin biçimleri, tümörle birlikte çıkarılan doku miktarında değişiklik gösterir. Kanser hücrelerinin varlığını kontrol etmek için, koltuk altındaki bazı lenf düğümleri kısmen çıkarılır ve mikroskop altında incelenir. Meme koruyucu cerrahi veya lumpektomi sırasında kanser hücreleri çıkarılır, ancak memenin kendisi alınmaz. Radyasyon tedavisi genellikle bir lumpektomiden 5 ila 7 hafta sonra uygulanır. Lumpektomi artı radyoterapiyi seçen bir kadın için öngörülen uzun vadeli sağkalım, mastektomi seçmiş ile aynıdır. Basit veya total mastektomi ile memenin tamamı çıkarılır.

Modifiye radikal mastektomi, radikal mastektomiden farklı olarak göğüs duvarının altında bulunan kasın çıkarılmasını içermez. Tüm memenin ve koltuk altındaki lenf düğümlerinin çıkarılmasını içerir. Koltuk altından alınan bölgesel lenf düğümleri, lenf düğümü tutulumunu ve hastalık yayılımını değerlendirmek için sıklıkla bir lumpektomi veya mastektomi ile birlikte çıkarılır (Sarkar ve Mandal, 2011).

1.2.2. Radyoterapi

Radyasyon tedavisi diğerlerinin yanı sıra kemik, beyin ve yumuşak doku metastazlarından kaynaklanan semptomları hafifletmede çok önemli bir role sahiptir. Lezyonların ciddiyetine ve kalan yaşam beklentisine bağlı olarak doz ve fraksiyonlama programları ile multidisipliner ve bireyselleştirilmiş bir yaklaşımla reçete edilmelidir. Kapsamlı prospektif randomize bir deney, kemik metastazı olan bireylerin çoğu için 8 Gy'lik tek bir dozun yeterli olduğunu göstermiştir. Bu yöntemi kullanarak, tümör hacmi, çevredeki istila edilmiş veya ezilmiş normal yapıların iyileşmesine izin verecek kadar azaltılır (Harbeck ve ark., 2019).

1.2.3. Kemoterapi

Kanser tedavisi için mevcut kemoterapötik ajanların çoğu, hücre bölünmesine veya DNA sentezine müdahale ederek işlev görür. Kemoterapötik ajanlar, hücre döngüsünün fazlarından biri üzerinde etki göstermektedir (A Baudino, 2015).

Sitotoksik anti -neoplastik ilaçlar, bu tür tedavilerde önemli bir rol oynarlar çünkü kemoterapinin (KT) birincil amacı, kemoterapötik ajanlar kullanarak kanser hücrelerini öldürmektir.

Kemoterapi, radyoterapide de olduğu gibi cerrahi girişim öncesinde tümörün boyutunu küçültmek üzere neoadjuvan tedavi şeklinde veya tek başına uygulanabilir. KT uygulamaları sırasında verilen ilaçlar alkilleyici ajanlar, kortikosteroidler, anti metabolitler, anti tümör antibiyotikler, mitotik inhibitörler ve topoizomeraz inhibitörlerdir (Baykara, 2016). Meme kanserinin ardındaki moleküler biyolojinin daha iyi anlaşılması, son teknoloji tedaviler için potansiyel hedefler sunmaktadır. Bir biyobelirteç panelinin kullanılması, bizi özelleştirilmiş tedavilere doğru ilerletirken, aynı zamanda adjuvan kemoterapiden fayda görmeyen bir grup bireyi de koruyacaktır. Ayrıca, tümör biyolojisinin daha derin bir şekilde anlaşılması, mevcut tedavilere iyi yanıt vermesi muhtemel olmayan hastalar için yeni rejimlerin oluşturulmasını kolaylaştıracaktır (Hassan, 2010). Kemoterapi ilaçlarının en küçük molekülleri bile kanser hücrelerini öldürebilir. Ancak seçici olmamaları nedeniyle normal doku ve hücrelere benzer yan etkilere sebep olurlar. Bu ilaçlar, dayanılmaz ağrılara, mide bulantısı, ishal, kardiyotoksisite, saç dökülmesi, koyulaşmış veya kuru cilt ve bağışıklık sisteminin depresyonu gibi ciddi yan etkilere neden olabildikleri iyi bilinmektedir. Sonuç olarak, kanser tedavisi için yeni yaklaşımlara ve yöntemlere acilen ihtiyaç duyulmaktadır (Hassan, 2010).

1.2.4. Akıllı İlaç Sistemleri

1.2.4.1. Nanoteknoloji

Nanoteknolojide nanotıp ajanlarının gelişimine yönelik hızlı büyüme, kansere karşı terapötik yaklaşımları geliştirmek için büyük umut vaat etmektedir. Nanotıp ürünleri, gelişmiş hedefleme stratejileri ve çok işlevliliğe ulaşmak için bir fırsatı temsil eder. Günümüzde nanopartiküller (NP'ler) bilimin farklı dallarında birden fazla uygulamaya sahiptir. Son yıllarda, NP'lerin modern tıpta önemli bir rol oynadığı tekrar tekrar bildirilmiştir (Aghebati-Maleki ve ark., 2020).

Nanoteknoloji, benzersiz özellikleri koruyan nanometre ölçeğinde (tipik olarak 100 nm veya daha az) yapıların inşasıyla sonuçlanan, atomların ve moleküllerin yönlendirilmesine ayrılmış bilimsel bir alandır (Poole ve Owens, 2003).

Biyolojik sistemleri tedavi etmek, teşhis etmek, izlemek ve kontrol etmek için nanoteknolojinin uygulanması, son zamanlarda Ulusal Sağlık Enstitüleri tarafından 'nanotıp' olarak adlandırılmaktadır (Moghimi ve ark., 2005).

Nanotıp, insan sağlığı ve esenliği için nanoteknolojinin kullanılmasını içerir. Nanoteknolojinin çeşitli alanlarda uygulanması, 1 ila 100 nm arasında değişen boyutlara sahip nanopartiküllerin tasarlandığı ve tanı, tedavi ve araştırma için biyomedikal araçlar olarak kullanıldığı terapötik alanlarda ve tıpta devrim yarattı. Bu araçların yardımıyla, hastalıkları iyileştirmeye ve hastalıkların etiyolojisini incelemeye yardımcı olan moleküler düzeyde terapötikler sunmak mümkün hale gelir. Geleneksel farmasötikler, ilaç etkisinin özgül olmaması ve uygun olmayan veya etkisiz ilaç rejimleri (örn. kanser kemoterapisi ve antidiyabetik ilaçlar) artışı nedeniyle etkinlik eksikliğinin bir sonucu olarak ciddi yan etki sınırlamalarından muzdariptir (Surendiran ve ark., 2009).

Yüksek oranda hücreye özgü ilaçların geliştirilmesi, etkinliği artıracak ve yan etkileri en aza indirecektir. Hassas teşhis yöntemleri, hastalığı erken teşhis etmeye ve prognozu iyileştirmeye yardımcı olur (Fang ve Tan, 2010)

Nanoteknoloji, hedefe yönelik ilaç tedavisi, tanı, doku rejenerasyonu, hücre kültürü, biyosensörler ve diğer araçları sağlayarak moleküler biyoloji alanında yaygın olarak kullanılmaktadır (Solaimuthu ve ark., 2020)

Fullerenler, nanotüpler, kuantum noktaları, nanoporlar, dendrimerler, lipozomlar, manyetik nanoproblar ve radyo kontrollü nanopartiküller dahil olmak üzere çeşitli nanoteknoloji platformları geliştirilmiştir (Surendiran ve ark., 2009).

Demir oksit nanopartiküller, süperparamanyetizma ve yüzey modifikasyon özelliklerinden dolayı kanser tedavisi için en potansiyel nanopartikül sistemi olarak kullanılmaktadır. Çalışmalar, demir oksit nanoparçacıklarının kanser tedavisinde mükemmel bir ilaç hedefleme aracı olabileceğini göstermiştir (Köksal ve Yalçın, 2020).

Örneğin biyomedikal ilaç salım uygulamalarında manyetik nanopartiküller, kemoterapötik ajanlar, radyonüklidler, nükleik asitler ve antikorlar dahil olmak üzere çeşitli maddelere bağlanarak işlevselleştirilir. Daha sonra bir manyetik alan kullanılarak yönlendirilebilir. Dış manyetik alan ortadan kalktıktan sonra manyetizasyon ortadan kalkar ve nanopartiküller belirli bir süre hedef bölgede kalır (Dürr ve ark., 2013). MNP'ler çoğunlukla meme, rahim ağzı, karaciğer ve lösemi kanseri hücre hatlarına karşı test edilir. Antikanser terapötiklerin hücre ölümünü indüklediği en iyi bilinen mekanizma, apoptozun indüklenmesidir (Jacob ve ark., 2016)

Manyetik nanoparçacıklar ayrıca biyosentezlenebilir. Bu, normal hücrelere sınırlı toksisite kavramıyla birlikte ek bir avantaj sunar. Bu derleme, farklı manyetik nanoparçacık türlerinin antikanser aktivitesi üzerinde gerçekleştirilen mekanik çalışmalara odaklanmaktadır. Apoptozun, çeşitli manyetik nanoparçacık türlerinin aracılık ettiği hücre ölümünün arkasındaki en makul neden olduğu gösterildi (Jacob ve ark., 2016).

1.3. Nanoparçacıkların Fonksiyonelleştirilmesi

Nanopartiküllerin görüntüleme, teşhis ve ilaç dağıtımındaki faydalarına ek olarak, çok işlevli nanopartiküllerin tasarımı, mevcut nanopartiküllerin benzersiz özelliklerini geliştirmeye yardımcı olabilir (Şekil 1.3.).

Şekil 1.3. Multifonksiyonel nanoparçacık (Beşergil, 2008)

MNP'lerin ardından, polimerik NP'ler de umut vadeden biyouyumlulukları, biyobozunurlukları ve doğadaki bollukları nedeniyle araştırmacıların ilgisini çekmiştir (Taherian ve ark., 2021).

Polimer kaplamalar, nanopartiküllerin in vivo dolaşım sürelerini iyileştirmek, agregasyonu önlemek ve kan dolaşımında çözünmelerini sağlamak için tercih edilmektedir. Daha da önemlisi, kaplama malzemesi nanopartiküllerin manyetik davranışını önemli ölçüde etkilememeli ve nanopartiküller üzerinde etkili olan manyetik ve van der Waals kuvvetlerini dengeleyen itici kuvvetler oluşturmamalıdır (Lu ve ark., 2007).

Nanoparçacıkları kaplamak için kullanılan çeşitli sentetik ve doğal polimerler vardır. Bunlar, dekstran, polianilin, polietilen glikol, polilaktik asit, polihidroksibutirat gibi polyesterlerdir (Yalçın ve ark., 2015).

1.3.1.Nanoparçacıkların polimer ile fonksiyonelleştirilmesi

Nanopartiküller, konvansiyonel dozaj formlarının eksikliklerinin üstesinden gelmek için hedefe yönelik ve modifiye edilmiş ilaç salım sistemleridir. Nanopartiküller, ilaçların bölgeye özel dağıtımını sağlayan kolloidal parçacıklardır. Farklı nanopartikül türleri vardır, polimerik nanopartiküller türünün tek örneğidir. Başlıca avantajları, boyut üzerinde iyi kontrol, daha uzun temizleme süresi, geliştirilmiş terapötik etkinlik ve azaltılmış toksisitedir (Sur ve ark., 2019).

Polimerik nanoparçacıklar, 1-100 nm arasında değişen katı koloidal parçacık olarak tanımlanabilir ve tercihen doğal, sentetik veya yarı sentetik kaynaktan elde edilen, biyolojik olarak parçalanabilen veya parçalanamayan polimerlerden oluşur (Pugazhendhi ve ark., 2018). Değiştirilmiş veya hedeflenmiş bir ilaç salım sistemi geliştirmek için, polimerler yapısal omurga olarak kabul edilir.

Polimerik nanoparçacıklar, ligandlar gibi çok sayıda yüzey fonksiyonel grubun görüntülenmesine izin veren daha geniş bir yüzey alanına sahiptir. Daha küçük boyutları, daha küçük kılcal damarlara girmelerine ve böylece hücreyi kolayca hedeflemelerine yardımcı olur. Bu nanopartikülün diğer bir avantajı da boyut ve boyut dağılımı üzerindeki iyi kontrolüdür (Dey ve ark., 2016). Geleneksel nanopartikül ile karşılaştırıldığında, daha uzun bir temizleme süresine sahiptirler, bu da az miktarda ilacın daha iyi terapötik etkinlik ve daha az toksisite göstermek için yeterli olduğu anlamına gelir. Bunun dışında kolayca uyarlanabilir ve kontrol edilebilirler. İlaç yükleme kapasitesi de herhangi bir kimyasal reaksiyon olmadan yüksek ve kolaydır. Polimerik nanoparçacık, oral, intraoküler, parenteral, nazal vb. gibi çeşitli yollarla uygulanabilir (Sur ve ark., 2019).

Tez çalışması kapsamında, kaplama polimeri olarak poli (hidroksialkanoatlar) (PHA) familyasına ait olan poli-3-hidroksibutirat (PHB) kullanılmıştır.

PHA'lar, çeşitli mikroorganizmalar tarafından hücre içi karbon ve enerji depolama bileşikleri olarak üretilen alifatik polyesterlerdir (Lee, 1996). Polihidroksibütirat (PHB), D(-)3-hidroksibutirik asidin optik olarak aktif bir polimeridir. Çok çeşitli bakteriler tarafından üretilen doğal olarak oluşan bir polimerdir. Bu polimerler hücre içi bir depolama malzemesi (karbon ve enerji için)olarak hizmet eder ve bakterilerin sitoplazmasında granüller halinde birikir (Sharma ve Ray, 1995).

PHB'nin biyobozunur olduğu, enzimatik olmadığı veya PHA hidrolazlar ve PHA depolimerazlar tarafından enzimatik olarak parçalanabileceği bilinmektedir (Volova ve ark., 2003).

1.3.2. Nanoparçacıklara anti-kanser molekül (ilaç, gen, antikor) yüklenmesi

Polimerik nanoparçacıklar, belirli bir organı veya hücreyi hedeflemek için ilaç, protein veya DNA materyali taşıyabilirler (Conde ve ark., 2014). Farklı hazırlama yöntemine göre, ilaç veya başka bir aktif bileşik (terapötik), nanoparçacıkların matrisini çözebilir, bağlayabilir, kapsülleyebilir veya hapsedebilir. Polimerik nanoparçacıklar genellikle nanokapsüllerdir ve küresel değildirler.

Nanokapsül polimerik nanoparçacıklar, terapötik bileşenin bir polimerik kapsül kabuğu içinde kapsüllenmiş hali, nanoküre polimerik nanoparçacıklar ise ilacın veya diğer katı parçacıkların bir polimerik matris içine gömülmüş halidir (Sur ve ark., 2019).

Nanopartiküllerin ilaç yüklemesi; nanopartikül üretimi sırasında ilaç ilavesi veya nanopartiküller yapıldıktan sonra kimyasal bir solüsyonla inkübe ederek ilaç alımı yoluyla iki şekilde ortaya çıkabilir.

Uygun bir taşıma cihazı, biyouyumluluk, azaltılmış parçacık boyutu, yüksek ilaç yüklemesi ve/veya ilaç kapsülleme ve yakalama etkinliği sergilemelidir. Bu, matris malzemesinde iyi ilaç çözünürlüğü, yüksek ilaç-polimer etkileşimi ve matris içinde ilaç veya nihai fonksiyonel grupların varlığının gerekli olduğu anlamına gelir (Castro ve ark., 2022).

İlaç kapsülleme, ya ilacın nanopartikül formülasyonuna dahil edilmesiyle ya da nanopartikül oluşumundan sonra ilacın adsorpsiyonu/absorpsiyonu ile iki şekilde gerçekleşebilir. Her iki durumda da literatürde, kapsülleme izoelektrik noktanın yakınında gerçekleştiğinde mükemmel kapsülleme etkinliğinin elde edildiği bildirilmiştir. (Singh ve Lillard Jr, 2009).

1.4. Poli(3-hidroksibütirat) (PHB) Yapısı ve Özellikleri

Poli(3-hidroksibütirat) (PHB) ilk olarak biyolojik olarak parçalanabilen bir ambalaj malzemesi olarak araştırılmıştır (Cherpinski ve ark., 2018). PHB yüksek kristalliğe, nispeten yüksek erime noktasına ve iyi hidrolitik stabiliteye sahiptir. Bu özelliklerinden dolayı PHB biyomedikal amaçlar için sıkça kullanılır. Kopolimerleri/kompozitleri kemik implantlarında kullanılabilse de, PHB bazlı nanoparçacıklar da son on yılda ümit verici ilaç verme sistemleri olarak kabul edilmiştir. Sadece biyolojik olarak parçalanabilir değiller, aynı zamanda biyolojik olarak emilebilirler, yani filtrasyon veya metabolizma yoluyla doğal yollardan elimine edilebilirler (Babos ve ark., 2020).

Bozunma, ester bağlarının hidrolizi ile gerçekleşir. PHB nanopartikülleri ve düşük moleküler ağırlıklı polimer fragmanları, makrofajlar tarafından fagosite edilebilir ve hücre içinde parçalanabilir. Bozunma ürünü olan 3-hidroksibütirat insan kanında fizyolojik olarak bulunduğundan, bunun uygun türevleri akut sitotoksisite göstermez (Babos ve ark., 2020). PHB'ler hem doğal (mikrobiyal) hem de sentetik olarak sentezlenebilirler (Zawidlak-Węgrzyńska ve ark., 2010). PHB'nin ilaç verme uygulamaları son zamanlarda antimikrobiyal ve kanser tedavisi, gen verme ve topikal ilaç verme şeklinde genişletildi (Babos ve ark., 2020). PHB'nin kimyasal yapısı Şekil 1.4.'de gösterilmektedir.

Şekil 1.4. PHB'nin kimyasal yapısı

1.5. İrinotekan 'ın Yapısı ve Özellikleri

İrinotekan (CPT-11), bitkiden (Camptotheca acuminata) türetilen bileşik kamptotesinin yarı sentetik bir türevidir (Şekil 1.5.). Kamptotesin ve analogları/türevleri, antitümör aktivitelerini topoizomeraz VI'ya bağlanarak gösterirler. Kamptotesinin topoizomeraz I'e bağlanması, DNA'dan salınmasını engeller. İlerleyen replikasyon enzimleri, kamptotesin topoizomeraz 1-DNA kompleksi ile çarpışır ve hücre ölümüne yol açabilen çift sarmallı DNA kırılmalarına neden olur. Bu sitotoksik aktivite zamana bağlıdır ve hücre döngüsünün S-fazına özgüdür (Wiseman ve Markham, 1996). lrinotecan, kolorektal, ovari, küçük hücre olmayan akciğer ve meme kanseri dahil olmak üzere, karsinoma vitro ve in vivo modellerinde antitümör aktivitesi göstermiştir (Wiseman ve Markham, 1996).

Faz I çalışmalarının başlarında, İrinotekan (Irinotecan) kolorektal, akciğer ve serviks kanserleri dahil olmak üzere çeşitli hastalık lokasyonlarında bir miktar aktivite göstermiştir. Ayrıca, araştırmacıların çoğu, uygulanan daha yüksek dozlarda aktiviteye dikkat çekmiştir. Bu, ilaçla doz-yanıt ilişkisinin bir göstergesidir. (Barouti ve ark., 2017) Faz II çalışmalarında, İrinotekan (Irinotecan) kolorektum, akciğer, serviks, pankreas, mide ve meme kanserleri dahil olmak üzere birçok kanser türünde antitümör aktivite (kısmi ve tam yanıtlar) göstermiştir. Aktivite ayrıca lösemilerde ve lenfomalarda da rapor edilmiştir (Chabot, 1997).

İrinotekan replikasyon çatalının ilerlemesini engeller, bu da DNA çift iplikçiklerinin kırılmasına neden olur. Sonuçta kemik iliği ve bağırsak mukozası gibi hızla bölünen dokular üzerinde olumsuz etkiler sergiler (Meisenberg ve ark., 2016).

Şekil 1.5. İrinotekan (Irinotecan)'ın kimyasal yapısı

1.6. Moleküler Titreşim Spektroskopisi

1.6.1. Molekül Titreşimleri

Moleküler titreşim spektroskopisi, maddenin elektromanyetik dalgalarla etkileşimini araştırır. Bu araştırmalar, moleküldeki bağlar arasındaki açılar, bağ uzunlukları, moleküler simetri ve moleküler yapı hakkında bilgi verir (Woodward, 1972). Titreşim hareketindeki değişiklikler, elektromanyetik dalgaların madde ile etkileşiminin bir sonucu olarak ortaya çıkar. Bu salınım hareketleri infrared ve Raman spektroskopisi kullanılarak incelenebilir. İnfrared ve Raman spektroskopisi, moleküllerin bağ kuvvetleri, molekül içi ve moleküller arası kuvvetler ve moleküllerdeki elektron dağılımı gibi kimyasal ve fiziksel özellikleri hakkında bilgi elde etmek için kullanılabilir (Chang, 1971).

Bir moleküle bir elektromanyetik dalga gönderildiğinde, bu elektromanyetik dalga emilir ve molekül ile elektromanyetik dalga arasında bir etkileşim oluşur. Bu etkileşim, molekülün enerji seviyeleri arasında geçişlere neden olur. Bu geçişler, elektromanyetik dalgaların enerjisine bağlı olarak farklı spektral aralıklara ayrılır. Bu spektral aralıklar Tablo 1.1. 'de gösterilmiştir (Chang, 1971).

Dalga boyu (m)	Frekans (Hz)	Bölge	Spektroskopi
300 - 3	$10^{6} - 10^{8}$	Radyo Dalgaları	NMR ve NQR
30-0.3	$10^{10} - 10^{12}$	Mikrodalga	ESR ve Moleküler Dönü
300x10 ⁻⁶ - 1x10 ⁻⁶	$10^{12} - 3x10^{14}$	Kırmızı-altı (Infrared)	Moleküler Titreşim
1x10 ⁻⁶ - 300x10 ⁻¹⁰	$3x10^{14} - 10^{16}$	Görünür ve Mor Ötesi	Elektronik Geçişler (Dış kabuk)
$100 \times 10^{-10} - 3 \times 10^{-11}$	$3x10^{16} - 10^{19}$	X-Işınları	Elektronik Geçişler (İç kabuk)
$3x10^{-11} - 10^{13}$	$3x10^{18} - 10^{22}$	γ - Işınları	Nükleer Geçişler

Tablo 1.1. Elektromanyetik spektrum bölgeleri (Yurdakul, 2010).

Radyo Dalgaları Bölgesi (10m-1m): Elektromanyetik dalganın manyetik alanı ile elektron veya çekirdeğin spininin oluşturduğu manyetik dipolün etkileşmesiyle spinin işaret değiştirmesinden kaynaklanan enerji değişimi incelenir. Nükleer Manyetik Rezonans (NMR) ve Elektron Spin Rezonans (ESR) spektrumları bu bölgede incelenir.

Mikrodalga Bölgesi (1cm-100 μ m): Bu aralıkta moleküler dönmeler çalışılır. Dönme enerjileri arasındaki geçişlerin spektrumu mikrodalga aralığındadır. Bu alanda sistemde eşleşmemiş elektronlar olduğunda sistemin manyetik özelliklerindeki değişiklikler incelenir.

İnfrared Bölgesi (100μ m- 1μ m): Bu bölgede, moleküllerin titreşim ve dönme enerji seviyeleri arasındaki geçişler incelenir. Bu alanda kızılötesi (IR) soğurma ve Raman saçılma spektroskopisi çalışılmıştır.

Görünür-Mor ötesi (UV) Bölgesi (1 μ m-10nm): Bu bölge, farklı enerji seviyeleri arasındaki atomların veya moleküllerin dış kabuğundaki elektron geçişlerine dayanır. Bu nedenle bu alandaki spektroskopi türüne "elektron spektroskopisi" adı verilir.

X-ışınları Bölgesi (10nm-100pm): Atom veya moleküllerin iç kabuğundaki elektronların kopartılarak yer değiştirmesiyle ilgili bölgedir.

 γ -ışınları Bölgesi (100pm-...): Çekirdeğin içindeki enerji seviyeleri arasındaki geçişler bu bölgede incelenir. (Mössbauer spektroskopisi)

Maddenin elektromanyetik dalga ile etkileşimi sonucunda madde tarafından soğurulan ve salınan enerji;

$$\Delta E = h\nu = E_1 - E_0 \tag{1.1}$$

bağıntısı ile verilir.

 ΔE : Moleküldeki iki enerji seviyesi arasındaki fark

h : Planck sabiti

 ν : Elektromanyetik dalganın frekansı

Serbest bir molekülün toplam enerjisi;

$$E_{top} = E_{\"oteleme} + E_{d\"on\"u} + E_{tit} + E_{elektronik}$$
(1.2)

olarak yazılır. Öteleme enerjisi süreklidir yani kuantize değildir. Serbest bir molekülün toplam enerjisi, Born- Oppenheimer yaklasımına göre;

$$E_{top} = E_{d\ddot{o}n\ddot{u}} + E_{tit} + E_{elektronik}$$
(1.3)

olarak yazılabilir.

Bir molekülün $E_{dönü}, E_{tit}$ ve $E_{elektronik}$ enerjileri birbirinden farklı büyüklüktedirler. Bu enerjilerin büyüklükleri bağıl olarak

$$\Delta E_{elektronik} \approx \Delta E_{tit} \cdot 10^3 \approx \Delta E_{dön\ddot{u}} \cdot 10^6 \tag{1.4}$$

ifadesi ile verilir. İki atomlu bir molekül için bu enerjiler bağıl olarak çizilmiştir (Şekil 1.6.).

Moleküllerdeki saf dönüş geçişleri, mikrodalga spektroskopisi kullanılarak (1 cm⁻¹ ile 102 cm⁻¹ dalga sayısı aralığında). incelenir. Titreşim enerji seviyeleri arasındaki geçişler, kızılötesi ve Raman spektroskopisi (dalga sayısı aralığı 10² cm⁻¹ ile 10⁴ cm⁻¹) kullanılarak incelenir (Çakmak, 2015).

Şekil 1.6. İki atomlu bir molekül için titreşim, dönü ve elektronik geçişler (Eskioğlu, 2012)

1.6.2. İnfrared Spektroskopisi

Klasik elektrodinamiğe göre bir sistem, elektrik dipol momentindeki periyodik değişimler nedeniyle radyasyon yayar. Yayılan radyasyonun frekansı, dipol salınımının frekansına eşittir. Soğurmada, sistem yayabileceği frekanstaki radyasyonu soğurur.

Bir molekül üzerine gelen ν frekanslı bir ışınımı soğurduğunda, molekülün $\vec{\mu}$ elektriksel dipol momenti bu frekansta titreşecektir. Böyle bir titreşim, spektrumun İnfrared bölgesine düşer (Zafer, 2006).

İnfrared spektroskopisi dalga boyuna, frekansa veya dalga sayısına göre, yakın, orta ve uzak IR bölge olmak üzere üç kısma ayrılır. Bunlar Tablo 1.2 'de verilmiştir.

Tablo 1.2. İnfrared spektral bölgeler (Akar, 2011)

Bölge	λ(μm)	$ar{m{ u}}(cm^{-1})$	ν(Hz)
Yakın IR	0,78 – 2,5	12800-4000	$3,8 \times 10^{14}$ - $1,2 \times 10^{14}$
Orta IR	2,5 - 50	4000 - 200	$1,2 \times 10^{14}$ - $6,0 \times 10^{14}$
Uzak IR	50 - 1000	200 - 10	$6,0 \times 10^{14}$ - $3,0 \times 10^{14}$

- Yakın İnfrared Bölge: Molekül titreşimlerinin üst ton ve harmoniklerinin gözlendiği bölgedir. Dalga sayısı 12800 – 4000 cm⁻¹arasındadır.
- ii. Orta İnfrared Bölge: Moleküllerin hemen hemen bütün titreşimlerin gözlendiği bölgedir. Dalga sayısı cinsinden 4000 – 200 cm⁻¹ değerindedir.
- iii. Uzak İnfrared Bölge: Ağır atomların titreşimleri ile örgü titreşimlerinin incelendiği bölgedir. Mikrodalga bölgesine yakın olduğu için moleküllerin dönü hareketleri de incelenebilir. Dalga sayısı ise 200 – 10 cm⁻¹ arasındadır (Akar, 2011).

Klasik teoriye göre, titreşimin kızılötesi aktif olabilmesi için bu molekülün titreşimindeki elektrik dipol momentinin ($\vec{\mu}$) değişiminin sıfırdan farklı olması gerekir (Zafer, 2006).

Kuantum mekaniğine göre, bir dalga fonksiyonu tarafından belirlenen iki titreşimsel enerji seviyesi arasında geçiş olabilmesi için, radyasyonun soğurma yoğunluğunu belirleyen geçiş dipol momentinin en az bir bileşeninin sıfır olmaması gerekir (Zafer, 2006).

1.6.2.1. Klasik kuram

Klasik elektrodinamiğe göre, elektrik dipol momenti değişirse bir sistem radyasyon üretebilir. Bu salınan dipol titreşimler, yayılan radyasyonla aynı frekansa sahiptir. Soğurma ışıma yaymanın tersidir. Başka bir deyişle, bir sistem, yayabileceği frekansa eşit bir frekansta bir ışını soğurma yeteneğine sahiptir(Zafer, 2006).

Molekülün elektrik dipol momenti $\vec{\mu}$, Kartezyen koordinat sisteminde $\vec{\mu}_x$, $\vec{\mu}_y$, $\vec{\mu}_z$ şeklinde üç bileşene sahiptir. Bir molekül, üzerine düşen ν frekanslı bir ışını soğurduğunda, molekülün $\vec{\mu}$ elektriksel dipol momenti veya bileşenlerinden en az biri, etkileşme sonucunda bu frekans ile titreşecektir. Yani genel anlamda, bir molekülün ν frekanslı bir ışını soğurabilmesi veya yayabilmesi için, $\vec{\mu}$ elektrik dipol momentinin bu frekansta bir titreşim yapması gereklidir. Molekülün bu titreşimi elektromanyetik spektrumda infrared bölgesine düşer.

Basit harmonik yaklaşımda, moleküler dipol momentin titreşim genliği, bütün Q titreşim koordinatlarının bir fonksiyonudur. Dipol moment, molekülün denge konumu civarında Taylor serisine açılırsa;

$$\vec{\mu} = \vec{\mu_0} + \sum \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 Q_k \right\} + \frac{1}{2} \sum_k \left\{ \frac{\partial^2 \vec{\mu}}{\partial Q_k^2} Q_k^2 \right\} + y \ddot{u} k sek \ der. \ terimler \tag{1.5}$$

şeklinde olacaktır. Burada toplamın k üzerinden alınması, dipol momentin, bütün titreşim koordinatları üzerinden olduğunun bir göstergesidir. Küçük genlikli salınımlar için iyi bir yaklaşıklıkla Q_k 'nın birinci dereceden terimini alıp, daha yüksek mertebeden terimler ihmal edilir ise elektrik dipol momenti,

$$\vec{\mu} = \vec{\mu_0} + \sum_k \left(\frac{\partial \vec{\mu}}{\partial Q_k}\right)_0 Q_k \tag{1.6}$$

şeklinde yazılabilir.

Klasik teoriye göre, bir titreşimin aktif olabilmesi için o molekülün elektriksel dipol momentindeki (veya bileşenlerinden en az birindeki) değişimin sıfırdan farklı olması gerekir (Kutlu, 2007). Yani dipol moment değişimi için aşağıdaki ifade yazılabilir.

$$\left(\frac{\partial \vec{\mu}_i}{\partial Q_k}\right)_0 \neq 0 \qquad (i = x, y, z) \tag{1.7}$$

1.6.2.2. Kuantum kuramı

Kuantum mekaniğine göre, $\Psi^{(n)}, \Psi^{(m)}$ dalga fonksiyonları ile belirtilen n ve m gibi iki titreşim enerji düzeyi arasında geçiş olabilmesi için, ışınımın soğurulma şiddetinin bir ölçüsü olan geçiş dipol momentinin veya bileşenlerinden en az birinin sıfırdan farklı olması gerekir. Geçiş dipol momenti,

$$\vec{\mu}_{nm} = \int \Psi^{(n)} \vec{\mu} \Psi^{(m)} d\tau \neq 0 \tag{1.8}$$

şeklinde yazılabilir. Burada;

 $\Psi^{(n)}$: n. uyarılmış enerji seviyesindeki molekülün titreşim dalga fonksiyonu

 $\Psi^{(m)}$: taban enerji seviyesindeki molekülün titreşim dalga fonksiyonu

 $d\tau$: hacim elemanı

 $\vec{\mu}$: elektriksel dipol moment operatörü

Eş. 1.6, Eş. 1.8 de yerine konulursa

$$\vec{\mu}_{nm} = \vec{\mu}_0 \int \Psi^{(n)} \Psi^{(m)} d\tau + \sum \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right) \int \Psi^{(n)} Q_k \Psi^{(m)} d\tau \right\}$$
(1.9)

ifadesi elde edilir. Bu ifadede ilk terimdeki $\Psi^{(n)}$ ve $\Psi^{(m)}$ fonksiyonları ortogonal fonksiyonlar olduklarından $(n \neq m)$ bu terim sıfır olur. Taban enerji düzeyinden, uyarılmış enerji düzeyine geçiş olasılığı, $|\mu_{nm}|^2$ ile orantılıdır. Bu nedenle infrared spektroskopisinde bir molekülün herhangi bir titreşiminin gözlenebilmesi için, söz konusu titreşim sırasında molekülün elektriksel dipol momentindeki değişimin sıfırdan farklı olması gerekir (Kutlu, 2007; Woodward, 1972).

