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ÖZET 

 

 

YÜKSEK LİSANS TEZİ 

 

GERÇEK ZAMANLI YÜZ MASKESİ ALGILAMA UYARI SİSTEMİ 

 

ALI ABBAS JASIM 

 

Kırşehir Ahi Evran Üniversitesi 

Fen Bilimleri Enstitüsü 

İleri Teknolojiler Anabilim Dalı 

 

Danışman: Doç. Dr. MUSTAFA YAĞCI 

Gerçek zamanlı maske tespiti ve tahmini, iki aşamada kurulan derin öğrenmeyi kullanan 

araştırmaların ana hedefleridir; ilk aşama, görüntü sınıflandırması için önceden eğitilmiş bir 

MobileNetV2 ağı kullanarak bir modeli eğitmekti. Eğitim verilerimiz iki kategoriye ayrılmış 

(maskesiz maske) 1785 görüntüydü. İkinci aşamada, 'Single Shot Multi-box Detector' (SSD) 

dedektörü ve ResNet-10 mimarisini kullanarak gerçek zamanlı video akışlarında yüzleri 

algılamak için OpenCV kütüphanesini kullanıyoruz. Daha sonra bu sonuçları, birinin maske 

takıp takmadığını belirlemek için modelimize girdi olarak kullanırız. F1 puanı yüzde 100, 

model doğruluğu ise yüzde 99.72 idi. Eğitim verileri çeşitli kaynaklardan elde edilmiş ve 

tamamı internetten indirilmiştir. 
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Real-time mask detection and prediction are the main objectives of research using deep 

learning, which was established in two stages; the first stage was training a model using a 

pre-trained MobileNetV2 network for image classification. Our training data was 1785 

images divided into two categories (mask without mask). In the second stage, we use the 

OpenCV library to detect faces in real-time video streams using the 'Single Shot Multi-box 

Detector' (SSD) detector and the ResNet- 10 architecture. Then we utilize these results as 

inputs to our model to determine whether or not someone is wearing a mask. The F1 score 

was 100 percent, while the model accuracy was 99.72 percent. Training data was obtained 

from various sources, and all downloaded from the internet. 
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1 INTRODUCTION 

When we use social networking sites, we often notice that some things happen that surprise 

us, such as suggesting new friends, analyzing mutual friends, helping users discover new 

content, communicating with the things they care about most ... etc. These and many other 

things happen under the Machine learning term . 

Machine learning is a discipline of computer science that investigates algorithms that can 

learn from their data and experience [1]. It's a part of artificial intelligence. Machine learning 

algorithms develop a model based on sample data, called "training data" [2], it is a 

preliminary set of data used to help a program understand how to apply techniques like 

learning neural networks to achieve complex results through which a computer learns how to 

process information without being explicitly programmed. A training set is often made up of 

a huge number of photos. Because the machine learning software is so complicated and 

smart, it performs iterative training on each of these images to eventually recognize 

characteristics, shapes, and even subjects such as humans, animals, letters, numbers, etc. 

Training data is critical to this process and can be considered the "fuel" that allows the system 

to function. The development of conventional algorithms to accomplish the required tasks is 

difficult or impossible in a broad range of applications, including medicine, email filtering, 

voice recognition, and computer vision, where machine learning techniques are utilized [3]. 

One of the scientific topics that have multiple disciplines is the topic of computer vision, 

which deals with the ability of computers to perceive and understand images and to automate 

the procedures that the human system can perform [4], which makes the computer deal with 

how it enables it to acquire a high-level understanding of a digital image or a series of 

images, analyze it and extract data that allows the computer to reach the right decision like 

the human mind works in distinguishing objects. video streams, multidimensional data from a 

scanner, medical scanning devices, etc., are all examples of image data. Engineering, physics, 

statistical analysis, and learning theory are used to deconstruct symbolic information from 

visual data and understand the image [5]. 
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One of the most important of these disciplines is face detection, which has received great 

attention from studies and development due to its success in many applications, especially in 

the field of human-computer interaction and the field of security, in addition to many fields. 

In all face recognition applications, we find a major problem: how to detect the face first, as 

face detection is an initial step for the applications of faces. In contrast to the human ability to 

recognize faces effortlessly, the computer considers face detection a difficult task because the 

human face is dynamic and has a high degree of contrast in its appearance, as well as image 

resolution, light, face angle, and other variables from the varied nature of the object. As a 

result, we tried to find many techniques, from simple edge-based algorithms to complex high-

level methods that use advanced pattern recognition techniques [6]. 

In Wuhan, the People's Republic of China, the World Health Organization (WHO) 

discovered the existence of the Covid-19 virus on December 31, 2019. The Covid-19 virus 

was later announced on March 11, 2020, as the emerging Coronavirus that causes "Covid-19 

disease". Coronavirus spreads from an infected person to a healthy person through airborne 

droplets generated by sneezing, coughing, hugging, and kissing [7]. Therefore, all countries 

have taken preventive safety measures to limit the spread of the virus, such as social 

distancing, hand sanitizers, and wearing face masks. Wearing a face mask is a very important 

preventive measure, but rather the most important step to take when it is difficult to maintain 

social distancing, especially for people who suffer from chronic diseases or other health 

problems that put them at greater risk of infection with the Coronavirus. Research shows that 

the Coronavirus is mostly transmitted between persons who come into close contact. It may 

even be transmitted by people who do not display signs of illness and are unaware that they 

are sick [8]. Therefore, the CDC (Preventative Health Services of the United States) 

recommends that you continue to wear masks and keep a distance of at least 6 feet from each 

other, especially when you are indoors around people who do not live in your home [9]. 

However, manually imposing such a policy in large workplaces or public places and 

following up on individual violations is difficult, so computer vision is considered the 

alternative solution. Therefore, I developed an alert system to detect the face mask in real-

time, consisting of two stages. The system looks to see whether a human face is there, and if 

so, it determines whether or not it is wearing a mask and then sounding an alert. The OpenCV 

Deep Neural Network, TensorFlow, Keras, and MobileNetV2 architectures are used to 

develop an image classification model. 
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To limit the spread of the Coronavirus, this classifier can be combined with surveillance 

cameras to be used to detect faces that are not wearing masks. 

