T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TİTANYUM, MANGAN VE KROM KATKILI BOR ATOM TOPAKLARININ ELEKTRONİK VE YAPISAL ÖZELLİKLERİNİN YOĞUNLUK FONKSİYON TEORİSİ (DFT) İLE İNCELENMESİ

Mikail Doğuş KARAKAŞ

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

KIRŞEHİR 2013

T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TİTANYUM, MANGAN VE KROM KATKILI BOR ATOM TOPAKLARININ ELEKTRONİK VE YAPISAL ÖZELLİKLERİNİN YOĞUNLUK FONKSİYON TEORİSİ (DFT) İLE İNCELENMESİ

Mikail Doğuş KARAKAŞ

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

DANIŞMAN Doç. Dr. Yusuf ERDOĞDU

KIRŞEHİR 2013

Fen Bilimleri Enstitüsü Müdürlüğü'ne

Bu çalışma jürimiz tarafından Fizik Anabilim Dalında YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Başkan:	Doç. Dr. Abdullah YILDIZ
Üye:	Doç. Dr. Ömer DERELİ
Üye:	Doç. Dr. Yusuf ERDOĞDU
Üye:	Yrd. Doç. Dr. M. Tahir GÜLLÜOĞLU
Üye:	Yrd. Doç. Dr. Mustafa ÖZDURAN

Onay

Yukarıdaki imzaların, adı geçen öğretim üyelerine ait olduğunu onaylarım.

.../.../2013

Doç. Dr. Mahmut YILMAZ Enstitü Müdürü

TİTANYUM, MANGAN VE KROM KATKILI BOR ATOM TOPAKLARININ ELEKTRONİK VE YAPISAL ÖZELLİKLERİNİN YOĞUNLUK FONKSİYON TEORİSİ (DFT) İLE İNCELENMESİ

Mikail Doğuş KARAKAŞ

Bu çalışmada, Saf Bor Atom Topaklarının ile Titanyum (Ti), Mangan (Mn) ve Krom (Cr) katkılı Bor Atom topaklarının $n \le 7$ 'e kadar elektronik ve yapısal özellikleri incelendi. Bu hesaplamalar Yoğunluk Fonksiyon Teorisi (DFT/B3LYP fonksiyoneli) yardımıyla GAUSSIAN 09 programı kullanılarak yapıldı. İlk olarak her atom topağının farklı geometrik yapıları CEP-121G temel seti kullanılarak optimize edildi. Hesaplamalarda farklı başlangıç geometrileri için herhangi bir simetri kısıtlaması olmaksızın çalışmalar yapıldı. Bu hesaplamalar nötr ve iyon atom topakları için yapıldı. Bu hesaplama sonuçlarındaki belirlenen kararlı geometrik yapılar 6-311G++ (d,p) temel seti kullanılarak tekrar optimize edildi. Son olarak bu hesaplamalar sonucunda en kararlı yapılar belirlendi. Bu yapıya cc-pVDZ temel seti ile tekrar optimizasyon işlemi yapıldı.

Anahtar Kelimeler: Atom Topakları, Nano Topaklar, Bor Atom Topakları, BTi, BMn, BCr, DFT, B3LYP

ABSTRACT

INVESTIGATIONS OF ELECTRONIC AND STRUCTURAL PROPERTIES OF TITANIUM, MANGANESE AND CHROMIUM DOPED BORON ATOM CLUSTERS BY DENSITY FUNCTIONAL THEORY (DFT)

Mikail Doğuş KARAKAŞ

In this study, the electronic and structural properties of Pure boron atom clusters with Titanium, Manganese and Chromium doped Boron Atom cluster up to 7 atoms was investigated. This calculations was performed by means of Density Functional Theory (DFT/B3LYP functional) in Gaussian 09 software. Firstly, different geometrical structure of the every atom cluster was optimized by CEP-121G basis set. Calculations are carried out without any symmetry restrictions for different starting geometries. This calculations was performed for neutral and ionic atom clusters. Results of this calculations, the low-lying candidate structures were then fully re-optimized at the B3LYP/6-311++G(d,p) level. According to the our calculations, the most stable structures were determined. Finally, optimization calculations of this geometry carried out again.

Keywrods: Atomic Clusters, Nano Clusters, Bor Atom Clusters, BTi, BMn, BCr, DFT, B3LYP

TEŞEKKÜR

Bu tezin hazırlanması sırasında yardım ve desteğini esirgemeyen tez danışmanım Doç. Dr. Yusuf ERDOĞDU'ya ve ikinci danışmanım Yrd. Doç. Dr. M. Tahir GÜLLÜOĞLU'na teşekkür ederim.

Ayrıca Fakülte Dekanımız Prof. Dr. Mustafa KURT'a, Bölüm Başkanımız Doç. Dr. Sıtkı EKER'e, bana maddi ve manevi yardımcı olan Yrd. Doç. Dr. Hülya ÖZTÜRK'e, ve diğer bölüm hocalarıma teşekkürü bir borç bilirim.

Çalışmalarım boyunca bana destek olan değerli arkadaşım Dilek ÜNAL'a, son olarak birçok konuda olduğu gibi, tezimi hazırlamam esnasında da maddi ve manevi konularda yardımlarını esirgemeyen aileme sonsuz teşekkürlerimi sunarım.

İÇİNDEKİLER DİZİNİ

Sayfa

Ö	Z	i
A	BSTRACT	ii
TI	EŞEKKÜR	. iii
İÇ	INDEKILER DIZINI	. iv
TA	ABLOLAR DİZİNİ	. vi
ŞF	EKILLER DİZİNİ	. ix
Sİ	MGELER VE KISALTMALAR	. xi
1.	GİRİŞ	1
2.	MOLEKÜLER MODELLEME	6
	2.1. MOLEKÜLER MEKANİK METODLAR	6
	2.2. ELEKTRONİK YAPI METODLARI	7
	2.2.1. Yarı Deneysel Metotlar	8
	2.2.2. ab İnitio Metotları	8
	2.3. KUANTUM MEKANİKSEL ENERJİ İFADELERİ VE	
	YOĞUNLUK FONKSİYON TEORİSİ	10
	2.3.1. Enerji Fonksiyonelleri	11
	2.3.2. Karma Yoğunluk Fonksiyon Teorisi	11
	2.3.3. B3LYP Karma Yoğunluk Fonksiyon Teorisi	12
3.	GEOMETRİK OPTİMİZASYON	13
	3.1. MİNİMİZASYON YÖNTEMLERİ	13
	3.2. GRADYENT (KUVVET) METODU	13
4.	TEMEL SETLER	19
5.	MATERYAL METOT	21
6.	BULGULAR VE TARTIŞMA	22
	6.1. ATOM TOPAKLARI	22
	6.1.1. Saf Bor Atom Topakları	25
	6.1.2. Katkılı Bor Atom Topakları	28
	6.2. SAF BOR ATOM TOPAKLARI	30
	6.2.1. B ₂ Atom Topağı	30

Ö	ZGECMİŞ	
8.	KAYNAKLAR	
7.	SONUÇ VE ÖNERİLER	
	6.5.6. B ₆ Mn Atom Topakları	
	6.5.5. B5Mn Atom Topakları	
	6.5.4. B ₄ Mn Atom Topakları	83
	6.5.3. B ₃ Mn Atom Topakları	
	6.5.2. B ₂ Mn Atom Topakları	
	6.5.1.BMn Atom Topağı	
	6.5. MANGAN KATKILI BOR ATOM TOPAKLARI	
	$6.4.6.B_6$ Cr Atom Topakları	
	6.4.5. B ₅ Cr Atom Topakları	
	6.4.4. B ₄ Cr Atom Topakları	
	6.4.3. B ₃ Cr Atom Topakları	
	6.4.2. B ₂ Cr Atom Topakları	
	6.4.1. BCr Atom Topağı	
	6.4. KROM KATKILI BOR ATOM TOPAKLARI	
	$636 \text{ B}_{\text{c}}\text{Ti}$ Atom Topakları	
	6.3.5 B ₅ Ti Atom Topakları	
	634 B.Ti Atom Topakları	46
	6.3.3 B ₂ Ti Atom Topakları	
	6.3.2 B2Ti Atom Topagi	
	6.3.1 BTİ Atom Tonağı	
	$6.2.0. B_7 \text{ Atom Topakian}$	
	6.2.5 B ₆ Atom Topaklari	
	6.2.4. B ₅ Atom Topaklari	
	6.2.4 B A tem Tenekler	
	$6.2.3.B_4$ Atom Topaklari	
	6.2.2 B ₃ Atom Topaklari	
	622 B. Atom Topologi	21

TABLOLAR DİZİNİ

Tablolar	Sayfa
Tablo 2.1 Enerji türevlerinden hesaplanabilen fiziksel büyüklükler	9
Tablo 6.1 B ₂ nötr atom topağının hesaplama verileri	
Tablo 6.2 B ₂ iyon atom topağının hesaplama verileri	
Tablo 6.3 B ₃ nötr atom topaklarının hesaplama verileri	
Tablo 6.4 B ₃ iyon atom topaklarının hesaplama verileri	
Tablo 6.4 (devam) B ₃ iyon atom topaklarının hesaplama verileri	
Tablo 6.5 B ₄ nötr atom topaklarının hesaplama verileri	
Tablo 6.6 B ₄ iyon atom topaklarının hesaplama verileri	
Tablo 6.7 B ₅ nötr atom topaklarının hesaplama verileri	
Tablo 6.8 B ₅ iyon atom topaklarının hesaplama verileri	
Tablo 6.8 (devam) B_5 iyon atom topaklarının hesaplama verileri	
Tablo 6.9 B ₆ nötr atom topaklarının hesaplama verileri	
Tablo 6.9 (devam) B_6 nötr atom topaklarının hesaplama verileri	
Tablo 6.10 B ₆ iyon atom topaklarının hesaplama verileri	
Tablo 6.11 B7 nötr atom topaklarının hesaplama verileri	
Tablo 6.11 (devam) B7 nötr atom topaklarının hesaplama verileri	
Tablo 6.12 B7 iyon atom topaklarının hesaplama verileri	
Tablo 6.13 BTi nötr atom topaklarının hesaplama verileri	
Tablo 6.14 BTi iyon atom topaklarının hesaplama verileri	
Tablo 6.15 B ₂ Ti nötr atom topaklarının hesaplama verileri	
Tablo 6.16 B ₂ Ti iyon atom topaklarının hesaplama verileri	
Tablo 6.17 B ₃ Ti nötr atom topaklarının hesaplama verileri	
Tablo 6.17 (devam) B_3Ti nötr atom topaklarının hesaplama verileri	
Tablo 6.18 B ₃ Ti iyon atom topaklarının hesaplama verileri	
Tablo 6.19 B ₄ Ti nötr atom topaklarının hesaplama verileri	
Tablo 6.19 (devam) B ₄ Ti nötr atom topaklarının hesaplama verileri	
Tablo 6.20 B ₄ Ti iyon atom topaklarının hesaplama verileri	
Tablo 6.20 (devam) B ₄ Ti iyon atom topaklarının hesaplama verileri	50
Tablo 6.21 B ₅ Ti nötr atom topaklarının hesaplama verileri	