1.6.3.Raman Spektroskopisi

Tek bir dalga boyundaki (v_0) ışık şeffaf bir numuneye gönderildiğinde, radyasyonun bir kısmı saçılır. Saçılan ışığın bir kısmı gelen ışığın frekansına (v_0) ve bir kısmı da $v_0 \pm v_{tit}$ frekansına sahiptir. Burada v_{tit} molekülün doğal titreşim frekansıdır, Raman olayı kuantum ve klasik olarak incelenebilir (Yurdakul, 2010).

1.6.3.1. Klasik kuram

 v_0 frekansındaki bir elektromanyetik dalga örneğe iletildiğinde, elektromanyetik dalganın elektrik alanı molekülün pozitif ve negatif yük merkezleriyle etkileşime girer. Molekül başlangıçta bir dipol momente sahip değilse, + ve – yük merkezleri birbirinden uzaklaşır ve dış alan etkileri molekülde bir dipol moment oluşturur. Molekülde + ve – yük merkezleri varsa, uygulanan elektrik alan etkisiyle bir dipol moment indüklenir. Bu etkileşme,

$$\vec{\mu} = \alpha \vec{E} \tag{1.10}$$

ile verilir.

Burada;

 $\vec{\mu}$: İndüklenmiş elektriksel dipol moment vektörü,

 \vec{E} : Uygulanan elektrik alan vektörü,

α: Molekülün kutuplanabilme yatkınlığıdır.

Bu terimler daha açık yazılırsa,

$$\mu_x = \alpha_{xx}E_x + \alpha_{xy}E_y + \alpha_{xz}E_z$$

$$\mu_y = \alpha_{yx}E_x + \alpha_{yy}E_y + \alpha_{yz}E_z$$

$$\mu_z = \alpha_{zx}E_x + \alpha_{zy}E_y + \alpha_{zz}E_z$$

$$E^2 = E_x^2 + E_y^2 + E_z^2$$
(1.11)

elde edilir (Yurdakul, 2010).

 $\alpha_{i,j}$: \hat{j} doğrultusundaki elektrik alan bileşeninin \hat{i} doğrultusunda indüklediği dipol moment katsayısıdır. Kutuplanma yatkınlığı Taylor serisine açılırsa,

$$\alpha = \alpha_e + \left(\frac{\partial \alpha}{\partial Q}\right)_0 Q + \frac{1}{2} \left(\frac{\partial^2 \alpha}{\partial Q^2}\right)_0 Q^2 +$$
(1.12)

elde edilir. Burada;

 α_e : molekülün denge konumunda kutuplanabilirliği,

 $Q \equiv r - r_e$: titreşim koordinatı,

r: Verilen bir anda çekirdekler arası uzaklıktır.

Eğer molekül v_{tit} frekansıyla titreşiyorsa, Q'nun kendisi, zamanın fonksiyonu olmalıdır.

$$Q = Q_0 \sin(2\pi v_{tit} t) \tag{1.13}$$

$$\alpha = \alpha_e + \left(\frac{\partial \alpha}{\partial Q}\right)_0 Q_0 \sin(2\pi v_{tit} t)$$
(1.14)

 $E = E_0(2\pi v_0 t)$ olarak alınırsa,

$$\mu = E_0 \alpha_e \sin(2\pi \nu_0 t) + E_0 \left(\frac{\partial \alpha}{\partial Q}\right)_0 Q_0[\sin(2\pi \nu_0 t).\sin(2\pi \nu_{tit} t)]$$
(1.15)

$$\mu = E_0 \alpha_e \sin(2\pi v_0 t) + \frac{1}{2} E_0 Q_0 \left(\frac{\partial \alpha}{\partial Q}\right)_0 Q_0 [\cos 2\pi (v_{tit} - v_0) t \cos 2\pi (v_{tit} + v_0) t]$$
(1.16)

bulunur. Burada ilk terim Rayleigh saçılmasını, ikinci terim Stokes saçılmasını ve son terim ise anti-Stokes saçılmasını verir (Şekil 1.7.). Eğer molekülün titreşimi sırasında α değişiyorsa, o zaman bu titreşim Raman spektroskopisinde gözlenebilir. Buna Raman aktiflik (gözlem) şartı denir.

1.6.3.2. Kuantum kuramı

Örnek molekülleri, v_0 frekansında elektromanyetik dalga ile ışınlandığında, moleküller hv_0 enerjili fotonlarla bombardıman ediliyor demektir. Molekül bu fotonlarla elastik veya inelastik çarpışma yapar. Elastik çarpışma sonucu saçılan foton hv_0 enerjisine sahiptir. Eğer molekül ile foton arasında bir enerji alışverişi olmuşsa, çarpışma inelastiktir. Bu durumda saçılan fotonun enerjisi $h(v_0 \pm v_{tit})$ olur. Eğer molekül, başlangıçta taban titreşim enerji seviyesindeyse, fotondan belli bir enerji soğurarak uyarılmış duruma geçer. Bu durumda saçılan fotonun enerjisi $h(v_0 - v_{tit})$ dir. Molekül başlangıçta uyarılmış enerji seviyesinde ise fotona enerji aktararak taban duruma geçer. Bu durumda saçılan fotonun enerjisi $h(v_0 + v_{tit})$ olur (Şekil 1.8.).

Saçılmalarda çıkan enerjiler;

 hv_0 (elastik saçılma): Rayleigh saçılması

 $h(v_0 - v_{tit})$: Stokes saçılması

 $h(v_0 + v_{tit})$: Anti-Stokes saçılması olarak adlandırılır.

Stokes ve anti- stokes saçılmaları Raman saçılması olarak bilinir (Yurdakul, 2010).

Şekil 1.7. Raman Saçılması

Şekil 1.8. Raman Olayının Kuantum Mekaniksel Gösterimi

1.6.4.Çok Atomlu Moleküllerin Titreşimleri

Bir moleküldeki tüm atomların aynı faza ve frekansa sahip olduğu titreşime temel titreşim denir. N atomlu bir molekül 3N serbestlik derecesine sahiptir. Üç öteleme ve üç dönme serbestlik derecesinin çıkarılması, 3N-6 (doğrusal moleküller için 3N-5) temel titreşim serbestlik derecesini bırakır. Çok atomlu moleküllerin titreşim hareketi çok karmaşıktır.

Boltzmann olasılık dağılımına göre, oda sıcaklığındaki moleküller tipik olarak temel titreşim enerji seviyesinde bulunur ve uyarılmış titreşim enerji seviyesinde çok azdır. Molekülün kızılötesi spektrumunda en güçlü band, geçiş olasılığı en yüksek olan taban titreşim seviyesinden ilk titreşim seviyesine geçişte gözlenir ($\nu = 0 \rightarrow 1$). Bu geçişlerin meydana geldiği frekansa temel frekans denir.

Temel titreşim bandları yanında, üst ton, birleşim ve fark bandları ortaya çıkar. Temel titreşim frekansının iki, üç veya daha fazla katlarında $(2\nu, 3\nu..)$ üst ton geçişleri vardır.

İki veya daha fazla temel frekansın toplamı ve farkı olarak görünen titreşim bandları da vardır. Bu frekanslarda bir birleşim bandı ve bir fark bandı oluşur. Bu bandların yoğunluğu, temel bandın yoğunluğuna kıyasla çok küçüktür.

Aynı simetri türünde olan bir temel titreşim ile bir üst ton veya birleşim frekansı birbirine çok yakın ise aralarında bir etkileşme oluşur. Bu durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üst ton veya birleşim bandı gözleneceği yerde, temel titreşim bandı civarında gerçek değerlerinden sapmış iki şiddetli band gözlenir. Bu etkileşme olayı ilk defa Fermi tarafından CO₂ molekülünün frekanslarının incelenmesi sırasında gözlendiğinden "Fermi rezonansı" olarak adlandırılır. Çok atomlu moleküllerin temel titreşimlerinin spektral aktifliği ve simetrileri, grup teori yöntemiyle belirlenir (Banwell ve McCash, 2017).

Molekülü oluşturan atomların uzaydaki geometrik dizilişi molekülün simetrisini belirler. Noktalar, eksenler ve düzlemler gibi moleküler simetri öğeleri grupları oluşturur. Bu gruplara "nokta grupları" denir. Bunun nedeni, simetri işleminin sonunda molekül üzerindeki en az bir noktanın sabit kalmasıdır. Çok sayıda molekül, simetri elemanlarının sayısına ve özelliklerine göre sınırlı sayıda gruba ayrılır. (Cotton, 1991). Grup teorisinin yardımıyla, her temel titreşimin hangi indirgenemez gösterime dayandığını ve hangi simetriye sahip olduğunu bulmak için nokta grup tablosunu kullanabiliriz. Ayrıca, bilinen simetriye sahip moleküllerin 3N-6 tane olan modlarından hangilerinin kızılötesi aktif, hangilerinin Raman aktif olduğunu belirleyebiliriz. Grup teorisi, çok atomlu moleküllerin

temel titreşimleri sırasında geçiş dipol momentinin sıfırdan farklı olup olmadığını belirlemek için kullanılabilir. Salınımlı dalga fonksiyonunun ve normal modların simetrileri, nokta grubunun aynı indirgenemez gösteriminin temelini oluşturduğundan, integralin değerini bulmak için dalga fonksiyonu yerine bunları kullanabiliriz. (Sertbakan, 2000).

1.6.5. Moleküllerde Titreşim Türleri

Daha önce bahsedildiği gibi N atomlu bir molekül kapalı bir halka oluşturuyorsa, N-1 bağı oluşacağından 3N-6 titreşimden 2N-5 tanesi açı bükülme titreşimi geri kalan N-1 tanesi de bağ gerilme titreşimidir. 3N-5 titreşime sahip olan lineer moleküllerde ise 2N-4 tanesi açı bükülme geri kalan N-1 tanesi de bağ gerilme titreşimidir. Çok atomlu moleküllerdeki titreşimler üç bölüme ayrılabilir. (Kutlu, 2007).

1.6.5.1.Gerilme titreşimi (Stretching)

Bağın ekseni doğrultusunda periyodik uzama ve kısalma hareketine neden olan titreşimlerdir. Bu tür titreşim hareketleri bağ açısını değiştirmez. Bağ gerilme titreşimleri v ile gösterilir. Bu titreşimler simetrik ve asimetrik gerilme olarak ikiye ayrılır (Şekil 1.9.).

Simetrik gerilme (v_s) moleküldeki tüm bağların uzaması ve kısalması hareketidir. Asimetrik gerilme ise moleküldeki bağların bir veya birkaçının uzarken diğerinin kısalma hareketi yapması olup v_{as} ile gösterilir (Kantarcı ve Bayrak, 1998).

Şekil 1.9. Gerilme titreşimleri

1.6.5.2. Açı bükülme Titreşimleri

İki bağ arasındaki açının periyodik olarak değişimine neden olan titreşimlerdir ve δ ile gösterilirler. Molekül grupları için açı bükülmesi titreşimleri; makaslama, sallanma, dalgalanma ve kıvırma gibi türlerden oluşur (Şekil 1.10.).

Şekil 1.10. Açı bükülme titreşimi

Açı bükülmenin özel şekilleri ise aşağıda verilmiştir.

• Makaslama: İki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak oluşan değişim hareketidir. Yer değiştirme vektörleri bağa dik doğrultuda ve zıt yöndedir. δ_s ile gösterilir (Şekil 1.11.).

Makaslama δ_s

Şekil 1.11. Açı bükülme titreşimi (makaslama)

Sallanma: Yer değiştirme vektörleri birbirini takip edecek yöndedir. İki bağ arasındaki veya bir bağ ile bir grup atom arasındaki açının yer değiştirmesidir. Bağ uzunluğu ve bağ açısının değeri değişmez kalır. Sallanma titreşimi ρ_r ile gösterilir (Şekil 1.12.).

. .

Şekil 1.12. Açı bükülme titreşimi (sallanma)
Dalgalanma: Bir bağ ile iki bağ tarafından tanımlanan bir düzlem arasındaki açının değişimine neden olan titreşim hareketidir ve w ile gösterilir. Molekülün tüm atomları denge konumunda düzlemsel iken, bir atomu bu düzleme dik hareket etmesidir (Şekil 1.13.).

Şekil 1.13. Açı bükülme titreşimi (dalgalanma)

 Kıvırma: Bir bağ ile düzlem arasındaki açının değişimine neden olan titreşim hareketidir ve t ile gösterilir. Lineer ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesine neden olur. Yer değiştirme vektörleri bağ doğrultusuna dik ve zıt yöndedir. Bağın deformasyonu mümkün değildir (Şekil 1.14.).

Şekil 1.14. Açı bükülme titreşimi (kıvırma)

• Burulma: iki düzlem arasındaki açının bir bağ veya açıyı deforme ederek, periyodik olarak değişim hareketidir ve τ ile gösterilir (Şekil 1.15.).

Şekil 1.15. Açı bükülme titreşimi (burulma)

 Düzlem dışı açı bükülme: Atomların hareketi ile bir düzlemin (genellikle bir simetri düzlemi) yok edilmesi hareketidir. Genelde kapalı bir halka oluşturan moleküllerde görülür ve hareketin biçimi şemsiye biçimindedir ve γ ile gösterilir (Şekil 1.16.) (Akar, 2011).

1.7. Bilgisayar Hesaplamalı Moleküler Spektroskopi

Bilgisayar hesaplamalı moleküler spektroskopi, fizik yasalarını temel alarak moleküler yapıyı, spektroskopik büyüklükleri kimyasal reaksiyonları hesaplar. Bu hesaplamalarda kullanılan yöntemler Şekil 1.17.' de gösterilmiştir. Moleküler Mekanik Metotlar ve Elektronik Yapı Teorisi yöntemi benzer hesaplamalar yapar. Bu hesaplamalar kısaca belli bir moleküler yapının enerjisinin hesaplanmasıdır. Bu ise enerjinin atomik koordinatlara göre birinci ve ikinci türeviyle yapılır. Birinci türev geometrik optimizasyon yaparken ikinci türev titreşim frekanslarını hesaplar.

Geometrik optimizasyon; en düşük enerjiye veya en kararlı duruma karşılık gelen moleküler yapının geometrisini bulmaktır. Geometrik optimizasyon, enerjinin atomik koordinatlara göre ilk türevi olan gradyentinden hesaplanır.

Frekans hesabı; atomların hareketinden kaynaklanır ve enerjinin atomik koordinatlara göre ikinci türevinden hesaplanır.

Şekil 1.17. Bilgisayar Hesaplama Metotlarının Alanları

1.7.1. Moleküler Mekanik Metodlar

Moleküler sistemlerdeki elektronlar, moleküler mekanik hesaplamalarında açıkça dikkate alınmaz. Bir molekül, yaylarla birbirine bağlanan iki kütleden oluşan, harmonik kuvvetlerle etkileşime giren bir kütleler topluluğu olarak görülebilir. Burada kütleler, elektronların etrafında küresel olarak dağıldığı atom çekirdeklerini, yaylar ise atomlar arası kimyasal bağları temsil eder (Gans ve ark., 1976; Zafer, 2006).

Atomlar arası etkileşmeler iki kısma ayrılır (Kutlu, 2007);

- Kimyasal bağlarla bağlanmış atomlar arası etkileşmeler
 - a: Gerilme,
 - b: Açı bükülme,
 - c: Burulma,
 - d: Düzlem dışı açı bükülme.
- Kimyasal bağlarla birbirine bağlanmamış atomlar arası etkileşmeler
 - a: Van der Waals etkileşmeleri,
 - b: Elektronik etkileşmeler.

Gerilme etkileşmeleri,

$$E_{str} = \frac{1}{2}k(b - b_0)^2 \tag{1.17}$$

şeklinde verilmektedir. Burada,

k: kuvvet sabiti,

 b_0 : denge durumundaki bağ uzunluğu,

b: gerçek bağ uzunluğudur.

Açı bükülme etkileşmeleri,

$$E_{bend} = \frac{1}{2}k_0(\theta - \theta_0)^2$$
(1.18)

şeklinde verilmektedir. Burada,

 k_0 : açı bükülme kuvvet sabiti,

 θ_0 : denge durumundaki açı değeri,

θ: açının gerçek değeridir.

Burulma etkileşimleri,

$$E_{tors} = \frac{1}{2}k_{\varphi}(1 + \cos(n\varphi - \varphi_0)) \tag{1.19}$$

şeklinde verilmektedir.

Burada,

 k_{φ} : kuvvet sabiti,

 φ : burulma açısı,

 φ_0 : denge burulma açısı,

n: periyodiklik olarak tanımlanır.

Van der walls etkileşmeleri,

$$E_{vdw} = \sum \frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}}$$
(1.20)

şeklinde verilmektedir. Burada,

 A_{ii} : itici terim,

 B_{ii} : çekici terim,

 r_{ij} : i. ve j. Atomlar arasındaki uzaklıktır.

Elektrostatik etkileşme,

$$E_{elec} = \frac{1}{\varepsilon} \frac{Q_1 Q_2}{r} \tag{1.21}$$

şeklinde verilmektedir. Burada,

ε: dielektrik sabiti,

 Q_1 ve Q_2 : etkileşen atomların yükleri,

r: atomlar arasındaki uzaklıktır.

Moleküldeki bağlar ve açılar birbirine bağımlı olduğundan oluşan bir gerilme, bükülme veya burulma hareketi komşu bağları ve bağ açılarını etkiler. Bu tür çiftleşme ile oluşan etkileşimlerin enerjisi genelde saf etkileşimlere göre daha küçük gözlenir. Çiftleşme ile oluşan etkileşmeler, burulma-bükülme, gerilme-bükülme gibi etkileşimlerdir.

Atomlar arası etkileşimlerin her biri potansiyel enerji ile tanımlanır. Molekülün toplam potansiyel enerjisi bu etkileşmelere karşılık gelen potansiyel enerjilerinin toplamıdır.

$$E_{toplam} = E_{str} + E_{bend} + E_{tors} + E_{vdw} + E_{elec}$$
(1.22)

Burada;

 E_{str} : gerilme enerjisi,

 E_{bend} : açı bükülme enerjisi,

 E_{tors} : burulma (torsiyon) enerjisi,

 E_{vdw} : Van der Walls enerji,

*E*_{elec}: elektrostatik enerji terimidir (Holtje ve ark., 2003; Leach, 2001).

Moleküler mekanik hesaplamaları, moleküler yapının basit klasik-mekanik modelinin oluşturulmasına dayanır. Bu modelin bazı moleküllere uygulanması başarılı sonuçlar vermiştir (Cook, 2013). Moleküler mekanik hesaplamaları yapan programlar bir kimyasal sistemdeki atomlar arasındaki etkileşmeleri klasik mekanik kuralları ile tanımlar. Bu programlar oldukça hızlıdırlar ve temel haldeki bir sistemin enerjisini kolaylıkla hesaplayabilirler. Ancak moleküler mekanik metotların verdiği kolaylıkların yanı sıra zorlukları da vardır. En önemli zorluklarından birisi moleküler sistemin elektronik yapıya bağlı olan özellikleri ya da diğer bir ifadeyle elektronik yapı hakkında bilgi verememesidir.

1.7.2. Elektronik Yapı Metodları

Elektronik yapı yöntemlerinde kuantum mekaniği yasaları kullanılmaktadır. Kuantum mekaniğine göre, bir molekülün enerjisi Schrödinger denklemini çözerek bulunabilir. Çok küçük sistemler dışında Schrödinger denkleminin kesin çözümleri mümkün değildir. Bu nedenle simülasyon ile yaklaşık bir çözüm oluşturulur.

1.7.2.1.Ab-Initio moleküler orbital yöntemleri: Ab initio moleküler orbital yöntemleri ile elektronik yapı ve buna bağlı özellikler hesaplanabilir. Bu hesaplamalar ışık hızı, Planck sabiti ve elektronun kütlesi gibi temel fiziksel sabitleri kullanır. Deneysel değerler gerekli değildir.

1.7.2.2.Yarı deneysel (Semi Emprical) metotlar: Yarı deneysel metotların moleküler mekanik ve Ab-Initio metotları karşılaştırıldığında avantaj ve dezavantajları vardır. Örneğin hesaplama süresi Ab-Initio hesaplamalarıyla karşılaştırılamayacak kadar

kısadır. Çok küçük sistemler için kullanılabileceği gibi büyük moleküler sistemler için de kullanılabilir. Yarı-deneysel yöntemlerden bazıları CNDO, INDO, MINDO/3, NDDO, AM1 ve PM3 olarak verilebilir. Hesaplamalarda kuantum mekanik yöntemler kullanılır. Bu yöntemler, moleküler parametrelerin deneysel değerlerine yakın sonuçlar veren parametrelere sahiptir. Deneysel verilerden elde edilen parametreler, hesaplamaları kolaylaştırmak için yarı deneysel (semiemprical) yöntemlerde kullanılır. Moleküler mekanikte olduğu gibi, tüm parametrelerin çalışılan sistem için uygun olması gerekir. (Jensen, 2006).

Yarı deneysel ve ab-initio yöntemler, doğruluk ve hesaplama maliyeti açısından farklı sonuçlar verir. Yarı deneysel yöntemlerle yapılan hesaplamalar, zaman açısından çok ekonomiktir ve uygun bir dizi parametre ile sistemlerin moleküler yapısına ilişkin son derece doğru niteliksel ve niceliksel tahminler verir.

Moleküler mekanik ve yarı deneysel yöntemlerin aksine, ab initio yöntemleri ışık hızı, Planck sabiti, elektron hızı ve kütlesi gibi temel fiziksel nicelikler dışında hesaplanmış deneysel moleküler değerleri kullanmaz. (Alyar ve ark., 2006; Jensen, 2006).

Moleküllerin titreşim spektrumlarının ve kuvvet alanlarının kuantum mekaniksel ab inito yöntemler ile hesaplanması P. Pulay'ın 1969 yılındaki klasik çalışmasına dayanır (Pulay, 1969). Bu çalışmada; kuvvet veya gradyent metodu denilen metot önerilmiştir. Bu metot çok atomlu moleküllerin kuvvet alanlarının hesaplanmasında yaklaşık sonuç verir. Pulay'ın bu çalışmasında atomlara etki eden kuvvetlerin ab initio metotlarda analitik olarak elde edilebileceği gösterilmiş ve Hartree-Fock yöntemi elde edilmiştir. İkinci ve daha üst mertebeden analitik türevlerin elde edilmesi kuantum mekaniksel hesaplama yöntemleri için çok büyük bir gelişme olmuştur. Ab inito metotlardan Hartree-Fock (HF), yoğunluk fonksiyonu teorisi (DFT) ve Möller Plesset teorisi (MP2) için 1970-1980'li yıllarda enerji ifadesinin 1. ve 2. analitik türevleri alınarak spektroskopik büyüklüklerin hesabı için kullanılmıştır (Pulay, 1969; Pulay, 2007). Birinci türevlerin hesaplanması sonucunda geometrik optimizasyon yapılır. İkinci türevler bize kuvvet sabitini dolayısıyla titreşim frekanslarını verir. IR şiddetleri dipol momentlerin türevinden bulunur.

Günümüzde kullanılan GAUSSIAN, GAMESS, HONDO, Q-CHEM gibi kuantum mekaniksel yöntemler ile hesaplama yapan paket programların tamamında değişik mertebelerden analitik türevler kullanılır. Tablo1.3' te enerjinin türevlerinden hangi büyüklüklerin hesaplanabileceği verilmektedir.

Enerji Türevi	Hesaplanan Büyüklükler
$\frac{\partial E_e}{\partial R}$	Atomlara etki eden kuvvetler, moleküllerin geometrisi, kararlı noktalar
$\frac{\partial^2 E_e}{\partial R_i \partial R_j}$	Kuvvet sabitleri, temel titreşim frekansları, infrared ve raman spektrumları, titreşim genlikleri
$\frac{\partial^2 E_e}{\partial R_i \partial \in_\alpha}$	Dipol moment türevleri, harmonik yaklaşımda infrared şiddetleri
$\frac{\partial^3 E_e}{\partial R_i \partial \in_\alpha \partial \in_\beta}$	Kutuplanabilirlik türevleri, harmonik yaklaşımda Raman şiddeti

Tablo 1.3. Enerji türevlerinin fiziksel büyüklüklere göre dağılımı (Pulay, 2007)

Burada E_e toplam elektronik enerjiye, R atomik koordinatlara, \in elektrik alan bileşenine karşılık gelir (Pulay, 2007).

1.8. Kuantum Mekaniksel Enerji İfadeleri ve Yoğunluk Fonksiyon Teorisi

Bir molekülün enerjisi ve diğer fiziksel özellikleri kuantum mekaniksel olarak Schrödinger dalga denkleminin çözümünden elde edilir. Schrödinger denklemi;

$$\widehat{H}\Psi = E\Psi \tag{1.23}$$

ile verilir. Burada \hat{H} moleküler etkileşmeleri tanımlayan bir operatör, Ψ moleküler dalga fonksiyonu, *E* ise moleküler sistemin farklı kararlı durumlarına karşılık gelen enerjilerdir (Akar, 2011).

Moleküller, kuantum mekaniksel olarak incelenirken moleküler hareket, çekirdeğin hareketi ve elektronların hareketi olmak üzere iki kısma ayrılır.

Çekirdeğin kütlesi elektronun kütlesine göre çok büyük olduğu için bu iki hareket ayrı ayrı incelenebilir. Bu yaklaşıma *Born-Oppenheimer* yaklaşımı adı verilir.

Bir molekülün elektronik enerjisi kuantum mekaniksel olarak;

$$E_e = E^T + E^V + E^J + E^{XC} (1.24)$$

yazılabilir (Akar, 2011).

Burada E^T elektronların hareketinden kaynaklanan kinetik enerji, E^V çekirdekelektron çekim ve çekirdek çiftleri arasındaki itme potansiyel enerjisidir. E^J elektronelektron itme terimi, $E^{XC} = E^X + E^C$ ise değiş tokuş (E^X) ve korelasyon (E^C) terimi olup elektron-elektron etkileşmelerinin geri kalan kısmını kapsar.

Değiş tokuş enerjisi zıt spinli elektronlar arasındaki etkileşme enerjisi olup kuantum mekaniksel dalga fonksiyonunun anti simetrikliğinden ortaya çıkar. Korelâsyon enerjisi ise aynı spinli elektronlar arasındaki etkileşme enerjisidir. Ne atomunun enerjisini örnek olarak verebiliriz. Atomik birimler cinsinden Ne atomunun hesaplanmış enerjileri E = -129.4, $E^T = 129$, $E^V = -312$, $E^J = 66$, $E^X = 12$, $E^C = -0.4$ atomik birim (hartree) dir (Akar, 2011). (1 Hartree (H) = 27.192 eV')

Eğer enerjinin açık ifadesi moleküler dalga fonksiyonu ψ ye bağımlı ise bu Hartree-Fock (HF) modeli olarak bilinir. HF modeli korelasyon yani etkileşim enerjilerini dikkate almaz. Eğer enerji ifadesi elektron yoğunluğu ρ ya bağımlı ise buna da yoğunluk fonksiyonu modeli denir ve DFT ile gösterilir. Yoğunluk fonksiyonu teorisinde sık kullanılan üç kavram vardır. Bunlar;

a) Elektron yoğunluğu $\rho = \rho(r)$: Herhangi bir noktadaki elektron yoğunluğudur.

b) Tekdüze Elektron Gazı Modeli: Bir bölgedeki yük dağılımının, sisteme düzgün dağılmış n tane elektron ve sistemi nötralize edecek kadar pozitif yükten oluştuğu varsayımına dayalı idealize edilmiş bir modeldir.

Klasik DFT modellerinde enerji ifadeleri elde edilirken elektron dağılımının V hacimli bir küp içinde olduğu, elektron yoğunluğunun $\rho = n/V$ ile verildiği ve sistemde $n, V \rightarrow \infty$ olduğu varsayımı yapılmıştır, yani ρ sabit kabul edilmiştir (Akar, 2011).

c) Fonksiyonel: Bağımsız x değişkenine bağımlı değişkene fonksiyon denir ve f(x) ile gösterilir. Bir F fonksiyonu f(x)'e bağımlı ise bu bağımlılığa fonksiyonel denir ve F[f] ile gösterilir. Fonksiyonel kavramı DFT da sıkça kullanılmaktadır (Zafer, 2006).

1.8.1. Karma yoğunluk fonksiyon teorisi

Dalga mekaniğine dayanan HF teorisi, değiş-tokuş enerjisi için iyi çalışmaz ve korelasyon enerjilerini hesaplayamaz. Ancak kinetik enerjiyi ifade etmek için uygun ifadeler olabilir. Öte yandan, DFT modeli değişim ve korelasyon enerjilerinde daha iyi performans gösterir. Ancak kinetik enerji ifadesi için iyi sonuçlar vermez. Bu nedenle, tam enerji terimini hesaplamak için saf bir HF modeli veya saf bir DFT modeli kullanmak yerine, karma (hibrit) bir model oluşturulur ve tam elektron enerji teriminde her iki modelden gelen enerji terimleri kullanılır. Bu modeller toplam enerji, bağ uzunlukları, iyonizasyon enerjileri gibi çoğu büyüklükleri saf modellerden daha iyi hesaplamaktadır (Hohenberg ve Kohn, 1964; Miehlich ve ark., 1989).

1.8.2. B3LYP Karma Yoğunluk Fonksiyon Metodu

Bu karma modelde, çeşitli enerji ifadelerini birleştirerek yeni bir enerji ifadesi elde edilir. Becke, değiş tokuş ve ilgi enerjisi E^{XC} için aşağıdaki karma modeli önermiştir.

$$E_{karma}^{XC} = c_{HF} E_{HF}^X + c_{DFT} E_{DFT}^{XC}$$
(1.25)

Burada c'ler sabitlerdir. Becke'nin önerdiği karma modellerden biri de BLYP'dir. Ancak, karma modellerden en iyi sonuç vereni, B3LYP'dir. Bu modelde, değiş tokuş ilgi enerjisi,

 $E_{B3LYP}^{XC} = E_{LDA}^{X} + c_0 (E_{HF}^{X} - E_{LDA}^{X}) + c_1 \Delta E_{B88}^{X} + E_{VWN3}^{C} + c_2 (E_{LYP}^{C} - E_{VWN3}^{C}) \quad (1.26)$

biçiminde ifade edilir. Burada, c_0 , c_1 ve c_2 katsayıları, deneysel değerlerden sağlanmış sabitlerdir ve değerleri, sırasıyla, 0.2, 0.72 ve 0.82'dir. Buna göre B3LYP modelinde bir molekülün toplam elektron enerjisi ifadesi,

$$E_{B3LYP} = E_T + E_V + E_J + E_{B3LYP}^{XC}$$
(1.27)

biçimde olur (Kahraman, 2014).

Karma modeller arasında en iyi sonuç verenler BLYP ve B3LYP'dir. DFT modelinde moleküller için daha iyi sonuç verecek fonksiyon çalışmaları devam etmektedir (Gill ve von Rague Schleyer, 1994; Jensen, 2006).

1.8.3. Temel Setler ve 6-31G(D) Temel Seti

Atomik orbitallerin matematiksel ifadesine temel set denir. Moleküllerin atomlardan oluşması ve aynı cins atomların farklı moleküllerde benzer özellikler göstermelerinden dolayı moleküler orbital, atomik orbitallerin lineer toplamları olarak yazılabilir. Ψ_i moleküler orbitali, φ_{μ} de atomik orbitali göstermek üzere aralarında

$$\Psi_i = \sum_{\mu=1}^N c_{\mu i} \varphi_{\mu}$$

(1.28)

bağıntısı vardır (Jensen, 2006). Burada $c_{\mu i}$ moleküler orbital açılım katsayıları; ϕ_{μ} atomik orbitalleri ise temel fonksiyonları olarak adlandırılır.