In the present suggested face identification methods, the detection of face masks remains a 

serious difficulty [10,11]. Because it relies on handcrafted feature extractors for non-frontal 

face recognition, Viola-Jones suffers from weak Haar features on non-frontal faces [12]. 

Scale-invariant feature transform (SIFT) [13] and histogram of oriented histograms 

(HOG)[14] are two examples of other methods that extract distinctive features. 

Recently, object detectors based on deep learning have shown excellent and dominant 

performance in developing modern objects detection devices such as autonomous driving 

[15] and monitoring [16]. Deep learning is based on neural networks, a series of algorithms 

that seek to learn basic relationships in a set of data using mathematical functions, which 

collect and classify information according to a certain structure, which is similar to the work 

of the neural network for the human brain. The input, processing, and output layers are all 

components of a neural network. There are nodes and connections between these nodes, 

which are akin to neurons and synapses in the human brain; hence, the processing layer is 

concealed from view. 

Neural networks can learn features in an overall way [17], like a convolutional neural 

network, it is configured to analyze and identify visual data such as digital images. There are 

one-stage and two-stage deep learning-based object detectors, one-stage detectors employ a 

single neural network to identify things, such as the Single-Shot Detector (SSD) [18] , you 

only look once (YOLO) [19]. and the finding of the two-stage discovery can be accomplished 

using a variety of networks, including the area-based convolutional neural network (CNN) 

(R-CNN) [20,21]. 

1.1 Purpose  

In light of the outbreak of the Coronavirus, which caused the suffering of governments 

around the world to control this disease and limit its spread, according to the World Health 

Organization, protection from COVID-19 infection is critical. In light of the preventive steps 

taken to limit the spread of the Coronavirus, wearing a face mask has become one of the most 

important preventive measures that prevent the spread of the disease among people, as it is 

spread through the air through sneezing and coughing. A face mask detection warning system 

using deep machine learning is presented in this paper. There are two parts to this application. 
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The first section will build a face mask detector model trained on suitable data to perform this 

purpose. The second section will apply this trained model from the previous stage to a live 

video camera to identify people in real-time. This app can be used in public and private 

places by connecting it to surveillance cameras to ensure that the precaution (wearing a mask) 

is taken to stop the virus from spreading. 
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2 GENERAL SECTIONS 

2.1 Face Detection 

Face detection and recognition have led to many studies due to their wide range of uses . 

Early attempts at computer facial recognition date back to the 1960s. Three researchers 

focused on developing a computer program to recognize human faces [22]. "Human and 

Machine" was the name given to the project where the person had to first identify the facial 

traits in the image before the computer could utilize them for identification. This is done by 

drawing facial characteristics such as the centers of the pupil, the inner and outer corners of 

the eye, the width of the mouth, and the looks on a graphic tablet by a person. With this 

method, a person can analyze approximately 40 images per hour and create a database of 

these distances. Then the image distances are automatically compared by a computer, which 

calculates the difference in lengths and presents the closed records as a possible match [23]. 

Using facial anatomical traits and a computer algorithm, Takeo Kanade developed the facial 

matching system in 1970 and was the first to assess the distance ratio between facial features 

without the assistance of a human. It turns out that it is not always possible to correctly 

determine the characteristics of the face. In 1977, Kanade [24] published the first complete 

book on the subject of facial recognition technology, despite this growing interest. 

The Defense Advanced Research Project Agency (DARPA) and the Army Research 

Laboratory (ARL) founded the FERET face recognition technology program in 1993 to 

develop "automatic face recognition capabilities" that can be used in a "real-life environment 

produced to assist with security and intelligence." The accuracy of current automatic facial 

recognition systems varies; some algorithms can identify people in still photographs shot in a 

controlled environment [25]. The FERET test resulted in the creation of Vision Corporation 

and Miros Inc. in 1994. For the commercialization of Alex Pentland's facial recognition 

algorithm from MIT, a military contractor founded Viisage Technology in 1996 [25]. 

Until the 1990s, the primary inputs to developing facial recognition systems were images of 

real people's faces. Principal Component Analysis (PCA) was employed in the early 1990s in 

facial recognition studies to detect a face in a picture that included other items. Mathew Turk 

and Alex Pentland [26] invented this technology, also known as Eigenface. An Eigenface 

model was created using the Karhunen-Loève theory and component analysis to identify 
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Eigenfaces based on the characteristics of the general facial features.  Turan and Pentland's 

PCA facial recognition technology uses fewer Eigenfaces than other methods for representing 

human faces. In 1994, Pentland made the Eigenface features to help improve the use of PCA 

in face recognition. 

 

Figure 2-1. Some eigenfaces from AT&T Laboratories Cambridge [27]. 

The Fisherfaces were created in 1997 by applying linear discriminant analysis (LDA) to 

improve the PCA Eigenface technique of face identification [28]. PCA feature-based face 

identification began to rely heavily on LDA Fisherfaces [29]. Face reconstruction techniques 

that use Eigenfaces do not have a global structure that unites individual facial traits or 

parts[28]. 

 

Figure 2-2. (a) Eigenface, (b) Fisherface [30]. 
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By using Gabor filters to gather face data, the Bochum system was able to generate face 

structures that linked features together [28]. In the mid-1990s, Christoph von der Malsburg 

and his colleagues at the University of Bochum developed Elastic Bunch Graphic Matching 

to recover a face from a picture using skin segmentation [26]. Operators of airports and other 

congested sites purchased the face detection "Bochum system" under the trade name ZN-

Face. The program proved "robust enough to produce identifications from less-than-perfect 

facial images," according to the author. "Mustaches, beards, new haircuts, and even 

sunglasses may all be seen through this technology" [31]. 

Real-time facial identification in video data was made possible in 2001 by the Viola-Jones 

facial-detector framework [26]. Paul Viola and Michael Jones have developed the first real-

time face detection, AdaBoost. For object detection in digital photos, they merged face 

detection technology with a Haar-like feature approach [32]. As recently as 2015, the Viola-

Jones approach was applied to mobile devices and embedded systems employing small, low-

power detectors. Face recognition systems have been given a practical boost by incorporating 

this technology into their user interfaces and teleconferencing capabilities [33]. 