Tablo 6.21 (devam) B ₅ Ti nötr atom topaklarının hesaplama verileri	51
Tablo 6.22 B ₅ Ti iyon atom topaklarının hesaplama verileri	53
Tablo 6.22 (devam) B ₅ Ti iyon atom topaklarının hesaplama verileri	54
Tablo 6.22 (devam2) B ₅ Ti iyon atom topaklarının hesaplama verileri	55
Tablo 6.23 B ₆ Ti nötr atom topaklarının hesaplama verileri	55
Tablo 6.23 (devam) B ₆ Ti nötr atom topaklarının hesaplama verileri	56
Tablo 6.24 B ₆ Ti iyon atom topaklarının hesaplama verileri	57
Tablo 6.24 (devam) B ₆ Ti iyon atom topaklarının hesaplama verileri	58
Tablo 6.25 BCr nötr atom topaklarının hesaplama verileri	59
Tablo 6.26 BCr iyon atom topaklarının hesaplama verileri	59
Tablo 6.27 B ₂ Cr nötr atom topaklarının hesaplama verileri	60
Tablo 6.28 B ₂ Cr iyon atom topaklarının hesaplama verileri	61
Tablo 6.29 B ₃ Cr nötr atom topaklarının hesaplama verileri	61
Tablo 6.29 (devam) B ₃ Cr nötr atom topaklarının hesaplama verileri	62
Tablo 6.30 B ₃ Cr iyon atom topaklarının hesaplama verileri	63
Tablo 6.31 B ₄ Cr nötr atom topaklarının hesaplama verileri	64
Tablo 6.31 (devam) B ₄ Cr nötr atom topaklarının hesaplama verileri	65
Tablo 6.32 B ₄ Cr iyon atom topaklarının hesaplama verileri	66
Tablo 6.32 (devam) B ₄ Cr iyon atom topaklarının hesaplama verileri	67
Tablo 6.33 B ₅ Cr nötr atom topaklarının hesaplama verileri	68
Tablo 6.33 (devam) B ₅ Cr nötr atom topaklarının hesaplama verileri	69
Tablo 6.34 B ₅ Cr iyon atom topaklarının hesaplama verileri	72
Tablo 6.34 (devam) B ₅ Cr iyon atom topaklarının hesaplama verileri	73
Tablo 6.35 B ₆ Cr nötr atom topaklarının hesaplama verileri	74
Tablo 6.35 (devam) B_6Cr nötr atom topaklarının hesaplama verileri	75
Tablo 6.36 B ₆ Cr iyon atom topaklarının hesaplama verileri	76
Tablo 6.36 (devam) B ₆ Cr iyon atom topaklarının hesaplama verileri	77
Tablo 6.37 BMn nötr atom topaklarının hesaplama verileri	78
Tablo 6.38 BMn iyon atom topaklarının hesaplama verileri	78
Tablo 6.39 B ₂ Mn nötr atom topaklarının hesaplama verileri	79
Tablo 6.40 B ₂ Mn iyon atom topaklarının hesaplama verileri	80
Tablo 6.41 B ₃ Mn nötr atom topaklarının hesaplama verileri	80

Tablo 6.41 (devam) B ₃ Mn nötr atom topaklarının hesaplama verileri	81
Tablo 6.42 B ₃ Mn iyon atom topaklarının hesaplama verileri	82
Tablo 6.43 B ₄ Mn nötr atom topaklarının hesaplama verileri	83
Tablo 6.43 (devam) B ₄ Mn nötr atom topaklarının hesaplama verileri	84
Tablo 6.44 B ₄ Mn iyon atom topaklarının hesaplama verileri	85
Tablo 6.44 (devam) B ₄ Mn iyon atom topaklarının hesaplama verileri	85
Tablo 6.45 B ₅ Mn nötr atom topaklarının hesaplama verileri	87
Tablo 6.45 (devam) B ₅ Mn nötr atom topaklarının hesaplama verileri	87
Tablo 6.46 B ₅ Mn iyon atom topaklarının hesaplama verileri	90
Tablo 6.46 (devam) B ₅ Mn iyon atom topaklarının hesaplama verileri	91
Tablo 6.46 (devam2) B ₅ Mn iyon atom topaklarının hesaplama verileri	91
Tablo 6.47 B_6 Mn nötr atom topaklarının hesaplama verileri	92
Tablo 6.47 (devam) B ₆ Mn nötr atom topaklarının hesaplama verileri	93
Tablo 6.48 B ₆ Mn iyon atom topaklarının hesaplama verileri	95
Tablo 6.48 (devam) B ₆ Mn iyon atom topaklarının hesaplama verileri	95

ŞEKİLLER DİZİNİ

Şekiller Sayfa
Şekil 1.1 Atom Topaklarında Coulomb Patlaması (CP) olayının temsili gösterimi 4
Şekil 3.1 İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye
bağımlılığı
Şekil 3.2 İki boyutta potansiyel enerji yüzeyi17
Şekil 3.3 Potansiyel enerji eğrisindeki maksimum ve minimum noktaların
karakteristiği (Burada g gradyant, k kuvvet sabitidir.)
Şekil 6.1 Basit bir atom topağının oluşum durumu22
Şekil 6.2 (a) B6 octahedron, (b) B12 cuboctahedron ve (c) B12 icosahedron atom
topakları25
Şekil 6.3 B ₂ Atom Topağı 30
Şekil 6.4 B ₃ Atom Topakları
Şekil 6.5 B ₄ Atom Topakları
Şekil 6.5 (devam) B ₄ Atom Topakları
Şekil 6.6 B ₅ Atom Topakları
Şekil 6.6 (devam) B5 Atom Topakları
Şekil 6.7 B ₆ Atom Topakları
Şekil 6.8 B7 Atom Topakları
Şekil 6.9 BTi Atom Topağı41
Şekil 6.10 B ₂ Ti Atom Topakları
Şekil 6.11 B ₃ Ti Atom Topakları
Şekil 6.12 B ₄ Ti Atom Topakları
Şekil 6.12 (devam) B ₄ Ti Atom Topakları
Şekil 6.13 B_5 Ti Atom Topakları
Şekil 6.13 (devam) B ₅ Ti Atom Topakları52
Şekil 6.13 (devam2) B_5 Ti Atom Topakları
Şekil 6.14 B ₆ Ti Atom Topakları
Şekil 6.14 (devam) B ₆ Ti Atom Topakları57
Şekil 6.15 BCr Atom Topağı 59
Şekil 6.16 B ₂ Cr Atom Topakları

Şekil 6.17 B ₃ Cr Atom Topakları	
Şekil 6.18 B ₄ Cr Atom Topakları	65
Şekil 6.18 (devam) B ₄ Cr Atom Topakları	66
Şekil 6.19 B5Cr Atom Topakları	69
Şekil 6.19 (devam) B5Cr Atom Topakları	70
Şekil 6.19 (devam2) B5Cr Atom Topakları	71
Şekil 6.20 B ₆ Cr Atom Topakları	75
Şekil 6.20 (devam) B ₆ Cr Atom Topakları	76
Şekil 6.21 BMn Atom Topağı	78
Şekil 6.22 B2Mn Atom Topakları	79
Şekil 6.23 B ₃ Mn Atom Topakları	
Şekil 6.24 B ₄ Mn Atom Topakları	
Şekil 6.24 (devam) B ₄ Mn Atom Topakları	
Şekil 6.25 B ₅ Mn Atom Topakları	
Şekil 6.25 (devam) B5Mn Atom Topakları	
Şekil 6.25 (devam2) B ₅ Mn Atom Topakları	
Şekil 6.26 B ₆ Mn Atom Topakları	94
Şekil 6.26 (devam) B ₆ Mn Atom Topakları	

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar aşağıda sunulmuştur.

Simgeler	Açıklamalar
E	Molekülün toplam enerjisi
E _{B3LYP}	B3LYP Enerjisi
E ^C	Korelasyon enerjisi
E ^X	Değiş-tokuş enerjisi
$\mathbf{E}^{\mathbf{J}}$	Korelasyon enerjisi
Ĥ	Hamiltoniyen işlemcisi
Ψ	Dalga fonksiyonu
Ψ_{i}	Moleküler orbital
$\Phi_{\rm i}$	Atomik orbital
ρ	Elektron yoğunluğu
Kısaltmalar	Açıklamalar
DFT	Yoğunluk fonksiyon teorisi
HF	Hartree-Fock metodu
B3LYP	LYP korelasyon enerjili 3 parametreleri
	Becke-Lee-Yang karma metodu
MINDO	Modified Intermediate Neglect of Differential
	Overlap
AM1	Austin Model 1
PM3	Parameterized Model number 3
MP2	Möller-Plesset teorisi
PES	Potansiyel Enerji Yüzeyi

1. GİRİŞ

Atom kuramı kullanılmaya başlandıktan sonra maddenin davranışı üzerine birçok çalışma başlatılmıştır. İlk olarak 1930'lu yıllarda atomların ve moleküllerin özelliklerinin incelenmesiyle çekirdek fiziğinin ve parçacık fiziğinin gelişmesine katkı sağlamıştır. Bu yöndeki çalışmalar daha sonra yoğun madde çalışmalarının gelişmesini sağlamıştır. Teorik ve simülasyon teknikleriyle birlikte bilgisayarların hızla gelişmesiyle 1960'lardan itibaren topaklara ve özellikle metal topaklara olan ilginin hızla artmasını sağlamıştır. Bu nedenlerin en başında topakların nanoaletlerin parçası olarak kullanılması gelmektedir. Atom ve Molekül topaklar birbirine karakteristik olarak metalik, kovalent, iyonik, hidrojen bağı veya Van der Waals bağıyla bağlanmış sayısı birkaç atomdan binlerce atoma kadar çıkan sınırlı sayıdaki atom ve moleküllerin bir araya gelerek olusturdukları topluluklardır. 1970'li yılların ardından bu çalışmalar atom ve molekül topakları olarak isimlendirilmiştir. Atom ve molekül topaklarının boyutları nanometre ölceğinde yer aldığından nanobilim ye nanoteknolojinin ilgi alanına girmektedir. Bazı araştırmacılar topakları maddenin beşinci hali olarak tanımlamaktadır. Topaklar farklı şartlarda bir arada tutulan atom gruplarıdır. En yaygın tanımı ise topakların farklı bilim dallarını biraraya getiren sonlu yapılar olmasıdır [1-3].

Moleküllerden farklı olarak atom topakları yapıları ve içerdiği atomlar bakımından farklıdırlar. Moleküller belli bir yapıya ve atom grubuna sahiptirler. Ancak topaklar herhangi bir sayıda atom ve molekül yapısından oluşturulabilir. Bu nedenle atom topakları çeşitli şekillerde sınıflandırılabilirler. En önemli sınıflama ise atom sayılarına yani büyüklüklerine göre yapılır. Atom sayılarına göre topaklar beş gruba ayrılır [3-5]. Bunlar;

- 2 ile 10 atom içeren çok küçük mikro atom topaklar
- 10 ile 100 atom içeren küçük atom topaklar
- 100 ile 1000 atom içeren orta atom topaklar
- 1000 ile 10000 atom içeren büyük atom topaklar
- 100000 atomdan daha fazla içeren çok büyük atom topaklar

Topakların bazı fiziksel özellikleri uygun bir fonksiyon ile topakların büyüklükleri cinsinden ifade edilir. Bu ifadeler ya atom sayıları, N ya da topak küre yapısındaysa yarıçapı, R cinsinden tanımlanır. Küremsi atom topaklarını büyüklüklerine göre farklı bir şekilde daha sınıflandırılır. Atom topağındaki toplam atom sayısı N ile, küremsi yapıdaki atom topağının yarıçapı R, yüzey atomlarının sayısı N_s, hacim atomlarının sayısı da N_v ile gösterilir. Bu tür üç grupta sınıflandırılır [6]. Bunlar;

- Toplam atom sayısı 2 ile 20 arasında değişen veya çapı 1.1 nm den küçük olan yüzey ve hacim atomları ayırt edilemeyen çok küçük atom topaklar.
- Toplam atom sayısı 20 ile 500 arasında değişen veya çapı 1.1 ile 3.3 nm arasında olan veya yüzey atomlarının hacim atomlarına oranı 0.9 ile 0.5 arasındaki küçük atom topaklar.
- Toplam atom sayısı 500 ile 10 milyon arasında değişen veya çapı 3.3 ile 100 nm arasında veya yüzey atomlarının hacim atomlarına oranı 0.5'den küçük olan büyük atom topaklar.