Gaussian tipi atomik fonksiyonlar;

$$g(\alpha, r) = cx^n y^m z^l e^{-\alpha r^2}$$
(1.29)

şeklinde seçilebilir. Burada α fonksiyonun genişliğini ifade eden bir sabit, c ise α , l, m ve n' ye bağlı sabittir. s, p_y ve d_{xy} orbitalleri için gaussian fonksiyonlar aşağıda verilmiştir.

$$g_s(\alpha, \vec{r}) = \left(\frac{2\alpha}{\pi}\right)^{3/4} e^{-\alpha r^2}$$
(1.30)

$$g_{y}(\alpha, \vec{r}) = \left(\frac{128\alpha^{5}}{\pi^{3}}\right)^{1/4} y e^{-\alpha r^{2}}$$
(1.31)

$$g_{xy}(\alpha, \vec{r}) = \left(\frac{2048\alpha^7}{\pi^3}\right)^{1/4} xy e^{-\alpha r^2}$$
(1.32)

Bunlara ilkel gaussianlar denir.

Sınırlandırılmış gaussianlar ise;

$$\phi_m = \sum_p d_{\mu p} g_p \tag{1.33}$$

ifadesi ile verilmekte olup $d_{\mu\rho}'$ ler herhangi bir temel set için sınırlı sayıdaki sabitlerdir. Sonuçta bir moleküler orbital,

$$\Psi_i = \sum_{\mu} c_{\mu i} \phi_{\mu} = \sum_{\mu} c_{\mu i} \left(\sum_p d_{\mu p} g_p \right)$$
(1.34)

ile verilmektedir. Burada $c_{\mu i}$ lineer açılım katsayısının her bir orbital için tekrar hesaplanması bizim için önemli bir sorun yaratır.

Atomik orbitaller için birçok temel set önerilmiştir. Bunlardan minimal temel setler; herhangi bir atom için gerektiği sayıda temel fonksiyon içerir (Jensen, 2006). Örneğin,

H:1s

$C: 1s, 2s, 2p_{x}, 2p_{y}, 2p_{z}$

Split valans temel setleri ise bir valans orbitali için farklı büyüklükte iki veya daha çok temel fonksiyon içerirler. Örneğin,

 $C: 1s, 2s, 2s', 2p_x, 2p_y, 2p_z, 2p_x', 2p_y', 2p_z'$

Burada ' işaretli ve işaretsiz orbitallerin büyüklükleri farklıdır. 3-21G, 4-21G, 6-31G setleri temel minimal setlerdir.

Split valans temel setler, orbitallerin büyüklüğünü değiştirir fakat şeklini değiştirmez.

Polarize temel setler ise bir atomun taban durumunu tanımlamak için gerekenden daha fazla açısal momentumu orbitallere ekleyerek orbitallerin şeklini değiştirir. Örneğin; temel polarize setler 4-21G* (4-21G(d)), 6-31G*(6-31G(d)) karbon atomları için d fonksiyonlarını da göz önüne alır. Hidrojen atomunda p orbitali de göz önüne alınmış ise bu durumda temel setler 6-31G** (6-31G(d,p)) olarak gösterilir (Levine ve ark., 2009).

2. ÖNCEKİ ÇALIŞMALAR

Yaptığımız çalışmaya benzer daha önce de birtakım çalışmalar yapılmıştır ancak kullanılan nanoparçacık, ilaç ve polimer birleşimi bu alanda kullanılan tek örnektir.

Babu ve arkadaşları (2012) "Molecular structure and vibrational spectra of Irinotecan: A density functional theoretical study" adlı çalışmada İrinotekan (irinotecan) molekülünün FTIR ve FT-Raman spektrumlarını çalışmışlardır. Bu çalışmada, molekülün denge geometrilerini, titreşim dalga sayılarını ve HOMO-LUMO DFT/B3LYP/6-31G(d)hesaplamalarını ilk kez teori düzeyini kullanarak gerçekleştirmişlerdir. Babu ve arkadaşları ayrıca, teorik olarak oluşturulmuş FTIR spektrumunun deneysel olarak gözlemlenen FTIR spektrumu ile iyi bir korelasyon gösterdiğini, MEP haritası ile, negatif bölgelerin esas olarak elektronegatif atomlar üzerinde lokalize olduğunu, maksimum pozitif bölgenin ise metilen grubu üzerinde lokalize olduğunu bulmuşlardır.

Yezhelyev ve arkadaşları (2006) antikorlara konjüge edilmiş nanopartiküllerin kullanımı, üzerinde tedavi kararlarının alınabileceği küçük tümör örneklerinde çoklu moleküler hedeflerin aynı anda saptanmasına olanak tanıdığından tek bir tümördeki protein ve gen ekspresyonu, nanoparçacık etiketleri kullanılarak ilişkilendirilebileceğini belirtmişlerdir. In vivo görüntülemede nanoparçacıkların kullanımı hızla gelişmektedir ve kanserle ilişkili antijenlerin eş zamanlı olarak saptanmasına ve hedeflenmesine olanak sağlamaktadır. Böylelikle nanopartiküller, klinik uygulamada zaten mevcut olan ve yeni antikanser ajanların etkinliğini artırabilen ve toksisitesini azaltabilen yeni bir tümör hedefleme yöntemi sunduğunu belirtmiş ve yakın gelecekte, nanoteknolojinin kullanımı sadece onkolojide değil, tüm tıp disiplininde de devrim yaratabileceğini göstermişlerdir.

Taherian ve arkadaşları ise (2021), "Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles' adlı çalışmalarında, çekirdek-kabuk nanoparçacıkları sentezlenmiş ve bu parçacıların bir ilaç taşıyıcısı olarak kullanıldığını göstermişlerdir. Bu nanotaşıyıcıda terapötik uygulamalar için kullanılması hedeflenen molekül, yüksek antikanser aktiviteye sahip olan siyah nar kabuğu özünden elde etmişlerdir. Karakterizasyon çalışmaları, sentezlenen nanoparçacıkların saf olduğunu, kaplama ve yükleme aşamasında faz değişimine sahip olmadığını, yarılanma ömrünü uzatabilecek bir boyut aralığına sahip olduğunu ve ayrıca biyolojik sıvılarda stabilitelerini koruduğunu ortaya koymuştur. Sentezlenen nanotaşıyıcılar, tümör ortamı simülasyonunda iyi yükleme verimliliğine ve büyük bir salım oranına sahip olup. sitotoksisite raporları, sentezlenen nanotaşıyıcının biyolojik olarak uyumlu olduğunu,

normal ve kanserli hücrelere karşı önemli bir toksisite göstermediğini ortaya koymuştur. Ayrıca BPPE (black pomegranate peel extract), yani BPPE-CCMNP'ler (black pomegranate peel extract loaded with chitosan-coated magnetic nanoparticles) kanserli hücrelere karşı toksiktir, ancak kemoterapötik ilaçlardan daha umut verici olan normal hücrelere karşı toksik olmadığıydı. Bu tür nano-taşıyıcıların kullanımı, ilaç etkinliğini artırmış ve buna bağlı olarak yüksek derecede çözünmez ilaçlar için kullanılabilir bir seçenek olmuştur.

Yalçın ve arkadaşları (2014), doksorubisin ilacını model antikanser ajanı olarak kullanmış ve PHB-MNP'lere yüklemiştir. Bu çalışma, DNA hedefli bir ilaç olan doksorubisinin, çekirdeğe yakın bir yerde salınması gerektiğini göstermiştir. Ek olarak, doksorubisin yüklü PHB-MNP'lerin uygulanması, doksorubisine dirençli MCF-7 hücrelerinde ilaç direncinin üstesinden gelmeye yardımcı olabileceğini ve doksorubisinin PHB-MNP'lerden kontrollü salınımı, hedeflenen kanser tedavisi, ilaç direncinin üstesinden gelme ve kardiyotoksisite için umut verici bir aday olduğunu belirtmiştir.

Gündüz ve arkadaşları (2014), yapmış oldukları çalışmalarında tasarlanan manyetik nanoparçacıkların ilaç hedeflenmesi ve salımında kullanılması amaçladı. Bu amaçla, manyetik (Fe_3O_4) nanoparçacıklar, birlikte çöktürme yöntemi ile farklı sıcaklıklarda sentezlemişler, en saf kristal yapıya sahip parçacıkları 90°C de elde etmişlerdir. Çıplak parçacıklarda kümeleşme eğilimi görülmüş ve sentez sırasında ortama oleik asit eklenerek bu eğilim büyük ölçüde engellenmiştir. Hazırlanan oleik asit kaplı nanoparçacıklar PEG ve folik asit ile kaplamışlardır. Daha sonra nanoparçacılara lipofilik bir anti-kanser ilaç olan idarubisin yüklemişlerdir. Elde edilen nanoparçacıkların özellikleri XRD, DLS, SAXS, TEM/SEM, FTIR, TGA ve VSM analizleri ile belirlenmiştir. En fazla ilaç tutuklanmasının $250\mu M$ idarubisin derişimi için %36,1 \pm 3,4 olduğu bulmuşlar ve pH 7,0'de 72 saat içinde toplam ilacın yaklaşık %90'ının salındığı belirlemişlerdir. Ayrıca Gündüz ve arkadaşları, idarubisin yüklenmiş manyetik nanoparçacıkların (İDA-MNP) MCF-7 meme kanseri hücreleri üzerindeki sitotoksik etkilerini araştırmışlardır. Serbest idarubisine göre, İDA-MNP'ler hücreler üzerinde daha toksik etki göstermiştir. Bu nedenle idarubisin yüklü nanoparçacıkların kanser hücreleri üzerinde daha etkili olduğu söylenebilir. Işık mikroskop görüntülerinden, nanoparçacıkların hücre içine alındığı görülmüştür. Lazer taramalı konfokal mikroskop görüntülerinde ise nanoparçacıklara bağlı idarubisinin serbest idarubisine göre daha fazla hücre içine alındığı gözlemlenmiştir. Nanoparçacıkların in vitro koşullarda MCF-7 hücrelerinde dışarıdan uygulanan manyetik alan ile yönlendirilebildiği gösterilmiştir.

Sonuç olarak, yapılan bu çalışmada biyomedikal uygulamalarda kullanılmak üzere istenilen şekil ve boyutta, kimyasal ve manyetik özelliklere ve sitotoksik etkiye sahip idarubisin yüklü nanoparçacıklar sentezlenmiştir. Nanoparçacıkların ilaç salımı incelenmiş, hücre içine alınabilirliği ve manyetik alan içinde yönlendirilebilirliği gösterilmiştir. İlaç yüklü nanoparçacıkların serbest ilaca göre MCF-7 meme kanseri hücrelerinde daha yüksek sitotoksisiteye sahip oldukları belirlenmiştir.

3. MATERYAL VE METOT

3.1. Teorik Hesaplamalar

Çalışmamızda bir antikanser ajan olan İrinotekan yüklü PHB (poli-3hidroksibutirat) ile kaplanmış demir oksit nanoparçacıklarının kanserli hücreler üzerindeki etkisinin belirlenmesi amaçlanmaktadır.

Nanoparçacıkların kaplanması için kullanılan birçok farklı sentetik ve doğal polimer vardır. Bu çalışmada kaplama polimeri olarak polihidroksialkanoat (PHA) ailesine ait olan PHB (poli-3-hidroksibutirat) kullanılmıştır. PHA'lar, depolama polimeri olarak bakteriler tarafından doğal olarak sentezlenen ve doğrusal biyolojik olarak parçalanabilen polyesterlerdir. Ayrıca biyoteknolojik yöntemlerle büyük ölçekli kullanım için sentezlenirler. PHA'lar birçok farklı bakteri türü tarafından üretilebilir. PHB biyolojik olarak parçalanabilir ve enzimatik olmayan veya PHA hidrolazları ve PHA depolimerazları tarafından enzimatik olarak parçalanabilecekleri bilinmektedir. Daha ileri çalışmalarda, in vivo uygulamalar sırasında PHB'nin hiçbir toksik etkisi olmadığı görülmüştür (Yalçın ve ark., 2015).

Molekülün geometrik optimizasyonu, gaz ortamında ve temel halde atomların düşük enerjili en kararlı halidir. Molekülün optimize hali DFT(B3LYP) metoduyla 6-311++G(d,p), 6-31 G(d) ve cc-pVDZ baz setleri kullanılarak elde edilmiştir ve Şekil 4.1.' de gösterilmiştir. Atomların dizilişi itibariyle kararlı optimize Gauss View/5.0 paket programı görüntüsünden en kararlı optimize hal, geometrik özellikler (bağ açısı-bağ uzunluğu) bulunmuştur. Hesaplanan bu veriler literatürde kayıtlı değerler ile karşılaştırılmıştır.

İrinotekan (CPT-11), son 10 yılda piyasaya sürülen en yaygın kullanılan sitotoksik ilaçlardan biridir. İrinotekan, DNA'nın replikasyonu ve transkripsiyonunda yer alan bir enzim olan topoizomeraz I'in seçici bir inhibitörüdür (Babu ve ark., 2012).

lrinotecan, kolorektal, ovari, küçük hücre olmayan akciğer ve meme kanseri dahil olmak üzere, karsinoma vitro ve in vivo modellerinde antitümör aktivitesi göstermiştir (Wiseman ve Markham, 1996).

Bilgisayar Hesaplamalı Moleküler Spektroskopide teorik hesaplamalar yaygın bir şekilde kuantum kimyasal kaynak kodlu Gaussian/09 paket programı yazılımı kullanılarak yapılmaktadır.

Gaussian/09 paket programında yapılacak hesaplama öncesinde, bu programa yardımcı program görevini yapan Gauss view/5.0 paket programı kullanılmaktadır. Gauss view/5.0 programı bir molekülün 3 boyutlu tasarımını yaparak molekülün özelliklerinin görsel olarak tanımlanmasını sağlar. Bu değerler sayesinde Gaussian/09 paket programının giriş verileri elde edilir. Aynı zamanda Gauss view/5.0 programı, Gaussian/09 paket programı tarafından yapılan hesap çıktılarını görselleştirir.

Kararlı hal geometrisi, geometrik optimizasyon ile incelenir. Kullanılan yönteme gradyan optimizasyonu veya kuvvet yöntemi denir. Bilgisayarlı hesaplama tekniğinde moleküler bir sistem belirli bir geometride olduğunda hesaplamalar yapılır. Moleküllerdeki yapısal değişiklikler, enerjide ve molekülün diğer birçok özelliğinde önemli değişiklikler gösterir. Moleküler yapıdaki küçük değişikliklerden kaynaklanan enerjinin koordinat bağımlılığına potansiyel enerji yüzeyi denir. Molekülün potansiyel enerji eğrisi veya yüzey alanı bilinirse, dengedeki geometriye göre minimum enerji noktası bulunabilir. İki atomlu bir molekülde bağ gerilmesine karşılık gelen elektronik enerji grafiği Şekil 3.1.' de verilmiştir. Burada minimum enerjili nokta E_m ve X_m ile gösterilmektedir.

Şekil 3.1. İki atomlu bir molekülde elektronik enerjinin atomlar arasındaki mesafeye bağımlılığı.

Gradyent vektörü

$$\left\{g\right\} \equiv g = \left(\frac{\partial E}{\partial X_1}, \frac{\partial E}{\partial X_2}, \dots\right)$$
(3.1)

ile verilir. Burada; E: enerjiyi, x_1, x_2 : konumu ifade etmektedir.

Moleküler geometri optimizasyonu, bu konumlara karşılık gelen minimum enerjili noktaları bulmak demektir. Bu da ilk aşamada yukarıda verilen gradyent vektörünü bulmak, daha sonrada bu vektörü sıfır vektör yapan noktaları bulmaya karşılık gelir.

$$\langle g| = (0,0,...)$$
 (3.2)

Gradyent vektörünün sıfır olduğu noktalar minimum enerjili duruma karşılık gelir ve molekülün bu durumdaki geometrisine de denge durumu geometrisi adı verilir. Şekil 3.2'de görüldüğü gibi bir molekül için potansiyel enerji yüzeyinde birçok maksimum ve minimumlar görülür.

Şekil 3.2. Potansiyel enerji yüzeyindeki lokal minimum, maksimum ve eyer noktası

Potansiyel enerji yüzeyindeki minimumlar sistemin dengede olduğu yerdir. Tek bir molekül için farklı minimumlar farklı konformasyonlara veya yapısal izomerlere karşılık gelir. Sırtlardaki düşük nokta bir yönde yerel minimum, diğer yönden bir maksimumdur. Bu tür noktalara eyer noktaları denir. Bunlar iki denge yapısı arasındaki geçiş yapısına karşılık gelir. Geometrik optimizasyonlar genellikle potansiyel enerji yüzeyindeki minimumları araştırır. Bunun neticesinde de moleküler sistemlerin denge yapılarını tahmin eder. Optimizasyon aynı zamanda da geçiş yapılarını araştırır.

Minimumlarda ve eyer noktalarında enerjinin birinci türevi yani gradyent sıfırdır. Kuvvet de gradyentin negatifidir; bu nedenle bu noktalarda kuvvet de sıfırdır. Potansiyel enerji yüzeyinde gradyent vektörü g' nin sıfır olduğu noktaya kararlı nokta adı verilir. Geometrik optimizasyonlar bu kararlı noktaları bulmayı hedefler.

Enerjinin atomik koordinatlarına göre ikinci türevi kuvvet sabitini verir. Optimizasyon algoritmaları genellikle Hessian matrisi kullanılarak kuvvet sabitleri ve bir noktadaki yüzeyin eğriliğini tanımlar ve böylece bir sonraki aşamanın belirlenmesini sağlar. Bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir derecede ise, optimizasyon tamamlanmış olur.

Yani hesaplanan geometride g vektörü sıfır ve bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir bir değerde ise optimizasyon tamamlanmış olur (Jensen, 2006; Pulay, 1969).

Bu hesaplamalarda takip edilen yol işlem sırasına göre aşağıda verilmiştir.

- 1. İncelenecek molekülün yaklaşık geometrisinin veri olarak girilir.
- 2. Geometrik optimizasyonun yapılması için önce hesaplama metodu ve kullanılacak temel set seçilir.

Geometrik optimizasyon, seçilen model çerçevesinde enerjinin birinci analitik türevinden hesaplanır. Enerjinin birinci analitik türevi gradyent vektörü g' yi verir. g' nin sıfır olması moleküler sistemin dengede olması demektir. Bu durumda molekülün taban durumunun yapısı bulunmuş olur.

- 3. Moleküler titreşim frekanslarının hesaplanması: Geometri optimizasyonu ile elde edilen şekli veri olarak girilir ve bir hesaplama modeli seçilir. Seçilen model, enerjinin ikinci analitik türevini hesaplar. İkinci türev kuvvet sabitini verir. Harmonik yaklaşımla kuvvet sabitinden titreşim frekansı hesaplanır.
- 4. Titreşim frekansları uygun ölçekleme faktörleri kullanılarak ölçeklenir.

Bileşiklerin temel titreşim özelliklerini ve elektronik yapısını anlamak için DFT hesaplamalarını kullanırız. Irinotecan'ın yapısal özellikleri ve temel titreşim modları hakkında eksiksiz bilgi sağlamak için DFT-B3LYP hibrit fonksiyonel hesaplamaları yapılmıştır. Temel durumdaki geometrik parametrelerin hesaplamaları çok sayıda metot ve temel set seçeneği olan Gaussian 09W paket programı kullanılarak yapılmıştır. DFT

hesaplamaları, Lee-Yang-Parr korelasyon fonksiyonel (B3LYP) yöntemi kullanılarak Becke'in üç parametreli hibrit modeli ile gerçekleştirilmiştir. Molekülün optimize hali DFT(B3LYP) metoduyla 6-31G, 6-31 G(d,p)ve cc-pVDZ baz setleri kullanılarak elde edilmiştir ve Şekil 4.3.'de gösterilmiştir. Atomların dizilişi itibariyle kararlı optimize Gauss View/5.0 paket programı görüntüsünden geometrik özellikler (bağ açısı-bağ uzunluğu) bulunmuştur. Hesaplanan bu veriler literatürde kayıtlı değerler ile karşılaştırılmıştır. Optimum geometri, moleküler simetri kısıtlamaları getirmeden tüm geometrik parametrelere göre enerjiyi en aza indirerek belirlendi (Babu ve ark., 2012).

Son bölümde İrinotekan ve PHB moleküllerinin mulliken yükleri dikkate alınarak N_{10} atomunun H_{96} atomu ile ya da O_{84} atomunun H_{65} atomu ile bağ yapacağını belirledik ve bu molekülleri bu kısımlarından yaklaştırarak bağ yapıp yapmadıklarını hesapladık. Hesaplamalar sonucunda iki şekilde de bağ oluşumu gözlendi. Bu iki hesaplama sonucu $N_{10} - H_{96}$ yaklaştırması daha düşük enerjide çıktığı için çalışmamızda bu sonucu kullandık. Molekülün optimize hali DFT(B3LYP) metoduyla 6-31 G(d,p) baz seti kullanılarak elde edilmiştir ve Şekil 4.4'de gösterilmiştir.

3.2. Deneysel Çalışmalar3.2.1. Materyal

MCF-7 Meme Kanseri Hücreleri	Kimyasal ve Reaktifler
Hücrelerin Pasajlanması ve Rutin Bakımı	 RPMI 1640 Medium Fetal Sığır Serumu (FBS) Gentamisin Tripsin-EDTA Fosfat Tamponu (PBS)
Hücrelerin Sayımı	– Triphan Mavisi
Toksisite analizi	– XTT kiti

Tablo 3.1.Kanser hücreleri için kullanılan kimyasal ve reaktifler

3.2.2. Metot

3.2.2.1. MCF-7 hücre hatlarının geliştirilmesi

Kanser Hücre Hatları %10 Fetal Sığır Serumu ve %1 Gentamisin ve %1 Penisilin antibiyotiği eklenmiş %88 RPMI-1640 besiyerinde, $37^{\circ}C'de$ ve %5 karbondioksit inkübatörün de 75 cm^{2} ' lik flasklarda üretildi. Flask yüzeyinin %80'i hücreler tarafından kaplandıkça, hücreler tripsin kullanılarak pasajlandı.

3.2.2.2. 2B hücre kültürlerinde sitotoksisite analizi

2B hücre kültürlerinde büyütülen hücre hatlarına, serbest ilaç, ilaç yüklü nanoparçacıkların hücreler üzerindeki sitotoksik etkilerini ve hücrelere uygulanacak ilacın dozunu belirlemek için sitotoksisite analizi yapıldı. 2B olarak geliştirilen MCF-7 hücrelerinin sitotoksisitesi XTT temelli sitotoksisite analiz kiti kullanılarak yapıldı. Kuyucuk başına 5000 hücre gelecek şekilde hücreler 96 kuyucuklu plakalara ekildi. Plakanın bir kolonu besi yeri kontrolü olarak ayrılır ve buraya hücre ekilmez.

Ekimden bir süre sonra ilgili ilaç seri dilüsyonlar halinde kuyucuklara verildi ve 48 ila 72 saat sonra formazan boyası eklenmiş XTT kimyasalı her bir kuyucuğa eklenerek 2 ila 5 saat inkübatörde bekletildi. ELISA okuyucusu kullanılarak optik yoğunluklar hesaplandı. İlaç verilmemiş kuyularda %100 büyüme varsayılır ve farklı miktarda ilaç içeren kuyulardaki büyüme buna oranlanarak tespit edildi. Sonunda her bir ilaç konsantrasyonuna denk gelen büyüme oranı saptandı. Her örnek en az üç tekrarlı şekilde gerçekleştirildi. Aynı zamanda Annexin V apoptoz kiti ile apoptotik süreç belirlendi.

3.2.2.3. Manyetik nanoparçacıklara İrinotekan (Irinotecan) yüklenmesi

İlacın manyetik nanoparçacıklara yükleme çalışmaları PBS (pH 7.2), TES (pH 7.3), ve asetat (pH 5.0) tamponlarında yapıldı. Farklı konsantrasyonlarda hazırlanacak ilaç için rotator cihazında karıştırma hızı, titreşim frekansı, süresi gibi parametreler kullanılarak optimize edildi. Daha sonra ilaç yüklü nanoparçacıklar manyetik ayırma yöntemi ile ayrıldı. Süpernatant alınarak UV spektrofotometre de absorbans ölçerek ilacın nanoparçacıklara bağlanma miktarı belirlendi.

3.2.2.4. İlaç yüklü nanoparçacıkların karakterizasyonu

İlaç yüklü nanoparçacıklarının sentezlerinin her aşamasında parçacık şekil ve büyüklükleri elektron mikroskobu (SEM) ile gözlemlendi. Ayrıca İrinotekan yüklü nanoparçacıkların karakterizasyonu FTIR analizleri ile yapıldı 3.2.2.5. İlacın nanoparçacıkların salımı

İlacın salımı hücre içi ve endozomal pH'lara uygun olarak iki farklı pH'da hazırlanan (pH: 5.2 ve pH: 4.2) asetat tamponunda analiz edildi. İlacın salım miktarını belirlemek için, iki solüsyonda UV spektrofotometrenin verdiği absorbans ölçüldü.

3.2.2.6. Moleküllerin çizimi ve enerjilerinin hesaplanması

PHB molekülü Sigma-Aldrich firmasından satın alınmıştır. Moleküllerin FT-IR spektrumu Perkin-Elmer Spectrum One FT-IR spektrometresi kullanılarak oda sıcaklığında 4000-400 cm⁻¹ bölgesinde KBr penceresinde pelet yöntemiyle alınmıştır.

İrinotekan molekülünün Raman spektrumu, 4000-50 cm⁻¹ bölgesinde 532 nm lazer ile uyarılan Nd: YVO4 DPSS Raman Spektrofotometreli Thermo Scientific DXR Raman Mikroskobu kullanılarak alınmıştır.

3.2.2.7. Moleküler kenetleme analizi

Ligand hazırlanması için molekülün tüm moleküler yapısı Gauss View/5.0 paket programı kullanılarak çizilmiştir. Amaçlanan kristal protein yapıları (BCL-2 PDB ID: 4MAN, BCL-W PDB ID: 2Y6W, MCl-1 PDB ID: 5FDO; AKT-1 PDB ID: 4gv1, BRAF PDB ID: 5vam) protein veri bankasından alınmıştır. (www.rcsb.org). Moleküler kenetleme hesaplamaları, Autodock Vina 'te Lamarckian Jenerik Algoritması ile yapılmıştır. Tüm bağlı su molekülleri ve ligandları proteinlerden çıkarılıp, polar olmayan hidrojen atomları birleştirildi ve polar hidrojen atomları ilave edildi. Protein *a* ligandının görüntülenmesinde Molegro Molecular Viewer 2.5 (Molegro Molecular viewer yazılım) programı kullanıldı.

3.2.2.8. Moleküler dinamik (MD) simülasyon analizi

Ligand ve protein kompleksinin simülasyonu WebGro ücretsiz yazılımı kullanılarak gerçekleştirildi. Ligand ve protein kompleksi arasındaki stabilitenin kontrol edilmesi amacıyla 50 *nanosaniye* (*ns*) boyunca MD simülasyonu yapılmıştır. (WebGro, 2021).

4. ARAŞTIRMA BULGULARI VE TARTIŞMA

4.1. Moleküllerin Geometrik Parametreleri4.1.1. PHB (Poli-3-Hidroksibutirat) Molekülü

Bakteri hücrelerindeki PHB granülleri, 100 - 800 nm çapında ve genellikle küresel olup, faz kontrast mikroskobu ve elektron mikroskobu ile kolayca gözlenebilir. Granüller 2 - 4 nm kalınlığında birim olmayan bir zarla çevrilidir. İzole edilmiş PHB granülleri yaklaşık %98 PHB ve %2 protein içerir (Mercan ve Beyatlı, 2004).

PHB, optik aktiviteye sahip olup biyolojik olarak parçalanabilir bir polyesterdir. Optik olarak aktif olan PHB, D(-) konfigürasyonundadır. PHB, yüksek erime sıcaklığına ve yüksek derecede kristalliğe sahip kısmen kristal bir malzemedir. PHB, polihidroksialkanoat PHA ailesine ait bir termoplastiktir. PHB sert ve kırılgandır. Kırılganlık derecesi, kristallik derecesine, cam sıcaklığına ve mikroyapısına bağlıdır. Oda sıcaklığında ne kadar uzun süre saklanırsa o kadar kırılgan hale gelir. PHB, diğer sentetik polimerler gibi herhangi bir katalizör kalıntısı içermez. PHB mükemmel izotaktiktir ve herhangi bir zincir içermez. Suda çözünmez ancak %100 biyolojik olarak parçalanabilir (Al-Kubati, 2021).

PHB, çok çeşitli bakteriler tarafından üretilen doğal olarak oluşan bir polimerdir. Karbon ve enerji için hücre içi bir depolama malzemesi olarak hizmet eder ve bakterilerin sitoplazmasında granüller halinde birikir. PHB'nin kimyasal yapısı Şekil 4.1.'de gösterilmektedir (Sharma ve Ray, 1995).

Şekil 4.1. PHB molekülünün kimyasal yapısı

PHB toprak bakterilerinde, nehir ağzı mikroflorasında, mavi-yeşil alglerde, mikrobiyal olarak işlenmiş kanalizasyonda vb çevrede bir çok yerlerde bulunur. PHB üreten veya biriktiren mikroorganizmalar *A. eutrophus, A. faecalis, A. ruhlandi, A. latus, Rhizobium leguminosarum, R. galega, R. heydsari, R. Phaseoli, Azotobactervinelandii, Haloferax mediterranei,H. volcanii, Halobacteriummariumordomtu*'dur. Bunlar arasında H. mediterranei endüstriyel PHB üretimi için ilginç bir adaydır (Sharma ve Ray, 1995).

Mantarlar PHB'yi sentezlemezler, ancak onu parçalama ve büyüme için bir karbon kaynağı olarak kullanma yeteneğine sahiptirler. Bu mikroorganizmalar tarafından PHB birikiminin temel nedeni, polimerin hücre sporülasyonu, kistlenmesi ve gen ekspresyonu ile ilgili olmasıyla birlikte literatürde çok fazla "tartışma" konusu olmuştur. Bununla birlikte, en basit görüş, PHB'nin bakteriler için bir karbon ve enerji depolama ortamı görevi gördüğüdür. Aynı şekilde glikojen ve yağlar sırasıyla bitkiler ve hayvanlar tarafından depolanır (Holmes, 1988).

Çevreciler ve tıp araştırmacıları pek çok sentetik malzemenin yerini alabilen ve tamamen zararsız, doğal olarak oluşan ve küçük moleküllere dönüşebilen polimer malzemeler bulmaya büyük ilgi gösteriyorlar. PHB gibi polimerlerin ve mikrobiyal saldırıya duyarlı olan kopolimerlerinin ve karışımlarının geliştirilmesi, dünya genelinde bozunmayan tek kullanımlık plastiklerin kullanımının neden olduğu endişeleri gidermeye yardımcı olabilir. Plastiklerin atık bertarafı sorunları, fermantasyon yoluyla polimer üretilerek ve enzimler veya atık su bertaraf teknolojisi kullanılarak parçalanarak çözülebilir. Bakteriyel PHB'ye dayalı biyolojik olarak parçalanabilen plastik üretmenin maliyeti, büyüme ve PHB üretimi için bir substrat olarak metanol kullanılmasıyla azaltılabilir (Sharma ve Ray, 1995).

4.1.1.1. PHB molekülünün moleküler geometri hesaplamaları

Molekülün geometrik optimizasyonu, gaz ortamında ve temel halde atomların düşük enerjili en kararlı halidir. Molekülün optimize hali DFT(B3LYP) metoduyla 6-311++G(d,p), 6-31G(d) ve cc-pVDZ baz setleri kullanılarak elde edilmiştir ve Şekil 4.2. 'de gösterilmiştir. Atomların dizilişi itibariyle kararlı optimize Gauss-View görüntüsünden geometrik özellikler (bağ açısı-bağ uzunluğu) bulunmuştur. Hesaplanan bu veriler literatürde kayıtlı değerler ile karşılaştırılmıştır.

Şekil 4.2. PHB molekülünün optimize moleküler yapısı

DFT (B3LYP) için sırası ile 6-311++G(d,p), 6-31G(d) ve cc-pVDZ baz setlerine göre hesaplanan C₄-C₅, C₄-C₆, C₅-C₇ bağ uzunlukları 1.54, 1.53, 1.52 Å olarak bulunmuştur ve Tablo 4.1.'de gösterilmiştir. Literatüre kayıtlı C-C bağ uzunluğu 1.54 Å dur.

Hesaplanan C₄-H₈, C₅-H₉, C₅-H₁₀, C₆-H₁₁, C₆-H₁₂, C₆-H₁₃ bağ uzunlukları 1.10, 1.09, 1.09, 1.10, 1.09, 1.09 Å olarak bulunmuştur. Literatürdeki C-H bağ uzunluğu değeri ise 1.09 Å dur. Ayrıca literatürdeki veriler ile karşılaştırılacak bir başka bağ uzunlukları ise C-O ve O-H uzunluklarıdır. Moleküldeki C-O bağ uzunlukları sırası ile 1.43, 1.35, 1.20 Å olarak; O-H ortalama bağ uzunluğu ise 0.96 *ve* 0.97 Å olarak hesaplanmıştır. Literatürdeki bağ uzunlukları C-O; 1.43 Å, C=O ;1.23 Å, O-H ; 0.96 Å olarak ölçülmüştür.