 

Figure 2-3. Viola-Jones algorithm parts: (а) combination of regions, (b) Haar Features, (c) 

cascade classifier, (d) Haar feature application to the image, and (e) LBP feature[34]. 
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Requests from academics and industry executives to challenge ImageNet Large-scale Visual 

Recognition (ILSVRC) between 2010 and 2017 resulted in some of the most notable 

advancements. An annual computer vision competition, the ILSVRC, was built using a subset 

of the publicly available ImageNet data set. To encourage the development of improved 

computer vision technologies and to measure the most recent technology  , 

Image classification challenges include labeling images based on the primary item in the 

image and detecting objects within images [35]. 

In the first five years of ILSVRC, the rate of development was surprising to the computer 

vision community. Deep learning has gotten a boost from the development of substantial 

convolutional neural networks (CNNs) running on graphics processing units (GPUs) [35]. 

 

Figure 2-4. Summary of the Improvement on ILSVRC Tasks Over the First Five Years of the 

Competition.Taken from ImageNet Large Scale Visual Recognition Challenge, 2015 [36]. 

2.1.1 Face Detection Methods 

Yan, Kriegman, and Ahuja [37] grouped face detection systems into four categories: The 

algorithm may fall under more than one of these categories. 

2.1.1.1 Knowledge-Based Top down Methods 

It is controlled by a set of principles. Humans' understanding of faces and how to distinguish 

them as a set of rules is included in this system. For example, the eye area is darker than the 

cheeks. This, in addition to the difference in color intensity between the eye area and the 

lower area and the distance between the eyes, is all considered features of the face. The 

problem with these approaches is that they make it challenging to develop an appropriate set 

of rules because general rules lead to many false positives. In contrast, precise rules lead to 

many false negatives. 
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Figure 2-5. Typical face used in knowledge-based methods [38]. 

For solving these issues, a hierarchical strategy based on knowledge is required. This is a 

somewhat constrained strategy—the inability to locate multiple faces in a detailed image. 

To find faces, Yang and Huang [36] apply an approach based on hierarchical knowledge. 

There are three stages to their process. A series of criteria are used to identify possible faces 

in the input picture, as indicated in the figure (2-8). 

 

Figure 2-6. Multi resolution hierarchy to locate the face [39]. 

After performing a local graph equation on the first-level candidates, the second set of criteria 

is used to assess the remaining candidate areas that react to characteristics like the mouth and 

eyes [37]. 

2.1.1.2 Bottom-Up Feature-Based Methods 

This strategy, unlike the knowledge-based method, is based on our natural understanding of 

faces. A person can recognize the face and other objects in various situations, and whatever 

the lighting conditions, this technology goes beyond the limits of this understanding. So she 
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uses an edge detection approach to extract facial features, including eyes, eyebrows, mouth, 

and nose, in this method. Because of things like lighting and noise, these algorithms could 

hurt the quality of image features [37]. 

2.1.1.3 Template Matching 

The face can be divided into areas such as the contour of the face, eyes, lips, and nose. A 

standard template or function parameters are used to try to define this method's parameters 

for all faces. The face can be figured out from the picture by calculating the correlation 

values for the eyes, mouth, and nose separately and then comparing the results . 

Despite its simplicity, this strategy cannot be used for face identification because this method 

is confined to the front and undistorted faces, and its inaccuracies when there are variances in 

form, location, or size. On the other hand, Deformable templates are being considered a 

possible solution for this problem [40]. 

 

Figure 2-7. Template Matching [41]. 

2.1.1.4 Appearance-Based Methods 

This performance method is better than the others. In contrast to template matching 

strategies, which use pre-defined templates, this strategy teaches templates through examples 

from photographs. This approach works on features acquired in models or discriminatory 

functions, which are then used for facial recognition using statistical analysis and machine 

learning. The most suitable methods and tools will be mentioned below: 
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2.1.1.4.1 Eigenface-Based 

Eigenvectors for facial identification were shown by Kohonen [42] using a neural network 

that approximates the image autocorrelation matrix by approximating the eigenvectors 

(Eigenfaces) are the names given to these vectors. 

As proven by Sirovich and Kirby [43], utilizing PCA, face pictures may be encoded using a 

small number of basis images (Principal Component Analysis). Figure 2.10 shows an 

example of an eigenface, which was encoded using just 50 Eigen pictures in experiments 

using a collection of 100 images. A recognition method based on eigenfaces was later 

developed by Turk and Pentland [44]. 

 

Figure 2-8. Eigenfaces [39]. 

2.1.1.4.2 Distribution-Based 

Sung and Poggio [45,46] initially proposed a distribution-based approach to face detection, 

the method consisting of distributed models of face patterns and a multi-layer classifier 

trained to reliably assess the status of the target pattern category based on distance 

measurements. 

2.1.1.4.3 Neural Networks 

Many pattern recognition applications, including object identification, optical character 

recognition, and robotic self-driving, have been successfully implemented using neural 

networks. Several different neural networks have been presented to deal with face detection 

as a pattern recognition issue with two classes. It is important to use face detection neural 

networks to try a system to recognize complicated patterns in the density of facial features. 
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As a result, optimal performance necessitates a wide range of configuration options (number 

of layers, learning rates, nodes... etc.). According to Agui et al., an early approach combining 

two stages of neural networks can recognize faces when all test pictures have the same size 

[46]. Propp and Samal [47] created one of the first neural networks for face recognition. The 

early approach of scanning an input picture using a time-delayed neural network was later 

proposed by Souli et al. [48,49]. Vaillant et al. [50] utilized 20 x 20-pixel pictures with and 

without faces to train their convolutional neural network to recognize faces. With the help of 

Kohonen's SOM algorithm [42], Burel and Carel[51] presented a neural network for face 

identification that compresses and reduces the number of training instances. An associative 

neural-network-based detection approach was reported by Feraud and Bernier [52,53,54]. Lin 

and his colleagues have developed a decision-based probabilistic neural network (PDBNN) to 

extract trait vectors from density and edge information in the facial area, including the 

eyebrows, eyes, and nose [55]. Rowley et al [56,57,58] work is the most significant of all 

face detection systems. Face and non-face images were analyzed using a multi-layer neural 

network. First, the neural network obtains an area of 20 x 20 pixels from the image and 

produces values from -1 to 1. This means that for non-face samples, the value is -1, and for 

face samples, the value is 1. Secondly, the logical operators (and/or) and voting are simple 

arbitration procedures. Here is a look at the algorithm design, as shown in Figures (2-11).