Bu sınıflandırmadaki atom topaklarının toplam atom sayısı N, N_s ve N_v 'nin toplamına eşittir. Atom topaklarını içerdikleri atom cinsine göre sınıflandırılır [7-9].

Bunlar;

- Altın, Gümüş, Bakır, Alüminyum, Nikel, Sodyum gibi metal topaklar
- Karbon, Silisyum, Germanyum gibi yarıiletken topaklar
- Magnezyum oksit, Sodyum klorür gibi iyonik topaklar
- Helyum, Neon, Argon gibi asal gaz topaklar
- Su, Azot gazı, Hidrojen florür, Benzen gibi molekül topaklar

Topaklar ya serbest parçacıklar olarak yalıtılmış, parçacık demetleri halinde ya homojen olan veya homojen olmayan örgülerin içinde veya yüzeye yapışmış olarak, buhardan biriktirme, ya da nano parçacıklar olarak üretilebilirler. Atom topaklarının üretilmesinde başlıca iki yol vardır; ya atomlardan buharlaşma yöntemi ile biriktirilerek ya da kristal yapıdan ufalayarak elde edilebilirler, aynen nano imalatta olduğu gibi. Topaklar elektron ve foton çarpışmaları ile incelenebilir. Demet yansıma yöntemleri de topakların tespit edilmesinde kullanılır. Özellikle küçük topakların hem deneysel olarak hem de kurumsal olarak çok sayıda araştırmacı tarafından incelenmesinin başlıca sebebi kataliz, kristal büyütme, fotoğrafçılık gibi alanlardaki olayların atom seviyesinde anlaşılmasına yardımcı olmasındandır [10,11].

Atom topaklarının, özellikle küçük topakların bazı özelliklerini şöyle ifade edebiliriz. Atom topaklarında bulunan atomlar kristal yapıdaki atomlardan farklı bir çevreye sahiptirler. Örnek olarak birinci komşu sayısı her zaman kristal yapıdaki gibi olmayarak daha az olabilir. Kristografi açısından ilginç bir şekilde kristal yapılarda beşgen geometri görülmezken topaklarda görülebilir. Elektronik uyarılmalar ve iyonlaşma özellikleri kristallerden çok farklıdır. Atom topaklarının bazı özellikleri topağın büyüklüğüne bağlıdır. Topaklardaki atom sayıları arttıkça değişimin fazla olması beklenirken, farklı fiziksel özellikler için farklı değişim eğrileri görülür. Topakların kararlılığı atomların bağlanma enerjileri ile anlaşılmaktadır. Enerji bakımından atom topakları zayıf etkileşmeler (asal gaz topakları, molekül topakları) ve kuvvetli etkileşmeler (birçok metal topakları) olarak ikiye ayrılır [12].

Bu yaklaşımlar kimyasal ve fiziksel yaklaşımlar arasında bir köprü işlevini görür. Kimyasal yaklaşımlarda molekül seviyesinde, birkaç atom büyüklüklerde inceleme yapılırken, fiziksel yaklaşımlarda kristal yapı seviyesinde incelemeler yapılır, çok sayıda atom dikkate alınır. Seçilen uygun bir fonksiyon ile topakların bağlanma enerjisi, iyonlaşma potansiyeli, erime sıcaklığı gibi birtakım fiziksel özellikleri topak büyüklüğüne bağlı olarak kolayca hesaplanabilir [13-15].

Bazı atom topaklarında artı yüklü metal topaklardan oluştukları için Coulomb Patlaması (CP) olarak bilinen ilginç bir özellik meydana gelebilir. Bu özellik aynı zamanda topağın kararlılığı hakkında bilgi vermektedir. Topaklardaki artı yük fazlalığı bazı durumlarda atomlar arasındaki çekici etkileşmeyi yenerek topak atomları bir arada durmakta zorlanır ve dağılır. Artı yük fazlalığı aslında elektron kaybı demektir [16-18]. Topaklar yüksek düzeyde iyonlaştırılırsa (elektron kopartılırsa) artı yükçe zenginleşirler. Bu durum topak üzerinde elektron azlığı oluşturacağından Coulomb patlamasına sebep olur (Şekil 1.1) [19].

Şekil 1.1 Atom Topaklarında Coulomb Patlaması (CP) olayının temsili gösterimi

Topaklar deneysel olarak üretilirken aynı zaman da birkaç çeşit inceleme yöntemi de beraberinde uygulanır. Örneğin, çok fotonlu iyonlaşma spektroskopisi süpersonik akışkanlar içinde bulunan küçük topakların incelenmesinde kullanılır. Fotoelektron Spektroskopisi yöntemleri eksi yüklü küçük topakların incelenmesinde, elektron saçılma yöntemleri de topakların yapılarını incelemede kullanılır. X- ışınları ile de yüzey üzerine konmuş topakların yapıların incelenebilir. Yüzeye konmuş topakları inceleme yöntemleri başlıca iki gruba ayrılır: Dar alanlı hassas yöntemler (taramalı-tünellemeli elektron mikroskopları gibi) geniş alanlı yöntemler (X-ışınları spektroskopileri) gibi. Genellikle incelemeler bu yöntemlerin birkaçı birden kullanılarak incelemeler yapılmaktadır. Küçük topaklar genel olarak demet deneylerinde incelenir. Kütle spektroskopsi direkt olarak yapıları ve sağlamlıkları hakkında bilgi verir. Elektronik yapıları hakkındaki bilgiler de elektronik polarizasyon, manyetik moment, foto-iyonlaşma potansiyelleri ve ayrışma (dağılma) süreçlerinin ölçümlerinden elde edilir [20-23].

Atom topaklarının kuramsal olarak incelemesinde iki yaklaşım vardır. Birincisi küçük topakların yapıları ve elektronik özelliklerinin kuantum yöntemleri ile incelenmesidir. Diğer yaklaşım ise atom seviyesinde klasik mekanik kurallarına dayanan bilgisayar benzetisim yöntemleridir. Bu tür hesaplar Moleküler dinamik yöntemi, Monte Carlo yöntemi ve statik yöntem olarak üç gruba ayrılır. Benzetişim yöntemlerinin uygulanabilmesi için topaktaki atomlar arası etkileşmeleri tanımlayan bir potansiyel enerji fonksiyonunun olması gerekir. Böyle bir fonksiyon elde etmek genellikle işin en zor ve önemli kısmını oluşturur. Literatürde birçok malzeme için tanımlanmış ve katsayıları tayin edilmiş potansiyel enerji fonksiyonu mevcuttur. Topaklar ya serbest parçacıklar olarak yalıtılmış, parçacık demetleri halinde ya homojen olan veya homojen olmayan örgülerin içinde veya yüzeye yapışmış olarak, buhardan biriktirme, ya da nano parçacıklar olarak üretilebilirler. Atom topaklarının üretilmesinde başlıca iki yol vardır; ya atomlardan buharlaşma yöntemi ile biriktirilerek ya da kristal yapıdan ufalayarak elde edilebilirler, aynen nano imalatta olduğu gibi. Topaklar elektron ve foton çarpışmaları ile incelenebilir. Demet yansıma yöntemleri de topakların tespit edilmesinde kullanılır. Özellikle küçük topakların hem deneysel olarak hem de kurumsal olarak çok sayıda araştırmacı tarafından incelenmesinin başlıca sebebi kataliz, kristal büyütme, fotoğrafçılık gibi alanlardaki olayların atom seviyesinde anlaşılmasına yardımcı olmasındandır [24,25].

Bu alandaki teorik yapılan çalışmalar topak biliminin gelişmesine ve uygulamasına önemli ölçüde katkı sağlamıştır. Topakların enerjileri ve erime sıcaklığı gibi özelliklerini deneysel olarak ölçmek oldukça zordur. Bu yüzden teorik modellemeler ve simülasyon metotlarla bu özelliklerin açıklanması daha kolay olmuştur [26].

Bu çalışmada Saf Bor Atom Topaklarının ile Titanyum (Ti), Mangan (Mn) ve Krom (Cr) katkılı Bor Atom topaklarının $n \le 7$ 'e kadar elektronik ve yapısal özellikleri incelendi. Bu hesaplamalar Yoğunluk Fonksiyon Teorisi (DFT/B3LYP fonksiyoneli) yardımıyla GAUSSIAN 09 [27] ve Gaussview 5.0 [28] paket programı kullanılarak yapıldı. Optimizasyon sonucunda bu topakların optimize enerjileri, elektronik ve yapısal özelliklerinin elde edilmesi amaçlandı.

2. MOLEKÜLER MODELLEME

Moleküler modelleme bir moleküler sistemin yapısal, elektronik ve spektroskopik büyüklükleri hesaplama yöntemlerini ihtiva eder. Bu hesaplamalarda kullanılan yöntemler Moleküler Mekanik Metotlar ve Elektronik Yapı Teorisi Metotları olmak üzere iki ana gruba ayrılır. Her iki yöntem de benzer hesaplamalar yapar [26,29].

2.1. MOLEKÜLER MEKANİK METODLAR

Moleküler sistemdeki hesaplamalar elektronları açık bir şekilde göz önüne almaz. Bu hesaplamada moleküller, yaylarla birbirine bağlanmış kütleler gibi harmonik kuvvetlerle etkileşen kütleler topluluğu olarak ele alınır. Burada; kütleler elektronların etrafında küresel olarak dağıldığı atom çekirdeklerini; yaylar ise atomlar arası kimyasal bağları temsil eder. Atomlar arası etkileşmeler iki kısma ayrılır [29].

Bunlar;

- 1. Kimyasal bağlarla bağlanmış atomlar arası etkileşmeler
 - a. Gerilme
 - b. Açı bükülme
 - c. Burulma
 - d. Düzlem dışı açı bükülme
- 2. Kimyasal bağlarla birbirine bağlanmamış atomlar arası etkileşmeler
 - a. Van der Waals etkileşmeleri
 - b. Elektrostatik etkileşmeler

Moleküldeki bağlar ve açılar birbirine bağımlı olduklarından bir gerilme, bükülme veya burulma hareketi yaptıklarında, komşu bağları ve bağ açılarını etkiler. Bu tür etkileşim enerjisi, genelde saf etkileşimlere göre daha küçüktür. Bu tür çiftleşme etkileşmelere; burulma-bükülme, gerilme-bükülme gibi etkileşimler örnek olarak verilebilir.

Atomlar arası etkileşimlerin her biri potansiyel enerji ile tanımlanır. Molekülün toplam potansiyel enerjisi, bu etkileşimlere karşılık gelen potansiyel enerjilerin toplamıdır.

$$\mathbf{E}_{\text{TOP.}} = \mathbf{E}_{\text{GER.}} + \mathbf{E}_{\text{BUK.}} + \mathbf{E}_{\text{BUR.}} + \mathbf{E}_{\text{V. D. WAALS}} + \mathbf{E}_{\text{ELEK}}$$
(2.1)

Burada E_{GER} : gerilme enerjisi, $E_{BÜK}$: açı bükülme enerjisi, E_{BUR} : burulma (torsiyon) enerjisi, $E_{V.D.WAALS}$: Van der Waals enerji, E_{ELEK} : elektrostatik enerji terimidir [30,31].