DFT(B3LYP) metodu ve 6-311++G(d,p), 6-31G(d) ve cc-pVDZ baz setleri ile hesaplanan bağ uzunluklarının verileri ile literatür verilerinin karşılaştırılması sonucunda değerlerin uyumlu olduğu sonucuna varılmıştır. Deneysel ve teorik sonuçlar arasındaki bu farklılıklar, katı formdaki kristal yapıda moleküller arası etkileşimlerin oluşu ve teorik sonuçların ise gaz fazında tek bir molekül için hesaplanmasından kaynaklanmaktadır.

РНВ	Theoretical (B3LYP)		
Parameters	6-311++G(d,p)	6-31G(d)	cc- pVDZ
Bond Lengths (Å)			
O_1 - C_4	1.4326	1.4286	1.4279
O1-H14	0.9624	0.9697	0.968
O ₂ -C ₇	1.3536	1.3542	1.3532
O ₂ -H ₁₅	0.9696	0.9763	0.9758
O ₃ -C ₇	1.2071	1.2127	1.2116
C ₄ -C ₅	1.5363	1.5376	1.5364
C ₄ -C ₆	1.5267	1.5289	1.5276
C ₄ -H ₈	1.0995	1.1033	1.1102
C ₅ -C ₇	1.5144	1.5167	1.5167
C5-H9	1.0939	1.0964	1.1021
C ₅ -H ₁₀	1.09	1.0924	1.0982
C ₆ -H ₁₁	1.0953	1.0982	1.1042
C ₆ -H ₁₂	1.0938	1.0962	1.1025

Tablo 4.1. PHB molekülünün bağ uzunlukları ve bağ açıları

Parameters	6-311++G(d,p)	6-31G(d)	cc- pVDZ
C ₆ -H ₁₃	1.0901	1.0919	1.0984
Bond Angles (°)			
C ₄ -O ₁ -H ₁₄	108.8552	107.7788	107.7373
C7-O2-H15	106.9713	105.8836	105.615
O ₁ -C ₄ -C ₅	105.8507	105.6274	105.5099
O ₁ -C ₄ -C ₆	111.9066	111.8918	111.9456
O ₁ -C ₄ -H ₈	109.0474	109.6832	109.8303
C5-C4-C6	114.9451	114.4899	114.4527
C ₅ -C ₄ -H ₈	106.2003	106.4069	106.4391
C ₆ -C ₄ -H ₈	108.621	108.5374	108.4687
C4-C5-C7	113.6325	113.164	113.1375
C4-C5-H9	108.8831	109.0439	109.2384
C_4 - C_5 - H_{10}	109.0738	109.1659	109.3176
C ₇ -C ₅ -H ₉	107.485	107.8228	107.7034
C7-C5-H10	109.217	109.1645	108.9425
$H_9-C_5-H_{10}$	108.4224	108.3684	108.3885
C ₄ -C ₆ -H ₁₁	109.9282	109.9955	109.9121
$C_4-C_6-H_{12}$	110.6049	110.8572	110.9024
C ₄ -C ₆ -H ₁₃	111.2005	110.83	110.856
H ₁₁ -C ₆ -H ₁₂	107.4708	107.415	107.3312
H ₁₁ -C ₆ -H ₁₃	109.1363	109.1634	109.2854
H ₁₂ -C ₆ -H ₁₃	108.405	108.4934	108.4665
O ₂ -C ₇ -O ₃	122.2467	122.1969	122.171
O ₂ -C ₇ -C ₅	111.9935	111.8541	111.8537
O ₃ -C ₇ -C ₅	125.7449	125.9359	125.9633
Dihedral Angles (°)			
H ₁₄ -O ₁ -C ₄ -C ₅	-173.0888	-173.4245	-171.7734
H ₁₄ -O ₁ -C ₄ -C ₆	-47.1645	-48.2339	-46.6765
H ₁₄ -O ₁ -C ₄ -H ₈	73.0295	72.2726	73.8785
H ₁₅ -O ₂ -C ₇ -O ₃	-1.3171	-1.1768	-0.8828
H ₁₅ -O ₂ -C ₇ -C ₅	-179.9851	-179.9312	-179.6879
O ₁ -C ₄ -C ₅ -C ₇	59.328	58.1004	57.5139
O ₁ -C ₄ -C ₅ -H ₉	179.0823	178.0923	177.4725
O ₁ -C ₄ -C ₅ -H ₁₀	-62.7751	-63.6844	-64.0779
C ₆ -C ₄ -C ₅ -C ₇	-64.7148	-65.463	-66.0082
C ₆ -C ₄ -C ₅ -H ₉	55.0396	54.5289	53.9504
C ₆ -C ₄ -C ₅ -H ₁₀	173.1821	172.7523	172.4

Parameters	6-311++G(d,p)	6-31G(d)	cc- pVDZ
H ₈ -C ₄ -C ₅ -C ₇	175.1622	174.649	174.1897
H ₈ -C ₄ -C ₅ -H ₉	-65.0835	-65.3591	-65.8516
H ₈ -C ₄ -C ₅ -H ₁₀	53.0591	52.8642	52.598
O ₁ -C ₄ -C ₆ -H ₁₁	60.743	60.2839	60.1575
O ₁ -C ₄ -C ₆ -H ₁₂	179.2637	178.9343	178.6796
O ₁ -C ₄ -C ₆ -H ₁₃	-60.2302	-60.526	-60.7671
C ₅ -C ₄ -C ₆ -H ₁₁	-178.4782	-179.5801	-179.8477
C5-C4-C6-H12	-59.9575	-60.9297	-61.3256
C ₅ -C ₄ -C ₆ -H ₁₃	60.5486	59.61	59.2278
H ₈ -C ₄ -C ₆ -H ₁₁	-59.6997	-60.8876	-61.186
H ₈ -C ₄ -C ₆ -H ₁₂	58.821	57.7628	57.3361
H ₈ -C ₄ -C ₆ -H ₁₃	179.3271	178.3025	177.8894
C ₄ -C ₅ -C ₇ -O ₂	-121.0745	-122.3982	-123.6647
C4-C5-C7-O3	60.3135	58.9036	57.5849
H_{10} - C_5 - C_7 - O_2	118.3805	116.9145	115.5025
H ₁₀ -C ₅ -C ₇ -O ₃	-60.2315	-61.7837	-63.2478

4.1.2. İrinotekan (Irinotecan)

lrinotekan (CPT-11) bitkinin (Camptotheca acuminata) türevi kamptotesinin yarı sentetik bir türevidir. Kamptotesin ve analogları/türevleri, antitümör aktivitelerini topoizomeraz VI'ya bağlanarak gösterirler. Kamptotesinin topoizomeraz I'e bağlanması, DNA'dan salınmasını engeller. İlerleyen replikasyon enzimleri, kamptotesin topoizomeraz 1-DNA kompleksi ile çarpışır ve hücre ölümüne yol açabilen çift sarmallı DNA kırılmalarına neden olur. Bu sitotoksik aktivite zamana bağlıdır ve hücre döngüsünün S-fazına özgüdür (Wiseman ve Markham, 1996).

lrinotecan, kolorektal, ovari, küçük hücre olmayan akciğer ve meme kanseri dahil olmak üzere, karsinoma vitro ve in vivo modellerinde antitümör aktivitesi göstermiştir (Wiseman ve Markham, 1996).

Faz I çalışmalarının başlarında, İrinotekan kolorektal, akciğer ve serviks kanserleri dahil olmak üzere çeşitli hastalık lokasyonlarında bir miktar aktivite göstermiştir. Ayrıca, araştırmacıların çoğu, uygulanan daha yüksek dozlarda aktiviteye dikkat çekmiştir. Bu durum ilaçla bir doz-yanıt ilişkisinin göstergesidir. Faz II çalışmalarında da İrinotekan kolorektum, akciğer, serviks, pankreas, mide ve meme kanserleri dahil olmak üzere birçok kanser türünde antitümör aktivite (kısmi ve tam

yanıtlar) göstermiştir. Aktivite ayrıca lösemilerde ve lenfomalarda da rapor edilmiştir (Chabot, 1997).

4.1.2.1. İrinotekan (Irinotecan) molekülünün moleküler geometri hesaplamaları

İrinotekan (Irinotecan) molekülünün spektroskopik çalışması "Molecular structure and vibrational spectra of Irinotecan: A density functional theoretical study " başlığıyla Babu ve arkadaşları tarafından yayınlanmıştır (Babu ve ark., 2012). Biz burada bu çalışmayı referans çalışma olarak kabul edip karşılaştırma yaptık. Bu molekül 81 atomdan oluşur, bu nedenle 237 tane temel titreşim normal moduna sahiptir. Bu molekülünün tamamı iki farklı gruptan oluşur; bunlar etil ikameli kamptotesin ve bipiperidin esterdir. Etil ikameli kamptotesin, dördü altı üyeli ve biri beş üyeli halka olan beş halkadan oluşur. Piperidin halkası, tetrahedral geometriye yakın olan endosiklik bağ açısı ile sandalye konformasyonundadır (Babu ve ark., 2012).

İrinotekan molekülü etil ikameli kamptotesin ve bipiperidin ester olmak üzere iki farklı gruptan oluşur.

Etil ikameli kamptotesin, dördü altı üyeli ve biri beş üyeli halka olan beş halkadan oluşur. B3LYP/6-311++G(d,p) yöntemine göre hem 2-amino-5-metil piridin hem de 2-amino-6metil piridin için N–C bağı yaklaşık 1.34 A'dır (Sundaraganesan ve ark., 2008).Referans yayınımıza göre bu uzunluklar 1,364 A ve 1,314 A olarak hesaplanırken bizim çalışmamızda ise bu uzunluklar 6-31 G baz setinde 1,376 Å ve 1,323 Å, 6-31 G(d,p) baz setinde 1.364Åve 1.314Å, cc-pVDZ baz setinde ise 1.365Å ve 1.315Å olarak hesaplanmıştır.

Gundersen et al. piperidinin C–N bağ uzunluğunu 1.469 Å buldu (Gundersen ve Rankin, 1983). Referans molekülde ise 1,462-1,473Å aralığında hesaplandı. Bizim hesaplamalarımızda ise C-N bağ uzunluğu 1,480Å ile 1,469Å aralığındadır. Referans molekülde iki piperidin halkası arasındaki N₄–C₇ bağ uzunluğunun B3LYP yöntemiyle yaklaşık 1.476Å olduğu hesaplanırken, bizim çalışmamızda ise 1,486Å olarak hesaplanmıştır (Tablo 4.2.).

Şekil 4.3. İrinotekan molekülünün optimize moleküler yapısı

İRİNOTECAN	Theoretical (B3LVP)		
IKINOTECAN		Theoretical (B3	LII)
Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
Bond Lengths (Å)			
O ₁ -C ₂₁	1.4045	1.3853	1.3877
O ₁ -C ₃₈	1.4089	1.3875	1.3882
O ₂ -C ₃₄	1.4883	1.4515	1.4512
O ₂ -C ₃₆	1.3612	1.3385	1.3399
O ₃ -C ₂₁	1.2448	1.2165	1.2144
O ₄ -C ₂₆	1.4429	1.4109	1.4113
O ₄ -H ₇₈	0.9849	0.9744	0.9775
O ₅ -C ₃₁	1.2616	1.234	1.2327
O ₆ -C ₃₆	1.2356	1.2141	1.2125
N ₇ -C ₁₁	1.4865	1.4771	1.4759
N ₇ -C ₁₄	1.4795	1.4693	1.4676
N ₇ -C ₁₅	1.4808	1.4708	1.4692
N ₈ -C ₁₆	1.4737	1.4623	1.4612
N ₈ -C ₁₇	1.4725	1.4608	1.4602
N ₈ -C ₂₁	1.3591	1.3597	1.3615
N9-C22	1.3868	1.3776	1.3776
N9-C24	1.4823	1.4702	1.4694
N ₉ -C ₃₁	1.3981	1.3979	1.4001
N ₁₀ -C ₂₇	1.3234	1.3136	1.3149
N ₁₀ -C ₃₅	1.3758	1.3637	1.3647
C ₁₁ -C ₁₂	1.5481	1.5442	1.5433
C ₁₁ -C ₁₃	1.5435	1.5403	1.5391

Tablo 4.2. İrinotekan molekülünün bağ uzunluk ve bağ açıları

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C11-H44	1.1128	1.1112	1.1179
C ₁₂ -C ₁₆	1.5372	1.5327	1.5313
C ₁₂ -H ₄₅	1.0953	1.0939	1.1003
C ₁₂ -H ₄₆	1.0965	1.0961	1.1033
C ₁₃ -C ₁₇	1.5384	1.534	1.5327
C ₁₃ -H ₄₇	1.0975	1.0971	1.1041
C ₁₃ -H ₄₈	1.0952	1.0939	1.1001
C ₁₄ -C ₁₈	1.5382	1.5335	1.5329
C ₁₄ -H ₄₉	1.0914	1.0912	1.0974
C ₁₄ -H ₅₀	1.1116	1.1103	1.1176
C ₁₅ -C ₁₉	1.5356	1.5313	1.5306
C ₁₅ -H ₅₁	1.1116	1.1103	1.1175
C ₁₅ -H ₅₂	1.0931	1.0925	1.0988
C ₁₆ -H ₅₃	1.0877	1.0877	1.0938
C ₁₆ -H ₅₄	1.1009	1.1006	1.1077
C ₁₇ -H ₅₅	1.1005	1.1004	1.1075
C ₁₇ -H ₅₆	1.0903	1.0894	1.0957
C ₁₈ -C ₂₀	1.5379	1.5314	1.5306
C ₁₈ -H ₅₇	1.098	1.0971	1.1043
C ₁₈ -H ₅₈	1.0977	1.0964	1.103
C ₁₉ -C ₂₀	1.5382	1.5314	1.5306
C19-H59	1.098	1.0971	1.1042
C ₁₉ -H ₆₀	1.0977	1.0964	1.103
C ₂₀ -H ₆₁	1.0972	1.096	1.1028
C ₂₀ -H ₆₂	1.1008	1.0992	1.1062
C ₂₂ -C ₂₇	1.4618	1.4652	1.4669
C_{22} - C_{30}	1.3711	1.3685	1.3714
C ₂₃ -C ₂₄	1.5106	1.5072	1.507
C ₂₃ -C ₂₇	1.4273	1.4233	1.4252
C ₂₃ -C ₂₉	1.3799	1.3761	1.3789
C ₂₄ -H ₆₃	1.096	1.0959	1.1022
C ₂₄ -H ₆₄	1.0963	1.0963	1.1027
C ₂₅ -C ₂₆	1.5195	1.5198	1.5201
C ₂₅ -C ₂₈	1.3804	1.3751	1.3774
C ₂₅ -C ₃₀	1.4214	1.4192	1.4209
C ₂₆ -C ₃₃	1.5631	1.5601	1.559
C ₂₆ -C ₃₆	1.5355	1.5407	1.5407
C ₂₈ -C ₃₁	1.4485	1.4513	1.4535

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C ₂₈ -C ₃₄	1.498	1.4978	1.498
C ₂₉ -C ₃₂	1.4419	1.4363	1.438
C ₂₉ -C ₃₇	1.5145	1.5119	1.5119
C ₃₀ -H ₆₅	1.0796	1.0808	1.0868
C ₃₂ -C ₃₅	1.4406	1.4399	1.4413
C ₃₂ -C ₃₉	1.4223	1.4183	1.4207
C ₃₃ -C ₄₂	1.5341	1.5301	1.5291
C ₃₃ -H ₆₆	1.0964	1.0957	1.1028
C ₃₃ -H ₆₇	1.0972	1.0959	1.1026
C ₃₄ -H ₆₈	1.0962	1.0975	1.1044
C ₃₄ -H ₆₉	1.09	1.0913	1.0975
C ₃₅ -C ₄₀	1.4209	1.4207	1.4227
C ₃₇ -C ₄₃	1.5479	1.5412	1.54
C37-H70	1.0964	1.0952	1.1017
C ₃₇ -H ₇₁	1.0966	1.0953	1.1016
C ₃₈ -C ₃₉	1.3812	1.3763	1.3789
C ₃₈ -C ₄₁	1.4174	1.4152	1.4178
C ₃₉ -H ₇₂	1.0775	1.0833	1.0894
C ₄₀ -C ₄₁	1.3757	1.3732	1.3757
C40-H73	1.0833	1.0845	1.0909
C ₄₁ -H ₇₄	1.0832	1.0817	1.0878
C42-H75	1.0956	1.0944	1.1018
C ₄₂ -H ₇₆	1.0939	1.0927	1.0998
C ₄₂ -H ₇₇	1.0954	1.0941	1.1012
C ₄₃ -H ₇₉	1.0944	1.0937	1.1013
C ₄₃ -H ₈₀	1.0953	1.0942	1.1015
C ₄₃ -H ₈₁	1.0958	1.0943	1.1018
Bond Angles (°)			
C ₂₁ -O ₁ -C ₃₈	124.0848	119.4307	119.4026
C ₃₄ -O ₂ -C ₃₆	120.6892	120.6197	120.3842
C ₂₆ -O ₄ -H ₇₈	107.8666	105.1242	104.5591
C ₁₁ -N ₇ -C ₁₄	117.3006	115.2966	115.5319
C ₁₁ -N ₇ -C ₁₅	112.5283	111.3723	111.5025
C ₁₄ -N ₇ -C ₁₅	110.9955	109.7084	109.6727
C ₁₆ -N ₈ -C ₁₇	115.1821	114.8329	114.8715
C ₁₆ -N ₈ -C ₂₁	125.6008	126.0294	126.0259
C ₁₇ -N ₈ -C ₂₁	119.2078	119.1377	119.0757
C ₂₂ -N ₉ -C ₂₄	113.1607	113.2659	113.2411

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C ₂₂ -N ₉ -C ₃₁	124.6979	125.1094	125.0439
C_{24} -N ₉ -C ₃₁	122.1378	121.6198	121.7039
C ₂₇ -N ₁₀ -C ₃₅	116.1667	115.542	115.4395
N ₇ -C ₁₁ -C ₁₂	109.7413	109.9565	109.9639
N7-C11-C13	113.4977	113.5601	113.6413
N7-C11-H44	109.8433	110.0417	109.9189
C_{12} - C_{11} - C_{13}	108.3267	108.0883	108.1407
C_{12} - C_{11} - H_{44}	108.2862	108.1515	108.0698
C ₁₃ -C ₁₁ -H ₄₄	106.9864	106.8587	106.9176
C_{11} - C_{12} - C_{16}	112.4692	112.6343	112.713
C_{11} - C_{12} - H_{45}	110.945	111.2523	111.1299
C ₁₁ -C ₁₂ -H ₄₆	107.9175	108.0838	108.0087
C ₁₆ -C ₁₂ -H ₄₅	108.1992	107.8524	107.907
C ₁₆ -C ₁₂ -H ₄₆	109.9141	109.7117	109.819
H ₄₅ -C ₁₂ -H ₄₆	107.2704	107.1646	107.1184
C ₁₁ -C ₁₃ -C ₁₇	111.461	111.7264	111.7366
C ₁₁ -C ₁₃ -H ₄₇	109.37	109.508	109.464
C11-C13-H48	111.0479	111.1539	111.1115
C ₁₇ -C ₁₃ -H ₄₇	109.4415	109.3904	109.4295
C ₁₇ -C ₁₃ -H ₄₈	107.6216	107.3415	107.4474
H ₄₇ -C ₁₃ -H ₄₈	107.8095	107.6067	107.5384
N7-C14-C18	110.7093	111.1487	111.0849
N ₇ -C ₁₄ -H ₄₉	109.2892	109.3211	109.417
N7-C14-H50	111.5632	111.6009	111.5121
C_{18} - C_{14} - H_{49}	108.6699	108.3076	108.4102
C_{18} - C_{14} - H_{50}	109.101	109.2044	109.232
H ₄₉ -C ₁₄ -H ₅₀	107.4098	107.1218	107.0542
N ₇ -C ₁₅ -C ₁₉	111.545	111.8233	111.7982
N ₇ -C ₁₅ -H ₅₁	110.5089	110.6549	110.5531
N7-C15-H52	109.0593	109.3194	109.3104
C ₁₉ -C ₁₅ -H ₅₁	109.2908	109.2282	109.259
C_{19} - C_{15} - H_{52}	109.4129	109.0674	109.2476
H ₅₁ -C ₁₅ -H ₅₂	106.9071	106.5977	106.5243
N ₈ -C ₁₆ -C ₁₂	110.3654	110.7141	110.7083
N ₈ -C ₁₆ -H ₅₃	108.8601	109.1976	109.2196
N8-C16-H54	108.3736	108.5901	108.6561
C ₁₂ -C ₁₆ -H ₅₃	111.0539	110.8159	110.8469
C ₁₂ -C ₁₆ -H ₅₄	110.0577	109.8587	109.8046

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
H ₅₃ -C ₁₆ -H ₅₄	108.0544	107.5826	107.5232
$N_8-C_{17}-C_{13}$	111.29	111.5391	111.4871
N ₈ -C ₁₇ -H ₅₅	108.5493	108.7192	108.8075
N ₈ -C ₁₇ -H ₅₆	107.8651	107.8546	107.7649
C ₁₃ -C ₁₇ -H ₅₅	109.8326	109.6258	109.6293
C ₁₃ -C ₁₇ -H ₅₆	111.1347	111.0627	111.1695
H ₅₅ -C ₁₇ -H ₅₆	108.0658	107.9338	107.8758
C_{14} - C_{18} - C_{20}	111.511	111.5504	111.57
C ₁₄ -C ₁₈ -H ₅₇	108.3509	108.3639	108.3415
C_{14} - C_{18} - H_{58}	109.1083	109.0237	109.0882
C_{20} - C_{18} - H_{57}	109.5499	109.5857	109.5713
C_{20} - C_{18} - H_{58}	110.7342	110.9355	110.9056
H57-C18-H58	107.4713	107.2522	107.2336
C ₁₅ -C ₁₉ -C ₂₀	110.8818	110.8525	110.8422
C ₁₅ -C ₁₉ -H ₅₉	108.6332	108.6741	108.6693
C ₁₅ -C ₁₉ -H ₆₀	109.3348	109.205	109.2708
C ₂₀ -C ₁₉ -H ₅₉	109.6643	109.7762	109.7635
C ₂₀ -C ₁₉ -H ₆₀	110.7812	110.956	110.9356
H ₅₉ -C ₁₉ -H ₆₀	107.4573	107.2816	107.2644
C_{18} - C_{20} - C_{19}	109.8548	109.6055	109.6687
C_{18} - C_{20} - H_{61}	110.6129	110.8357	110.8414
C_{18} - C_{20} - H_{62}	109.4203	109.3703	109.3669
C_{19} - C_{20} - C_{61}	110.6802	110.9269	110.9375
C_{19} - C_{20} - H_{62}	109.3947	109.3134	109.3137
H_{61} - C_{20} - H_{62}	106.8181	106.7291	106.6485
O ₁ -C ₂₁ -O ₃	123.5983	123.4751	123.4895
$O_1 - C_{21} - N_8$	110.7489	110.6687	110.5597
O ₃ -C ₂₁ -N ₈	125.6528	125.8546	125.9485
N_9 - C_{22} - C_{27}	106.8725	107.0277	107.0699
N9-C22-C30	120.9538	121.1512	121.2553
C_{27} - C_{22} - C_{30}	132.173	131.8203	131.6731
C_{24} - C_{23} - C_{27}	109.1397	109.109	109.0673
C ₂₄ -C ₂₃ -C ₂₉	130.4973	130.7152	130.7735
C ₂₇ -C ₂₃ -C ₂₉	120.3628	120.1753	120.1583
N ₉ -C ₂₄ -C ₂₃	101.9774	102.2217	102.3351
N9-C24-H63	109.5373	109.6545	109.7449
N ₉ -C ₂₄ -H ₆₄	109.4904	109.6341	109.7025
C ₂₃ -C ₂₄ -H ₆₃	114.2843	114.1677	114.1634

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C ₂₃ -C ₂₄ -H ₆₄	114.2531	114.1503	114.1183
H_{63} - C_{24} - H_{64}	107.1352	106.8979	106.6906
C_{26} - C_{25} - C_{28}	117.5953	117.167	117.163
C_{26} - C_{25} - C_{30}	120.9521	121.3108	121.3335
O ₄ -C ₂₆ -C ₂₅	121.4436	121.5148	121.5025
O ₄ -C ₂₆ -C ₃₃	110.0526	110.802	111.074
O ₄ -C ₂₆ -C ₃₆	108.8065	109.3945	109.2747
C_{25} - C_{26} - C_{33}	108.1566	108.1134	108.0194
C_{25} - C_{26} - C_{36}	110.354	109.9457	109.9497
C ₃₃ -C ₂₆ -C ₃₆	109.2455	108.7096	108.4497
N ₁₀ -C ₂₇ -C ₂₂	110.193	109.8466	110.0452
N ₁₀ -C ₂₇ -C ₂₃	125.9504	125.7046	125.71
C ₂₂ -C ₂₇ -C ₂₃	125.2004	125.92	126.0035
C ₂₅ -C ₂₈ -C ₃₁	108.8491	108.3752	108.286
C ₂₅ -C ₂₈ -C ₃₄	121.9257	122.1551	122.1359
C ₃₁ -C ₂₈ -C ₃₄	120.9351	120.4867	120.3297
C ₂₃ -C ₂₉ -C ₃₂	117.1235	117.3449	117.5122
C6-C5-H11	116.3303	116.0082	115.9226
C ₂₃ -C ₂₉ -C ₃₇	121.6487	121.6134	121.6059
C ₃₂ -C ₂₉ -C ₃₇	122.0039	122.361	122.4543
C_{22} - C_{30} - C_{25}	117.4059	117.1522	117.0971
C ₂₂ -C ₃₀ -H ₆₅	121.3975	121.103	121.0348
C ₂₅ -C ₃₀ -H ₆₅	121.1865	121.7379	121.8621
O ₅ -C ₃₁ -N ₉	120.8056	120.8193	120.6781
O ₅ -C ₃₁ -C ₂₈	125.6328	126.2772	126.3762
N9-C31-C28	113.5616	112.9035	112.9455
C ₂₉ -C ₃₂ -C ₃₅	119.0557	118.9938	119.0182
C ₂₉ -C ₃₂ -C ₃₉	122.0337	122.8234	122.8151
C ₃₅ -C ₃₂ -C ₃₉	118.9106	118.1828	118.1667
C ₂₆ -C ₃₃ -C ₄₂	113.7141	113.7031	113.6606
C ₂₆ -C ₃₃ -H ₆₆	105.7801	105.8455	105.8673
C ₂₆ -C ₃₃ -H ₆₇	109.421	109.8108	109.8979
C ₄₂ -C ₃₃ -H ₆₆	110.0211	109.9582	109.9715
C ₄₂ -C ₃₃ -H ₆₇	110.5658	110.562	110.6014
H ₆₆ -C ₃₃ -H ₆₇	107.0294	106.6262	106.4994
O ₂ -C ₃₄ -C ₂₈	112.2457	112.9247	113.0617
O ₂ -C ₃₄ -H ₆₈	106.7856	107.7282	107.7945
O ₂ -C ₃₄ -H ₆₉	105.1034	105.8171	105.8002

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C ₂₈ -C ₃₄ -H ₆₈	113.1202	112.4014	112.3405
C ₂₈ -C ₃₄ -H ₆₉	110.8937	110.1127	110.1338
H ₆₈ -C ₃₄ -H ₆₉	108.2639	107.5038	107.3457
N ₁₀ -C ₃₅ -C ₃₂	122.8833	123.3602	123.4572
N ₁₀ -C ₃₅ -C ₄₀	117.7771	117.5548	117.528
C_{32} - C_{35} - C_{40}	119.3395	119.0845	119.0142
O ₂ -C ₃₆ -O ₆	120.7736	120.7322	120.6394
$O_2 - C_{36} - C_{26}$	118.1698	118.8712	118.9339
O ₆ -C ₃₆ -C ₂₆	121.0407	120.3876	120.4234
C ₂₉ -C ₃₇ -C ₄₃	113.2177	113.0526	113.0729
C ₂₉ -C ₃₇ -H ₇₀	109.0745	109.0437	109.0297
C ₂₉ -C ₃₇ -H ₇₁	109.9367	109.8718	109.9166
C ₄₃ -C ₃₇ -H ₇₀	109.0068	109.1008	109.1128
C43-C37-H71	109.2283	109.5849	109.5457
H70-C37-H71	106.1272	105.9343	105.9074
O ₁ -C ₃₈ -C ₃₉	124.9557	116.4002	116.3337
O ₁ -C ₃₈ -C ₄₁	113.2389	121.9264	122.2108
C ₃₉ -C ₃₈ -C ₄₁	121.7672	121.495	121.2994
C ₃₂ -C ₃₉ -C ₃₈	119.6274	120.7048	120.8666
C ₃₂ -C ₃₉ -H ₇₂	120.8024	120.9845	120.986
C ₃₈ -C ₃₉ -H ₇₂	119.547	118.3105	118.1467
C_{35} - C_{40} - C_{41}	120.7326	121.5214	121.6149
C ₃₅ -C ₄₀ -H ₇₃	117.4638	117.25	117.1304
C41-C40-H73	121.8032	121.2282	121.2545
C_{38} - C_{41} - C_{40}	119.6156	119.0104	119.0379
C ₃₈ -C ₄₁ -H ₇₄	118.6309	119.7631	119.8878
C40-C41-H74	121.7535	121.2213	121.0727
C ₃₃ -C ₄₂ -H ₇₅	112.1265	112.0723	112.082
C ₃₃ -C ₄₂ -H ₇₆	110.3528	110.3956	110.4222
C33-C42-H77	110.0799	110.1827	110.2826
H ₇₅ -C ₄₂ -H ₇₆	108.2097	108.0396	107.9041
H75-C42-H77	107.8613	107.8773	107.8445
H ₇₆ -C ₄₂ -H ₇₇	108.0846	108.1465	108.1738
C37-C43-H79	111.3467	111.3799	111.4492
C ₃₇ -C ₄₃ -H ₈₀	110.2032	110.5117	110.5459
C ₃₇ -C ₄₃ -H ₈₁	110.9628	111.0236	111.1461
H_{79} - C_{43} - H_{80}	108.0091	108.1938	108.1034
H_{79} - C_{43} - H_{81}	108.0858	107.5905	107.5018