 

Figure 2-9. Diagram of how Rowley's method works [58]. 

2.1.1.4.4 Support Vector Machines 

Statistical classification and regression analysis may be performed using SVMs, which are 

linear classifiers. The method begins with the sorted (encoded) data. Training then proceeds 
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to discover a linear framework. For the first time, SVMs were used to identify faces by Osuna 

et al.[59]. 

2.1.1.4.5 Sparse Network of Winnows 

Using the SNoW (Sparse Network of Winnows) learning architecture for the first time, Yang 

et al. [60] introduced a new approach to recognizing faces with diverse expressions and 

features in various lighting circumstances and the form of two linear units or target nodes 

[61]. 

2.1.1.4.6 Naive Bayes Classifier 

Schneiderman and Kanade et al [62] made this suggestion. Based on the theory of Bayes, the 

Naive Bayes algorithm is a classification method in which the predictors are assumed to be 

independent of each other. It is based on the Naive assumption that features within a class are 

unrelated to one another that Naive Bayes' classification model is based. It may be an apple 

when the fruit appears crimson, spherical, and about three inches in diameter. This fruit's 

Naive Bayes classifier will take all of these qualities into account when determining the 

likelihood that it is an apple. 

When dealing with giant data sets, the Naive Bayes technique is ideal. Naive Bayes 

outperforms even more advanced classification systems because of their simplicity. 

2.1.1.4.7 Hidden Markov Model 

It is possible to characterize patterns as a parametric random process, and the parameters can 

be determined precisely and clearly. Making it as likely as possible that the HMM training 

data may be viewed is the purpose of the Viterbi segmentation and Baum-Welch methods, 

which are frequently employed in HMM training [63]. 
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2.1.1.4.8 Information-Theoretical Approach 

Markov Random Fields (MRFs) may analyze facial patterns and other associated 

characteristics. Using Kullback-Leibler divergence, the Markov process maximizes the 

discrimination across classes. As a result, Face Detection may be performed using this 

approach [64]. 

2.1.1.4.9 Inductive Learning 

One of the inductive learning algorithms, Quinlan's C4.5 algorithm [65], uses positive and 

negative instances of face patterns to create a decision tree [66]. 

2.2 Deep Learning 

It is a way of teaching machines to do activities as if they were humans. By stimulating 

neurons in the human brain, this strategy aims to discover theories and methods that enable 

devices to learn by themselves and find ways to extract features from large data sets using 

linear and nonlinear variables [67,68] The basic idea of deep learning is that any object in an 

image can be described in several ways, such as using the brightness vector for each pixel or 

the sum of the edges and areas that make up the image, in addition to many additional ways 

that can be used to describe these images. This is the essence of deep learning. In terms of 

machine learning, some of these strategies (such as studying a face or noticing expressions) 

[69] outperform others. Because of this, people who study deep learning want to eliminate the 

need for human intervention in feature elicitation and replace it with algorithms that generate 

features automatically or almost automatically [70]. 

We're seeing a rise in the use of convolutional neural networks (CNNs) and deep neural 

networks (DNNs) across a wide range of applications like computer vision and voice 

recognition [3,71,72,73]. 

2.3 OpenCV 

Real-time computer vision is the primary focus of this library, and it is open-source [74]. 

Intel developed it under the Apache 2 license. For real-time applications, OpenCV is used for 

GPU acceleration [75]. Its primary interface is written in C++ as well. It works on all desktop 

operating systems and mobile operating systems like Android, iOS, and Maemo [76,77]. 
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2.3.1 OpenCV-DNN 

A highly improved DNN model with deep learning functionality has been added in the 

OpenCV3.3 version. This module can perform a wide range of computer vision tasks (such as 

object identification, face detection, image classification, text detection, and recognition) 

using pre-trained models such as Caffe, TensorFlow, Torch, and PyTorch, which are some of 

the frameworks for deep learning supported by this module. 

2.3.2 Single Shot Detector (SSD) 

In contrast to two-stage models, the single-shot MultiBox detector can detect many objects in 

an image in one step, making it faster and more efficient than two-stage techniques [78]. The 

SSD consists of two parts: the backbone model and its head. Pre-trained image classification 

networks, such as VGG16 or ImageNet-trained ResNet, are used as feature extractors and is 

the backbone. As for its header, one or more convolution layers are added to the spine, and 

their outputs are interpreted as bounding boxes and object classes in spatial position to 

animate the final layers [18]. 

 

Figure 2-10. Single Shot Detector (SSD) [18]. 

It uses more than one feature map to define different sizes of objects, so we note in the above 

figure that there are six other feature maps to reach the final result. Despite his excellent 

performance, he fails in his ability to recognize small things. Because many grouping layers 

can drastically reduce the size of elements smaller than 36 x 36 pixels, the detection section 

of the SSD lacks sufficient spatial information to distinguish small details in the surrounding 

environment [78]. 
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3 MATERIAL AND METHOD 

3.1 Work Description 

Real-time mask detection and prediction are the two main objectives of the research. The 

project will be divided into two phases to achieve this purpose. The training dataset will be 

described in Section 3.2 . 

As a first stage, this data will be passed to the model to train it to classify images (faces 

wearing masks and non-masked faces). The MobileNetV2 [79] neural network was used for 

this purpose. After completing the model's training, we will move to the second step, where 

we will use the trained model from the first stage with an accurate face detector to predict in 

real-time whether a person is wearing a mask or not. The Multi-Box Single Shot Detector 

(SSD) [18] with ResNet-10 architecture [80]  was used for real-time face detection due to its 

speed and accuracy in detecting faces. After real-time face detection, the regions of interest 

(ROI) for each face will be cropped and passed through our model, which we trained to 

identify the faces that wear masks from the faces that do not wear masks . 

The OpenCV library was used because it is the best computer vision library which allows us 

to load pre-trained networks from which to load the face mentioned above detector model. 

There are two primary stages of training on the mask detector model, and each phase includes 

sub-steps, as shown in Figure 3.1: 

• Training: Loading data from the hard disk, training the model using Keras and 

Tensorflow, and then saving the model to the hard disk. 