2.2. ELEKTRONİK YAPI METODLARI

Elektronik yapı metotları, klâsik fizik yasaları yerine kuantum mekaniksel yasaları kullanır. Kuantum mekaniksel olarak bir molekülün enerjisi,

$$\hat{H}\Psi = E\Psi \tag{2.2}$$

denklemi ile belirlenir. Bu Schrödinger denklemi sadece hidrojen atomunun belirli durumlarının tam çözümünü yapabilmektedir. Bu nedenle çok atomlu sistemlerin çözümleri için farklı yaklaşım metotları kullanılması gerekir. Bu yaklaşımlardan biri olan elektronik yapı metotları değişik yaklaşık matematiksel metotlar ile karakterize edilerek; yarı deneysel metotlar ve ab initio metotlar olmak üzere ikiye ayrılır.

2.2.1. Yarı Deneysel Metotlar

Yarı deneysel metotlar kullanılarak yapılan hesaplamalarda molekül için oldukça fazla deneysel veri kullanmaya ihtiyaç vardır. MINDO, AM1 ve PM3 hesaplama metotları yarı deneysel metotlardır.

2.2.2. ab İnitio Metotları

Ab initio metotları, yarı deneysel metotların tersine hesaplamalar için ışık hızı, Planck sabiti, elektronların kütlesi gibi temel fizik sabitlerini kullandığı için deneysel değerlere ihtiyaç duymaz [32].

1969 yılında Pulay tarafından başlatılan bu çalışmalar; moleküllerin kuvvet alanlarının ve titreşim spektrumlarının kuantum mekaniksel ab initio yöntemler ile hesaplanmasına dayanır [33]. Bu çalışmalar "kuvvet" veya "gradyent" metotları kullanılarak çok atomlu moleküllerin kuvvet alanlarının hesaplanmasında gerçekçi ve ivi sonuç veren bir yaklaşımdır. Pulay'ın bu konuya getirdiği temel katkı, enerjinin nükleer koordinatlarına göre birinci türevinin (potansiyelin gradyenti) ab initio metotlarda analitik olarak elde edilebileceğini gösterdi. Bu yöntem Hartree-Fock metodu için de geliştirildi. Ancak 1970 yılından sonra birinci ve ikinci analitik türevleri kullanılarak ab initio metotları ile spektroskopik büyüklükler hesaplanmıştır. Spektroskopik büyüklükler Hartree-Fock (HF), Yoğunluk Fonksiyon Teorisi (DFT), Möller-Plesset teorisi (MP2) gibi yöntemler kullanılarak hesaplanır [34,35]. Bu yöntemde, birinci türevlerin hesaplanması sonucunda geometrik optimizasyon, ikinci türevler ise kuvvet sabitlerini hesaplar. Bu hesaplar kullanılarak titreşim frekansları bulunur. İnfrared ve Raman şiddetlerini bulmak içinde dipol momentlerin türevlerinden yararlanılır. Günümüzde kuantum mekaniksel yöntemleri kullanan programlar GAUSSIAN, GAMES, HONDO ve Q-CHEM gibi paket programları bulunmaktadır. Bu programların tamamı değişik mertebeden analitik türevler kullanmaktadır. Tablo 2.1.'de enerjinin türevlerinden hangi büyüklüklerin hesaplanabileceği verilmektedir.

$$\ddot{O}zellik \approx \frac{\partial E^{n_F + n_B + n_1 + n_R}}{\partial F^{n_F} \partial B^{n_B} \partial I^{n_1} \partial R^{n_R}}$$
(2.3)

Tablo 2.1 Enerji türevlerinden hesaplanabilen fiziksel büyüklükler [36].

_	n _F	n _B	nl	n _R	Özellik
-	0	0	0	0	Enerji
	1	0	0	0	Elektrik Dipol Moment
	0	1	0	0	Manyetik Dipol Moment
	0	0	0	1	Enerjinin Gradyenti
	2	0	0	0	Elektrik Polarizebilite
	0	0	0	2	Harmonik titreşim frekansları
	1	0	0	1	İnfrared soğurganlık yoğunluğu
	3	0	0	0	Birinci elektrik hiperpolarizebilite
	0	0	0	3	Titreşim frekanslarına anharmonik düzeltme
	2	0	0	1	Raman yoğunluğu
	1	0	0	2	Üst ton ve Kombinasyon bandlarının infrared yoğunlukları
	4	0	0	0	İkinci elektrik hiperpolarizebilite
	2	0	0	2	Üst ton ve Kombinasyon bandlarının Raman yoğunlukları

Burada; E: Toplam enerji, F: Dış Elektrik Alan, B: Dış Manyetik Alan, I: Nükleer Manyetik Moment, R: Atomik koordinatlara karşılık gelir.

2.3. KUANTUM MEKANİKSEL ENERJİ İFADELERİ VE YOĞUNLUK FONKSİYON TEORİSİ

Moleküllerin hareketi kuantum mekaniksel olarak çekirdeğin hareketi ve elektronların hareketi olmak üzere iki kısma ayrılır. Çekirdeğin kütlesi elektronun kütlesinden çok büyük olması nedeniyle bu iki hareket ayrı ayrı düşünülebilmektedir. Bu *Born-Oppenheimer* yaklaşımı olarak bilinir [37]. Bir molekülün elektronik enerjisi kuantum mekaniksel olarak kapalı formda,

$$E_{e} = E^{T} + E^{V} + E^{J} + E^{XC}$$
(2.4)

şeklinde yazılabilir. Burada; E^T elektronların hareketinden kaynaklanan kinetik enerji, E^V çekirdek-elektron çekimi ve çekirdek çiftleri arasındaki itme potansiyel enerjisi, E^J elektron-elektron itme terimi (elektron yoğunluğunun Coulumb özetkileşim olarak da tanımlanır), $E^{XC} = E^X + E^C$ ise değiş-tokuş enerjisi (E^X) ve korelasyon enerjisi (E^C) terimlerine karşılık gelir. Bu durum elektron-elektron etkileşmelerinin geri kalan kısmını kapsar. Değiş-Tokuş enerjisi aynı spinli dalga elektronlar arasındaki etkilesim enerjisidir. Kuantum mekaniksel fonksiyonunun anti simetrikliğinden dolayı ortaya çıkar. Korelasyon enerjisi ise farklı spinli elektronlar arasındaki etkileşme enerjisidir. Bu enerjilerin büyüklükleri hakkında bir fikir edinmek için Neon atomunun enerjilerini örnek olarak verelim. Neon atomunun hesaplanmıs enerjileri: $E_e = -129.4 \quad E^T = 129 \quad E^V = -312 \quad E^J = 66 \quad E^C = -129.4 \quad E^J = 66 \quad E^J = -129.4 \quad E^J = 66 \quad E^J = -129.4 \quad E^J = 66 \quad E^J = -129.4 \quad$ -0,4 E^{X} = -12 atomik birim hartree'dir (1 hartree H=27,192 eV dur) [32].

Hartree-Fock (HF) modelinde enerjinin açık ifadesi moleküler dalga fonksiyonu Ψ 'ye bağımlıdır. Bunun yanı sıra bu modelde korelasyon enerjileri dikkate alınmaz.

Yoğunluk Fonksiyon Teorisi (DFT) enerji ifadesi elektron yoğunluğu p'ya bağlıdır. Yoğunluk fonksiyon teorisinde kullanılan üç temel kavramın tanımı aşağıda verilmiştir. Bunlar;

1. Elektron yoğunluğu $\rho(r)$: Herhangi bir noktadaki elektronun yoğunluğunu tanımlar.

2. Homojen elektron gaz modeli: Bir bölgedeki yük dağılımının, sisteme düzgün dağılmış n tane elektron ve sistemi nötralize edecek kadar pozitif yükten oluştuğu varsayımına dayalı idealize edilmiş bir modeldir. DFT modellerinde enerji ifadeleri, elektron dağılımının V hacimli bir küp içerisinde olduğu ve elektron yoğunluğunun $\rho=n/V$ ile verildiği sistemde n, $V\rightarrow\infty$ olduğu varsayımı yapılır. Burada ρ sabit kabul edilmiştir.

3. Fonksiyonel: DFT'de sıkça kullanılan Fonksiyonel kavramıdır. Bağımsız x değişkenine bağımlı değişkene fonksiyon denir ve f(x) ile gösterilir. Bir F fonksiyonu f(x)'e bağımlı ise bu bağımlılığa fonksiyonel denilir ve F[f] ile gösterilir [32, 38].

2.3.1. Enerji Fonksiyonelleri

Literatürde sıkça kullanılan enerji fonksiyonlarının bir kısmı aşağıda verilmiştir. Kinetik enerji fonksiyonları: H28, TF27, ... Değiş tokuş enerji fonksiyonları: F30, D30, B88, ... Korelasyon enerjisi fonksiyonları: LYP, VWN, ...

2.3.2. Karma Yoğunluk Fonksiyon Teorisi

Dalga mekaniğine dayanan HF teorisi değiş-tokuş enerjisi ve korelasyon enerjilerini hesaplamada yetersiz kalmasına rağmen kinetik enerji ifadesi için uygun bir ifade vermektedir. DFT modelleri ise değiş tokuş ve korelasyon enerjilerinde daha iyi sonuç verirken kinetik enerji ifadesi için iyi sonuçlar vermez. Bu nedenle tam enerji ifadelerinin hesabı için saf HF veya saf DFT modelleri yerine, bu modellerin her ikisinin de enerji ifadelerinin toplam elektronik enerji ifadesinde kullanıldığı karma (melez, hibrit) modeller üretilmiştir. Bu modeller toplam enerji, bağ uzunlukları, iyonizasyon enerjileri gibi çoğu büyüklükleri saf modellerden daha iyi hesaplamaktadır.

2.3.3. B3LYP Karma Yoğunluk Fonksiyon Teorisi

Bir karma model yukarda sözü edilen enerji ifadelerini birleştirerek yeni bir enerji ifadesi elde edebilir. Bu yöntemde Becke, değiş tokuş fonksiyonu ve korelasyon enerjisi $E_{\rm XC}$ için aşağıdaki karma modeli önermiştir.

$$E_{karma}^{XC} = c_{HF} E_{HF}^{X} + c_{DFT} E_{DFT}^{X}$$
(2.5)

Burada c_{HF} ve c_{DFT} 'ler sabitlerdir. Bu karma modeller arasında en iyi sonuç verenler BLYP ve B3LYP karma yoğunluk fonksiyonlarıdır. B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi;

$$E_{B3LYP} = E^{T} + E^{V} + E^{J} + E_{B3LYP}^{XC}$$

$$(2.1)$$

olarak elde edilmiştir [39]. Bu modeller incelendiğinde değiş-tokuş ve korelasyon enerjileri için ilgili ifadelerin iyi sonuçlar vermesine rağmen tam sonuçlar vermediği görülebilir. Bu enerjiler ile ilgili olarak DFT modelinde atomik ve moleküler sistemler için daha iyi sonuç verecek fonksiyon çalışmaları literatürde yoğun olarak devam etmektedir [32, 40, 41].

3. GEOMETRİK OPTİMİZASYON

3.1. MİNİMİZASYON YÖNTEMLERİ

Bir başlangıç geometrisi için bir *f* fonksiyonu tanımlanır. Geometrik optimizasyon bu *f* fonksiyonu x(i) değişkenlerine bağlıdır. Ancak bu x(i) değişkenleri birbirlerinden bağımsızdır. *f* fonksiyonunun alabileceği minimum değer, $\frac{\partial f}{\partial X_i} = 0$ veya $\frac{\partial^2 f}{\partial X_i^2} > 0$ şartını sağladığı noktalardır.

Burada minimum enerji değerlerini hesaplamak için;

1. Steepest Descent, Gradyent ve Powel yöntemleri: Bu metotlar $\frac{\partial f}{\partial X_i} = 0$ bağıntısını kullandığı için birinci türev metotları olarak bilinir.

2. Newton- Raphson yöntemi: Bu metot $\frac{\partial^2 f}{\partial X_i^2} > 0$ bağıntısını kullandığı için

ikinci türev metodu olarak bilinir.