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
H ₈₀ -C ₄₃ -H ₈₁	108.1157	108.0063	107.9471
Dihedral Angles (°)			
C ₃₈ -O ₁ -C ₂₁ -O ₃	1.5156	-2.1078	-1.6722
C ₃₈ -O ₁ -C ₂₁ -N ₈	-178.4999	178.3333	178.8425
C ₂₁ -O ₁ -C ₃₈ -C ₃₉	22.1632	135.4319	135.9511
C_{21} - O_1 - C_{38} - C_{41}	-160.0593	-49.3552	-48.5373
C_{36} - O_2 - C_{34} - C_{28}	26.4768	28.0587	27.8115
C ₃₆ -O ₂ -C ₃₄ -H ₆₈	-98.0296	-96.6639	-96.9757
C ₃₆ -C ₂ -C ₃₄ -H ₆₉	147.1066	148.5801	148.4272
C ₃₄ -O ₂ -C ₃₆ -O ₆	-171.1626	-172.0763	-170.8203
C_{34} - O_2 - C_{36} - C_{26}	10.2689	9.0096	9.8487
H ₇₈ -O ₄ -C ₂₆ -C ₂₅	-132.8875	-131.5597	-129.0304
H ₇₈ -O ₄ -C ₂₆ -C ₃₃	106.0847	107.0667	109.4951
H ₇₈ -O ₄ -C ₂₆ -C ₃₆	-13.6142	-12.5274	-10.2142
C_{14} - N_7 - C_{11} - C_{12}	154.9878	160.6472	160.4348
C_{14} - N_7 - C_{11} - C_{13}	33.6356	39.4025	39.0609
C14-N7-C11-H44	-86.0715	-80.3235	-80.7074
C_{15} - N_7 - C_{11} - C_{12}	-74.4244	-73.5144	-73.4674
C ₁₅ -N ₇ -C ₁₁ -C ₁₃	164.2234	165.2409	165.1588
C ₁₅ -N ₇ -C ₁₁ -H ₄₄	44.5163	45.5149	45.3905
C_{11} - N_7 - C_{14} - C_{18}	-169.8246	-173.5191	-172.9673
C_{11} - N_7 - C_{14} - H_{49}	-50.1618	-54.0117	-53.3107
C ₁₁ -N ₇ -C ₁₄ -H ₅₀	68.469	64.3062	64.9302
C_{15} - N_7 - C_{14} - C_{18}	58.8821	59.7926	60.008
C ₁₅ -N ₇ -C ₁₄ -H ₄₉	178.5449	179.3	179.6645
C_{15} - N_7 - C_{14} - H_{50}	-62.8243	-62.3822	-62.0945
C ₁₁ -N ₇ -C ₁₅ -C ₁₉	167.0565	170.7848	170.1669
C ₁₁ -N ₇ -C ₁₅ -H ₅₁	-71.1472	-67.2043	-67.8722
C ₁₁ -N ₇ -C ₁₅ -H ₅₂	46.0944	49.902	49.0799
C_{14} - N_7 - C_{15} - C_{19}	-59.2304	-60.3424	-60.5748
C_{14} - N_7 - C_{15} - H_{51}	62.5659	61.6685	61.3862
C_{14} - N_7 - C_{15} - H_{52}	179.8075	178.7749	178.3382
C_{17} - N_8 - C_{16} - C_{12}	-53.7196	-54.0473	-54.0256
C ₁₇ -N ₈ -C ₁₆ -H ₅₃	-175.843	-176.321	-176.3491
C ₁₇ -N ₈ -C ₁₆ -H ₅₄	66.863	66.6406	66.6341
C_{21} -N ₈ -C ₁₆ -C ₁₂	127.4059	125.9229	127.8908
C_{21} - N_8 - C_{16} - H_{53}	5.2824	3.6492	5.5672
C21-N8-C16-H54	-112.0116	-113.3892	-111.4496
Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
--	-----------	-------------	-----------
C_{16} - N_8 - C_{17} - C_{13}	54.4058	54.6671	54.7614
C_{16} - N_8 - C_{17} - H_{55}	-66.5805	-66.3306	-66.2664
C_{16} - N_8 - C_{17} - H_{56}	176.5584	176.8796	177.0141
C_{21} - N_8 - C_{17} - C_{13}	-126.6426	-125.3052	-127.0119
C ₂₁ -N ₈ -C ₁₇ -H ₅₅	112.3711	113.697	111.9603
C21-N8-C17-H56	-4.4899	-3.0928	-4.7592
C_{16} - N_{8} - C_{21} - O_{1}	-0.4161	-0.4763	-1.8045
C_{16} - N_8 - C_{21} - O_3	179.5679	179.9777	178.7257
C_{17} - N_8 - C_{21} - O_1	179.2493	179.4928	-179.8152
C_{17} - N_8 - C_{21} - O_3	0.7347	-0.0532	0.7151
C_{24} - N_9 - C_{22} - C_{27}	-0.0388	0.0433	0.1242
C_{24} -N ₉ -C ₂₂ -C ₃₀	-179.7623	-179.6761	-179.4505
C ₃₁ -N ₉ -C ₂₂ -C ₂₇	179.2807	179.2434	178.9236
C ₃₁ -N ₉ -C ₂₂ -C ₃₀	-0.4429	-0.476	-0.6511
C_{22} -N ₉ -C ₂ C ₂₃	0.163	0.0965	0.0298
C22-N9-C24-H63	-121.262	-121.382	-121.5495
C22-N9-C24-H64	121.5299	121.5453	121.5364
C ₃₁ -N ₉ -C ₂₄ -C ₂₃	-179.1763	-179.1351	-178.8149
C ₃₁ -N ₉ -C ₂₄ -H ₆₃	59.3988	59.3864	59.6058
C ₃₁ -N ₉ -C ₂₄ -H ₆₄	-57.8093	-57.6863	-57.3083
C ₂₂ -N ₉ -C ₃₁ -O ₅	-179.699	-179.585	-179.167
C ₂₂ -N ₉ -C ₃₁ -C ₂₈	0.2922	0.3981	0.6639
C_{24} -N ₉ -C ₃₁ -O ₅	-0.4379	-0.448	-0.4637
C24-N9-C31-C28	179.5533	179.5351	179.3673
C_{35} - N_{10} - C_{27} - C_{22}	179.7033	179.6655	179.5144
C ₃₅ -N ₁₀ -C ₂₇ -C ₂₃	-0.2303	-0.1426	-0.1928
C_{27} - N_{10} - C_{35} - C_{32}	-0.0445	-0.049	-0.0294
C ₂₇ -N ₁₀ -C ₃₅ -C ₄₀	179.8691	-179.8026	-179.7713
$N_7-C_{11}-C_{12}-C_{16}$	-179.8621	-179.0313	-178.9886
N ₇ -C ₁₁ -C ₁₂ -H ₄₅	58.7925	59.7336	59.7386
$N_7-C_{11}-C_{12}-H_{46}$	-58.4558	-57.6603	-57.4845
C_{13} - C_{11} - C_{12} - C_{16}	-55.4521	-54.5626	-54.3792
C_{13} - C_{11} - C_{12} - H_{45}	-176.7975	-175.7977	-175.652
C_{13} - C_{11} - C_{12} - H_{46}	65.9542	66.8084	67.125
H ₄₄ -C ₁₁ -C ₁₂ -C ₁₆	60.2428	60.7876	61.0249
H44-C11-C12-H45	-61.1026	-60.4475	-60.2479
H ₄₄ -C ₁₁ -C ₁₂ -H ₄₆	-178.3508	-177.8414	-177.4709
$N_7 - C_{11} - C_{13} - C_{17}$	177.2111	176.506	176.5277

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
N7-C11-C13-H47	56.0592	55.1516	55.1473
N7-C11-C13-H48	-62.8009	-63.6106	-63.4765
C_{12} - C_{11} - C_{13} - C_{17}	55.0701	54.221	54.1414
C_{12} - C_{11} - C_{13} - H_{47}	-66.0818	-67.1334	-67.239
C_{12} - C_{11} - C_{13} - H_{48}	175.0581	174.1044	174.1372
H ₄₄ -C ₁₁ -C ₁₃ -C ₁₇	-61.4677	-61.9737	-62.0146
H ₄₄ -C ₁₁ -C ₁₃ -H ₄₇	177.3804	176.6719	176.605
H ₄₄ -C ₁₁ -C ₁₃ -H ₄₈	58.5203	57.9097	57.9812
C_{11} - C_{12} - C_{16} - N_8	54.2621	54.2742	54.0912
C ₁₁ -C ₁₂ -C ₁₆ -H ₅₃	175.0841	175.5976	175.4594
C_{11} - C_{12} - C_{16} - H_{54}	-65.3068	-65.6568	-65.8834
H ₄₅ -C ₁₂ -C ₁₆ -N ₈	177.1626	177.4276	177.1799
H ₄₅ -C ₁₂ -C ₁₆ -H ₅₃	-62.0154	-61.2491	-61.4519
H45-C12-C16-H54	57.5937	57.4966	57.2053
H46-C12-C16-N8	-65.9978	-66.1657	-66.3801
H46-C12-C16-H53	54.8242	55.1576	54.9881
H ₄₆ -C ₁₂ -C ₁₆ -H ₅₄	174.4332	173.9033	173.6454
C ₁₁ -C ₁₃ -C ₁₇ -N ₈	-54.6977	-54.6714	-54.7088
C ₁₁ -C ₁₃ -C ₁₇ -H ₅₅	65.5336	65.7962	65.8383
C11-C13-C17-H56	-174.9379	-175.0179	-174.9789
H ₄₇ -C ₁₃ -C ₁₇ -N ₈	66.4125	66.751	66.6915
H47-C13-C17-H55	-173.3562	-172.7814	-172.7614
H ₄₇ -C ₁₃ -C ₁₇ -H ₅₆	-53.8277	-53.5954	-53.5786
O4-C13-C17-N8	-176.6878	-176.7715	-176.8332
O ₄ -C ₁₃ -C ₁₇ -H ₅₅	-56.4565	-56.3039	-56.2861
O4-C13-C17-H56	63.072	62.882	62.8968
$N_7-C_{14}-C_{18}-C_{20}$	-56.5806	-57.0362	-57.0358
N7-C14-C18-H57	64.0624	63.6841	63.6641
$N_7-C_{14}-C_{18}-H_{58}$	-179.2148	-179.8925	-179.912
H_{49} - C_{14} - C_{18} - C_{20}	-176.6145	-177.1463	-177.2909
H ₄₉ -C ₁₄ -C ₁₈ -H ₅₇	-55.9716	-56.426	-56.591
H49-C14-C18-H58	60.7513	59.9974	59.8328
H_{50} - C_{14} - C_{18} - C_{20}	66.5623	66.5184	66.3826
H ₅₀ -C ₁₄ -C ₁₈ -H ₅₇	-172.7948	-172.7612	-172.9175
H ₅₀ -C ₁₄ -C ₁₈ -H ₅₈	-56.0719	-56.3379	-56.4937
N7-C15-C19-C20	56.3462	57.2414	57.2273
N ₇ -C ₁₅ -C ₁₉ -H ₅₉	-64.2326	-63.4839	-63.4728
N ₇ -C ₁₅ -C ₁₉ -H ₆₀	178.7783	179.7862	179.7841

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
H ₅₁ -C ₁₅ -C ₁₉ -C ₂₀	-66.1518	-65.5846	-65.4741
H ₅₁ -C ₁₅ -C ₁₉ -H ₅₉	173.2694	173.6901	173.8259
H ₅₁ -C ₁₅ -C ₁₉ -H ₆₀	56.2803	56.9603	57.0827
H ₅₂ -C ₁₅ -C ₁₉ -C ₂₀	177.1018	178.2704	178.3507
H ₅₂ -C ₁₅ -C ₁₉ -H ₅₉	56.523	57.5451	57.6506
H ₅₂ -C ₁₅ -C ₁₉ -H ₆₀	-60.4661	-59.1848	-59.0925
C_{14} - C_{18} - C_{20} - C_{19}	53.3994	52.5482	52.3702
C_{14} - C_{18} - C_{20} - H_{61}	175.8773	175.3168	175.1991
C_{14} - C_{18} - C_{20} - H_{62}	-66.7111	-67.2788	-67.4937
H ₅₇ -C ₁₈ -C ₂₀ -C ₁₉	-66.5388	-67.4549	-67.608
H ₅₇ -C ₁₈ -C ₂₀ -H ₆₁	55.9391	55.3136	55.221
H ₅₇ -C ₁₈ -C ₂₀ -H ₆₂	173.3507	172.7181	172.5281
H ₅₈ -C ₁₈ -C ₂₀ -C ₁₉	175.0965	174.3053	174.2024
H ₅₈ -C ₁₈ -C ₂₀ -H ₆₁	-62.4256	-62.9262	-62.9687
H ₅₈ -C ₁₈ -C ₂₀ -H ₆₂	54.9861	54.4783	54.3385
C ₁₅ -C ₁₉ -C ₂₀ -C ₁₈	-52.9077	-52.2883	-52.0875
C ₁₅ -C ₁₉ -C ₂₀ -H ₆₁	-175.3458	-175.0028	-174.8595
C ₁₅ -C ₁₉ -C ₂₀ -H ₆₂	67.2183	67.5736	67.8089
H ₅₉ -C ₁₉ -C ₂₀ -C ₁₈	67.0577	67.7819	67.9619
H ₅₉ -C ₁₉ -C ₂₀ -H ₆₁	-55.3804	-54.9326	-54.8102
H ₅₉ -C ₁₉ -C ₂₀ -H ₆₂	-172.8163	-172.3563	-172.1418
H_{60} - C_{19} - C_{20} - C_{18}	-174.4949	-173.81	-173.6717
H_{60} - C_{19} - C_{20} - H_{61}	63.067	63.4756	63.5562
H_{60} - C_{19} - C_{20} - H_{62}	-54.3689	-53.9481	-53.7753
N9-C22-C27-N10	179.9432	179.9872	-179.9872
N9-C22-C27-C23	-0.1142	-0.1766	-0.2367
C_{30} - C_{22} - C_{27} - N_{10}	-0.3767	-0.335	-0.474
C ₃₀ -C ₂₂ -C ₂₇ -C ₂₃	179.5659	179.5012	179.2765
N ₉ -C ₂₂ -C ₃₀ -C ₂₅	-0.2547	-0.349	-0.4516
N ₉ -C ₂₂ -C ₃₀ -H ₆₅	178.5997	178.709	178.6755
C ₂₇ -C ₂₂ -C ₃₀ -C ₂₅	-179.8978	-179.989	-179.9073
C ₂₇ -C ₂₂ -C ₃₀ -H ₆₅	-1.0433	-0.931	-0.7802
C ₂₇ -C ₂₃ -C ₂₄ -N ₉	-0.2275	-0.204	-0.1782
C ₂₇ -C ₂₃ -C ₂₄ -H ₆₃	117.8565	118.1168	118.3202
C ₂₇ -C ₂₃ -C ₂₄ -H ₆₄	-118.2403	-118.4919	-118.6036
C ₂₉ -C ₂₃ -C ₂₄ -N ₉	179.6172	179.5368	179.4555
C ₂₉ -C ₂₃ -C ₂₄ -H ₆₃	-62.2988	-62.1424	-62.0461
C ₂₉ -C ₂₃ -C ₂₄ -H ₆₄	61.6044	61.2489	61.0301

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C_{24} - C_{23} - C_{27} - N_{10}	-179.8373	-179.9241	-179.9913
C_{24} - C_{23} - C_{27} - C_{22}	0.2195	0.2402	0.2592
C_{29} - C_{23} - C_{27} - N_{10}	0.2996	0.3032	0.3296
C_{29} - C_{23} - C_{27} - C_{22}	-179.6436	-179.5326	-179.42
C_{24} - C_{23} - C_{29} - C_{32}	-179.9034	-179.9588	-179.8125
C ₂₄ -C ₂₃ -C ₂₉ -C ₃₇	1.5731	1.5236	1.6626
C_{27} - C_{23} - C_{29} - C_{32}	-0.0735	-0.2421	-0.2129
C_{27} - C_{23} - C_{29} - C_{37}	-178.597	-178.7597	-178.7378
C ₂₈ -C ₂₅ -C ₂₆ -O ₄	157.7679	157.0383	157.2413
C ₂₈ -C ₂₅ -C ₂₆ -C ₃₃	-82.1365	-81.9134	-81.6801
C_{28} - C_{25} - C_{26} - C_{36}	39.1612	38.3662	38.6843
C ₃₀ -C ₂₅ -C ₂₆ -O ₄	-23.302	-23.9403	-23.1129
C ₃₀ -C ₂₅ -C ₂₆ -C ₃₃	96.7936	97.108	97.9657
C ₃₀ -C ₂₅ -C ₂₆ -C ₃₆	-141.9088	-142.6124	-141.6699
C ₂₆ -C ₂₅ -C ₂₈ -C ₃₁	177.6473	177.673	178.134
C_{26} - C_{25} - C_{28} - C_{34}	-3.8386	-3.6871	-3.6264
C_{30} - C_{25} - C_{28} - C_{31}	-1.2772	-1.3463	-1.5112
C ₃₀ -C ₂₅ -C ₂₈ -C ₃₄	177.2369	177.2936	176.7285
C_{26} - C_{25} - C_{30} - C_{22}	-177.7938	-177.7428	-178.1297
C ₂₆ -C ₂₅ -C ₃₀ -H ₆₅	3.3491	3.2055	2.751
C_{28} - C_{25} - C_{30} - C_{22}	1.0947	1.2359	1.5007
C ₂₈ -C ₂₅ -C ₃₀ -H ₆₅	-177.7624	-177.8157	-177.6186
O ₄ -C ₂₆ -C ₃₃ -C ₄₂	-58.1569	-57.2451	-56.6756
O4-C26-C33-H66	62.6882	63.5599	64.1356
O ₄ -C ₂₆ -C ₃₃ -H ₆₇	177.6698	178.2925	178.7735
C_{25} - C_{26} - C_{33} - C_{42}	-178.9996	-179.1349	-178.8282
C ₂₅ -C ₂₆ -C ₃₃ -H ₆₆	-58.1545	-58.3299	-58.017
C25-C26-C33-H67	56.8271	56.4027	56.6209
C_{36} - C_{26} - C_{33} - C_{42}	60.2676	61.2761	61.7771
C_{36} - C_{26} - C_{33} - H_{66}	-178.8873	-177.9189	-177.4117
C ₃₆ -C ₂₆ -C ₃₃ -H ₆₇	-63.9057	-63.1862	-62.7738
O4-C26-C36-O2	-162.73	-162.594	-163.5569
O ₄ -C ₂₆ -C ₃₆ -O ₆	18.7055	18.4881	17.1106
C_{25} - C_{26} - C_{36} - O_2	-42.9478	-42.2437	-43.084
$C_{25}-C_{26}-C_{36}-O_{6}$	138.4877	138.8384	137.5835
C ₃₃ -C ₂₆ -C ₃₆ -O ₂	78.4475	78.0973	77.221
$C_{33}-C_{26}-C_{36}-O_{6}$	-100.117	-100.8206	-102.1115
C ₂₅ -C ₂₈ -C ₃₁ -O ₅	-179.4478	-179.5094	-179.766

Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
C ₂₅ -C ₂₈ -C ₃₁ -N ₉	0.5615	0.5086	0.4146
C ₃₄ -C ₂₈ -C ₃₁ -O ₅	1.9842	1.8101	1.9471
C ₃₄ -C ₂₈ -C ₃₁ -N ₉	-178.0065	-178.1719	-177.8723
C ₂₅ -C ₂₈ -C ₃₄ -O ₂	-30.0421	-31.0897	-31.3205
C25-C28-C34-H68	90.8817	91.0461	90.96
C ₂₅ -C ₂₈ -C ₃₄ -H ₆₉	-147.2661	-149.1263	-149.438
C ₃₁ -C ₂₈ -C ₃₄ -O ₂	148.5409	147.6139	146.9988
C ₃₁ -C ₂₈ -C ₃₄ -H ₆₈	-90.5353	-90.2502	-90.7207
C ₃₁ -C ₂₈ -C ₃₄ -H ₆₉	31.317	29.5773	28.8813
C ₂₃ -C ₂₉ -C ₃₂ -C ₃₅	-0.1741	0.0695	0.0146
C ₂₃ -C ₂₉ -C ₃₂ -C ₃₉	179.8113	-179.8762	-179.9871
C ₃₇ -C ₂₉ -C ₃₂ -C ₃₅	178.3437	178.5751	178.5258
C ₃₇ -C ₂₉ -C ₃₂ -C ₃₉	-1.6709	-1.3707	-1.476
C ₂₃ -C ₂₉ -C ₃₇ -C ₄₃	99.8486	96.7018	95.8572
C23-C29-C37-H70	-21.7051	-24.8396	-25.7031
C ₂₃ -C ₂₉ -C ₃₇ -H ₇₁	-137.6857	-140.5347	-141.3828
C ₃₂ -C ₂₉ -C ₃₇ -C ₄₃	-78.5908	-81.721	-82.5705
C ₃₂ -C ₂₉ -C ₃₇ -H ₇₀	159.8554	156.7376	155.8692
C ₃₂ -C ₂₉ -C ₃₇ -H ₇₁	43.8748	41.0425	40.1895
C ₂₉ -C ₃₂ -C ₃₅ -N ₁₀	0.2473	0.0829	0.1156
C ₂₉ -C ₃₂ -C ₃₅ -C ₄₀	-179.665	179.8329	179.8539
C ₃₉ -C ₃₂ -C ₃₅ -N ₁₀	-179.7386	-179.9688	-179.8827
C ₃₉ -C ₃₂ -C ₃₅ -C ₄₀	0.3491	-0.2188	-0.1444
C ₂₉ -C ₃₂ -C ₃₉ -C ₃₈	179.0958	-179.8992	-179.783
C ₂₉ -C ₃₂ -C ₃₉ -H ₇₂	0.8572	-0.0796	-0.1021
C ₃₅ -C ₃₂ -C ₃₉ -C ₃₈	-0.9188	0.1546	0.2152
C ₃₅ -C ₃₂ -C ₃₉ -H ₇₂	-179.1574	179.9742	179.8962
C ₂₆ -C ₃₃ -C ₄₂ -H ₇₅	-63.6806	-63.7593	-64.265
C ₂₆ -C ₃₃ -C ₄₂ -H ₇₆	57.0254	56.7236	56.0707
C ₂₆ -C ₃₃ -C ₄₂ -H ₇₇	176.2427	176.1095	175.5707
H ₆₆ -C ₃₃ -C ₄₂ -H ₇₅	177.8823	177.7715	177.2565
H ₆₆ -C ₃₃ -C ₄₂ -H ₇₆	-61.4117	-61.7456	-62.4078
H ₆₆ -C ₃₃ -C ₄₂ -H ₇₇	57.8056	57.6403	57.0922
H ₆₇ -C ₃₃ -C ₄₂ -H ₇₅	59.8719	60.2975	59.9063
H ₆₇ -C ₃₃ -C ₄₂ -H ₇₆	-179.4221	-179.2195	-179.758
H ₆₇ -C ₃₃ -C ₄₂ -H ₇₇	-60.2048	-59.8337	-60.258
N ₁₀ -C ₃₅ -C ₄₀ -C ₄₁	-179.6046	179.7655	179.7856
N ₁₀ -C ₃₅ -C ₄₀ -H ₇₃	0.1897	0.0135	-0.0537

	Parameters	6-31 G	6-31 G(d,p)	cc-pVDZ
	C ₃₂ -C ₃₅ -C ₄₀ -C ₄₁	0.3121	0.001	0.0318
	C ₃₂ -C ₃₅ -C ₄₀ -H ₇₃	-179.8935	-179.7511	-179.8074
	C ₂₉ -C ₃₇ -C ₄₃ -H ₇₉	61.955	60.0763	60.3494
	C ₂₉ -C ₃₇ -C ₄₃ -H ₈₀	-178.2089	-179.6277	-179.3998
	C ₂₉ -C ₃₇ -C ₄₃ -H ₈₁	-58.4869	-59.8017	-59.5454
	H70-C37-C43-H79	-176.4533	-178.4144	-178.1372
	H ₇₀ -C ₃₇ -C ₄₃ -H ₈₀	-56.6171	-58.1185	-57.8864
	H ₇₀ -C ₃₇ -C ₄₃ -H ₈₁	63.1048	61.7076	61.968
	H ₇₁ -C ₃₇ -C ₄₃ -H ₇₉	-60.9039	-62.8466	-62.6166
	H71-C37-C43-H80	58.9323	57.4494	57.6343
	H ₇₁ -C ₃₇ -C ₄₃ -H ₈₁	178.6542	177.2755	177.4886
	O ₁ -C ₃₈ -C ₃₉ -C ₃₂	178.4515	175.3642	175.3832
	O ₁ -C ₃₈ -C ₃₉ -H ₇₂	-3.2875	-4.4601	-4.3066
	C ₄₁ -C ₃₈ -C ₃₉ -C ₃₂	0.8536	0.129	-0.1725
	C41-C38-C39-H72	179.1146	-179.6953	-179.8623
	O ₁ -C ₃₈ -C ₄₁ -C ₄₀	-178.0442	-175.3199	-175.2385
	O ₁ -C ₃₈ -C ₄₁ -H ₇₄	1.8707	5.4946	5.2268
	C ₃₉ -C ₃₈ -C ₄₁ -C ₄₀	-0.1866	-0.3492	0.0533
	C ₃₉ -C ₃₈ -C ₄₁ -H ₇₄	179.7282	-179.5347	-179.4814
	C_{35} - C_{40} - C_{41} - C_{38}	-0.4029	0.2795	0.0164
	C_{35} - C_{40} - C_{41} - H_{74}	179.685	179.4528	179.5454
	H ₇₃ -C ₄₀ -C ₄₁ -C ₃₈	179.8118	-179.9783	179.849
	H ₇₃ -C ₄₀ -C ₄₁ -H ₇₄	-0.1003	-0.805	-0.6219

4.1.3. Bağlı İrinotekan ve PHB molekülünün moleküler geometri hesaplamaları

Şekil 4.4. Bağlı İrinotekan ve PHB moleküllerinin optimize moleküler yapısı

Çalışmada, bir antikanser ajan olan İrinotekan yüklü PHB ile kaplanmış demir oksit nanoparçacıklarının kanserli hücreler üzerindeki etkisinin belirlenmesi amaçlanmaktadır. Bu bölümde İrinotekan ile PHB moleküllerinin birbirlerine nereden bağlanacağı mulliken yükleri yardımı ile tahmin edildi. İrinotekan ve PHB moleküllerindeki $N_{10}-H_{96}$ atomları ile $O_{84}-H_{65}$ atomları arasında zayıf hidrojen bağı oluşabileceğini öngörüldü ve optimizasyon çalışmaları yapıldı. Yapılan çalışmalar sonunda en düşük enerjili durumun $N_{10}-H_{96}$ arasında olduğu sonucuna varıldı. Tablo 4.3'te yeni oluşan bağlar mevcut olup, İrinotekan ve PHB moleküllerindeki bağ uzunluklarında büyük bir değişme olmadığı gözlemlendi.

Bağlı İrinotekan (Irinotecan) ve PHB molekülü			
Theoretical (B3LYP) 6-31 G(d,p)			
Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
Bond Lengths (Å)			
O ₁ -C ₂₁	1.3853	1.3853	
O ₁ -C ₃₈	1.3843	1.3875	
O ₂ -C ₃₄	1.4504	1.4515	
O ₂ -C ₃₆	1.3388	1.3385	
O ₃ -C ₂₁	1.2178	1.2165	
O ₄ -C ₂₆	1.4113	1.4109	
O ₄ -H ₇₈	0.9745	0.9744	
O ₄ -H ₉₀	3.8085		r
O ₅ -C ₃₁	1.2336	1.234	
O ₆ -C ₃₆	1.2139	1.2141	
N ₇ -C ₁₁	1.4772	1.4771	
N ₇ -C ₁₄	1.4691	1.4693	
N ₇ -C ₁₅	1.4705	1.4708	
N ₈ -C ₁₆	1.4635	1.4623	
N ₈ -C ₁₇	1.4618	1.4608	
N ₈ -C ₂₁	1.3589	1.3597	
N ₉ -C ₂₂	1.3805	1.3776	
N9-C24	1.4666	1.4702	
N ₉ -C ₃₁	1.3975	1.3979	
N10-C27	1.3201	1.3136	
N ₁₀ -C ₃₅	1.3695	1.3637	
N ₁₀ -H ₉₆	1.7953		
C_{11} - C_{12}	1.5441	1.5442	
C ₁₁ -C ₁₃	1.5397	1.5403	
C11-H44	1.1111	1.1112	
C_{12} - C_{16}	1.5327	1.5327	
C ₁₂ -H ₄₅	1.0937	1.0939	
C ₁₂ -H ₄₆	1.0959	1.0961	
C ₁₃ -C ₁₇	1.5331	1.534	
C ₁₃ -H ₄₇	1.0972	1.0971	
C ₁₃ -H ₄₈	1.0937	1.0939	
C ₁₄ -C ₁₈	1.5338	1.5335	
C ₁₄ -H ₄₉	1.0912	1.0912	
C ₁₄ -H ₅₀	1.1103	1.1103	

Tablo 4.3.Bağlı İrinotekan ve PHB molekülünün bağ uzunluk ve bağ açıları

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C ₁₅ -C ₁₉	1.5309	1.5313	
C ₁₅ -H ₅₁	1.1101	1.1103	
C ₁₅ -H ₅₂	1.0924	1.0925	
C ₁₆ -H ₅₃	1.0876	1.0877	
C ₁₆ -H ₅₄	1.1008	1.1006	
C ₁₇ -H ₅₅	1.1006	1.1004	
C ₁₇ -H ₅₆	1.0894	1.0894	
C ₁₈ -C ₂₀	1.5317	1.5314	
C ₁₈ -H ₅₇	1.0972	1.0971	
C ₁₈ -H ₅₈	1.0964	1.0964	
C ₁₉ -C ₂₀	1.5319	1.5314	
C ₁₉ -H ₅₉	1.097	1.0971	
C ₁₉ -H ₆₀	1.0964	1.0964	
C ₂₀ -H ₆₁	1.096	1.096	
C ₂₀ -H ₆₂	1.0991	1.0992	
C ₂₂ -C ₂₇	1.4697	1.4652	
C ₂₂ -C ₃₀	1.37	1.3685	
C ₂₃ -C ₂₄	1.5054	1.5072	
C ₂₃ -C ₂₇	1.4219	1.4233	
C ₂₃ -C ₂₉	1.3763	1.3761	
C ₂₄ -H ₆₃	1.0959	1.0959	
C ₂₄ -H ₆₄	1.0962	1.0963	
C ₂₅ -C ₂₆	1.5201	1.5198	
C ₂₅ -C ₂₈	1.3736	1.3751	
C ₂₅ -C ₃₀	1.4204	1.4192	
C ₂₆ -C ₃₃	1.56	1.5601	
C ₂₆ -C ₃₆	1.5409	1.5407	
C ₂₈ -C ₃₁	1.4508	1.4513	
C ₂₈ -C ₃₄	1.4976	1.4978	
C ₂₉ -C ₃₂	1.4348	1.4363	
C ₂₉ -C ₃₇	1.5115	1.5119	
C ₃₀ -H ₆₅	1.0807	1.0808	
C ₃₂ -C ₃₅	1.4382	1.4399	
C ₃₂ -C ₃₉	1.4178	1.4183	
C ₃₃ -C ₄₂	1.5299	1.5301	
C ₃₃ -H ₆₆	1.0957	1.0957	
C ₃₃ -H ₆₇	1.096	1.0959	
C ₃₄ -H ₆₈	1.0975	1.0975	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C ₃₄ -H ₆₉	1.0913	1.0913	
C ₃₅ -C ₄₀	1.4204	1.4207	
C ₃₇ -C ₄₃	1.5424	1.5412	
C ₃₇ -H ₇₀	1.0948	1.0952	
C ₃₇ -H ₇₁	1.0955	1.0953	
C ₃₈ -C ₃₉	1.3771	1.3763	
C ₃₈ -C ₄₁	1.4135	1.4152	
C ₃₉ -H ₇₂	1.0786	1.0833	
C ₄₀ -C ₄₁	1.3736	1.3732	
C40-H73	1.0858	1.0845	
C ₄₁ -H ₇₄	1.0848	1.0817	
C ₄₂ -H ₇₅	1.0943	1.0944	
C ₄₂ -H ₇₆	1.0927	1.0927	
C42-H77	1.094	1.0941	
C43-H79	1.0931	1.0937	
C ₄₃ -H ₈₀	1.094	1.0942	
C ₄₃ -H ₈₁	1.0944	1.0943	
H ₆₅ -O ₈₃	2.2608		
O ₈₂ -C ₈₅	1.4202		1.4279
O ₈₂ -H ₉₅	0.9722		0.966
O ₈₃ -C ₈₈	1.3283		1.3532
O ₈₃ -H ₉₆	1.0045		0.9727
O ₈₄ -C ₈₈	1.2272		1.2129
C ₈₅ -C ₈₆	1.5428		1.5373
C ₈₅ -C ₈₇	1.5329		1.5284
C ₈₅ -H ₈₉	1.0968		1.1031
C ₈₆ -C ₈₈	1.5157		1.5164
C ₈₆ -H ₉₀	1.0942		1.0956
C ₈₆ -H ₉₁	1.0976		1.0916
C ₈₇ -H ₉₂	1.0933		1.097
C ₈₇ -H ₉₃	1.0958		1.0951
C ₈₇ -H ₉₄	1.0947		1.091
Bond Angles (°)			
C ₂₁ -O ₁ -C ₃₈	121.0893	119.4307	
C ₃₄ -O ₂ -C ₃₆	120.698	120.6197	
C ₂₆ -O ₄ -H ₇₈	105.0444	105.1242	
C ₂₆ -O ₄ -H ₉₀	140.8927		
H ₇₈ -O ₄ -H ₉₀	113.1682		