• Deployment: Once the mask detector model has been trained, we will upload it and do 

face detection in real-time. It will decide for each face whether it is wearing a mask or 

not. 

This work was suggested using an Acer laptop with an Intel Core i7-8565U processor, 

NVIDIA GeForce MX130 graphics card, Python 3.9 plus PyCharm 2021.3.3, and the latest 

version of Python. 
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Figure 3-1. The structure of project 

3.2 The Dataset 

Significant amounts of appropriate training data are required to acquire the most remarkable 

results from any computer machine learning application. The more training data there is, the 

more accurate the application. 

We require two sets of training data for our application: one set of photographs of faces 

without masks and the other images of faces with masks. 

An open-source and varied collection of photos was utilized for training a model, using data 

from the Prajna Bhandary dataset at PyImageSearch [81] and the Kaggle Medical Mask 

dataset by Mikolaj Witkowski [82]. 

Kaggle data consists of 853 images and XML files that describe individuals who wear or do 

not wear medical masks . 
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There are 660 images with masks in the "Prajna Bhandary" dataset and 660 photos of faces 

without masks. Faces and facial features were standardized by Prajna Bhandary (described in 

section 3.2.1). Unmasked data images compensate for error correction so that the model is 

not overly affected. The data set is shown in Figure (3.2). 

 

Figure 3.2. The Dataset 

3.2.1 How Was Face Mask Dataset Created? 

Due to the lack of data available for people wearing masks, Prajna Bhandary devised a 

method to create this dataset: 

• She took a typical face picture. 

• She made a computer vision program to add the mask to the face. 

The characteristics of the face, which include the eyebrows, eyes, nose, mouth, and jawline, 

may be determined using this approach. 
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Figure 3-3. An image containing a face 

First, she uses face detection to find the face in the picture. Then, she figures out the square 

coordinates that surround the face. 

 

Figure 3-4. Using face detection. 

To extract the ROI, we need to know where the face is located in the picture. 

 

Figure 3-5. Extracting a face ROI. 
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After that, it will work with the face's contours to give the eyes, brows, nose, and lips more 

definition. 

 

Figure 3-6. The features of the face. 

After revealing the features of the face, it became known where the mask would be placed. 

 

Figure 3-7. An example of the mask used to combat the Corona virus. 

The mask is automatically applied to the face to determine where to place it (the points along 

the chin and nose). The mask is then scaled and rotated to fit the upper part of the face and 

then applied. 



 

21 
 

 

Figure 3-8. Putting the mask on the face 

The same method is performed for all input images to create an artificial dataset for a face 

mask. 

3.2.2 Pre-Processing 

The data in this set contains a large amount of noise and redundancy in large numbers. 

Because the accuracy of the trained model depends on its training data, the data was manually 

processed and cleaned to remove any incorrect images detected in the data set and any 

duplicates. The data were divided into two groups: one with mask images and the other 

without a mask. Removing defects, distortions, and errors from the training data eliminates 

harmful effects on any predictive model . 

The dataset with masks became 1270 images, and the dataset without masks became 515 

images. The total number of images in the training data set is 1785. 

3.3 Train a Model 

3.3.1 Load Face Mask/ Without Mask Dataset 

3.3.1.1 Load Dataset and Pre-Processing 

Keras and Tensorflow will be used to train our data. Thus, we'll specify our training interval, 

starting learning rate, and batch size, utilizing these two libraries as a framework and a 

backend, respectively. A loop is created to read all of the images and perform preprocessing 

on them, such as resizing them to 224 x 224, converting them to Matrix format, and altering 
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the pixel intensity of the input image to a range (1, -1). The preprocessed images and label 

data are added to the lists (data and labels). For fast computations, these lists are transformed 

into NumPy arrays. 

3.3.1.2 Data Augmentation 

There is not enough data to successfully train the model, and therefore a large amount of data 

is needed. The solution to this problem is to use data augmentation techniques. It is a data 

augmentation method by adding duplicates of the training data already used to train the 

model with changes such as permutation, shearing, noise injection, rotation, and random 

scanning. This procedure is standard in deep learning [83]. An image data generator called 

ImageDataGenerator can be used by the Keras library to apply accidental changes to the 

training data and then train CNNs on the new dataset, replacing the original training data set. 

The practical benefit of this procedure is to increase the model's accuracy, as the more 

remarkable the amount of training data, the higher the model's accuracy. 

3.3.2 Training Face Mask Classifier With Tensorflow/Keras 

3.3.2.1 Classification of Images Using Mobilenetv2 

To make a model that can distinguish faces that wear a mask from those that don't, the 

learning must be transferred through deep understanding. Using the Keras library, knowledge 

is imparted through: 

• Take a pre-trained convolutional neural network on a data set. 

• Use it to identify the data category that you have not trained. 

In general, there are two types of transfer learning: 

• Feature extraction: Our features are extracted using a pre-trained grid that allows the 

input image to advance until it reaches a predefined layer, then stops there, taking the 

output of this layer as our features. 

• Fine-tuning: We update the structure of the model by removing the vertices of the 

previous fully connected layers, adding new vertices, and then training the new FC 

layers to predict our input classes. 



 

23 
 

MobileNetV2 is a deep convolutional neural network. We'll utilize it for this task. More than 

a thousand different items that this network can classify into photos. More than a million 

photos from the ImageNet collection were used in training [84] . 

We load the network with pre-trained ImageNet weights and apply the new FC head to the 

base instead of the old header. The network's base layers are frozen, and new trainable layer 

inputs are added, which are then trained on our data to determine the features used to classify 

the faces wearing masks. Using a pre-trained network saves time because it can use biased 

weights without losing features it has already learned. 

 

 

Figure 3-9. MobileNetV2 Architecture [85]. 

3.3.2.2 Convolutional Layer 

Filters (or kernels) are the building blocks of a convolutional neural network (CNN). Filters 

smaller than the input image are used to build feature maps that summarize the presence of 

features in the input picture. There are fewer rows and columns in filters than in input images. 
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But they are also 3D, with the same number of channels. As a result, a 2D feature map of the 

activations is generated by applying the filter iteratively to different image areas. The filter's 

spatial positions are calculated using the input picture's point products, followed by the 

image's height and breadth and their point products. The filter has weights that must be 

learned during layer training. There are two ways to measure how well a design or feature has 

been found: filter weights and activation strength . 