Gradyent metodu daha hassas hesaplama yapabilmekte ve minimum enerjideki geometrik yapıyı daha iyi tahmin edebilmektedir. Dolayısıyla bu kısımda sadece Gradyent yöntemi tartışılacaktır.

3.2. GRADYENT (KUVVET) METODU

Hesaplamalar moleküle ait belirli bir geometriyi oluşturarak başlar. Bir koordinat sisteminde atomlar arasındaki yer değiştirmeler, molekülün enerjisinde ve diğer birçok özelliklerinde değişmelere neden olur. Molekülün yapısındaki değişiklikler sonucunda enerjinin koordinata bağımlı olduğu sonucuna varılır. Bu bağımlılık moleküler yapı ile molekülün enerjisi arasındaki ilişkidir. Bu ilişki "potansiyel enerji yüzeyi" olarak tanımlanır. İki atomlu bir molekülde bağ gerilmesine karşılık gelen elektronik enerji grafiği Şekil 3.1 de verilmiştir. Burada minimum enerjili nokta E_m ve minimum enerjiye karşılık gelen koordinat nokta X_m ile gösterilmiştir.

Potansiyelin harmonik kısmı Hooke yasası ile verilir.

$$E = E_m + \frac{1}{2}G(x - x_m)^2$$
(3.1)

Burada G: enerjinin konuma göre ikinci türevidir ve kuvvet sabiti olarak adlandırılır. Yani kuvvet sabiti,

$$\frac{\partial^2 E}{\partial x^2} = G \equiv k \tag{3.2}$$

ifadesi ile verilir.

Şekil 3.1 İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye bağımlılığı

Bir molekül için önce potansiyel enerji yüzeyi doğru tanımlanır. Bu tanımdan yararlanılarak molekülün denge geometrisine karşılık gelen minimum enerjili noktası hesaplanır. Çok parçacıklı sistemler için Hooke yasası,

$$E = E_m + \frac{1}{2} \underline{x} - \underline{x}^m + G \underline{x} - \underline{x}^m$$
(3.3)

veya

$$E = E_m + \frac{1}{2} \begin{bmatrix} x_1 - x_1^m \end{bmatrix}, \begin{bmatrix} x_2 - x_2^m \end{bmatrix} \dots \begin{bmatrix} G_{11} & G_{12} & \dots \\ \dots & G_{22} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$
(3.4)

olarak ifade edilir. Burada $\underline{x} - \underline{x}^m$: yer değiştirme vektörü ve G: elemanlarını köşegen ve köşegen dışı kuvvet sabitlerinin oluşturduğu Hessian matrisidir.

Moleküler geometri optimizasyonu x_1^m ve x_2^m konumlarına karşılık gelen minimum enerjili değerlerdir. Hesaplamalarda önce gradyent vektörü g hesaplanır.

$$\langle g | = g = \left[\frac{\partial E}{\partial X_1}, \frac{\partial E}{\partial X_2}, \dots \right]$$
 (3.6)

Daha sonra gradyent vektörünün sıfır olduğu noktalar hesaplanır.

$$\langle g | = 0, 0, \dots$$
 (3.7)

Çünkü Gradyent vektörünün sıfır olduğu noktalar minimum enerjili duruma karşılık gelir. Bu geometri, molekülün minimum enerji geometrisi olarak tanımlanır.

Geometrik optimizasyon tanımlanan moleküle ait belli bir yapı ile başlatılır ve potansiyel enerji yüzeyini dolaşarak devam eder. Dolaştığı noktalardaki enerji ve gradyenti hesap ederek hangi yöne doğru ne kadar gidileceğine karar verilir. Minimumlarında ve eyer noktalarında enerjinin birinci türevi yani gradyenti sıfırdır. Bu noktalarda kuvvet de sıfırdır. Potansiyel enerji yüzeyinde gradyent vektörü g'nin sıfır olduğu noktalara "kararlı noktalar" denilir. Enerjinin atomik koordinatlara göre ikinci türevi kuvvet sabitini verir. Optimizasyon algoritmaları genellikle Hessian matrisi kullanılarak kuvvet sabitleri ve bir noktadaki yüzeyin eğriliğini tanımlar ve böylece bir sonraki aşamanın belirlenmesini sağlar. Bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir derecede ise optimizasyon tamamlanmış olur [32, 35, 42].

Bir molekülün potansiyel enerji yüzeyi bir çok maksimum ve minimum değerler içerir. Potansiyel enerji yüzeyindeki minimumlar sistemin dengede olduğu yerlere karşılık gelir. Bir molekül için bir çok farklı minimumlar bulunabilir ve bu minimumlar molekülün farklı konfigürasyonlarına karşılık gelir. Bu hesaplamalar yapılırken bazen bir sırt bölgesinde bir yönde yerel minimum, diğer yönden bir maksimuma karşılık gelir. Bu tür noktalar eyer noktalan olarak tanımlanır. Bu noktalar iki denge yapısı arasındaki geçişlere karşılık gelir (Şekil 3.2).

Şekil 3.2 İki boyutta potansiyel enerji yüzeyi

Genel olarak geometrik optimizasyon, potansiyel enerji yüzeyindeki minimumları araştırarak moleküler sistemlerin denge yapılarını tahmin eder. Optimizasyon geometrisi hesaplanırken, geçiş yapıları hesaplanabilir. Ancak bu çalışmada sadece minimum optimizasyon geometrisi hesaplanmıştır.

Bu çalışmada Gaussian 09 paket programında geçerli olan algoritma Berny Hard Schlegel tarafından geliştirilen Berny Algoritması kullanılır [43]. Berny algoritması moleküler sistemin toplam enerjisinin birinci türevi (gradyant) ve ikinci türevi (Hessian Matrisi) hesaplanarak sistemin minumum enerjili yapısı bulunur. Potansiyel enerji yüzeyi (PES) bir molekülün yapısındaki değişikliklere karşı sistemin enerjisinin değişim grafiği olarak bilinir. Şekil 3.3'de görüldüğü gibi potansiyel enerji yüzeyinde birden çok maksimum, minimum ve eğer noktaları bulunabilir. Belirlenen noktalara karşılık gelen yapılar kararlı olarak bilinir. Bu kararlı noktalar enerjinin birinci ve ikinci türevi ile belirlenir. Belirlenen kararlı noktalarda enerjinin birinci türevi sıfırdır. Eğer ikinci türevlerinin tamamı pozitif ise o nokta yerel minimum, tamamı negatif ise yerel maksimum, yalnızca bir tanesi negatif ise eyer noktası adı verilir [44].

Şekil 3.3 Potansiyel enerji eğrisindeki maksimum ve minimum noktaların karakteristiği (Burada g gradyant, k kuvvet sabitidir.)

4. TEMEL SETLER

Elektronik yapı metotları bilinmeyen molekül orbitallerini (MO) tanımlamak için bilinen temel fonksiyonların bir setini kullanır. Her bir MO, temel set olarak bilinen atomik orbital (AO) terimlerinin doğrusal toplamı şeklinde ifade edilir. Tanımlanan yeni orbitaller LCAO veya MO metodunda molekülün dalga fonksiyonu molekülü oluşturan atomların dalga fonksiyonlarının toplamı olarak yazılır [45].

$$\Psi_i = \sum_{\mu=1}^n c\mu_i \phi_i \tag{4.1}$$

Burada $i \psi$ moleküler orbitali $\mu \varphi$ atomik orbitalleri gösterir. $i c\mu$ ise moleküler orbital açılım katsayısı olarak adlandırılır. Temel setler atomik orbitaller için tanımlanmıştır. Fakat molekülleri oluşturan atomların atomik orbitallerinde büyüklük, şekil veya yük bakımından önemli değişiklikler olur. Bu da özel tanımlamalar gerektirir. Bunun için temel sete polarize ve difüz fonksiyonlar eklenerek genişletilmiş temel set tanımlanmıştır. Genişletilmiş temel setler molekülün yüksek dereceden orbitallerini hesaba katarak, moleküler yük dağılımındaki, komşu atomların etkileşmesinden kaynaklanan şekil ve boyut değişikliklerini tanımlar [45].

Atomlar birbirine yaklaştırıldığında diğer çekirdeklerin etkisiyle elektronik yoğunluk bozulur. Yük dağılımının yeniden yapılanması kutuplanma etkisine sebep olur. Bunu gidermek için eklenen temel fonksiyonlara polarize fonksiyonlar denir.

Uyarılmış ve iyonik moleküllerde elektron yoğunluğu molekülün temel durumuna göre daha dağınıktır. Bu durumu matematiksel olarak modellemek için dağınık fonksiyonlar (difüze) kullanılır. Temel setlere eklenen bu fonksiyonlara difüze fonksiyonlar denir. Literatürde değişik şekillerde gösterilen veya program verilerinde bulundurulan çok sayıda temel set vardır. Bu setler k-nlmG temel set ve split-valans tipi temel set olarak bilinir. Bu gösterimde k kor orbital veya iç kabuktaki elektronların kaç tane ilkel gaussian tipi fonksiyon ile temsil edildiğini gösterir. nlm ise hem valans orbitallerinin kaça yarıldığını hem de bunların kaç tane ilkel gaussian fonksiyonu ile temsil edildiğini gösterir. Eğer gösterimde sadece (nl) var ise ikili yarılma, (nlm) var ise üçlü yarılma dikkate alınır. Bu durum temel set gösteriminde G den önce difüze fonksiyonlar için + veya ++ gösterimi kullanılır. + işareti ağır atomlar için pfonksiyonunu, ++ işareti ise Hidrojen atomu için s- fonksiyonunu tanımlar. Polarize fonksiyonları belirtmek için G den sonra parantez içinde ağır atomlar için d, df ve Hidrojen atomu için p, pd harfleri kullanılır.

Genelde atomik orbitali tam ifade edebilmek için çok sayıda temel fonksiyona ihtiyaç duyulur. Kullanılan temel fonksiyon sayısı arttıkça orbital daha iyi tanımlanır. Bunun için molekül sisteminin yapısal, elektronik ve spektroskopik özellikleri hesaplanırken temel setlere difüze ve polarize fonksiyonlar eklenerek doğruluğu arttırılır.

Temel fonksiyon sayısı fazlalaştıkça daha fazla hesaplama süresi ve daha fazla bilgisayar hafızası gerekir. Bu nedenle yapılacak bir hesaplamada amaçlanan sonuca uygun temel set seçilmelidir.

5. MATERYAL METOT

Bu çalışmada Bor atomunun Titanyum (Ti), Mangan (Mn) ve Krom (Cr) katkılanmış atom topaklarının giriş dosyaları Gauss View paket programında hazırlandı. Hazırlanan giriş dosyaları Gaussian 09 paket programı sayesinde hesaplamaları yapıldı. Hesaplamalar DFT/B3LYP metodu CEP-121G, 6-311++G(d,p) ve cc-pVDZ temel setleri kullanılarak yapıldı.

Moleküllerin geometrik optimizasyonları her bir hesaplama modeli için hiçbir sınırlama yapılmadan hesaplanmıştır. Yapılan optimizasyonlar sonucu topakların denge durumundaki optimize enerji, yapısal ve elektronik özellikleri elde edildi. (1 a.u.=627,51530 kcal/mol)

B3LYP/cc-pVDZ hesaplamaları kullanılan yapılar için moleküllerin elektronik enerjileri en yüksek dolu molekül orbital enerjileri (HOMO) ve en düşük boş molekül orbital enerjileri (LUMO) belirlendi. Hesaplamalar sonucunda; Elde edilen verilerden HOMO-LUMO enerji farkı (ΔE)

$$\Delta E = E_{HOMO} - E_{LUMO} \tag{5.1}$$

olarak bulundu.