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C ₁₁ -N ₇ -C ₁₄	115.3403	115.2966	
C ₁₁ -N ₇ -C ₁₅	111.3072	111.3723	
C ₁₄ -N ₇ -C ₁₅	109.6698	109.7084	
C ₁₆ -N ₈ -C ₁₇	114.8993	114.8329	
C ₁₆ -N ₈ -C ₂₁	125.9208	126.0294	
C ₁₇ -N ₈ -C ₂₁	118.9009	119.1377	
C ₂₂ -N ₉ -C ₂₄	113.5281	113.2659	
C ₂₂ -N ₉ -C ₃₁	125.3502	125.1094	
C ₂₄ -N ₉ -C ₃₁	121.1181	121.6198	
C ₂₇ -N ₁₀ -C ₃₅	116.5645	115.542	
C ₂₇ -N ₁₀ -H ₉₆	121.8221		
C ₃₅ -N ₁₀ -H ₉₆	121.1861		
N ₇ -C ₁₁ -C ₁₂	110.0056	109.9565	
N ₇ -C ₁₁ -C ₁₃	113.5468	113.5601	
N7-C11-H44	110.0897	110.0417	
C ₁₂ -C ₁₁ -C ₁₃	107.9629	108.0883	
C_{12} - C_{11} - H_{44}	108.1888	108.1515	
C ₁₃ -C ₁₁ -H ₄₄	106.8617	106.8587	
C_{11} - C_{12} - C_{16}	112.6871	112.6343	
C ₁₁ -C ₁₂ -H ₄₅	111.27	111.2523	
C ₁₁ -C ₁₂ -H ₄₆	108.1047	108.0838	
C ₁₆ -C ₁₂ -H ₄₅	107.7894	107.8524	
C ₁₆ -C ₁₂ -H ₄₆	109.6816	109.7117	
H45-C12-H46	107.1633	107.1646	
C ₁₁ -C ₁₃ -C ₁₇	111.6781	111.7264	
C ₁₁ -C ₁₃ -H ₄₇	109.4451	109.508	
C_{11} - C_{13} - H_{48}	111.1748	111.1539	
C_{17} - C_{13} - H_{47}	109.551	109.3904	
C_{17} - C_{13} - H_{48}	107.2566	107.3415	
H47-C13-H48	107.6273	107.6067	
$N_{7}-C_{14}-C_{18}$	111.1016	111.1487	
N7-C14-H49	109.3299	109.3211	
N ₇ -C ₁₄ -H ₅₀	111.6065	111.6009	
C_{18} - C_{14} - H_{49}	108.3334	108.3076	
C ₁₈ -C ₁₄ -H ₅₀	109.225	109.2044	
H49-C14-H50	107.1103	107.1218	
N ₇ -C ₁₅ -C ₁₉	111.8182	111.8233	
N ₇ -C ₁₅ -H ₅₁	110.6265	110.6549	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
N7-C15-H52	109.2797	109.3194	
C ₁₉ -C ₁₅ -H ₅₁	109.3048	109.2282	
C ₁₉ -C ₁₅ -H ₅₂	109.0543	109.0674	
H ₅₁ -C ₁₅ -H ₅₂	106.608	106.5977	
N ₈ -C ₁₆ -C ₁₂	110.565	110.7141	
N ₈ -C ₁₆ -H ₅₃	109.185	109.1976	
N ₈ -C ₁₆ -H ₅₄	108.7905	108.5901	
C ₁₂ -C ₁₆ -H ₅₃	110.627	110.8159	
C ₁₂ -C ₁₆ -H ₅₄	109.9247	109.8587	
H ₅₃ -C ₁₆ -H ₅₄	107.6806	107.5826	
N ₈ -C ₁₇ -C ₁₃	111.5459	111.5391	
N ₈ -C ₁₇ -H ₅₅	108.8008	108.7192	
N ₈ -C ₁₇ -H ₅₆	107.868	107.8546	
C ₁₃ -C ₁₇ -H ₅₅	109.6039	109.6258	
C ₁₃ -C ₁₇ -H ₅₆	111.1106	111.0627	
H ₅₅ -C ₁₇ -H ₅₆	107.8029	107.9338	
C_{14} - C_{18} - C_{20}	111.5934	111.5504	
C ₁₄ -C ₁₈ -H ₅₇	108.3345	108.3639	
C ₁₄ -C ₁₈ -H ₅₈	109.0285	109.0237	
C ₂₀ -C ₁₈ -H ₅₇	109.5778	109.5857	
C ₂₀ -C ₁₈ -H ₅₈	110.9216	110.9355	
H ₅₇ -C ₁₈ -H ₅₈	107.2535	107.2522	
C ₁₅ -C ₁₉ -C ₂₀	110.8578	110.8525	
C ₁₅ -C ₁₉ -H ₅₉	108.6494	108.6741	
C ₁₅ -C ₁₉ -H ₆₀	109.2312	109.205	
C ₂₀ -C ₁₉ -H ₅₉	109.7506	109.7762	
C ₂₀ -C ₁₉ -H ₆₀	110.9641	110.956	
H59-C19-H60	107.2918	107.2816	
C_{18} - C_{20} - C_{19}	109.5861	109.6055	
C ₁₈ -C ₂₀ -H ₆₁	110.814	110.8357	
C ₁₈ -C ₂₀ -H ₆₂	109.3758	109.3703	
C_{19} - C_{20} - C_{61}	110.9458	110.9269	
C ₁₉ -C ₂₀ -H ₆₂	109.3287	109.3134	
H ₆₁ -C ₂₀ -H ₆₂	106.7317	106.7291	
O ₁ -C ₂₁ -O ₃	123.8787	123.4751	
O ₁ -C ₂₁ -N ₈	110.5154	110.6687	
O ₃ -C ₂₁ -N ₈	125.6058	125.8546	
N ₉ -C ₂₂ -C ₂₇	106.6599	107.0277	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
N9-C22-C30	120.6834	121.1512	
C ₂₇ -C ₂₂ -C ₃₀	132.6549	131.8203	
C ₂₄ -C ₂₃ -C ₂₇	109.3084	109.109	
C_{24} - C_{23} - C_{29}	130.0033	130.7152	
C ₂₇ -C ₂₃ -C ₂₉	120.6878	120.1753	
N9-C24-C23	102.1778	102.2217	
N ₉ -C ₂₄ -H ₆₃	109.7824	109.6545	
N9-C24-H64	109.7128	109.6341	
C ₂₃ -C ₂₄ -H ₆₃	114.0966	114.1677	
C ₂₃ -C ₂₄ -H ₆₄	114.0675	114.1503	
H ₆₃ -C ₂₄ -H ₆₄	106.905	106.8979	
C ₂₆ -C ₂₅ -C ₂₈	117.2103	117.167	
C ₂₆ -C ₂₅ -C ₃₀	121.0618	121.3108	
O4-C26-C25	121.7149	121.5148	
O ₄ -C ₂₆ -C ₃₃	110.8367	110.802	
O ₄ -C ₂₆ -C ₃₆	109.478	109.3945	
C ₂₅ -C ₂₆ -C ₃₃	108.0011	108.1134	
C ₂₅ -C ₂₆ -C ₃₆	109.8183	109.9457	
C ₃₃ -C ₂₆ -C ₃₆	108.8142	108.7096	
N ₁₀ -C ₂₇ -C ₂₂	109.8644	109.8466	
N ₁₀ -C ₂₇ -C ₂₃	126.962	125.7046	
C ₂₂ -C ₂₇ -C ₂₃	124.7132	125.92	
C ₂₅ -C ₂₈ -C ₃₁	108.3248	108.3752	
C ₂₅ -C ₂₈ -C ₃₄	121.9596	122.1551	
C_{31} - C_{28} - C_{34}	120.6461	120.4867	
C ₂₃ -C ₂₉ -C ₃₂	117.3857	117.3449	
C ₆ -C ₅ -H ₁₁	116.2223	116.0082	
C ₂₃ -C ₂₉ -C ₃₇	121.5845	121.6134	
C_{32} - C_{29} - C_{37}	122.175	122.361	
C_{22} - C_{30} - C_{25}	117.2825	117.1522	
C_{22} - C_{30} - H_{65}	121.8592	121.103	
C25-C30-H65	120.8578	121.7379	
O ₅ -C ₃₁ -N ₉	120.7491	120.8193	
O ₅ -C ₃₁ -C ₂₈	126.2536	126.2772	
N9-C31-C28	112.9972	112.9035	
C ₂₉ -C ₃₂ -C ₃₅	119.1213	118.9938	
C ₂₉ -C ₃₂ -C ₃₉	121.887	122.8234	
C35-C32-C39	118.9917	118.1828	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C ₂₆ -C ₃₃ -C ₄₂	113.7375	113.7031	
C ₂₆ -C ₃₃ -H ₆₆	105.8245	105.8455	
C ₂₆ -C ₃₃ -H ₆₇	109.764	109.8108	
C ₄₂ -C ₃₃ -H ₆₆	109.9469	109.9582	
C ₄₂ -C ₃₃ -H ₆₇	110.5882	110.562	
H ₆₆ -C ₃₃ -H ₆₇	106.6417	106.6262	
O ₂ -C ₃₄ -C ₂₈	112.9682	112.9247	
O ₂ -C ₃₄ -H ₆₈	107.8213	107.7282	
O ₂ -C ₃₄ -H ₆₉	105.8474	105.8171	
C ₂₈ -C ₃₄ -H ₆₈	112.2702	112.4014	
C ₂₈ -C ₃₄ -H ₆₉	110.1125	110.1127	
H ₆₈ -C ₃₄ -H ₆₉	107.4754	107.5038	
N ₁₀ -C ₃₅ -C ₃₂	122.6843	123.3602	
N ₁₀ -C ₃₅ -C ₄₀	118.116	117.5548	
C ₃₂ -C ₃₅ -C ₄₀	119.1997	119.0845	
O ₂ -C ₃₆ -O ₆	120.6898	120.7322	
O ₂ -C ₃₆ -C ₂₆	118.9503	118.8712	
O ₆ -C ₃₆ -C ₂₆	120.3511	120.3876	
C ₂₉ -C ₃₇ -C ₄₃	113.1395	113.0526	
C ₂₉ -C ₃₇ -H ₇₀	109.0561	109.0437	
C ₂₉ -C ₃₇ -H ₇₁	109.6863	109.8718	
C43-C37-H70	109.2206	109.1008	
C ₄₃ -C ₃₇ -H ₇₁	109.4542	109.5849	
H70-C37-H71	106.0355	105.9343	
O ₁ -C ₃₈ -C ₃₉	123.8978	116.4002	
O ₁ -C ₃₈ -C ₄₁	114.7973	121.9264	
C ₃₉ -C ₃₈ -C ₄₁	121.2036	121.495	
C ₃₂ -C ₃₉ -C ₃₈	119.965	120.7048	
C ₃₂ -C ₃₉ -H ₇₂	120.5012	120.9845	
C ₃₈ -C ₃₉ -H ₇₂	119.5087	118.3105	
C_{35} - C_{40} - C_{41}	120.3934	121.5214	
C35-C40-H73	118.6582	117.25	
C ₄₁ -C ₄₀ -H ₇₃	120.9471	121.2282	
C ₃₈ -C ₄₁ -C ₄₀	120.2169	119.0104	
C ₃₈ -C ₄₁ -H ₇₄	118.6857	119.7631	
C40-C41-H74	121.097	121.2213	
C ₃₃ -C ₄₂ -H ₇₅	112.0993	112.0723	
C ₃₃ -C ₄₂ -H ₇₆	110.3712	110.3956	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C ₃₃ -C ₄₂ -H ₇₇	110.1766	110.1827	
H ₇₅ -C ₄₂ -H ₇₆	108.0424	108.0396	
H ₇₅ -C ₄₂ -H ₇₇	107.8855	107.8773	
H ₇₆ -C ₄₂ -H ₇₇	108.1387	108.1465	
C37-C43-H79	111.5473	111.3799	
C37-C43-H80	110.133	110.5117	
C ₃₇ -C ₄₃ -H ₈₁	110.9876	111.0236	
H_{79} - C_{43} - H_{80}	108.0708	108.1938	
H ₇₉ -C ₄₃ -H ₈₁	107.9835	107.5905	
H ₈₀ -C ₄₃ -H ₈₁	107.9923	108.0063	
C ₃₀ -H ₆₅ -O ₈₃	144.9752		
C ₈₅ -O ₈₂ -H ₉₅	105.1746		107.8957
H ₆₅ -O ₈₃ -C ₈₈	149.9391		
H65-O83-H96	83.9669		
C ₈₈ -O ₈₃ -H ₉₆	112.8295		105.9145
O ₈₂ -C ₈₅ -C ₈₆	111.0765		105.6199
O ₈₂ -C ₈₅ -C ₈₇	111.788		111.8889
O ₈₂ -C ₈₅ -H ₈₉	105.448		109.8069
C ₈₆ -C ₈₅ -C ₈₇	112.7477		114.47
C ₈₆ -C ₈₅ -H ₈₉	106.9908		106.3605
C ₈₇ -C ₈₅ -H ₈₉	108.3661		108.4973
C85-C86-C88	113.5595		113.1955
C ₈₅ -C ₈₆ -H ₉₀	111.8241		109.1027
C ₈₅ -C ₈₆ -H ₉₁	108.7235		109.2124
C ₈₈ -C ₈₆ -H ₉₀	108.8432		107.7109
C ₈₈ -C ₈₆ -H ₉₁	106.5865		109.1312
H_{90} - C_{86} - H_{91}	106.9669		108.3744
C85-C87-H92	109.533		109.9967
C ₈₅ -C ₈₇ -H ₉₃	111.4084		110.8526
C ₈₅ -C ₈₇ -H ₉₄	110.8974		110.7826
H_{92} - C_{87} - H_{93}	108.4904		107.3975
H92-C87-H94	108.0887		109.2415
H ₉₃ -C ₈₇ -H ₉₄	108.3294		108.4858
O ₈₃ -C ₈₈ -O ₈₄	123.3574		122.1982
O ₈₃ -C ₈₈ -C ₈₆	112.8181		111.898
O ₈₄ -C ₈₈ -C ₈₆	123.8054		125.89
O ₄ -H ₉₀ -C ₈₆	150.7655		
N ₁₀ -H ₉₆ -O ₈₃	164.1378		

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
Dihedral Angles (°)			
C ₃₈ -O ₁ -C ₂₁ -O ₃	1.9113	-2.1078	
C ₃₈ -O ₁ -C ₂₁ -N ₈	-178.0073	178.3333	
C ₂₁ -O ₁ -C ₃₈ -C ₃₉	38.7017	135.4319	
C ₂₁ -O ₁ -C ₃₈ -C ₄₁	-144.9267	-49.3552	
C ₃₆ -O ₂ -C ₃₄ -C ₂₈	27.7516	28.0587	
C ₃₆ -O ₂ -C ₃₄ -H ₆₈	-96.9011	-96.6639	
C ₃₆ -C ₂ -C ₃₄ -H ₆₉	148.3179	148.5801	
C ₃₄ -O ₂ -C ₃₆ -O ₆	-172.2078	-172.0763	
C ₃₄ -O ₂ -C ₃₆ -C ₂₆	8.8687	9.0096	
H ₇₈ -O ₄ -C ₂₆ -C ₂₅	-132.1109	-131.5597	
H ₇₈ -O ₄ -C ₂₆ -C ₃₃	106.5973	107.0667	r
H ₇₈ -O ₄ -C ₂₆ -C ₃₆	-13.0	-12.5274	
H ₉₀ -O ₄ -C ₂₆ -C ₂₅	60.3319		
H ₉₀ -O ₄ -C ₂₆ -C ₃₃	-60.96		
H ₉₀ -O ₄ -C ₂₆ -C ₃₆	179.4428		
C ₂₆ -O ₄ -H ₉₀ -C ₈₆	-45.2244		
H ₇₈ -O ₄ -H ₉₀ -C ₈₆	147.8568		
C14-N7-C11-C12	160.5258	160.6472	
C ₁₄ -N ₇ -C ₁₁ -C ₁₃	39.4163	39.4025	
C14-N7-C11-H44	-80.3387	-80.3235	
C ₁₅ -N ₇ -C ₁₁ -C ₁₂	-73.7094	-73.5144	
C ₁₅ -N ₇ -C ₁₁ -C ₁₃	165.1811	165.2409	
C ₁₅ -N ₇ -C ₁₁ -H ₄₄	45.4261	45.5149	
C_{11} - N_7 - C_{14} - C_{18}	-173.5061	-173.5191	
C_{11} - N_7 - C_{14} - H_{49}	-53.9904	-54.0117	
C_{11} - N_7 - C_{14} - H_{50}	64.3222	64.3062	
C_{15} - N_7 - C_{14} - C_{18}	59.8926	59.7926	
C15-N7-C14-H49	179.4083	179.3	
C_{15} - N_7 - C_{14} - H_{50}	-62.2791	-62.3822	
C ₁₁ -N ₇ -C ₁₅ -C ₁₉	170.6475	170.7848	
C_{11} - N_7 - C_{15} - H_{51}	-67.2672	-67.2043	
C_{11} - N_7 - C_{15} - H_{52}	49.8113	49.902	
C_{14} - N_7 - C_{15} - C_{19}	-60.5028	-60.3424	
C ₁₄ -N ₇ -C ₁₅ -H ₅₁	61.5826	61.6685	
C_{14} - N_7 - C_{15} - H_{52}	178.6611	178.7749	
C_{17} -N ₈ -C ₁₆ -C ₁₂	-53.8774	-54.0473	
C_{17} -N ₈ - C_{16} -H ₅₃	-175.8103	-176.321	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C ₁₇ -N ₈ -C ₁₆ -H ₅₄	66.9279	66.6406	
C ₂₁ -N ₈ -C ₁₆ -C ₁₂	132.2931	125.9229	
C ₂₁ -N ₈ -C ₁₆ -H ₅₃	10.3603	3.6492	
C ₂₁ -N ₈ -C ₁₆ -H ₅₄	-106.9016	-113.3892	
C ₁₆ -N ₈ -C ₁₇ -C ₁₃	54.5756	54.6671	
C ₁₆ -N ₈ -C ₁₇ -H ₅₅	-66.4534	-66.3306	
C ₁₆ -N ₈ -C ₁₇ -H ₅₆	176.861	176.8796	
C ₂₁ -N ₈ -C ₁₇ -C ₁₃	-131.1308	-125.3052	
C ₂₁ -N ₈ -C ₁₇ -H ₅₅	107.8402	113.697	
C ₂₁ -N ₈ -C ₁₇ -H ₅₆	-8.8453	-3.0928	
C ₁₆ -N ₈ -C ₂₁ -O ₁	-3.0212	-0.4763	
C ₁₆ -N ₈ -C ₂₁ -O ₃	177.0619	179.9777	
C ₁₇ -N ₈ -C ₂₁ -O ₁	-176.6271	179.4928	
C ₁₇ -N ₈ -C ₂₁ -O ₃	3.456	-0.0532	
C24-N9-C22-C27	-0.0033	0.0433	
C ₂₄ -N ₉ -C ₂₂ -C ₃₀	-179.5702	-179.6761	
C ₃₁ -N ₉ -C ₂₂ -C ₂₇	179.3048	179.2434	
C ₃₁ -N ₉ -C ₂₂ -C ₃₀	-0.2622	-0.476	
C ₂₂ -N ₉ -C ₂₄ -C ₂₃	0.1866	0.0965	
C ₂₂ -N ₉ -C ₂₄ -H ₆₃	-121.2456	-121.382	
C ₂₂ -N ₉ -C ₂₄ -H ₆₄	121.5521	121.5453	
C ₃₁ -N ₉ -C ₂₄ -C ₂₃	-179.1542	-179.1351	
C ₃₁ -N ₉ -C ₂₄ -H ₆₃	59.4136	59.3864	
C ₃₁ -N ₉ -C ₂₄ -H ₆₄	-57.7887	-57.6863	
C ₂₂ -N ₉ -C ₃₁ -O ₅	-179.7066	-179.585	
C ₂₂ -N ₉ -C ₃₁ -C ₂₈	0.2905	0.3981	
C ₂₄ -N ₉ -C ₃₁ -O ₅	-0.4477	-0.448	
C ₂₄ -N ₉ -C ₃₁ -C ₂₈	179.5494	179.5351	
C ₃₅ -N ₁₀ -C ₂₇ -C ₂₂	179.2397	179.6655	
C ₃₅ -N ₁₀ -C ₂₇ -C ₂₃	-0.7201	-0.1426	
H ₉₆ -N ₁₀ -C ₂₇ -C ₂₂	-8.1816		
H ₉₆ -N ₁₀ -C ₂₇ -C ₂₃	171.8586		
C ₂₇ -N ₁₀ -C ₃₅ -C ₃₂	0.763	-0.049	
C_{27} - N_{10} - C_{35} - C_{40}	-179.2574	-179.8026	
H ₉₆ -N ₁₀ -C ₃₅ -C ₃₂	-171.8663		
H96-N10-C35-C40	8.1133		
C ₂₇ -N ₁₀ -H ₉₆ -O ₈₃	-6.3542		
C ₃₅ -N ₁₀ -H ₉₆ -O ₈₃	165.8847		

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
N7-C11-C12-C16	-179.2995	-179.0313	
N ₇ -C ₁₁ -C ₁₂ -H ₄₅	59.4967	59.7336	
N ₇ -C ₁₁ -C ₁₂ -H ₄₆	-57.9184	-57.6603	
C ₁₃ -C ₁₁ -C ₁₂ -C ₁₆	-54.899	-54.5626	
C ₁₃ -C ₁₁ -C ₁₂ -H ₄₅	-176.1029	-175.7977	
C ₁₃ -C ₁₁ -C ₁₂ -H ₄₆	66.482	66.8084	
H ₄₄ -C ₁₁ -C ₁₂ -C ₁₆	60.409	60.7876	
H ₄₄ -C ₁₁ -C ₁₂ -H ₄₅	-60.7948	-60.4475	
H ₄₄ -C ₁₁ -C ₁₂ -H ₄₆	-178.2099	-177.8414	
N7-C11-C13-C17	176.7422	176.506	
N ₇ -C ₁₁ -C ₁₃ -H ₄₇	55.2599	55.1516	
N ₇ -C ₁₁ -C ₁₃ -H ₄₈	-63.5007	-63.6106	
C ₁₂ -C ₁₁ -C ₁₃ -C ₁₇	54.4938	54.221	
C ₁₂ -C ₁₁ -C ₁₃ -H ₄₇	-66.9885	-67.1334	
C ₁₂ -C ₁₁ -C ₁₃ -H ₄₈	174.251	174.1044	
H44-C11-C13-C17	-61.6834	-61.9737	
H ₄₄ -C ₁₁ -C ₁₃ -H ₄₇	176.8343	176.6719	
H44-C11-C13-H48	58.0737	57.9097	
C ₁₁ -C ₁₂ -C ₁₆ -N ₈	54.3591	54.2742	
C ₁₁ -C ₁₂ -C ₁₆ -H ₅₃	175.4401	175.5976	
C ₁₁ -C ₁₂ -C ₁₆ -H ₅₄	-65.7688	-65.6568	
H45-C12-C16-N8	177.5249	177.4276	
H ₄₅ -C ₁₂ -C ₁₆ -H ₅₃	-61.3941	-61.2491	
H45-C12-C16-H54	57.397	57.4966	
H ₄₆ -C ₁₂ -C ₁₆ -N ₈	-66.1213	-66.1657	
H ₄₆ -C ₁₂ -C ₁₆ -H ₅₃	54.9597	55.1576	
H ₄₆ -C ₁₂ -C ₁₆ -H ₅₄	173.7508	173.9033	
C ₁₁ -C ₁₃ -C ₁₇ -N ₈	-54.7745	-54.6714	
C ₁₁ -C ₁₃ -C ₁₇ -H ₅₅	65.7851	65.7962	
C ₁₁ -C ₁₃ -C ₁₇ -H ₅₆	-175.1754	-175.0179	
H ₄₇ -C ₁₃ -C ₁₇ -N ₈	66.6464	66.751	
H47-C13-C17-H55	-172.7939	-172.7814	
H ₄₇ -C ₁₃ -C ₁₇ -H ₅₆	-53.7545	-53.5954	
O ₄ -C ₁₃ -C ₁₇ -N ₈	-176.8143	-176.7715	
O ₄ -C ₁₃ -C ₁₇ -H ₅₅	-56.2546	-56.3039	
O ₄ -C ₁₃ -C ₁₇ -H ₅₆	62.7848	62.882	
N ₇ -C ₁₄ -C ₁₈ -C ₂₀	-57.0362	-57.0362	
N ₇ -C ₁₄ -C ₁₈ -H ₅₇	63.6817	63.6841	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
N7-C14-C18-H58	-179.907	-179.8925	
H ₄₉ -C ₁₄ -C ₁₈ -C ₂₀	-177.145	-177.1463	
H ₄₉ -C ₁₄ -C ₁₈ -H ₅₇	-56.4271	-56.426	
H ₄₉ -C ₁₄ -C ₁₈ -H ₅₈	59.9842	59.9974	
H ₅₀ -C ₁₄ -C ₁₈ -C ₂₀	66.508	66.5184	
H50-C14-C18-H57	-172.7741	-172.7612	
H ₅₀ -C ₁₄ -C ₁₈ -H ₅₈	-56.3627	-56.3379	
N ₇ -C ₁₅ -C ₁₉ -C ₂₀	57.2983	57.2414	
N ₇ -C ₁₅ -C ₁₉ -H ₅₉	-63.3827	-63.4839	
N ₇ -C ₁₅ -C ₁₉ -H ₆₀	179.8745	179.7862	
H ₅₁ -C ₁₅ -C ₁₉ -C ₂₀	-65.5419	-65.5846	
H ₅₁ -C ₁₅ -C ₁₉ -H ₅₉	173.7771	173.6901	
H ₅₁ -C ₁₅ -C ₁₉ -H ₆₀	57.0343	56.9603	
H52-C15-C19-C20	178.2654	178.2704	
H52-C15-C19-H59	57.5844	57.5451	
H ₅₂ -C ₁₅ -C ₁₉ -H ₆₀	-59.1585	-59.1848	
C ₁₄ -C ₁₈ -C ₂₀ -C ₁₉	52.4453	52.5482	
C14-C18-C20-H61	175.21	175.3168	
C ₁₄ -C ₁₈ -C ₂₀ -H ₆₂	-67.3919	-67.2788	
H57-C18-C20-C19	-67.5433	-67.4549	
H ₅₇ -C ₁₈ -C ₂₀ -H ₆₁	55.2214	55.3136	
H57-C18-C20-H62	172.6194	172.7181	
H ₅₈ -C ₁₈ -C ₂₀ -C ₁₉	174.2287	174.3053	
H ₅₈ -C ₁₈ -C ₂₀ -H ₆₁	-63.0066	-62.9262	
H ₅₈ -C ₁₈ -C ₂₀ -H ₆₂	54.3915	54.4783	
C ₁₅ -C ₁₉ -C ₂₀ -C ₁₈	-52.1962	-52.2883	
C ₁₅ -C ₁₉ -C ₂₀ -H ₆₁	-174.8826	-175.0028	
C ₁₅ -C ₁₉ -C ₂₀ -H ₆₂	67.6699	67.5736	
H ₅₉ -C ₁₉ -C ₂₀ -C ₁₈	67.83	67.7819	
H ₅₉ -C ₁₉ -C ₂₀ -H ₆₁	-54.8565	-54.9326	
H ₅₉ -C ₁₉ -C ₂₀ -H ₆₂	-172.3039	-172.3563	
H ₆₀ -C ₁₉ -C ₂₀ -C ₁₈	-173.7603	-173.81	
H ₆₀ -C ₁₉ -C ₂₀ -H ₆₁	63.5532	63.4756	
H ₆₀ -C ₁₉ -C ₂₀ -H ₆₂	-53.8942	-53.9481	
N9-C22-C27-N10	179.8368	179.9872	
N9-C22-C27-C23	-0.198	-0.1766	
C ₃₀ -C ₂₂ -C ₂₇ -N ₁₀	-0.6696	-0.335	
C ₃₀ -C ₂₂ -C ₂₇ -C ₂₃	179.2956	179.5012	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
N9-C22-C30-C25	-0.5063	-0.349	
N9-C22-C30-H65	179.2423	178.709	
C ₂₇ -C ₂₂ -C ₃₀ -C ₂₅	-179.9422	-179.989	
C ₂₇ -C ₂₂ -C ₃₀ -H ₆₅	-0.1936	-0.931	
C ₂₇ -C ₂₃ -C ₂₄ -N ₉	-0.3044	-0.204	
C ₂₇ -C ₂₃ -C ₂₄ -H ₆₃	118.1077	118.1168	
C ₂₇ -C ₂₃ -C ₂₄ -H ₆₄	-118.6189	-118.4919	
C ₂₉ -C ₂₃ -C ₂₄ -N ₉	179.9624	179.5368	
C ₂₉ -C ₂₃ -C ₂₄ -H ₆₃	-61.6255	-62.1424	
C ₂₉ -C ₂₃ -C ₂₄ -H ₆₄	61.6479	61.2489	
C ₂₄ -C ₂₃ -C ₂₇ -N ₁₀	-179.7145	-179.9241	
C ₂₄ -C ₂₃ -C ₂₇ -C ₂₂	0.3193	63.6841	
C ₂₉ -C ₂₃ -C ₂₇ -N ₁₀	0.0478	-179.8925	
C29-C23-C27-C22	-179.9183	0.2402	
C24-C23-C29-C32	-179.7222	0.3032	
C ₂₄ -C ₂₃ -C ₂₉ -C ₃₇	1.7976	-179.5326	
C ₂₇ -C ₂₃ -C ₂₉ -C ₃₂	0.5706	-179.9588	
C ₂₇ -C ₂₃ -C ₂₉ -C ₃₇	-177.9096	1.5236	
C ₂₈ -C ₂₅ -C ₂₆ -O ₄	156.5565	-0.2421	
C ₂₈ -C ₂₅ -C ₂₆ -C ₃₃	-82.3524	-178.7597	
C ₂₈ -C ₂₅ -C ₂₆ -C ₃₆	37.9365	157.0383	
C ₃₀ -C ₂₅ -C ₂₆ -O ₄	-24.7372	-81.9134	
C ₃₀ -C ₂₅ -C ₂₆ -C ₃₃	96.354	38.3662	
C ₃₀ -C ₂₅ -C ₂₆ -C ₃₆	-143.3572	-23.9403	
C ₂₆ -C ₂₅ -C ₂₈ -C ₃₁	177.4303	97.108	
C ₂₆ -C ₂₅ -C ₂₈ -C ₃₄	-3.6671	-142.6124	
C ₃₀ -C ₂₅ -C ₂₈ -C ₃₁	-1.267	177.673	
C ₃₀ -C ₂₅ -C ₂₈ -C ₃₄	177.6356	-3.6871	
C ₂₆ -C ₂₅ -C ₃₀ -C ₂₂	-177.3894	-1.3463	
C ₂₆ -C ₂₅ -C ₃₀ -H ₆₅	2.8593	177.2936	
C ₂₈ -C ₂₅ -C ₃₀ -C ₂₂	1.2581	-177.7428	
C ₂₈ -C ₂₅ -C ₃₀ -H ₆₅	-178.4932	3.2055	
O ₄ -C ₂₆ -C ₃₃ -C ₄₂	-57.2387	1.2359	
O ₄ -C ₂₆ -C ₃₃ -H ₆₆	63.5583	-177.8157	
O ₄ -C ₂₆ -C ₃₃ -H ₆₇	178.2755	-57.2451	
C ₂₅ -C ₂₆ -C ₃₃ -C ₄₂	-179.1439	63.5599	
C ₂₅ -C ₂₆ -C ₃₃ -H ₆₆	-58.3469	178.2925	
C ₂₅ -C ₂₆ -C ₃₃ -H ₆₇	56.3703	-179.1349	

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ	
C ₃₆ -C ₂₆ -C ₃₃ -C ₄₂	61.2065	-58.3299		
C ₃₆ -C ₂₆ -C ₃₃ -H ₆₆	-177.9965	56.4027		
C ₃₆ -C ₂₆ -C ₃₃ -H ₆₇	-63.2793	61.2761		
O ₄ -C ₂₆ -C ₃₆ -O ₂	-162.1261	-177.9189		
O ₄ -C ₂₆ -C ₃₆ -O ₆	18.9466	-63.1862		
C ₂₅ -C ₂₆ -C ₃₆ -O ₂	-41.7394	-162.594		
C ₂₅ -C ₂₆ -C ₃₆ -O ₆	139.3333	18.4881		
C ₃₃ -C ₂₆ -C ₃₆ -O ₂	78.521	-42.2437		
C ₃₃ -C ₂₆ -C ₃₆ -O ₆	-100.4063	138.8384		
C ₂₅ -C ₂₈ -C ₃₁ -O ₅	-179.5319	78.0973		
C ₂₅ -C ₂₈ -C ₃₁ -N ₉	0.4711	-100.8206		
C ₃₄ -C ₂₈ -C ₃₁ -O ₅	1.5314	-179.5094		
C ₃₄ -C ₂₈ -C ₃₁ -N ₉	-178.4655	0.5086		
C ₂₅ -C ₂₈ -C ₃₄ -O ₂	-30.7352	1.8101		
C25-C28-C34-H68	91.4568	-178.1719		
C25-C28-C34-H69	-148.8378	-31.0897		
C ₃₁ -C ₂₈ -C ₃₄ -O ₂	148.2162	91.0461		
C31-C28-C34-H68	-89.5918	-149.1263		
C ₃₁ -C ₂₈ -C ₃₄ -H ₆₉	30.1136	147.6139		
C ₂₃ -C ₂₉ -C ₃₂ -C ₃₅	-0.5068	-90.2502		
C ₂₃ -C ₂₉ -C ₃₂ -C ₃₉	179.5401	29.5773		
C37-C29-C32-C35	177.9636	0.0695		
C ₃₇ -C ₂₉ -C ₃₂ -C ₃₉	-1.9894	-179.8762		
C ₂₃ -C ₂₉ -C ₃₇ -C ₄₃	100.8209	178.5751		
C ₂₃ -C ₂₉ -C ₃₇ -H ₇₀	-20.9403	-1.3707		
C ₂₃ -C ₂₉ -C ₃₇ -H ₇₁	-136.6605	96.7018		
C ₃₂ -C ₂₉ -C ₃₇ -C ₄₃	-77.5684	-24.8396		
C ₃₂ -C ₂₉ -C ₃₇ -H ₇₀	160.6704	156.7376		
C ₃₂ -C ₂₉ -C ₃₇ -H ₇₁	44.9503	41.0425		
C ₂₂ -C ₃₀ -H ₆₅ -O ₈₃	19.6386			
C ₂₅ -C ₃₀ -H ₆₅ -O ₈₃	-160.6217			
C29-C32-C35-N10	-0.1614	0.0829		
C ₂₉ -C ₃₂ -C ₃₅ -C ₄₀	179.8592	179.8329		
C ₃₉ -C ₃₂ -C ₃₅ -N ₁₀	179.7931	-179.9688		
C ₃₉ -C ₃₂ -C ₃₅ -C ₄₀	-0.1863	-0.2188		
C29-C32-C39-C38	178.6101	-179.8992		
C ₂₉ -C ₃₂ -C ₃₉ -H ₇₂	0.4402	-0.0796		
C ₃₅ -C ₃₂ -C ₃₉ -C ₃₈	-1.3431	0.1546		