Combining two functions yields a new process called a convolution [86]. 

Feature map = input * filter = ∑ (∑ ) 𝑖𝑛𝑝𝑢𝑡 (𝑥 − 𝑝, 𝑦 − 𝑞)𝑓𝑖𝑙𝑡𝑒𝑟 (𝑥, 𝑦)𝑟𝑜𝑤𝑠
𝑥=0

𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑦=0
     (1) 

The input picture is sent through the network, which has dimensions of (224,224.3), that is, 

(150528) pixels in a one-dimensional feature vector, and each pixel is coupled to a neuron of 

the next layer. Then it is trained to detect whether a person is wearing a mask or not. Each 

neuron in this layer is connected to a neuron in the following layer, and so on until we reach 

the final call, which has a value of  (0,1), indicating whether or not the person is wearing a 

mask. 

Because this procedure takes a lot of time and calculations, mainly if the training data is vast, 

it may be decreased by stacking the feature maps for each filter to provide a larger output 

volume of the convolutional layer. Each feature map is regarded as an output of one nerve 

cell. Because the filter size small than size of the input picture, each neuron is linked to a 

tiny, local region. Low-level picture features (like lines) are captured by the first 

convolutional layers, whereas higher-level characteristics are extracted by the following 

layers [87] (such as selected shapes and objects). Figure (3.10) illustrates the convolution 

process. 

 

Figure 3-10. The convolution process. 
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3.3.2.3 Pooling Layer 

The pooling layer follows the convolutional layer. It speeds up the calculations. Each feature 

map is processed separately with the pooling layer to create a new grouped feature map. This 

reduces the size of the array without losing any features . 

Here are some examples of pooling operations: 

• Max pooling: Takes the most significant output value present in a given area as the 

input value of the cell in the new array, based on that cell's output value. 

• Average pooling: takes the selected area's arithmetic average and applies it to each 

cell in the new array (Figure 3.11). 

In this project, the AveragePooling2D filter was used. Since it is more potent at summarizing 

spatial information [88], the aggregation size was 7x7. Each feature map will be shrunk down 

to a new, clustered 7 x 7 dimension feature map. 

 

Figure 3-11. The average pooling operation. 

3.3.2.4 Flatten Layer 

Once the model has learned the features, it is ready to flatten the final feature map and 

connect it to the neural network (dense layers) for classification and prediction. But the input 

for the flattened layers is a 1-D vector, while the current is a 3-D tensor. Because of this, flat 

layers are used to turn the data into a one-dimensional array that the next layer can use. For 

instance, a 3x3 image array can be turned into a 9x1 vector. As can be seen in Figure (3.12), 
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Figure 3-12. Flatten layer 

3.3.2.5 Dense Layer (Non-Linear Layer) 

The neurons in this layer are tightly linked to the neurons in the previous layer. Upon 

receiving an output from each neuron in the previous layer, neurons in the dense layer 

multiply the matrix-vector by each neuron in their layer (a procedure in which the row vector 

of the output from the previous layers is equal to the column vector of the dense layer). When 

multiplying matrices with vectors, the row vector must have the same number of columns as 

the column vector. This layer has the most common nonlinear functions, such as Rectified 

Linear Unit (ReLU) [89], Leaky ReLU [90], Noisy ReLU [91], Exponential ReLU [92], etc. 

3.3.2.6 Dropout Layer 

This layer reduces over-allocation during the training process by projecting bias neurons, 

which can be part of both the visible and hidden layers. The dropout rate can be modified to 

alter the likelihood of dropping a neuron. 

3.3.2.7 Fully-Connected Layer 

These layers have complete connections to the activation layers. It helps classify selected 

images into a multi-category or binary classification. SoftMax was employed in the activation 

functions used in these layers to obtain two parameters (0, 1). 
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3.3.3 Serialize Face Mask Model To Disk 

The model was assembled using Adam's optimizer, learning rate decrement table, and binary 

entropy. Then the face mask is trained, and predictions are made on the test set; then, we find 

an index with the most considerable expected probability corresponding to each image in the 

test set, then we make a well-formatted classification report, and finally, the model is saved to 

the hard disk for use in the second phase of our project. 

3.4 Apply the Model 

3.4.1 Detect Face in Video Stream 

As our project goes on, once we're done building and saving the model, we'll use the 

OpenCV library to find facial features in a webcam video and then run those features through 

our model to see if the person is wearing a mask . 

We'll use the VideoStream widget from the imutils library, which displays local video 

streams (like a webcam) and provides access to video stream data from Python. Before 

putting them through our model, we will first create a function called (detect_and_predict), in 

which we will configure and process video frames so that we can read them later. This 

function has three parameters: 

• frame: It will contain the video streams from our webcam. 

• faceNet: It will include the pre-trained model for face detection (SSD). 

• maskNet: It will consist of the model we trained in the previous stage to detect the 

face mask. 

3.4.1.1 OpenCV-DNN-blobFromImage 

As mentioned earlier, pre-trained models that use frameworks such as TensorFlow and Caffe 

are supported by the DNN module in OpenCV. So we will first process the image using 

OpenCV's blobFromImage() function to perform inference from pre-trained models. Then we 

use this blog to input the pre-trained models to get the inference output, as will be explained 

in detail. 
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Figure 3-13. blobFromImage [93]. 

First, we must preprocess the data to get reliable predictions from deep neural networks. 

Four-dimensional images may be created by using blobFromImage. In addition to resizing 

and cropping from the center, this tool may also mean subtracting and scaling values by a 

scale factor and swapping color channels. Pre-trained deep learning models may be used to 

analyze photos and prepare them for categorization. This function carries out the following 

tasks: 

• Mean subtraction 

• Scaling 

• Channel swapping 

Our convolutional neural network will benefit from average subtraction to overcome the 

lighting conditions in the input picture. So that our gradients don't grow out of hand, each 

feature will have a comparable scope throughout this procedure . 

In other words, if we don't scale our inputs in a manner that leads to similar-range feature 

values, the weight will be enormous in one region of the picture and extremely little in 

another. 
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Figure 3-14. Mean subtraction: the original image on the left and the output image on the 

right. 