6. BULGULAR VE TARTIŞMA

6.1. ATOM TOPAKLARI

"Topak" sözlük anlamı aynı tür ya da farklı türden nesnelerin bir araya gelmesi veya birlikte büyümesi olarak tanımlanmaktadır [46]. Atom topakları onlarca ya da yüzlerce atomun bir araya gelmesi ile meydana gelen bir parçacıktır. Bu parçacıklar ortalama 1 ile 10 nanometre boyutlarında bir yapı oluşturur. Nanotopaklar izole edilmiş tek bir mikroskobik atom veya molekül ile makroskobik ölçekte maddenin katı hali arasında bir geçiş durumu olarak göz önüne alınabilir. Maddenin izole edilmiş haldeki atom veya molekül temel alınarak, topakların boyutlarına göre maddenin bulk halinin elektronik ve yapısal birçok özelliği belirlenebilir. Ancak maddenin bu hali hem bulk durumundan hem de moleküler durumdakinden çok farklı özelliklere sahip olabilmektedir.

Şekil 6.1 Basit bir atom topağının oluşum durumu

Nanotopaklar hem temel bilimler hem de teknolojiye uygulama açısından bakıldığında son yıllarda aşırı bir ilgi çekmektedir. Nanotopakların Kimya, Biyoloji, Mühendislik ve Medikal alanlarda çok yoğun uygulamaları vardır. Bu çalışmaların çoğu Altın, Alüminyum ve Bor tabanlı nanotopakları üzerine yapılmaktadır.
Atom topakları ve nanoyapılı malzemeler, bulk malzemelerde bulunmayan birçok yeni özellikler gösterir. Kullanılan malzemelerin boyutları küçüldüğünde, bulk materyallerin özellikleri kritik bir değere ulaşıncaya kadar düzenli olarak değişmektedir. Özellikler belirli boyutların altında düzensiz bir şekilde farklılaşır. Ayrıca atom topakları ile nanoyapılar birleştirilerek daha uygun özelliklere sahip yeni malzemelerde oluşturulabilir. Meydana gelen bu malzemelerin özellikleri yeni teknolojilere ve nanoteknolojik ilerleme sağlayacak şekilde olacakır [47-52]. Bu nedenle moleküler ve atomik topaklarla ilgili olarak son yirmi yılda hızlı bir büyüme görülmüştür [53-55].

Topaklar; katalizör, yüzey bilimi, yoğun madde fiziği ve malzeme bilimi gibi birçok disiplini bir araya getiren bir alandır. Örnek olarak Altmış karbon atomundan oluşan elmas ve grafit'den sonra bu topakların dışında yeni bulunan karbonun üçüncü şeklinin keşfi gösterilebilir. Bu C₆₀ topağı, jeodezik kubbenin mimarı Buckminsterfullerene Buckminster Fuller'den sonra olarak isimlendirildi. "Buckyball" lakaplı, herbiri bir futbol topunun altmış köşesini işgal etmesiyle altmış karbon atom topağının kimyasal olarak bağlanmasıdır [56]. Gaz-fazında düzlemsel karbon molekülleri [57-59] üzerine en son çalışmalar, düzlemsel altın yapılar [60-62], düzlemsel bor topakları [63,64], tüm-metalik aromatik moleküller [65,66], Au₂₀ [67], B₂₀ [68], Au₄Si [69], gibi daha büyük band aralıklı topaklar ve halojen benzeri sihirli topak Al₁₃ [70], topak biliminin halen çok aktif ve heyecan verici bir alanı olarak gözükmektedir.

Büyük topaklarla heterojen kataliz, atmosferik kimya ve molekül ile yoğun madde çalışmaları yapılmaktadır. Yapılan bu çalışmalar ile istenilen ve beklenen bazı olguları anlamamızda gerekli bir ilerleme sağlamıştır. Küçük topaklarda ise iç moleküler kuvvetler, hidrojen bağı, kimyasal dinamikler, yeni nano-optik ve manyetik malzemelerin çalışılmasında önemli ilerlemeler sağlanmıştır. Topak çalışmaları ışık teknolojileri, fiziksel soğurma, kimyasal soğurma, reaktivite, biyosensörler ve nano-malzemeler gibi fonksiyonel malzeme tabanlı nano yapıların anlaşılmasında giderek yeni olanaklar sunmaktadır. Atom topakları yüzey çalışmaları için model olarak kullanılırsa bulk'un yüzeyi hakkında yeni bakış açısı sağlayabilir. Bilindiği gibi, yüzey elektronik yapı bilgi teknolojisi malzemelerin kimyasal soğurma ve katalitik özelliklerinin anlaşılmasında önemlidir. Yüzey çalışmaları sayesinde yüzeyde bulunan kusurların varlığı ile bulk'da bulunmayan elektronik hallerin tespiti üzerine yoğunlaşmaktadır. Bir topak yüksek bir yüzey-hacim oranına sahip olduğu için topağın kimyası aslında onun yüzeyinde oluşur. Yüzey bilimi sayesinde kimyasal ve fiziksel özelliklerinin anlaşılması sağlanmaktadır.

Topaklar yeni geometrik şekillerde farklı kimyasal reaksiyonlar gösteren malzemelerdir. Bu özellikleri ile topaklar, petrol rafineri merkezlerin de, kirlilik kontrolün de ve ilaçların sentezinde endüstriyel katalizör olarak kullanılır. Bir topağın katalizör etkinliği, yüzeye tutunabilmesi için yeterince güçlü bir reaktif çekme yeteneğine, yüzeyden bırakması için ise yeterine zayıf olan son ürünleri tutmasına bağlıdır. Topaklar ayrıca aktif katalitik çalışma alanları için ideal bir laboratuvar görevi görürler. Topakların boşalmış bağ kapasitesi onları kolayca çekilen moleküller yapar. Bu özellikler sanayi de çok değerlidir. Çünkü birçok katalizör etkin bir şekilde katalizörlerin istenilen reaksiyonları hızlandırdığı gibi istenmeyen reaksiyonları da hızlandırır.

Topaklar yeni özellikleriyle yeni tür malzemelerdir. İstenilen elektronik niteliklere sahip ince film topakları mikroelektronik de çok ilgi çekicidir. Bu malzemelerin optiksel hafiza, resim işleme ve süperiletkenlik alanlarında bir uygulamaları vardır. Bir makine, nötron sistemleri gibi katı-hal elektroniği ve biyolojik sistemler arasında bir bağlantı olarak kullanılacak şekilde tasarlanabilir. Böyle bir bağlantı, kişinin duyu bölgelerinin içine nano bilgisayar çipleri yerleştirilmesiyle engelli bir kişinin beynine bir televizyon kameradan görüntüyü aktarmada kullanılabilir.

6.1.1. Saf Bor Atom Topakları

3 boyutlu kafes benzeri yapısal özelliğe sahip olması durumunda bulk bor dayanıklı bir materyaldir [71, 72]. Ancak 3 boyutlu kafes yapıların küçük bor atom topakları için kararsız olduğu ileri sürülerek yerine düzlemsel ya da yarı-düzlemsel yapılar önerilmiştir [73–75]. Son on yıl içinde bu konuda yapılan deneysel ve teorik çalışmalara göre, bulk durumundaki elemental bor'un üç boyutlu (3D) kafes yapılı [76] olmasına rağmen, bor atom topaklarının anyonlarda B₂₁⁻, [77-89] nötrlerde B₂₀ [80] ve katyonlarda B₁₆⁺ [90] taban durumlarında en azından düzlemsel ya da yarıdüzlemsel yapılar sergilediğini göstermektedir.

Şekil 6.2 (a) B6 octahedron, (b) B12 cuboctahedron ve (c) B12 icosahedron atom topakları

Bor dört değerlik orbitalleriyle bir elektron eksiliği olan ve sadece üç değerlik elektronlu bir elementtir. Sonuç olarak, bor özellikle üç boyutlu (3D) yapılar, geniş elektron paylaşımıyla kafes benzeri yapısal birimlere (B_{12} icosahedron, B_6 octahedron, B_{12} cuboctahedron) dayanmaktadır [91,92]. 1980'lerin sonunda bor topaklarıyla ilgili ilk deneysel çalışmalar, oldukça kararlı B_{13}^+ topak içeren kütle spektrokopi araştırmalarında gözlenen katyonik bor topaklarına benzer 3D yapılara bir başlangıç oluşturmuştur [93]. Teorik araştırmalar, bor atom topaklarını izole etmek için kafes benzeri yapıların kararsız olduğunu ve düzlemsel ya da yarıdüzlemsel yapıların enerji olarak tercih edilmesi önerilmektedir [94-99]. Son on yıl içinde, ab initio hesaplamalarıyla bağlantılı olarak negatif yüklü bor atom topağında (B_n) boyutu seçilmiş atom topaklarının fotoelektron spektroskopisi, bor topak anyonunun düzlemsel olduğunu ya da en az n=21'e kadar yarı-düzlemsel olduğunu ortaya koymuştur [100-110]. Anyonik topaklar için 2D'den 3D'ye geçişin bilinmemesine rağmen nötr topaklar için [105] B_{20} 'de ve katyonik topaklar için [111] B_{16}^{+} 'da ortaya çıkacağı önerildi. B_{20} için ilk 3D yapının çiftkat-halka şekline (C_{5v}) sahip olduğu bulundu [104] ve B_{20} 'de nötr topaklar için geçiş boyutu son hesaplamalarla yeniden oluşturuldu [112].

Koordinasyon sayısı moleküler yapıların en temel karakteristiklerinden birisidir. Yüksek koordinasyon sayılarıyla moleküller genellikle sekiz ve 18 elektron kurallarını ihmal ederler. Merkez atom ve tüm çevresel atomlar arasında eşit uzaklığıyla bir düzlemsel türde mümkün olabilecek en yüksek koordinasyon sayısı bulunmalıdır. Böyle yüksek koordinasyonlu düzlemsel kimyasal türler elde edebilmek için hem mekanik hem de elektronik faktörler dikkate alınmalıdır. Mekanik faktör bir monoklik halkanın boşluğuna sığması için merkezi atomun doğru boyutlarına yerleşmesini gerektirir. Elektronik faktör ise yüksek-simetri yapısının elektronik kararlılığa ulaşması için değerlik elektronlarının doğru sayıda olmasını gerektirir. Bor atom topakları lokalize ve delokalize olarak eş zamanlı katılabilme yeteneği nedeniyle son derece simetrik düzlemsel yapılar oluşturduğu bilinmektedir [113–119]. Düzlemsel bor atom topakları güçlü iki-merkez-iki-elektron (2c-2e) B-B σ bağlarına sahip bir çevresel halkadan oluşur. Bir ya da daha fazla merkezi atom delokalize σ ve π bağları aracılığıyla dış halkaya bağlanır. Üst düzey hesaplamalarla deneysel çalışmalar birleştirildiğinde B_n^+ iyonlarının n=16'ya kadar düzlemsel olduğu bulunmuş iken [120] küçük bor atom topak iyonlarının en az B20 de düzlemsel olduğunu göstermektedir [121-125]. Düzlemsel bor atom topaklarında kimyasal bağlar oldukça dikkat çekicidir. Aromatiklik için (4N+2) Huckel'in kuralını takip eden σ düzleminde ve π düzlemin dışında her ikisi de delokalize olmuş iki tür bağ vardır. Özellikle de altı σ ve altı π elektronlarıyla sistemler çift kat aromatiktir ve B_8^{2-} ve B_9^{-} gibi her biri merkezde bir B atomu ve sırasıyla bir B_7 ve B_8 monoklik halkası içeren oldukça yüksek simetrik düzlemsel topaklara neden olmaktadır [121]. $D_{7h}B_8^{2-}$ ve $D_{8h}B_9^{-}$ moleküler tekerlerinde, çevredeki her bir B atomu B-B çevresel kovalent bağlara iki elektron ve dekolize bağlara tek elektron katkı sağlar, oysa merkezi B atomu dekolize bağlar için onun tüm değerlik elektronlarına katkı sağlar.