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
C35-C32-C39-H72	-179.5129	179.9742	
C ₂₆ -C ₃₃ -C ₄₂ -H ₇₅	-63.9882	-63.7593	
C ₂₆ -C ₃₃ -C ₄₂ -H ₇₆	56.4996	56.7236	
C ₂₆ -C ₃₃ -C ₄₂ -H ₇₇	175.8565	176.1095	
H ₆₆ -C ₃₃ -C ₄₂ -H ₇₅	177.5548	177.7715	
H ₆₆ -C ₃₃ -C ₄₂ -H ₇₆	-61.9575	-61.7456	
H ₆₆ -C ₃₃ -C ₄₂ -H ₇₇	57.3994	57.6403	
H ₆₇ -C ₃₃ -C ₄₂ -H ₇₅	60.053	60.2975	
H ₆₇ -C ₃₃ -C ₄₂ -H ₇₆	-179.4592	-179.2195	
H ₆₇ -C ₃₃ -C ₄₂ -H ₇₇	-60.1023	-59.8337	
N ₁₀ -C ₃₅ -C ₄₀ -C ₄₁	-178.7792	179.7655	
N ₁₀ -C ₃₅ -C ₄₀ -H ₇₃	1.6426	0.0135	
C ₃₂ -C ₃₅ -C ₄₀ -C ₄₁	1.2012	0.001	
C ₃₂ -C ₃₅ -C ₄₀ -H ₇₃	-178.3771	-179.7511	
C29-C37-C43-H79	61.934	60.0763	
C29-C37-C43-H80	-178.0685	-179.6277	
C ₂₉ -C ₃₇ -C ₄₃ -H ₈₁	-58.5304	-59.8017	
H70-C37-C43-H79	-176.3971	-178.4144	
H ₇₀ -C ₃₇ -C ₄₃ -H ₈₀	-56.3997	-58.1185	
H70-C37-C43-H81	63.1384	61.7076	
H ₇₁ -C ₃₇ -C ₄₃ -H ₇₉	-60.7137	-62.8466	
H71-C37-C43-H80	59.2838	57.4494	
H ₇₁ -C ₃₇ -C ₄₃ -H ₈₁	178.8218	177.2755	
O ₁ -C ₃₈ -C ₃₉ -C ₃₂	178.0466	175.3642	
O ₁ -C ₃₈ -C ₃₉ -H ₇₂	-3.7653	-4.4601	
C41-C38-C39-C32	1.8978	0.129	
C ₄₁ -C ₃₈ -C ₃₉ -H ₇₂	-179.9141	-179.6953	
O ₁ -C ₃₈ -C ₄₁ -C ₄₀	-177.3569	-175.3199	
O ₁ -C ₃₈ -C ₄₁ -H ₇₄	2.4284	5.4946	
C ₃₉ -C ₃₈ -C ₄₁ -C ₄₀	-0.8777	-0.3492	
C ₃₉ -C ₃₈ -C ₄₁ -H ₇₄	178.9076	-179.5347	
C35-C40-C41-C38	-0.6954	0.2795	
C ₃₅ -C ₄₀ -C ₄₁ -H ₇₄	179.5246	179.4528	
$H_{73}-C_{40}-C_{41}-C_{38}$	178.8731	-179.9783	
H ₇₃ -C ₄₀ -C ₄₁ -H ₇₄	-0.9069	-0.805	
C ₃₀ -H ₆₅ -O ₈₃ -C ₈₈	-152.087		
C ₃₀ -H ₆₅ -O ₈₃ -H ₉₆	-25.4844		
H ₁₄ -O ₁ -C ₄ -C ₅	-55.4822		

Parameters	PHB+İRİNOTECAN	İRİNOTECAN	РНВ
H ₁₄ -O ₁ -C ₄ -C ₆	71.4115		
H ₁₄ -O ₁ -C ₄ -H ₈	-171.0392		
H ₆₅ -O ₈₃ -C ₈₈ -O ₈₄	122.467		
H ₆₅ -O ₈₃ -C ₈₈ -C ₈₆	-59.0696		
H ₁₅ -O ₂ -C ₇ -O ₃	2.4869		
H ₁₅ -O ₂ -C ₇ -C ₅	-179.0498		
H ₆₅ -O ₈₃ -H ₉₆ -N ₁₀	18.0595		
C ₈₈ -O ₈₃ -H ₉₆ -N ₁₀	172.1907		
O ₈₂ -C ₈₅ -C ₈₆ -C ₈₈	60.6254		58.1588
O ₈₂ -C ₈₅ -C ₈₆ -H ₉₀	-175.7208		178.0704
O ₈₂ -C ₈₅ -C ₈₆ -H ₉₁	-57.8392		-63.638
C ₈₇ -C ₈₅ -C ₈₆ -C ₈₈	-65.7397		-65.3827
C ₈₇ -C ₈₅ -C ₈₆ -H ₉₀	57.9141		54.5289
C87-C85-C86-H91	175.7957		172.8205
H89-C85-C86-C88	175.2234		174.8236
H ₈₉ -C ₈₅ -C ₈₆ -H ₉₀	-61.1228		-65.2649
H ₈₉ -C ₈₅ -C ₈₆ -H ₉₁	56.7588		53.0267
O ₈₂ -C ₈₅ -C ₈₇ -H ₉₂	54.477		60.2873
O ₈₂ -C ₈₅ -C ₈₇ -H ₉₃	174.5131		178.914
O ₈₂ -C ₈₅ -C ₈₇ -H ₉₄	-64.7388		-60.5904
C ₈₆ -C ₈₅ -C ₈₇ -H ₉₂	-179.5399		-179.6033
C86-C85-C87-H93	-59.5039		-60.9765
C ₈₆ -C ₈₅ -C ₈₇ -H ₉₄	61.2443		59.519
H ₈₉ -C ₈₅ -C ₈₇ -H ₉₂	-61.3058		-61.0102
H ₈₉ -C ₈₅ -C ₈₇ -H ₉₃	58.7302		57.6165
H ₈₉ -C ₈₅ -C ₈₇ -H ₉₄	179.4784		178.1121
C ₈₅ -C ₈₆ -C ₈₈ -O ₈₃	156.6562		-123.2049
C ₈₅ -C ₈₆ -C ₈₈ -O ₈₄	-24.8885		58.1304
H ₉₀ -C ₈₆ -C ₈₈ -O ₈₃	31.3924		116.0912
H91-C86-C88-O83	-150.1523		-62.5735
H91-C86-C88-O84	-83.6559		-1.3625
O ₈₂ -C ₈₅ -C ₈₆ -C ₈₈	94.7994		179.9727
C ₈₅ -C ₈₆ -H ₉₀ -O ₄	-141.4437		
C ₈₈ -C ₈₆ -H ₉₀ -O ₄	-15.1726		
H ₉₁ -C ₈₆ -H ₉₀ -O ₄	99.6289		

4.2. MOLEKÜLLERİN TİTREŞİM İŞARETLEMELERİ

4.2.1. PHB (poli-3-hidroksibutirat) molekülünün titreşim işaretlemeleri

Teorik olarak çalışılan molekülün titreşim frekansları DFT(B3LYP) metoduyla 6-311++G(d,p), 6-31 G(d) ve cc-pVDZ baz setleri ile hesaplanmıştır. Elde edilen titreşim frekans değerleri yöntem ve temel setlere göre farklılık gösteren skala faktörleri ile çarpılarak skalalı değerlere ulaşılmıştır (Merrick ve ark., 2007). Buradaki amaç harmonik yaklaşımla hesaplanan dalga sayıları ile deneysel dalga sayıları arasındaki farkları azaltmaktır. Bu değerler ile deneysel veriler karşılaştırılarak teorik ve deneysel veri uygunluğu tartışılmıştır.

PHB molekülünün deneysel ve teorik FT–IR spektrumları ise Şekil 4.5.'te titreşim frekansları ise Tablo 4.4.'de gösterilmiştir.

PHB (poli-3-hidroksibutirat) molekülünün temel titreşim modları CH₂ (metilen), CH₃ (metil), O=C ve O-H gerilme ve bükülme titreşimleri grup frekansları göz önüne alınarak incelenmiştir.

Metilen gruplarının gerilme titreşimleri $2800 - 3000 \ cm^{-1}$ ' lik bölgeye yayılmış çok karmaşık bir bandda bulunur (Göçen ve Güven, 2020). CH₂ grubun asimetrik ve simetrik gerilme titreşimleri teorik spektrumda sırasıyla 2877 $\ cm^{-1}$, 2959 $\ cm^{-1}$ ve 3017 $\ cm^{-1}$ olarak hesaplanmıştır.

CH₃ grubunun simetrik ve asimetrik gerilme titreşimleri genel olarak 2800–3000 cm^{-1} dalgasayısı bölgesinde gözlenmektedir. PHB'nin deneysel spektrumunda metil grubuna (CH₃) ait simetrik gerilme titreşim modu 2933 cm^{-1} 'de işaretlenirken, teorik spektrumda 2924 cm^{-1} olarak, deneysel spektrumunda 2975 cm^{-1} 'de işaretlenen titreşim, teorik spektrumda 2980 cm^{-1} olarak hesaplanmıştır. Teorik spektrumda 3026 cm^{-1} 'de hesaplanan CH₃ asimetrik gerilme titreşim modu, bu bölgedeki diğer C-H modları tarafından perdelenmiş deneysel spektrumda işaretlenememiştir.

v(C=O) gerilme bandı, molekülün fiziksel durumuna, komşu yerleşimlerin elektronik etkilerine, konjugasyona, molekül içi ve moleküller arası hidrojen bağına bağlı olarak 1870 – 1540 cm^{-1} bölgesinde gözlenir (Silverstein ve Bassler, 1962). PHB 'nin deneysel spektrumunda C-O gerilme titreşim modu 1721 cm^{-1} 'de işaretlenirken, teorik spektrumda 1744 cm^{-1} olarak hesaplanmıştır.

Moleküle bağlı hidroksil grubuna ait v(OH) gerilme bandı 3200 – 3600 cm^{-1} spektral aralığında gözlenir (Göçen ve Güven, 2020). Molekülün O-H

gerilme titreşim modları teorik spektrumda 3627 cm^{-1} ve 3709 cm^{-1} olarak hesaplanmıştır.

Şekil 4.5.PHB molekülünün sırasıyla deneysel ve teorik (B3LYP/6-311++G(d,p)
FT–IR spektrumları.

Teorik (B3LYP)				Deneysel			
	6-	-311++G(d,p)	6- 31G(d)	cc- pVDZ	Exp.	TED (%)
Normal Modes.	Freq ^a	I ^c _{IR}	I ^c _{Raman}	Freq ^a	Freq ^a	IR	
v ₅	254			272	264		τ_{HOCC} (47) + τ_{HOCH} (23)
ν_{10}	538	44,86	1,69	536	540	514	τ_{HOCC} (15) + τ_{OCCH} (23)+ τ_{CCCH} (11) + τ_{HCCH} (10)
v_{11}	639			657	657		τ_{HOCC} (20) + τ_{HOCO} (20)+ τ_{OCCH} (17)
v_{12}	717			721	723		$δ_{CCH}(11) + τ_{HOCO}(12) + τ_{HCCO}(22)$
v_{14}	854	5,39	4,13	856	858	826	$δ_{CCH}(20) + τ_{OCCH}(15) + τ_{CCCH}(15)$
ν_{15}	886	17,03	1,32	890	888	895	$δ_{CCH}(16) + τ_{OCCH}(32) + τ_{CCCH}(13) + τ_{HCCH}$ (10)
ν_{16}	931	28,80	3,78	941	940	979	$δ_{CCH}(22) + τ_{OCCH}(15) + τ_{CCCH}(13) + τ_{HCCH}$ (11)
ν_{18}	1053	61,82	1,10	1061	1055	1054	$δ_{CCH}(21) + τ_{OCCH}(14) + τ_{CCCH}(14) + τ_{HCCH}$ (14)
v 19	1091	60,60	1,50	1105	1098	1100	$\delta_{CCH}(17) + \tau_{OCCH}(16) + \tau_{CCCH}(15)$
v_{20}	1138			1154	1154		δ _{ССН} (16) +τ _{ОССН} (16)
V ₂₁	1179	50,93	3,58	1187	1180	1181	$δ_{CCH}(20) + τ_{OCCH}(13) + τ_{CCCH}(12) + τ_{HCCH}(22)$
v ₂₂	1233	18,11	8,72	1240	1231	1227	$\delta_{CCH}(29) + \tau_{OCCH}(19) + \tau_{HCCH}(14)$
v_{23}	1275	2,50	1,10	1290	1279	1277	$δ_{COH}(13) + δ_{CCH}(24) + τ_{OCCH}(17) + τ_{HCCH}(12)$
v_{24}	1331	54,17	1,97	1345	1322		$δ_{CCH}(19) + τ_{CCCH}(11) + τ_{HCCH}(22) + τ_{HCCO}$ (11)
V25	1334			1357	1348		$\delta_{CCH}(16) + \tau_{OCCH}(13) + \tau_{HCCH}(23)$
v_{26}	1364			1381	1351		$δ_{CCH}(27) + \delta_{HCH}(19) + τ_{OCCH}(11) + τ_{HCCH}(16)$
v_{27}	1384	3,38	2,01	1400	1380	1379	$\delta_{CCH}(30) + \tau_{OCCH}(16) + \tau_{HCCH}(13)$
v ₃₀	1450	3,43	4,01	1474	1433	1454	$δ_{CCH}(11) + δ_{HCH}(28) + τ_{HCCH}(17) + τ_{OCCH}(14) + τ_{CCCH}(14)$
v ₃₁	1744	309,20	7,76	1770	1772	1721	v _{oc} (23)
v ₃₂	2877			2865	2865		v _{CH} (58)
v_{33}	2924	28,80	170,26	2929	2935	2933	v _{CH} (86)
v ₃₄	2959			2961	2972		ν _{CH} (70)
v_{35}	2980	29,56	79,57	2987	2998	2975	ν _{CH} (75)
v_{36}	3017			3022	3033		v _{CH} (63)
v 37	3026			3045	3053		ν _{CH} (71)
V 38	3627			3539	3584		v _{OH} (92)
V39	3709			3604	3664		v _{oh} (86)

PHB molekülünün titreşim frekansları Tablo 4.4.

vs: very strong, s: strong, m: medium strong, w: weak, mw: medium weak, vw: very weak, v: stretching, τ : torsion, γ : out of plane stretching, δ : in plane bending ^aThe harmonic vibration wavenumber calculated for the B3LYP/6-31++G(d,p) basis set was scaled to 0.967 factors. ^bInfrared intensities were calculated by normalizing the highest intensity value to 100.

4.2.2. İrinotekan (Irinotecan) molekülünün titreşim işaretlemeri

İrinotekan (Irinotecan) molekülü spektroskopik çalışması P. Chinna Babuve ark (Babu ve ark., 2012)tarafından yapılmıştır. Biz burada bu çalışmayı referans çalışma olarak kabul edip karşılaştırmalar yaptık.

İrinotekan molekülünün deneysel ve teorik FT–IR spektrumları Şekil .4.6. ' da, deneysel ve teorik Raman spektrumları Şekil 4.8'de verilmiştir. Referans aldığımız makaledeki benzer spektrumlar da Şekil 4.7. ve Şekil 4.9. 'da verilmiştir, Bu molekülün titreşim frekansları ise Tablo 4.5'de görülebilir.

İrinotekan molekülü 81 atomdan oluşur, bu nedenle 237 tane temel titreşim moduna sahiptir. İrinotekan molekülünün tamamı iki farklı gruptan oluşur ve bunlar etil ikameli kamptotesin ve bipiperidin esterdir. Etil ikameli kamptotesin, dördü altı üyeli ve biri beş üyeli halka olan beş halkadan oluşur. Piperidin halkası, tetrahedral geometriye yakın olan endosiklik bağ açısı ile sandalye konformasyonundadır (Babu ve ark., 2012).

Molekülün Etil ikameli kamptotesin kısmında, C - H gerilme titreşim freknsları DFT-B3LYP seviyesinde referans makalede 3152, 3142, 3104, 3089, 3058 ve 3042 cm^{-1} olarak, bizim çalışmamızda ise 3042, 3046, 3069, 3107, 3163, 3177 cm^{-1} olarak bulunmuştur. C - H gerilme titreşim frekansları spektrumun karakteristik bölgesi olan 3100–3000 cm^{-1} bölgesinde varlığını gösterir (Rastogi ve ark., 2002; Silverstein ve Bassler, 1962).

Fenil grubunun karbon-karbon gerilme modlarının 1650 ile 1200 cm^{-1} aralığında olması beklenir. Bu modların gerçek konumu, sübstitüentlerin doğasından çok, halka etrafındaki sübstitüsyon formu tarafından belirlenir (Perkampus, 1976). Referans makalede teorik olarak hesaplanan C = C titreşimleri 1674–1504 cm^{-1} ve 1437–1428 cm^{-1} aralığında, bizim çalışmamızda ise 1640 – 1509 cm^{-1} ve 1441 – 1423 cm^{-1} aralığındadır ve deneysel değerlerle uyumludur.

Şekil 4.6.İrinotekan molekülünün sırasıyla deneysel ve teorik
(B3LYP/6-31G) FT–IR spektrumları

Şekil 4.8. İrinotekan molekülünün sırasıyla deneysel ve teorik Raman spektrumları

Şekil 4.9. Referans makaledeki deneysel Raman spektrumu

	Teorik (B3LYP) Deneysel							
	6-3	31 G		6-31 G(d,p)	cc- pVDZ	Evn IR	Exp.	TED (%)
Normal Modes.	Freq ^a	I ^c _{IR}	I ^c _{Raman}	Freq ^a	Freq ^a	Ехр. ік	Raman	
V17	117	0,22	2,22	123	124		128	τ _{сссо} (14)
V ₂₀	160	0,80	0,62	159	161		159	$ au_{CCCC}$ (13) + $ au_{CCCH}$ (15)+ $ au_{HCCH}$ (11)
V70	600	12,20	9,34	678	683	631		τ_{CCCC} (21) + τ_{CCCH} (12)
V92	878	26,82	12,43	859	871	886		$\tau_{\rm CCCC}$ (11) + $\tau_{\rm CCCH}$ (30)
V98	946	14,71	7,56	937	944	936		v_{CC} (10)+ + τ_{CCCH} (11)
V ₁₁₃	1043	93,35	64,42	1035	1042	1044		τ _{HCCH} (12)
V ₁₁₉	1099	92,26	24,41	1089	1093	1084		δ _{CCH} (13) +τ _{HCCH} (19)
V ₁₃₁	1168	469,05	179,46	1166	1169	1194		$\delta_{CCH}(18) + \delta_{NCH}(11) + \tau_{CCCH}$ (12)
V ₁₄₉	1300	38,11	93,84	1290	1287		1302	ν _{CC} (13)+δ _{CCH} (24)
V ₁₅₈	1353	42,58	21,64	1341	1339	1359		v_{CC} (11)+ δ_{CCH} (14)
V ₁₆₅	1384	43,21	179,52	1367	1361		1384	δ _{CCH} (19)
V ₁₇₃	1441	19,89	157,72	1431	1407	1433	1456	$v_{\rm CC}$ (21)+ $\delta_{\rm CCC}$ (13)+ $\delta_{\rm CCH}$ (15)
V ₁₉₄	1573	400,83	1276,90	1593	1606	1567		$\nu_{\rm CC}$ (24)+ $\delta_{\rm CCC}$ (14)+ $\delta_{\rm CCH}$ (12)
V ₁₉₆	1612	103,85	3,63	1615	1626	1610	1617	ν _{CC} (26)+δ _{CCC} (16)+ δ _{CCH} (23)
V ₁₉₇	1640	248,62	660,76	1674	1682	1661		ν_{CC} (24)+ δ_{CCC} (13)+ δ_{CCH} (10)
V ₁₉₈	1651	548,48	4,07	1743	1751	1685		v _{oc} (13)
V ₁₉₉	1660	237,62	23,13	1745	1752	1746	1666	$v_{OC}(18) + \delta_{OCC}(10)$
V ₂₀₆	2926	40,51	66,49	2921	2934	2923		v _{CH} (73)
V ₂₀₇	2926	18,99	136,94	2922	2935		2921	ν _{CH} (70)
V ₂₂₂	2989	9,69	79,16	2978	2997		2988	v _{CH} (63)
V ₂₃₇	3411	66,20	73,24	3539	3517	3265		v _{OH} (81)

Tablo 4.5.İrinotekan molekülünün titreşim frekansları

4.2.3. Bağlı İrinotekan ve PHB molekülünün titreşim işaretlemeleri

Molekülün titreşim frekansları değerleri DFT(B3LYP) metoduyla 6-31G(d,p) baz seti ile hesaplanmıştır. Bağlı İrinotekan ve PHB molekülünün bazı teorik değerleri ile deneysel veriler karşılaştırılarak Tablo.4.6.'da gösterilmiştir Teorik ve deneysel veri uygunluğu görülmüştür

Bağlı İrinotekan ve PHB molekülünün deneysel ve teorik FT–IR spektrumları ise Şekil 4.10 'da gösterilmiştir.

Teorik (B3LYP)			Deneysel		
6-31 G(d,p)			Ĭ		
Normal Modes.	Freq ^a	I^b_{IR}	(3) ^c	(5) ^d	
V ₂₈₂	3573	126.14	3745vw	3727w	ν _{OH} (77)
V281	3538	113.21	3658vw	3704wv	v _{OH} (79)
V280	3150	1.06		3296vs	ν _{CH} (70)
V279	3140	81.56	3350vs	3364vs	$v_{CH}(33) + v_{HO}(27)$
V ₂₆₃	2986	1774.75	2989m		$v_{\rm NH}$ (21)+ $v_{\rm CH}$ (12)+ $v_{\rm OH}$ (26)
V ₂₆₀	2973	7.48	2974m		v _{CH} (62)
V ₂₄₈	2931	13.93	2930m		v _{CH} (66)
V ₂₄₅	2923	26.86		2924m	v _{CH} (65)
V241	2890	79.46	2891m		v _{CH} (58)
V240	2887	15.77		2887m	v _{CH} (60)
V ₂₃₇	2767	28.62	2539w		v _{CH} (50)
V ₂₃₆	1746	338.33	1744vs		$v_{OC}(22) + \delta_{OCC}(12)$
V ₂₃₅	1737	512.78	1724vs	1720s	v _{OC} (19)
V ₂₃₄	1695	194.54	1686m		v _{OC} (14)
V233	1674	513.70	1658s	1655w	v_{OC} (12)+ v_{CC} (16)+ δ_{CCC} (11)
V ₂₃₁	1604	184.10	1608vs		v_{CC} (19)+ δ_{CCC} (14) + δ_{CCH} (10)
V ₂₃₀	1590	6.99		1589w	$v_{CC}(35)+\delta_{CCC}(16)+\delta_{CCH}(12)$
V ₂₂₉	1562	32.56	1565m		$v_{CC}(23) + \delta_{CCC}(16) + \delta_{CCH}(11)$
V ₂₂₇	1501	107.78	1511w		v_{CC} (14)+ δ_{CCH} (19)
v ₂₁₅	1450	22.01	1449s		$δ_{\text{HCH}}(18)$ + τ _{HCCH} (13)+ τ _{CCCH} (12) +τ _{HCCO} (13)
V ₂₀₉	1434	20.09	1433vs	1432s	$\tau_{\rm CCCH} (10) + \tau_{\rm HCCH} (15)$
V ₂₀₄	1415	49.43	1416s		$\delta_{\rm CCH}(10) + \tau_{\rm HCCH}(8)$
V ₁₉₉	1382	3.58	1379m		$δ_{CCH}$ (19)+ $τ_{CNCH}$ (15)+ $τ_{CCCH}$ (11) + $τ_{HCCH}$ (16)
ν_{193}	1357	29.15	1359m		$\delta_{CCH}(21) + \tau_{CNCH}(12) + \tau_{CCCH}(10) + \tau_{HCCH}(16)$
v_{175}	1280	8.70	1279m		$\delta_{\rm CCH}(16) + \tau_{\rm HCCH}(21)$
v_{170}	1257	49.13		1256m	$\delta_{CCH}(18) + \tau_{CCCH}(10)$
v_{166}	1229	127.93		1229s	$v_{\rm CC}$ (8)+ $\delta_{\rm CCH}$ (16)
v_{165}	1222	7.16	1227m		δ _{CCH} (10)
V ₁₅₉	1184	506.27	1187m		δ _{CCH} (12)
V155	1157	24.20	1156w		δ _{CCH} (11)
V ₁₄₉	1133	3.09	1129w	1134m	$\delta_{CCH}(17) + \tau_{CCCH}(13) + \tau_{HCCH}(25)$
v_{148}	1107	286.82	1103w		$\delta_{\rm CCH}(11) + \tau_{\rm HCCH}(20)$
V ₁₄₃	1089	9.16		1083vs	$\delta_{\rm CCH}(11) + \tau_{\rm HCCH}(26)$

Tablo 4.6.Bağlı İrinotekan ve PHB molekülünün titreşim frekansları

Teorik (B3LYP)			Deneysel		
6-31 G(d,p)					TED (%)
Normal Modes.	Freq ^a	I_{IR}^b	(3) ^c	(5) ^d	
v_{141}	1068	13.64	1055m		$δ_{CCH}$ (13)+ $τ_{HCCO}$ (13)+ $τ_{CCCH}$ (11) + $τ_{HCCH}$ (11)
V ₁₃₇	1039	52.92	1037m	1044vs	$\delta_{\rm CCH}(13) + \tau_{\rm HCCH}(16)$
V ₁₃₀	999	114.78	1006m	1000vs	$\delta_{CCH}(11) + \tau_{CNCH}(11) + \tau_{CCCH}(14) + \tau_{HCCH}(13)$
V ₁₂₃	957	3.15	954w		$\delta_{\rm CCH}(11) + \tau_{\rm HCCH}(13)$
V ₁₁₉	934	8.54		936m	$\delta_{\text{CCH}}(14) + \tau_{\text{HCCO}}(14)$
V ₁₁₄	885	0.33	879w	887s	$\delta_{\text{CCH}}(12) + \tau_{\text{CNCH}}(11) + \tau_{\text{HCCH}}(17)$
v_{108}	845	14.08	848w		$\delta_{CCH}(12) + \tau_{CNCH}(12) + \tau_{HCCH}(21)$
V ₉₇	773	26.75	768vw		τ_{CNCH} (13)+ τ_{CCCH} (12)+ τ_{HCCH} (22)
V91	711	38.82		719w	$\tau_{OCCH}(9) + \tau_{HCCH}(7)$
V83	635	6.75		630 w	$\tau_{\rm CCCC}$ (16)+ $\tau_{\rm CCCH}$ (9)
V ₇₅	556	11.30	551w	546 w	$\tau_{\rm HCCO} (10) + \tau_{\rm CNHO} (9)$
V65	453	12.00	455vw		τнссн (8) +тнссс (6)+ тсссс (6)+ тссон (6)

vs: very strong, s: strong, m: medium strong, w: weak, mw: medium weak, vw: very weak, v: stretching, τ : torsion, γ : out of plane vs. very storig, st storig, in includin storig, w. weak, inw. includin iteau, i.e. very iteau, i.e. storetain, storig, it is storetain, δ: in plane bending ^aThe harmonic vibration wavenumber calculated for the B3LYP/6-31G(d,p) basis set was scaled to 0.962 factors. ^bInfrared intensities were calculated by normalizing the highest intensity value to 100.

C :Phb molekülüne 50 µl İrinotekan (Irinotecan) yüklendi D: Phb molekülüne 200 µl İrinotekan (Irinotecan) yüklendi

Şekil 4.10. Deneysel 50 μl, 200 μl ve teorik (B3LYP/6-31G) Bağlı İrinotekan (Irinotecan) ve PHB (poli-3-hidroksibutirat) molekülünün FT–IR spektrumları

4.3. Moleküler Elektrostatik Potansiyel (MEP)

Organik moleküllere yakın nokta yüklerin bu moleküllere yaklaşma olasılığı en yüksek olan bölgelere reaktifliğini bulmanın bir yolu MEP haritaları tekniğidir. Bir MEP haritası ayrıca farklı geometrilerin nasıl etkileşime girebileceğini, bağlantı oluşturup oluşturamayacaklarını ve nerede bağlantı yapılacağını tahmin etmenin basit bir yolunu sağlar. Böylece bu haritalar, ilgilenilen molekül ile diğer moleküller arasındaki etkileşimleri yorumlamaya yardımcı olur (Gil ve ark., 2015). MEP haritalarında, pozitif bölgeler (mavi) nükleofilik reaktivite ile ve negatif bölgeler (kırmızı) elektrofilik reaktivite ile ilgilidir. Haritalarda kırmızı, mavi ve yeşil renklerle gösterilen bölgeler sırasıyla negatif, pozitif ve sıfır elektrostatik potansiyel bölgelerini temsil etmektedir. Negatif elektrostatik potansiyel (kırmızı), protonun molekülün toplam elektron yoğunluğu ile çekilmesine karşılık gelir. Pozitif elektrostatik potansiyel (mavi) ise atom çekirdeği tarafından itilen protona karşılık gelir (Becker ve Fleming, 1976).

Biz bu çalışmamızda PHB ve İrinotekan moleküllerinin bağlanma noktalarını bulmak için MEP haritalarını Gauss View/5.0 paket programı ile görüntüledik. (Şekil 4.11 ve 4.12) Mep haritaları sayesinde çeşitli bağlanma noktaları belirledik. Belirlenen noktalardan en düşük enerjili konformasyonun $N_{10} - H_{96}$ atomları arasında olduğunu ve moleküllerin bu atomlar arasında bağ yapacağını öngördük.

Şekil 4.11. PHB molekülünün MEP haritası

Şekil 4.12. İrinotekan molekülünün MEP haritası

Şekil 4.11 ve Şekil 4.12 PHB ve İrinotekan moleküllerinin MEP haritası elektron dağılımının nasıl olduğunu açıkça göstermektedir. Negatif bölgeler oksijen atomları üzerinde lokalize olur iken pozitif bölgeler hidrojen atomları üzerinde lokalize olur. Moleküllerde karbon ve hidrojen atomlarının yerlerine bakılarak mavi ve kırmızıya kaymaları bu bilgiler üzerinden tartışılabilir.

4.4. Homo Lumo Analizi

Moleküler orbitaller en yüksek dolu moleküler orbital HOMO ve en düşük dolu moleküler orbital LUMO orbitali olarak adlandırılır. HOMO, elektronlar tarafından doldurulan en dıştaki molekül yörüngesi olduğu için elektron donörü görevi görürken, LUMO elektronlarla doldurulmayan düşük ve boş molekül yörüngesi olduğu için elektron alıcısı olarak görev yapar. Bu nedenle, HOMO doğrudan molekülün iyonlaşma potansiyelini temsil ederken, LUMO molekülün elektron ilgisini temsil eder. HOMO ve LUMO orbitalleri arasındaki enerji boşluğu, molekül içi ve moleküller arası yük transferinin belirlenmesinde kullanılan önemli bir parametredir. HOMO-LUMO arasındaki enerji farkı büyükse reaksiyon kabiliyetinin düşük olduğu yani molekülün kararlı olduğu söylenebilir (Bayrakdar, 2023; Meryem ve ark., 2021).

Etkileşen moleküler orbitallerin enerji seviyeleri birbirine ne kadar yakınsa, etkileşim o kadar kolay olur. Yani, enerji farkı ΔE ne kadar küçükse, reaktanlar arasındaki etkileşim ve reaksiyonun meydana gelme olasılığı o kadar yüksektir. (Pearson, 1989).