It is thus necessary for us to determine the average pixel density of each color channel in the 

streaming video frames collected from the camera at the start of our research. We'll have 

three sets of numbers, each representing the average of the three different color channels. 

First, we'll describe the input picture, which is a collection of frames from the video stream, 

and then we'll provide the default scale for our images, which is "1.0," although we may offer 

a different number if necessary. To accommodate the convolutional neural network, we will 

modify the picture size to 224 by 224 pixels. 224 x 224, 227 x 227, or 299 x 299 are the most 

common dimensions for current neural networks. To determine the average subtraction, we'll 

utilize the numbers from channels 104, 177, and 123, which are often used. By default, the 

option swapRB will be true since the OpenCV library expects that images are stored in BGR 

order and that we wish to show them in RGB. 

3.4.1.2 OpenCV-DNN-readNet 

Face detection will be achieved by using a pre-trained model based on SSD and the "ResNet-

10" architecture. The file type is caffemodel. It can be found on Github . 
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OpenCV-DNN-readNet, a function of the OpenCV library, allows us to load pre-trained 

models from specific frameworks. We are also not required to provide a framework 

argument. So this function was used to load the face detector model: 

• Caffemodel [94]  

• Prototxt [95] 

Convolutional architecture for rapid feature embedding (Caffe) was developed by Berkeley 

AI Research (BAIR) and community members [96,97], to train deep learning models. Users 

can create classification and segmentation models for images using it as an alternative to 

conventional object-finding procedures that are more resilient and efficient. Users first 

generate and store their models as PROTOTXT text files. When Caffe is used to train and 

improve a model, the application saves the model as a CAFFEMODEL file [98]. 

In our project, we used a Caffemodel file. It is an SSD-based face detector and the ResNet-

10. We will enforce two variables, "prototxtPath" and "weightsPath", which will contain the 

path of the face detector model to load from the hard disk. Using OpenCV-DNN-readNet, 

which allows us to import pre-trained models and frameworks, we put the previous two 

variables inside the "faceNet" parameter mentioned above, as shown in the command below: 

 

Then we pass the blob we got from the above function (3.4.1.1 section) through the parameter 

"faceNet" to make predictions of facial detections on our video streams through the command 

below: 

 

3.4.2 Load Face Mask Model 

Using the load_model function in the Keras library, the trained face mask detector model is 

preloaded and put into the "maskNet" parameter, as shown in the command below, to be used 

later to predict face masks. 

 



 

31 
 

3.4.3 Extract Each Face ROI 

After preparing the video frames through the blob function and passing them through the pre-

trained model (SSD) to detect the face in the image, we will design three lists: one for the 

face, the second for the location of the face, and the third for the predictions of face mask 

detection, and the names of these lists will be (faces, locs, preds) that we will need in our 

work later. We make a loop to extract the degree of confidence to detect the face in the 

image, and inside this loop, we filter the weak detections and extract the surrounding boxes 

for faces. In addition to making sure that the coordinates of these boxes do not fall outside the 

image's borders, we will also symbolize the degree of confidence in the variable 

"confidence". As shown below: 

 

The bounding boxes extracted above are the boundaries of the regions of interest (ROI) 

containing the eyes, eyebrows, nose, and mouth, which are encoded by the variables (startX, 

startY, endX, and endY). We will crop this region, switch the color channels from BGR to 

RGB, resize it to dimensions (224,224), convert it to a Numpy matrix, and pass it through our 

previously mentioned trained grid to make predictions for face mask detection. The variable 

'face' is enforced for all previous actions as shown below: 

 

After that, we will add the variable "face" and the surrounding boxes (startX, startY, endX, 

endY) to the lists (faces, locs) that we have created, as shown below: 
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Figure (3-15) depicts how (ROI) will be calculated if video streams are used. 

 

Figure 3-15. ROI for video streams 

3.4.4 Apply Face Mask Detector To Each ROI 

After we crop the regions of interest (ROI) for each face and add it to the list (faces), we'll 

convert this list into a NumPy array for faster arithmetic. Then we initialize the third list, 

which we called "preds", and we pass the NumPy array, which contains (ROI) for each face 

through parameter "maskNet", which includes our trained model for making face mask 

predictions as shown below: 

 

3.4.4.1 Passing Video-Streams through Our Trained Model 

We have preprocessed the video frames, configured lists and parameters, and uploaded the 

models, the face detector, and the face mask detector. We will start playing the video streams 

from the webcam of our laptop using the imutils library and put these streams inside the 

"frame" parameter that we configured earlier. Then we summon the function 

(detect_and_predict) that we set up earlier to perform all the processing actions mentioned in 

the previous steps. And finally, we pass it through our model to get predictions of the faces 

that wear masks or not. 
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4 RESULT AND DISCUSSION 

It was tested on an Acer laptop with an Intel Core i7-8565U 1.8 processor, NVIDIA GeForce 

MX130 graphics card with 2 GB VRAM, 8 GB DDR4 RAM, PyCharm 2021.3.3, and Python 

3.9. 

4.1 Accuracy and Loss Calculation For Model Training 

When we train deep learning networks, we need to keep track of their development. We can 

look at several metrics during training to see if the network is getting more accurate and how 

quickly it is getting better. 

 

Figure 4-1. History of training 

The training loss is the average loss per training dataset and the distance between the base 

facts and predictions. The neural network adjusts its weights and biases to minimize the loss 

as the model develops over time. As a result, the loos in the early batches of an epoch are 

often greater than the loss in the later collections. For a period, the test loss is computed using 

the model at the end of that epoch, which results in a reduced loss. On the other hand, 
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val_loss is used to test data, while loss is used on training data alone. So the val_loss is a 

good indicator of the model's performance in handling the data. 

Classification accuracy is merely a measure of how many instances were adequately 

categorized. Val acc is a better indicator of the model's performance since a well-trained 

neural network is more likely to match the training data. An accuracy of 99.72% was 

obtained in our project, as shown in the image above (4-1). 

One of the indicators used to evaluate the success of a classification-based machine learning 

model shows 100% precision. We can get a better idea of our trained model's overall 

performance by looking at the precision, accuracy, recall, F1 score, and support shown in 

table (1) by Scikit-Learn [99] is an open-source Python machine learning toolkit that includes 

a variety of classification, regression, and aggregation methods for the Python programming 

language. 