Bu yeni bağ durumları değerlik elektronlarının uygun sayısıyla diğer atomlar ve boyutlar, $M \otimes B_n$ - tipli atom topaklar üretmek için merkezi bor atomunun yer değiştirebileceğini önermektedir [126].

ab initio hesaplamalarıyla bağlantılı olan fotoelektron spektroskopi (PES) çalışmaları göstermektedir ki küçük anyonik bor atom topakları (B_n) en az n=20'ye kadar genişlemiş bir boyut aralığı için düzlemsel ya da yarı-düzlemseldir.[127-130] Delokalize bağlanma çoklu aromatikliği oluşturur ve düzlemsel topakların kararlılığını arttırır. B_8^{2-} ve B_9^{-} iki atom topağı mükemmel simetrileriyle D_{7h-} B©B7²⁻ ve D8h-B©B8⁻ moleküler tekerlek-tipli topaklar olarak öne çıkmaktadır [131–133]. Örneğin sekiz ve dokuz atomlu anyonik bor atom topakları, bir merkez B atomu ve bir monocyclic B7 ve B8 halkasıyla moleküler bir tekerlek şeklindedir. Bu moleküler tekerlekteki kimyasal bağlar ilgi çekicidir [134]. Merkez B atomu üç delokalize σ ve π bağları aracılığıyla dış halkaya bağlı iken çevresel B₇ ve B₈ halkaları klasik şekilde iki-merkez-iki-elektron (2c-2e) tarafından bağlıdır. Dokuz atomlu (B₉) topağı mükemmel bir D_{8h} simetrisiyle kapalı kabuktur. 28 değerlik elektronu arasından, 16 tanesi 2c-2e çevresel bağlarını şekillendirmek, 6 tanesi üç delokalize σ bağlarını şekillendirmek ve geri kalan 6 tanesi de üç delokalize π bağlarını şekillendirmek için kullanılır. Delokalize olan σ ve π bağlarının her biri çifte aromatikliğe ve B9- moleküler tekerleğinde yüksek elektronik kararlılığa yol açan aromatiklilik için (4n + 2) Hückel kuralıyla uyumludur. Çifte aromatikliliği yerine getirmek için, sekiz atom topağı 26 değerlik elektronu gerektirir: Bunlar, yedi klasik çevresel 2c–2c B–B bağları için 14 tane, 6 delokalize σ elektronları ve 6 delokalize π elektronlarıdır. Bu yüzden, B_8^{2-} atom topağı mükemmel bir D_{7h} simetrisiyle kapalı bir kabuk sistemidir, aksine düzlemsel bir C_{2v} yapısına sahip 25 değerlik elektronlu B₈- atom topağı, en yükseği işgal eden moleküler orbital (HOMO) cift kat bir dejenere orbital $(1e_1^n)$ olduğu için Jan Teller etkisinden dolayı D_{7h} yapısından hafifçe bozulur. Nötr B_8 atom topağı yarı-dolu bir HOMO ($1e_1^{n2}$) ve üçlü bir taban elektronik durumuyla (³A₂) mükemmel bir D_{7h} yapıya sahiptir [135,136].

6.1.2. Katkılı Bor Atom Topakları

Bor atom topakları spektroskopisinde son zamanlardaki gelişmelere rağmen [135], metal katkılı bor atom topakları daha az bilinmektedir. Au_2B_7 ve AuB_{10} olmak üzere metal katkılı bor atom topaklarını karakterize eden çok az ortak deneysel ve teorik çalışma vardır [137,138].

Altıgen, yedigen ve sekizgen C OB_n - tipi atom topakları, hexa-, hepta- ve octa koordinat düzlemsel karbonlarının örnekleridir. Bu topaklar ile ilgili çalışmalar bulunmaktadır [139–141]. Ancak, fotoelektron spektroskopi (PES) çalışmaları göstemiştir ki karbon merkezden farklı olarak böyle topaklarda çevresel pozisyona yerleşmektedir [142,143]. Çünkü C, B'den daha elektronegatiftir ve bu yüzden sadece tekerlek yapının çevresinde mümkün olan lokalize iki-merkez-iki-elektron (2c-2e) σ bağlarına katılmayı tercih eder.

İlk olarak Schyler ve arkadaşları tarafından, Hexa- ve heptakoordinat karbon atomuyla CB_6^{2-} , C_3B_4 ve CB_7^- tekerlek-tipli yapılar bulunmuştur. Yüksek simetrili hiperkoordinat yapıların iyi bağlanma açısından hem elektronik hem de geometrik ihtiyaçları yerine getirdiği için yerel minimumda olduğu bulundu [144,145]. Özellikle de Schleyer ve arkadaşları tekerlek yapıların 6 π elektronlarıyla π aromatikliğine dikkati çekti. Fotoelektron spektroskopisi (PES) ve teorik çalışmaların ortaklığı, karbonun merkezden ziyade böyle topaklarda çevresel pozisyonu işgal ettiğini göstermiştir, çünkü karbon bordan daha elektronegatiftir ve bu yüzden tekerlek yapıların çevresinde sadece mümkün olan lokalize 2c-2e σ bağına katılmayı tercih eder [146, 147]. Merkez ve 6-10 koordinasyon sayılarında bir ana grup atom ile düzlemsel tekerlek-tipli bor halkalarının bir dizisi teorik olarak araştırılmıştır [148–150].

Son zamanlarda, iki kat aromatik yapıları ($M^{(x)} \ \mathbb{C}B_n^{q-}$) belirlemek ve Co $\ \mathbb{C}B_8^{-}$, Ru $\ \mathbb{C}B_9^{-}$, [151] Ta $\ \mathbb{C}B_{10}^{-}$, Nb $\ \mathbb{C}B_{10}^{-}$ [152] anyon ve Rh $\ \mathbb{C}B_9$, Ir $\ \mathbb{C}B_9$ [153] nötr topaklarda da test etmek için geçiş metalinin biçimsel değerlikleri (x), çevresel bor atomlarının sayısı (n) ve topakların yükünü (q), kullanarak bu tür bileşikler için bir tasarım prensibi önerilmektedir. İki kat aromatik B©B₇²⁻ ve B©B₈⁻ topaklarının [154] bağ modelinden elde edilen tasarım prensibinde, sistemdeki bağ elektronları 3n + x + q, n (2ce-2e) B-B çevresel bağlara katılımı ve aromatik dekolize bağların 2 takımı, her biri aromatiklik için (4N + 2 elektron) Hückel'in kuralını yerine getirmesi gerekmektedir. Geometrik kısıtlamalar, katkılayıcının boyutlarına bağlı olarak 8 atom ya da daha fazlası için minimum Bor halka boyutunun oluşmasını beklemektedir. Demir için uygulandığında, tasarım prensibi iki kat aromatiktir : FeB₈²⁻, FeB₉⁻, ve FeB₁₀⁰ takip eden kapalı kabuk öngörmektedir. Tüm bu topaklarda, Demir atomu 2 biçimsel değere sahiptir. İki katlı aromatik sistemdeki açık kabuk aynı zamanda Demir'in biçimsel değeri 3 olan FeB₈⁻ ve FeB₉⁰ için var olabilir.

Yapılan çalışmalar taban durumundaki FeB9-'un aromatik ve bir D9h simetrisine sahip olduğunu göstermektedir. Bu D_{8h}-Fe©B₈²⁻ tekerlek yapısı ayrıca FeB₈²⁻ potansiyel enerji yüzeyinde küresel minimumdadır. Aynı zamanda nötr ve yüklü demir katkılı bor atom topakları [155-157] için DFT metodunu kullanan geometri optimizasyonu ve enerji hesaplamaları hakkında çeşitli başka çalışmalarda bulunmaktadır. Mevcut çalışmada Fe©B₈ ve Fe©B₉ 'in çift katlı aromatik metalmerkezli borometalik bileşikler olduğunu deneysel ve hesaplamalı kanıtlarla gösterildi. Şimdiye kadar ki alüminyum katkılı bor topaklarının PES ve ab initio ortak çalışmaları, alüminyum atomunun AlB₆, AlB₇, AlB₈, AlB₉, AlB₁₀ ve AlB₁₁ sistemlerinde merkezi pozisyonu önlediğini göstermiştir [158-160]. Alüminyumlu B_8^- ve B_9^- bir bor atomunun izoelektronik değişimiyle ilgili bir çalışmada Al'nin, AlB₇ ya da AlB₈ de merkezi pozisyondan uzaklaştığı gösterildi [161]. Bunun yerine, her iki topak düzlemsel olmayan şemsiye-tipli yapılara sahiptir, pozitif olarak yüklenmiş bir Al iyonu bir B_7^{3-} ya da bir B_8^{2-} karşıt iyon'a bağlıdır. Doldurulmamış d-orbitalleriyle geçiş metalleri, sekiz ya da dokuz elemanlı bir bor halkasının içine sığacak doğru boyutlara sahipse bir düzlemsel geometri deki çevresel atomlarla bağa daha elverişli olabilmektedir. Aslında bir dizi teorik hesaplama bir geçiş metal atomu ile B₈ ve B₉ molekül tekerleğindeki merkezi B atomlarının değiştirilmesi önerilmiştir [162-166]. Özellikle de Fe merkezli FeB₉⁻ atom topağının analizlerini kullanarak iki kat aromatik olduğu düşünülmektedir [167].

6.2. SAF BOR ATOM TOPAKLARI

 $6.2.1.B_2$ Atom Topağı

B₂ nötr atom topağı:

Tablo 6.1 B2 nötr atom topağının hesaplama verileri

		CEP121-G		6-311 ++G	6(d. p)	cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂	Singlet	-5.25620687886	1.099	-49.3864884154	1.079	-
	Triplet	-5.28816579047	0.230	-49.4197382640	0.175	-
	Quintet	-5.29663543266	0	-49.4261906859	0	-49.4200887629
	Septet	-4.98645710324	8.434	-49.1110749183	8.568	-

Şekil 6.3 B2 Atom Topağı

B₂ iyon atom topağı:

Tablo 6.2 B₂ iyon atom topağının hesaplama verileri

		CEP121-G		6-311 ++G	6(d.p)	cc-PVDZ
	28±1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂	Doublet	-5.33097679704	0.926	-49.4723805878	0.865	-
	Quartet	-5.36506033096	0	-49.5041990413	0	-49.4866449505
	Sextet	-5.24369274405	3.300	-49.3857397907	3.221	-

6.2.2. B₃ Atom Topakları

B₃ nötr atom topakları:

		CEP121-G		6-311 ++G	6(d. p)	cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₃ -1	Doublet	-8.07468875183	0	-74.2982715888	0	-74.2859792166
	Quartet	-8.03402575540	1.105	-74.2444373553	1.463	-
B ₃ -2	Doublet	-7.97649049577	2.670			
	Quartet	-8.02373243239	1.385			
	Sextet	-8.00451230643	1.908			

Tablo 6.3 B3 nötr atom topaklarının hesaplama verileri

Şekil 6.4 B3 Atom Topakları

B₃ iyon atom topakları:

Tablo 6.4 B3 iyon atom topaklarının hesaplama verileri

	CEP121-G			6-311++0	cc-PVDZ	
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₃ -1	Singlet	-8.16330778175	0	-74.3970675729	0	-74.3713336416
	Triplet	-8.13173058633	0.858	-74.3532072234	1.192	-