PHB ve İrinotekan moleküllerinin üç boyutlu HOMO-LUMO enerji değerleri Şekil 4.13 ve Şekil 4.14'de gösterilmiştir. PHB molekülünün HOMO ve LUMO enerji değerleri B3LYP metodunun 6311++G (d,p) baz setinde hesaplanırken, İrinotekan molekülünün HOMO ve LUMO enerji değerleri B3LYP metodunun 6-31G(d) baz setinde hesaplandı. Hesaplamalara göre PHB molekülün taban durum ile birinci uyarılmış seviyeleri arasındaki enerji bant boşluğu 6,720 *eV* civarında iken (Şekil 4.13.), İrinotekan molekülün taban durum ile birinci uyarılmış seviyeleri arasındaki enerji band aralığı 2.631 *eV* civarındadır (Şekil 4.14.). Moleküllerin HOMO-LUMO seviyelerinin tekrar uyarılması halinde ise hesaplanan değerler PHB molekülü için 8,524 *eV* civarı, İrinotekan molekülü için 3.626 *eV* civarındadır. Uyarılmış ve iyonik moleküller içindeki elektron yoğunluklarının saçılması, molekülü ve dolayısıyla moleküller arasındaki etkileşimi zayıflatır. HOMO-LUMO arasındaki enerji band aralığı değerinin molekül daha yüksek seviyelere uyarıldığında azalmasının nedeni budur.

Şekil 4.13. PHB molekülünün 3 boyutlu HOMO ve LUMO enerji aralıkları

Şekil 4.14. İrinotekan molekülünün 3 boyutlu HOMO ve LUMO enerji aralıkları

4.5. SEM Gözlemleri ve EDX Sonuçları

Sentezlenen PHB-MNP'lerin boyutu ve morfolojisi SEM ve EDX ile gözlemlendi (Şekil 4.15, 4.16, 4.17 ve 4.18). Karakteristik X-ışınları her elemente karşılık gelen spesifik enerjiye sahip olduğundan element, tepe enerjisinden tanımlanabilir ve bileşikteki elementin içeriği, tepe noktasının entegre yoğunluğundan analiz edilebilir (Shindo ve Oikawa, 2002).

Şekil 4.15. PHB EDX spektrumu

 Tablo 4.7.
 PHB molekülünün EDX spektrumunun sonuçları

Element	Series	Weight %	Atomic %	Net Int.	Error %
0	К	19.93	44.93	325.58	7.39
Na	К	3.14	4.93	21.38	19.89
Cl	К	1.22	1.24	38.99	10.16
Fe	К	75.7	48.89	956.65	2.36

Şekil 4.17PHB-Irinotecan EDX
spektrumuŞekil 4.18.PHB-Irinotecan SEM
görüntüsü

Tablo 4.8. PHB - İrinotekan EDX spektrumu sonuçları

Element	Series	Weight %	Atomic %	Net Int.	Error %
0	K	20.37	45.96	283.04	7.6
Na	K	1.9	2.99	11.26	28.87
Cl	K	2.18	2.22	60.96	9.68
Fe	K	75.55	48.84	833.86	2.41

4.6. XTT Testi

PHB-MNP'ler üzerinde en verimli ilaç yükleme kapasitesini bulmak için İrinotekan konsantrasyonunu kademeli olarak 500 $\mu g/ml'$ ye yükseltildi ve burada yükleme etkinliği azalmaya başladı. En verimli ilaç yükleme konsantrasyonu 200 $\mu g/ml$ olarak bulundu (Şekil 4.19).

Şekil 4.19. İrinotekan yükleme grafiği

En verimli şekilde yüklenen konsantrasyonların salım çalışmalarına 90 saate kadar devam edildi.

24 saat içinde 200 $\mu g/ml$ ilaç yüklü nanopartiküllerden ilacın yaklaşık %60' ι salınır (Şekil 4.20)

XTT hücre proliferasyon kiti ile ilacın, MCF-7 meme kanseri hücre hatları üzerindeki sitotoksik etkileri araştırılmıştır. Hesaplanan değerler sonucunda IC_{50} : 31,64µ*M* olarak bulunmuştur (Şekil 4.21).

Şekil 4.21. İlaç Toksisitesi

İlaç yüklü PHB nanoparçacıkların toksisitesi IC50 değeri 12,65 μM olarak bulunmuştur.

Şekil 4.22. İlaç yüklü nanoparçacık toksisitesi

Boş PHB kaplı nanoparçacıkların yüksek dozlarda herhangi bir toksisiteye sahip olmadığı daha önceki çalışmamızda gösterilmiştir (Yalçın ve ark., 2015).

İlaç yüklü nanopartiküllerin hücrelere girişi (İnternalizasyon) mikroskopta gösterildi (Şekil 4.23).

Şekil 4.23 İrinotekan yüklü Nanoparçacıkalrın hücre içine internalizasyonu (A; İrionotekan yüklü nanoparçacık uygulanmış kanser hücre hattı; B; kontrol hücre hattı)

4.7. Moleküler Kenetleme Çalışması (Molecular Docking)

İlaçların nanopartiküller üzerine yüklenmesi, sadece ilacı korumakla kalmamakta, aynı zamanda ilacın sitoplazmada sürekli salınımını sağlayarak sitotoksik etkiyi artırmaktadır. İlaç yüklü nanopartiküllerin etkinliği hücre içi alımına, hücre içi dağılımına ve hücre içindeki giren nanopartiküllerden ilacın salınan dozuna bağlı olması nedeniyle önem taşımaktadır.

Kenetleme işlemi, hedef ligand yapısının tahmin edilen protein aktif bölgesine bağlanma konformasyonunu ve bağlanma sırasındaki etkileşimlerin tahminini içerir. Yerleştirme işlemi, bilinen üç boyutlu yapılara sahip ligandlar ve reseptörler gerektirir. Bu arada program, çalışılan proteinin hedef bölgesinin 3 boyutlu yapısına göre ligandları yerleştirerek, bu sırada enerji ve gerekli bilgileri sağlar. (Trott ve Olson, 2010).

Anti-apoptotik proteinlerle İrinotekan molekülünün bağlanma enerjisi sonuçları Tablo 4.9.'da, anti-apoptotik proteinlerle ilaç yüklü nanoparçacık molekülünün kenetlenme enerjisi Tablo 4.10'da gösterilirken, proteinler ve molekülün etkileşimleri Şekil 4.24, 4.25, 4.26, 4.27 de gösterilmiştir.

Tablo 4.9. Anti-apoptotik proteinlerle	İrinotekan molekülünün	bağlanma	enerjisi
sonuçları			

PROTEİN	LÌGAND	ENERJİ DEĞERLERİ
BCL-2	İrinotekan	-10.5 Kcal/mol
BCL-w	İrinotekan	-11.6 Kcal/mol
AKT-1	İrinotekan	-10.8 Kcal/mol
BRAF	İrinotekan	-11.9 Kcal/mol
MCL-1	İrinotekan	-10.7 Kcal/mol

Tablo 4.10.	Anti-apoptotik proteinlerle ilaç yüklü nanoparçacık molekülünün
kenetlenme e	nerjisi

PROTEİN	LİGAND	ENERJİ DEĞERLERİ
BCL-2	İrinotekan bağlı PHB nanoparçacık	-10.7 Kcal/mol
BCL-w	İrinotekan bağlı PHB nanoparçacık	-11.8 Kcal/mol
AKT-1	İrinotekan bağlı PHB nanoparçacık	-12.5 Kcal/mol
BRAF	İrinotekan bağlı PHB nanoparçacık	-11.5 Kcal/mol
MCL-1	İrinotekan bağlı PHB nanoparçacık	-11.3 kcal/mol

Şekil 4.24. AKT-1 proteini ve molekülün etkileşimi

Şekil 4.25. Bcl-w proteini ve molekülün etkileşimi

Şekil 4.26. BRAF proteini ve molekülün etkileşimi

Şekil 4.27. MCL-1 proteini ve molekülün etkileşimi

4.8. Moleküler Dinamik (MD) Simülasyon Çalışması

Protein ve ligand etkileşiminin yorumlanmasında moleküler dinamik simülasyon çalışmaları ile elde edilen en önemli kriterlerden biri kök ortalama kare sapma (RMSD) grafikleridir. Proteine güçlü bir şekilde bağlanan bir ligand, proteinin işleyişini engellemiş olacaktır. Bu sonuç, RMSD çizelgelerinde daha az ve sabit piklerin görülmesine neden olur (Bekker ve ark., 1993).

MD yörüngelerinin stabilitesini analiz etmek için çok önemli bir parametre olan RMSD, protein ve ligand-protein komplekslerinin omurga atomlarının tahmini için kullanılır. Kompleks için omurga RMSD'sinin ölçümleri, konformasyonel kararlılık hakkında fikir verir (Lindorff-Larsen ve ark., 2010).

RMSF grafikleri, simülasyon boyunca kalıntıdan kalıntıya değişiklik gösterdi. Kompleks durumunda, C-terminal ve N-terminal alanlarında yer alan tüm kalıntıların RMSF değerleri < 5 Å (1 *A*: 0.1 *nm*) olmuştur. Kompleks, proteinin substrat bağlama bölgesinde kararlı ve rijit konformasyon oluşturmuştur. Molekül ve Akt-1, 200-250 aralığında hidrojen bağlarına sahiptir. Moleküler dinamik simülasyonları sırasında meydana gelen hidrojen bağlarının sayısına bağlı olarak, tüm ligandlar karşılık gelen aktif bölge kenarlarını işgal etti ve kararlı hidrojen bağları sergiledi (Şekil 4.28).

Şekil 4.28.AKT-1 proteini ve İrinotekan bağlı PHB kaplı nanoparçacıkların
molekülün dinamik sonuçları

5. SONUÇ VE ÖNERİLER

Bu çalışmada, kanser tedavisinde kullanılmak üzere hedeflenen ilaç salınımı ile İrinotekan yüklü PHB kaplı manyetik nanoparçacıklar sentezlendi. Çalışmamız deneysel verilerin yanı sıra teorik verilerle de desteklendi. Teorik çalışma kısmında PHB ve kanser ilacı İrinotekan 'ın 3 boyutlu çizimlerini Gauss View/5.0 paket programı ile analiz edildi. Gaussian/09 paket programı içinde bulunan Yoğunluk Fonksiyon Teorisi (DFT) ile geometrik yapısı, titreşim modları ve IR-ve Raman spektrumu teorik olarak belirlendi. Hesaplamalar Yoğunluk Fonksiyon Teorisi (DFT) ile PHB molekülü için 6311++G(d,p), 6-31G(d), cc-pVDZ, İrinotekan molekülü için 6-31G, 6-31G(d,p), cc-pVDZ ve bağlı yapı için 6-31 G(d,p) baz setleri kullanılarak yapıldı. İrinotekan ve PHB moleküllerindeki $N_{10}-H_{96}$ atomları ile $O_{84}-H_{65}$ atomları arasında zayıf hidrojen bağı oluşabileceği öngörüldü ve optimizasyon çalışmaları yapıldı. Yeni oluşan bağlar ve bu bağların titreşim modlarını belirlendi. Yapılan çalışmalar sonunda en düşük enerjili durumun $N_{10}-H_{96}$ arasında olduğunu gözlemlendi. Bu hesaplamalardan sonra DFT modeli kullanılarak elektronun yük yoğunluğunun üç boyutlu haritası (MEP) çizildi Bu haritaya göre kırmızı bölgede elektron fazlalığı, mavi bölgede elektron eksikliği söz konusudur. Böylece moleküller hakkında yorum yapabilmemiz sağlanmaktadır. Ayrıca çalışılan moleküllerin diğer moleküllerle etkileşimini incelemek için HOMO-LUMO çalışması yapılmıştır. Bu kuantum kimyası için önemli bir çalışma olup elektron alıp-verme ile ilgili bize bilgi sağlamıştır. PHB ve irinotekan molekülleri için deneysel veriler, teorik olarak hesaplanan verilerle karşılaştırıldı. Teorik olarak elde edilen verilerin deneysel verilerle tam bir uyum içinde olduğu sonucuna varılmıştır. İrinotekan bir antikanser ajanı olarak kullanıldı ve PHB-MNP'lere yüklendi. PHB-MNP'ler üzerinde en etkili ilaç yükleme kapasitesini bulmak için İrinotekan konsantrasyonunu kademeli olarak artırdık ve en etkili ilaç yükleme konsantrasyonunu 200 $\mu g/ml$ olarak bulduk. Bu durumda ilacın yaklaşık %60'nın salındığı gözlemlendi. En verimli şekilde yüklenen konsantrasyonların salım çalışmalarına 90 saate kadar devam edildi. XTT hücre proliferasyon kiti ile ilacın, MCF-7 meme kanseri hücre hatları üzerindeki sitotoksik etkileri araştırılmıştır. Hesaplanan değerler sonucunda IC50: 31,64µM olarak bulunmuştur. İlaç yüklü PHB nanoparçacıkların toksisitesi ise IC50 değeri 12,65 µM olarak bulunmuştur Sitotoksisite analizlerini desteklemek için moleküler kenetleme çalışmalarını da kullandık. RMSD ölçümleri konformasyonel kararlılık hakkında fikir verdi. RMSF grafikleri, simülasyon boyunca kalıntıdan kalıntıya değişiklik gösterdi. Kompleks durumunda, C-terminal ve N-terminal alanlarında yer alan tüm kalıntıların RMSF değerleri < 5 Å (1 A: 0.1 nm) olmuştur. Kompleks, proteinin substrat bağlama bölgesinde kararlı ve rijit konformasyon oluşturmuştur. Molekül ve Akt-1, 200-250 aralığında hidrojen bağlarına sahiptir. Moleküler dinamik simülasyonları sırasında meydana gelen hidrojen bağlarının sayısına bağlı olarak, tüm ligandlar karşılık gelen aktif bölge kenarlarını işgal etti ve kararlı hidrojen bağları sergiledi PHB-MNP'lerden kontrollü İrinotekan salınımı, kanser hücrelerini hedeflemek ve ilaç direncini yenmek için umut verici bir aday gibi görünmektedir.

6. KAYNAKLAR

- A Baudino, T. (2015). Targeted cancer therapy: the next generation of cancer treatment. *Current drug discovery technologies*, *12*(1), 3-20.
- Aghebati-Maleki, A., Dolati, S., Ahmadi, M., Baghbanzhadeh, A., Asadi, M., Fotouhi, A., Yousefi, M., & Aghebati-Maleki, L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. *Journal* of cellular physiology, 235(3), 1962-1972.
- Akar, İ. (2011). Teorik ve deneysel titreşim spektroskopisi yardımıyla 5-kloro-8hidroksikinolin ve Zn ve Mn komplekslerinin incelenmesi Fen Bilimleri Enstitüsü].
- Al-Kubati, A. (2021). Biyopolimerler. https://doi.org/10.13140/RG.2.2.22777.70248
- Aliustaoğlu, M. (2009). Temel kanser fizyopatolojisi. Klinik Gelişim, 22(3), 46-49.
- Alyar, H., Bahat, M., Kasap, E., & Kantarci, Z. (2006). Torsional barriers and nonlinear optical properties of 2-, 3-, 4-phenylpyridine molecules. *Czechoslovak Journal of Physics*, 56, 349-358.
- Ansari, M. J., Kadhim, M. M., Hussein, B. A., Lafta, H. A., & Kianfar, E. (2022). Synthesis and stability of magnetic nanoparticles. *BioNanoScience*, 1-12.
- Babos, G., Rydz, J., Kawalec, M., Klim, M., Fodor-Kardos, A., Trif, L., & Feczkó, T. (2020). Poly (3-hydroxybutyrate)-based nanoparticles for sorafenib and doxorubicin anticancer drug delivery. *International Journal of Molecular Sciences*, 21(19), 7312.
- Babu, P. C., Sundaraganesan, N., Sudha, S., Aroulmoji, V., & Murano, E. (2012). Molecular structure and vibrational spectra of Irinotecan: A density functional theoretical study. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 98, 1-6.
- Banwell, C. N., & McCash, E. M. (2017). *Fundamentals of molecular spectroscopy*. Indian Edition.
- Barouti, G., Jaffredo, C. G., & Guillaume, S. M. (2017). Advances in drug delivery systems based on synthetic poly (hydroxybutyrate)(co) polymers. *Progress in Polymer Science*, 73, 1-31.
- Baykara, O. (2016). Kanser Tedavisinde Güncel Yaklaşimlar. *Balıkesir Sağlık Bilimleri Dergisi*, 5(3), 154-165.
- BAYRAKDAR, A. (2023). 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları. *Journal of the Institute of Science and Technology*, 13(1), 268-277.
- Becker, H., & Fleming, J. (1976). Frontier Orbitals and Organic Chemical Reactions. 249 S. In: John Wiley u. Sons LTD., London/New York/Syndney/Toronto.
- Bekker, H., Berendsen, H., Dijkstra, E., Achterop, S., Vondrumen, R., VANDERSPOEL, D., Sijbers, A., Keegstra, H., & Renardus, M. (1993). Gromacs-a parallel computer for molecular-dynamics simulations. 4th International Conference on Computational Physics (PC 92),
- Beşergil, P. D. B. (2008). Nanopartiküller, Multifonksiyonal; Tıpta (multifunctional nanoparticles in medicine). <u>http://bilsenbesergil.blogspot.com/p/nanopartikuller-</u> <u>multifonksiyonal-tpta.html</u>
- Castro, K. C. d., Costa, J. M., & Campos, M. G. N. (2022). Drug-loaded polymeric nanoparticles: a review. *International Journal of Polymeric Materials and Polymeric Biomaterials*, 71(1), 1-13.
- Chabot, G. G. (1997). Clinical pharmacokinetics of irinotecan. *Clinical pharmacokinetics*, 33, 245-259.

Chang, R. (1971). Basic principles of spectroscopy.

- Cherpinski, A., Gozutok, M., Sasmazel, H. T., Torres-Giner, S., & Lagaron, J. M. (2018). Electrospun oxygen scavenging films of poly (3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications. *Nanomaterials*, 8(7), 469.
- Conde, J., Larguinho, M., Cordeiro, A., Raposo, L. R., Costa, P. M., Santos, S., Diniz, M. S., Fernandes, A. R., & Baptista, P. V. (2014). Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. *Nanotoxicology*, 8(5), 521-532.
- Cook, D. B. (2013). Ab initio valence calculations in chemistry. Butterworth-Heinemann.
- Costa, L., Almeida, T., Carvalho, L., & Canedo, E. (2014). Stabilization during processing of PHB/organoclay. Proceedings of the 2nd Brazilian Conference on Composite Materials, São Paulo, Brazil,
- Cotton, F. A. (1991). Chemical applications of group theory. John Wiley & Sons.
- Coughlin, S. S. (2019). Epidemiology of breast cancer in women. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress, 9-29.
- Çakmak, N. (2015). Hofmann-Pn-Tipi Konak-Aromatik Konuk Sistemlerin Kırmızı-Altı Spektroskopik Bölgesinde Incelenmesi Anadolu University (Turkey)].
- Dey, A., Koli, U., Dandekar, P., & Jain, R. (2016). Investigating behaviour of polymers in nanoparticles of Chitosan Oligosaccharides coated with Hyaluronic Acid. *Polymer*, 93, 44-52.
- Dürr, S., Janko, C., Lyer, S., Tripal, P., Schwarz, M., Zaloga, J., Tietze, R., & Alexiou, C. (2013). Magnetic nanoparticles for cancer therapy. *Nanotechnology Reviews*, 2(4), 395-409.
- Eldred-Evans, D., Burak, P., Connor, M. J., Day, E., Evans, M., Fiorentino, F., Gammon, M., Hosking-Jervis, F., Klimowska-Nassar, N., & McGuire, W. (2021).
 Population-based prostate cancer screening with magnetic resonance imaging or ultrasonography: the IP1-PROSTAGRAM study. *JAMA oncology*, 7(3), 395-402.
- Eskioğlu, B. (2012). 4-metil 2-fenil imidazol molekülünün geometrik yapısı ve titreşim frekaslarının deneysel ve teorik incelenmesi Fen Bilimleri Enstitüsü].
- Fang, X., & Tan, W. (2010). Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Accounts of chemical research, 43(1), 48-57.
- Farzin, A., Etesami, S. A., Quint, J., Memic, A., & Tamayol, A. (2020). Magnetic nanoparticles in cancer therapy and diagnosis. *Advanced healthcare materials*, 9(9), 1901058.
- Gans, P., Gill, J., & Griffin, M. (1976). Direct observation by Raman spectroscopy of the coexistence of a variety of ion-paired species in liquid ammonia solutions of alkali metal salts. *Journal of the American Chemical Society*, *98*(15), 4661-4662.
- Gil, D. M., Lestard, M. D., Estévez-Hernández, O., Duque, J., & Reguera, E. (2015). Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo analysis of 1-benzyl-3-(2-furoyl) thiourea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 553-562.
- Gill, P. M., & von Rague Schleyer, P. (1994). Density functional theory (DFT), Hartree-Fock (HF), and the self-consistent field. *J. Chem. Phys*, *100*, 5066-5075.
- GÖCEN, T., & GÜVEN, M. H. (2020). Palmitoleik Asidin Moleküler Yapısı, Titreşim Spektrumları ve Elektronik Özelliklerinin Teorik Olarak İncelenmesi. *Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi*, 7(2), 553-573.

- Gundersen, G., & Rankin, D. W. (1983). The gas-phase molecular structure of piperidine studied by electron diffraction. Acta chemica Scandinavica. Series A. Physical and inorganic chemistry, 37(10), 865-874.
- Gunduz, U., Keskin, T., Tansık, G., Mutlu, P., Yalcın, S., Unsoy, G., Yakar, A., Khodadust, R., & Gunduz, G. (2014). Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. *Biomedicine & Pharmacotherapy*, 68(6), 729-736.
- Gürsel, H. (2022). Nanopartiküller: Özellikleri ve Uygulama Alanları. <u>https://shop.nanografi.com.tr/blografi/nanopartikuller-ozellikleri-ve-uygulama-alanlari/</u>
- Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. *Nat Rev Dis Primers*, 5(1), 66. <u>https://doi.org/10.1038/s41572-019-0111-2</u>
- Hassan, M. S., Ansari, J., Spooner, D., & Hussain, S.A. (2010). Chemotherapy for breast cancer (Review). *Oncology Reports, 24, 1121-1131*. <u>https://doi.org/10.3892/or_00000963</u>
- Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. *Physical review*, 136(3B), B864.
- Holmes, P. (1988). Biologically produced (R)-3-hydroxyalkanoate polymers and copolymers. *Developments in crystalline polymers*, 2, 1-65.
- Holtje, H.-D., Sippl, W., Rognan, D., & Folkers, G. (2003). *Molecular modeling* (Vol. 5). Wiley-VCH Weinheim, Germany.
- Jacob, J. A., Salmani, J. M. M., & Chen, B. (2016). Magnetic nanoparticles: mechanistic studies on the cancer cell interaction. *Nanotechnology Reviews*, 5(5), 481-488.
- Jensen, F. (2006). The basis set convergence of spin- spin coupling constants calculated by density functional methods. *Journal of chemical theory and computation*, 2(5), 1360-1369.
- Kahraman, D. (2014). 4, 4' metilendianilin molekülünün geometrik yapısı ve titreşim frekanslarının teorik ve deneysel olarak incelenmesi Fen Bilimleri Enstitüsü].
- Kantarci, Z., & Bayrak, C. (1998). Vibrational Spectroscopic Studies on the tn-Td-Type Mn (tn) Zn (CN) 4 _2C 6 H 6 and the Chelated tn-Td-Type Zn (tn) Zn (CN) 4 _2C 6 H 6 Clathrates. *Journal of inclusion phenomena and molecular recognition in chemistry*, 30, 59-68.
- Köksal, N. G. (2022). MEME KANSERİNDE TARAMA VE ERKEN TANI. DergiPark.
- Köksal, R., & Yalcin, S. (2020). The Cytotoxic Effect of Annona muricata-Loaded PHB-Coated Magnetic Nanoparticles on Cancer Cell Lines and Molecular Docking Analyses. *Current Pharmacology Reports*, 6, 121-130.
- Kutlu, N. (2007). 4-amino-1H-benzo [4, 5] imidazo [1, 2-alfa] pirimidin-2-one bileşiğinin koordinasyon modları ve titreşim frekanslarının Gaussian 03 ile incelenmesi Fen Bilimleri Enstitüsü].
- Leach, A. R. (2001). *Molecular modelling: principles and applications*. Pearson education.
- Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. *Biotechnology and bioengineering*, 49(1), 1-14.
- Levine, I. N., Busch, D. H., & Shull, H. (2009). *Quantum chemistry* (Vol. 6). Pearson Prentice Hall Upper Saddle River, NJ.
- Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. *Proteins: Structure, Function, and Bioinformatics*, 78(8), 1950-1958.

- Lu, A. H., Salabas, E. e. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. *Angewandte Chemie International Edition*, 46(8), 1222-1244.
- Maia, J., Santana, M., & Ré, M. (2004). The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process. *Brazilian Journal of Chemical Engineering*, 21(1), 01-12.
- Meisenberg, C., Ashour, M. E., El-Shafie, L., Liao, C., Hodgson, A., Pilborough, A., Khurram, S. A., Downs, J. A., Ward, S. E., & El-Khamisy, S. F. (2016). Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. *Nucleic Acids Research*, 45(3), 1159-1176. https://doi.org/10.1093/nar/gkw1026
- Mercan, N., & Beyatlı, Y. (2004). Bakteriyal Biyoplastikler ve Kullanım Potansiyelleri. In: Orlab On-Line Mikrobiyoloji Dergisi.
- Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. *The Journal of Physical Chemistry A*, 111(45), 11683-11700.
- Meryem, E., Çelik, İ., & Kuyucuklu, G. (2021). Bazı yeni 2, 5-disübstitüe benzoksazol türevlerinin sentezi, antimikrobiyal aktivite, moleküler doking ve dft çalışmaları. *Avrupa Bilim ve Teknoloji Dergisi*(27), 605-614.
- Miehlich, B., Savin, A., Stoll, H., & Preuss, H. (1989). Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. *Chemical Physics Letters*, 157(3), 200-206.
- Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: current status and future prospects. *The FASEB journal*, *19*(3), 311-330.
- Pearson, R. G. (1989). Absolute electronegativity and hardness: applications to organic chemistry. *The Journal of Organic Chemistry*, 54(6), 1423-1430.
- Perkampus, H. H. (1976). LJ Bellamy: The Infrared Spectra of Complex Molecules, Vol.
 1, 3. Auflage, Chapman and Hall Ltd., London 1975, 433 Seiten, 32 Abb., 22 Tabellen, Preis:£ 8.—. In: Wiley Online Library.
- Poole, C. P., & Owens, F. J. (2003). Introduction to nanotechnology.
- Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., & Saratale, R. G. (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. *Microbial pathogenesis*, 114, 41-45.
- Pulay, P. (1969). Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I. Theory. *Molecular Physics*, *17*(2), 197-204.
- Pulay, P. (2007). Analytical derivative methods in quantum chemistry. Advance in Chemical Physics, 241-286.
- Qin, J., Lian, J., Wu, S., Wang, Y., & Shi, D. (2019). Recent advances in nanotechnology for breast cancer therapy. *Nano Life*, 9(01n02), 1940003.
- Rastogi, V., Palafox, M. A., Tanwar, R., & Mittal, L. (2002). 3, 5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 58(9), 1987-2004.
- Sarkar, S., & Mandal, M. (2011). Breast cancer: classification based on molecular etiology influencing prognosis and prediction. *Breast Cancer-Focusing Tumor Microenvironment, Stem cells and Metastasis*.
- Sertbakan, T. R. (2000). Hofmann-dadn ve Hofmann-Td-tipi bazı konak-konuk ve konak bileşiklerinin titreşim spektroskopisi ile incelenmesi.
- Sharma, R., & Ray, A. R. (1995). Polyhydroxybutyrate, its copolymers and blends. Journal of Macromolecular Science, Part C: Polymer Reviews, 35(2), 327-359.

- Shindo, D., & Oikawa, T. (2002). Energy dispersive x-ray spectroscopy. In Analytical electron microscopy for materials science (pp. 81-102). Springer.
- Shubayev, V. I., Pisanic II, T. R., & Jin, S. (2009). Magnetic nanoparticles for theragnostics. *Advanced drug delivery reviews*, 61(6), 467-477.
- Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. *Journal of Chemical Education*, 39(11), 546.
- Singh, R., & Lillard Jr, J. W. (2009). Nanoparticle-based targeted drug delivery. *Experimental and molecular pathology*, 86(3), 215-223.
- Society, A. C. (2019-2020). Breast Cancer Facts & Figures.
- Solaimuthu, A., Vijayan, A. N., Murali, P., & Korrapati, P. S. (2020). Nano-biosensors and their relevance in tissue engineering. *Current opinion in biomedical engineering*, 13, 84-93.
- Sundaraganesan, N., Meganathan, C., & Kurt, M. (2008). Molecular structure and vibrational spectra of 2-amino-5-methyl pyridine and 2-amino-6-methyl pyridine by density functional methods. *Journal of Molecular Structure*, 891(1-3), 284-291.
- Sur, S., Rathore, A., Dave, V., Reddy, K. R., Chouhan, R. S., & Sadhu, V. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. *Nano-Structures & Nano-Objects*, 20, 100397.
- Surendiran, A., Sandhiya, S., Pradhan, S., & Adithan, C. (2009). Novel applications of nanotechnology in medicine. *Indian Journal of Medical Research*, 130(6), 689-701.
- Taherian, A., Esfandiari, N., & Rouhani, S. (2021). Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. *Cancer Nanotechnology*, 12(1), 1-20.
- Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *Journal of computational chemistry*, *31*(2), 455-461.
- Volova, T., Shishatskaya, E., Sevastianov, V., Efremov, S., & Mogilnaya, O. (2003). Results of biomedical investigations of PHB and PHB/PHV fibers. *Biochemical Engineering Journal*, 16(2), 125-133.
- WHO. (2020). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer
- Wiseman, L. R., & Markham, A. (1996). Irinotecan. A review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer. *Drugs*, 52(4), 606-623. <u>https://doi.org/10.2165/00003495-199652040-00013</u>
- Wiseman, L. R., & Markham, A. (1996). Irinotecan: a review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer. *Drugs*, 52, 606-623.
- Woodward, L. A. (1972). Introduction to the theory of molecular vibrations and vibrational spectroscopy.
- Yalcin, S., Khodadust, R., Unsoy, G., Ceren Garip, I., Didem Mumcuoglu, Z., & Gunduz, U. (2015). Synthesis and characterization of polyhydroxybutyrate coated magnetic nanoparticles: Toxicity analyses on different cell lines. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*, 45(5), 700-708.
- Yurdakul, Ş. (2010). Spektroskopi ve grup teorisinin temelleri ders notları.
- Zafer, N. (2006). 1, 8-diaminooktan molekülünün titreşim spektrumunun teorik olarak incelenmesi Fen Bilimleri Enstitüsü].
- Zawidlak-Węgrzyńska, B., Kawalec, M., Bosek, I., Łuczyk-Juzwa, M., Adamus, G., Rusin, A., Filipczak, P., Głowala-Kosińska, M., Wolańska, K., & Krawczyk, Z.

(2010). Synthesis and antiproliferative properties of ibuprofen-oligo (3-hydroxybutyrate) conjugates. *European Journal of Medicinal Chemistry*, 45(5), 1833-1842.

ÖZGEÇMİŞ

	KİŞİSEL BİLGİLER
Adı Soyadı:	Fatmanur ÖZÇELİK
Uyruğu:	TC
Orcid Numarası:	0000-0003-0995-492X
	EĞİTİM BİLGİLERİ
	Lisans
Üniversite:	Ahi Evran Üniversitesi
Fakülte:	Fen Edebiyat Fakültesi
Bölümü:	Fizik
Mezuniyet Yılı:	2012
	Yüksek Lisans
Üniversite:	Ahi Evran Üniversitesi
Enstitü:	Fen Bilimleri Enstitüsü
Anabilim Dalı:	Fizik
Mezuniyet Yılı:	2016
•	2016
	Doktora
Üniversite:	Doktora Ahi Evran Üniversitesi
Üniversite: Enstitü:	Doktora Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü
Üniversite: Enstitü: Anabilim Dah:	Doktora Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Fizik

Tezden Üretilen Makaleler ve Bildiriler

Uluslarası Hakemli Dergilerde Yayınlanan Makaleler

- Molecular structure, quantum chemical and spectroscopic properties of 2,6-dibromonaphthalene by density functional theory calculations
- Sertbakan Tevfik Raci, Özçelik Fatmanur, Yayın Yer: Journal Of Molecular Structure, 2022

Uluslarası Konferans ve Sempozyumlarda Sunulan Bildiriler

• Vibrational spectral analysis ane theoretical studies of 2,6-dibromonaphthalene molecule. Özçelik Fatmanur,Sertbakan Tevfik Raci, Yayın Yeri: Turkish Physical Society 33rd International Physics Congress, September 6-10 2017, Bodrum, Türkiye, 10.09.2017(POSTER)

- Investigations of 5-bromo-2-methylbenzoxazole molecular spectroscopic methods
- Sertbakan Tevfik Raci, Özçelik Fatmanur, Yayın Yeri: 3rd International Turkic World

Conferenceon Chemical Sciences and Technologies (ITWCCST - 2017), September 10-13 2017, Baku, Azerbaijan, 13.09.2017(POSTER)