Table 4.1. sklearn metrics classification_report 

 Precision Recall F1 – score Support 

Mask 1.00 1.00 1.00 254 

No mask 1.00 0.99 1.00 103 

Accuracy   1.00 357 

Macro avg 1.00 1.00 1.00 357 

Weighted 1.00 1.00 1.00 357 

The metrics selected for evaluation of network is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
= 2 ∗

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
 

TP = True positive 

TN = True negative 
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FP = False positive  

FN = False negative 

The 'true positive' values correspond to the photos rated as accurate and delivered a true result 

after the prediction. The 'true negative' values are the images that are 'true' but after the 

forecast delivered a false negative, and the 'false positive' values are the images incorrectly 

rated as false. "False-negative" images have been labeled "false" and, as a result, gave a false 

negative result . 

The harmonic mean of precision and recall are calculated using the f1-score. Using the scores 

for each class, the classifier's ability to correctly categorize the data points in that class will 

be shown. When determining a model's support, look at the total number of samples in that 

category [100]. 

 

Figure 4-2. Training Loss and Accuracy 

4.2 Comparison of models 

Our trained model was compared with other models that were used for image classification, 

InceptionV3[101], NASNetMobile and DenseNet121 [102], Resnet50 [103]. Table (2) 

compares the accuracy of our model with other models. In Table (3), the F1 degree of our 
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model was analyzed with the rest of the other models. InceptionV3 is a convolutional neural 

network used for image classification that was built to reduce the computational effort of 

neural networks while maintaining network efficiency. In contrast, this network focuses on 

computational cost, Resnet50 focuses on computational accuracy, and a deep neural network 

consists of a depth of 50 layers. Despite its high accuracy in classifying the image, it is 

computationally heavy, so it is difficult to use it in real-time. The same applies to the 

InceptionV3 network; the deeper the network, the more computational. NASNetMobile and 

DenseNet121 are deep neural networks trained to classify many images. Despite their 

classification accuracy, mobilenetv2 remains the fastest and easiest network to use with 

mobile and embedded devices and is more convenient than other networks in real-time. 

Table 4.2. Comparison of accuracy 

Architectures Used Year Accuracy (%) 

InceptionV3 2020 99.92 

NASNetMobile 2021 99.45 

Dense Net121 2021 98.73 

Resnet50 2021 99.64 

Mobilenetv2 2022 99.72 

 

Table 4.3. Comparison of F1-Score 

Architectures Used Year F1 score 

InceptionV3 2020 99.9 

NASNetMobile 2021 99.13 

Dense Net121 2021 99.40 

Resnet50 2021 98 

Mobilenetv2 2022 100 

 

4.3 Detecting Model In Real-Time 

Tkinter, a free Python GUI package, created the user interface. There are two buttons, one to 

start the program and the other to leave it, and a label that shows the time and another that 

displays the date, as shown in Figures (4-3). 
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Figure 4-3. Application interface 

Figure (4-4) depicts the predictions made on video streams from the webcam, which predict 

the presence of the mask, where the bounding box appears in green, the degree of accuracy, 

and the 'mask' label. 

 

Figure 4-4. wearing a mask 

Figure (4-5) depicts the predictions made on video streams from the webcam, which predicts 

the absence of a catcher, where the bounding box appears in red, the degree of accuracy, and 

a 'no mask' label, in addition to an alarm (a warning sound). 
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Figure 4-5. not wearing a mask 

Figure (4-6) shows the predictions made on the video streams from the webcam, which 

predict the two cases: wearing a mask and not. 

 

Figure 4-6. wearing a mask and no wearing a mask  
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5 CONCLUSION 

In light of the outbreak of the Coronavirus, which caused the suffering of governments 

around the world to control this disease and limit its spread, According to the World Health 

Organization, protection from COVID-19 infection is critical. In light of the preventive steps 

taken to limit the spread of the Coronavirus, wearing a face mask has become one of the 

essential preventative measures that prevent the spread of the disease among people, as it is 

spread through the air through sneezing and coughing. So we presented an application that 

uses deep machine learning to create a real-time face mask detection warning system to 

identify those who are not wearing face masks. We used a pre-trained neural network to 

classify the images. We cleaned the dataset manually by removing duplicate and blurred 

images to increase the model's accuracy; In addition to preprocessing our data, the data set 

was loaded from the folder as input to the network. Our data have been resized to 224 x 224. 

They are separated into two categories (mask and without mask). The images are then 

converted into a NumPy matrix for quick calculations and lists. Next, we were able to 

improve the model's accuracy by increasing the data size in the way we discussed previously. 

Our images were accurately graded using the MobilenetV2 classifier, with an accuracy of 

99.72% and an f1-score of 100%. In this project, OpenCV library deep neural networks were 

used along with TensorFlow and Keras libraries and pre-trained face detection (SSD) model. 

Using the OpenCV library, we load a face detection (SSD) model to perform face detections 

on video streams, and after achieving face detection, we pass it through our model to predict 

a face mask. 

We found that our model worked well when applied to video streams. We did this in two 

steps: first, we found faces in the video streams. Then, we used our model on those faces to 

figure out if they were wearing masks or not. 

Since the mask obscures part of the face, it is impossible to predict the face mask detector if a 

large part of the face is covered. We suppose use object detection (object detector) with a 

particular class (mask, without mask). In that case, we think we can get rid of this problem 

because it is more accurate and also faster because we do not need to identify the face first 

before applying the face mask detector model. 
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5.1 Suggestions 

• Although there are actual images of people wearing masks in our data set, they are 

few, as it also includes images of people wearing face masks, as described in Section 

3.2.1. This means that the face mask detection model we trained can be improved by 

collecting more accurate data. It is also possible to include images that baffle the 

model, such as a person without any mask but with a handkerchief on their face, their 

shirt on their face, etc. 

• Work to solve the face detection problem if the most significant part of the face is 

covered. This is because our model works on detected faces, and as we mentioned 

earlier, the video streams pass through a face detector, and if a face is found, it will be 

passed through our model to predict the face mask. If the more significant part of the 

face is covered, then no face will be detected in the first place, and as a result, our 

model cannot predict the face mask.  
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