Tablo 6.4 (devam) B3 iyon atom topaklarının hesaplama verileri

B ₃ -2	Singlet	-8.06945910569	2.551
	Triplet	-8.09491527369	1.859
	Quintet	-8.06155082600	2.766

6.2.3. B₄ Atom Topakları

B₄ nötr atom topakları:

Tablo 6.5 B ₄ nötr atom topaklarının hesaplama verile
--

		CEP121-G		6-311++G	G (d . p)	cc-PVDZ
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₄ -1	Singlet	-10.80013865220	1.370			
	Triplet	-10.78379792360	1.814			
B ₄ -2	Singlet	-10.85053776390	0	-99.1575461546	0	-99.1384332420
	Triplet	-10.82230443500	0.767	-99.1111699737	1.261	-
B ₄ -3	Singlet	-10.78500596080	1.781			
	Triplet	-10.77826987530	1.965			
B ₄ -4	Singlet	-10.84966105380	0.023			
	Triplet	-10.82230048070	0.767			
B ₄ -5	Singlet	-10.74920471110	2.755			
	Triplet	-10.75215300720	2.675			
	Quintet	-10.77903725530	1.944			
	Septet	-10.69021813020	4.359			

Şekil 6.5 B₄ Atom Topakları

Şekil 6.5 (devam) B4 Atom Topakları

B_4 iyon atom topakları:

Tablo 6.6 B_4 iyon atom topaklarının hesaplama verileri

		CEP121-G		6-311++G	6(d. p)	cc-PVDZ
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₄ -1	Doublet	-10.87109930110	1.349			
B ₄ -2	Doublet	-10.92071550560	0	-99.2221962128	0	-99.1972083186
B ₄ -3	Quartet Doublet	-10.88985475850	0.839	-99.1845145910	1.024	-
• -	Quartet	-10.86505650860	1.513			
B ₄ -4	Doublet Quartet	-10.91510870700 -10.85553093800	0.152 1.772			
B ₄ -5	Doublet	-10.84272310590	2.120			
	Quartet Sextet	-10.88985472560 -10.74038150740	0.839 4.903			

6.2.4. B₅ Atom Topakları

B₅ nötr atom topakları:

		CEP121-G		6-311++G	d(d.p)	cc-PVDZ
	26 - 1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B5-1	Doublet	-13.51725973150	2.776			
	Quartet	-13.52674461730	2.518			
	Sextet	-13.53147073230	2.389			
	Octet	-13.47488983600	3.928			
B ₅ -2	Doublet	-13.48208378380	3.732			
	Quartet	-13.56029900960	1.606			
	Sextet	-13.44395503390	4.769			
B5-3	Doublet	-13.61936141200	0	-123.9928438450	0	-123.9734152070
	Quartet	-13.54977371330	1.892	-123.9114170830	2.214	-
B5-4	Doublet	-13.52618719720	2.533			
	Quartet	-13.51929289130	2.721			
B ₅ -5	Doublet	-13.56243832490	1.547			
	Quartet	-13.55094329350	1.860			
B5-6	Doublet	-13.48144219630	3.750			
	Quartet	-13.55094326570	1.860			
	Sextet	-13.48905152060	3.543			
B ₅ -7	Doublet	-13.42635232160	5.248			
	Quartet	-13.53745140300	2.227			
	Sextet	-13.48905232860	3.543			

Tablo 6.7 B₅ nötr atom topaklarının hesaplama verileri

Şekil 6.6 B5 Atom Topakları

Şekil 6.6 (devam) B5 Atom Topakları

B₅ iyon atom topakları:

	CEP121-G			6-311++G(d.p)		cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	2671	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B5-1	Singlet	-13.61033459920	1.918			
	Triplet	-13.61539799040	1.780			
	Quintet	-13.63794884710	1.167			
	Septet	-13.57917075790	2.765			
B ₅ -2	Singlet	-13.57342902080	2.921			
	Triplet	-13.59527413760	2.327			
	Quintet	-13.58320513250	2.656			
B5-3	Singlet	-13.67598121370	0.133	-124.0569602540	0.017	-
	Triplet	-13.68088643250	0	-124.0575968740	0	-124.0301893270
	Quintet	-13.61303622920	1.844	-123.9627591690	2.578	-

Tablo 6.8 B_5 iyon atom topaklarının hesaplama verileri

	(, , , , , , , , , , , , , , , , , , , ,	· · · ·	F
B ₅ -4	Singlet	-13.57417880490	2.901	
	Triplet	-13.62450576580	1.533	
	Quintet	-13.60177729060	2.151	
B ₅ -5	Singlet	-13.65885719270	0.599	
	Triplet	-13.65023874310	0.833	
B ₅ -6	Singlet	-13.66146324630	0.528	
	Triplet	-13.62703768740	1.464	
B 5-7	Singlet	-13.53014832640	4.098	
	Triplet	-13.63301955700	1.301	
	Quintet	-13.60788680550	1.985	

Tablo 6.8 (devam) B₅ iyon atom topaklarının hesaplama verileri

6.2.5. B₆ Atom Topakları

B₆ nötr atom topakları:

Tablo 6.9 B_6 nötr atom topaklarının hesaplama verileri	
---	--

		CEP121-G		6-311++G	(d.p)	cc-PVDZ	
	29.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji	
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)	
B ₆ -1	Singlet	-16.25573707860	3.449				
	Triplet	-16.25573707860	3.449				
	Quintet	-16.29492981400	2.383				
	Septet	-16.25781538000	3.392				
B ₆ -2	Singlet	-16.37183022460	0.292	-148.8170084460	0	-148.7948778260	
	Triplet	-16.38257906020	0	-148.7720078940	1.223	-	
	Quintet	-16.31165058130	1.928	-	-	-	
B ₆ -3	Singlet	-16.28304005370	2.706				
	Triplet	-16.27166155960	3.016				
B ₆ -4	Singlet	-16.27807852430	2.841				
	Triplet	-16.30213817470	2.187				
	Quintet	-16.29462967200	2.391				
B ₆ -5	Singlet	-16.30866038450	2.009				
	Triplet	-16.28717916220	2.594				
B6-6	Singlet	-16.35659680350	0.706				
	Triplet	-16.36451174110	0.491				
	Quintet	-16.31852639690	1.741				
	•						

	(/ 0	I I I I	I I I I I I I I I I I I I I I I I I I
B6-7	Singlet	-16.27546297440	2.912	
	Triplet	-16.29373262760	2.415	
	Quintet	-16.27307954350	2.977	

Tablo 6.9 (devam) B₆ nötr atom topaklarının hesaplama verileri

Şekil 6.7 B₆ Atom Topakları

B₆ iyon atom topakları:

		CEP121-G		6-311++G	(d. p)	cc-PVDZ
	26+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₆ -1	Doublet	-16.35720983460	3.179			
	Quartet	-16.38470735080	2.431			
	Sextet	-16.36609861750	2.937			
B ₆ -2	Doublet	-16.47414126270	0	-148.9271395860	0	-148.8968355280
	Quartet	-16.45793267130	0.440	-148.8604816740	1.812	-
B ₆ -3	Doublet	-16.37119688250	2.799			
	Quartet	-16.35030149630	3.367			
B ₆ -4	Doublet	-16.38780311370	2.347			
	Quartet	-16.38557474230	2.408			
B ₆ -5	Doublet	-16.38642732670	2.385			
	Quartet	-16.40507957470	1.877			
	Sextet	-16.39513992300	2.148			
B ₆ -6	Doublet	-16.41933839500	1.490			
	Quartet	-16.45442688140	0.536			
	Sextet	-16.39301828860	2.205			
B ₆ -7	Doublet	-16.37819516030	2.608			
	Quartet	-16.38291987730	2.480			
	Sextet	-16.35915998280	3.126			

Tablo 6.10 B₆ iyon atom topaklarının hesaplama verileri

6.2.6. B₇ Atom Topakları

B7 nötr atom topakları:

Tablo 6.11 B7 nötr atom topaklarının hesaplama verileri

		CEP121-G		6-311++0	G(d. p)	cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	-011	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₇ -1	Doublet	-19.02715793580	3.285			
	Quartet	-19.02892537390	3.237			
	Sextet	-19.02016629710	3.475			

B ₇ -2	Doublet	-19.14798025510	0	-173.6945316170	0	-173.6672446570
	Quartet	-19.10775495040	1.093	-173.6552137510	1.069	-
B ₇ -3	Doublet	-19.14189384150	0.165			
	Quartet	-19.14285411120	0.139			
	Sextet	-19.04628959180	2.765			
B ₇ -4	Doublet	-19.07635182040	1.947			
	Quartet	-19.07737924290	1.919			
	Sextet	-19.02106461450	3.451			
B ₇ -5	Doublet	-19.10351993080	1.208			
	Quartet	-19.09141993300	1.537			
B ₇ -6	Doublet	-18.67099755830	12.970			
	Quartet	-18.70608238020	12.016			
	Sextet	-18.72305673290	11.554			
	Octet	-18.86161617060	7.786			
	Dectet	-18.79893456660	9.491			

Tablo 6.11 (devam) B7 nötr atom topaklarının hesaplama verileri

Şekil 6.8 B7 Atom Topakları

B₇ iyon atom topakları:

	CEP121-G			6-311++G(d.p)		cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₇ -1	Singlet	-19.09658502250	4.505			
	Triplet	-19.12828647600	3.643			
	Quintet	-19.12984958760	3.601			
	Septet	-19.11802576640	3.922			
B ₇ -2	Singlet	-19.23218134540	0.818			
	Triplet	-19.25161883910	0.289			
	Quintet	-19.17239651120	2.444			
B ₇ -3	Singlet	-19.26228030070	0	-173.7955380060	0.157	-173.7620001180
	Triplet	-19.25697241820	0.144	-173.7906669370	0.290	-
B ₇ -4	Singlet	-19.16311085700	2.696			
	Triplet	-19.16500451380	2.645			
	Quintet	-19.14823486170	3.101			
B ₇ -5	Singlet	-19.24501036750	0.469			
	Triplet	-19.17948796870	2.251			
B ₇ -6	Singlet	-18.78912330870	12.866			
	Triplet	-19.05918113020	5.522			
	Quintet	-18.84193055300	11.430			

Tablo 6.12 B7 iyon atom topaklarının hesaplama verileri

6.3. TİTANYUM KATKILI BOR ATOM TOPAKLARI

6.3.1. BTİ Atom Topağı

BTi nötr atom topakları:

Tablo 6.13 BTi nötr atom topaklarının hesaplama verileri

		CEP121-G		6-311 ++G	6(d. p)	cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
BTi	Doublet	-60.5737231943	0.944	-874.064582242	0.873	-
	Quartet	-60.5751545780	0.905	-874.076800485	0.541	-
	Sextet	-60.6084404596	0	-874.096703708	0	-874.123947498
	Octet	-60.4382138237	4.628	-873.929895530	4.535	-

Şekil 6.9 BTi Atom Topağı

BTi iyon atom topakları:

		CEP121-G		6-311++0	6(d. p)	cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	2071	(a.u)	(eV)	(a.u)	(eV)	(a.u)
BTi	Singlet	-60.6059909017	1.042	-874.105331290	0.791	-
	Triplet	-60.6231568458	0.575	-874.116559994	0.486	-
	Quintet	-60.6443174382	0	-874.134455192	0	-874.159982032
	Septet	-60.6066998180	1.022	-874.099717708	0.944	-

Tablo 6.14 BTi iyon atom topaklarının hesaplama verileri

6.3.2. B2Ti Atom Topakları

B₂Ti nötr atom topakları:

	CEP121-G			6-311++0	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂ Ti-1	Singlet	-63.3582499253	0	-898.932345049	0	-898.954366566
	Triplet	-63.3471379236	0.302	-898.913902768	0.501	-
B ₂ Ti-2	Singlet	-63.3239663405	0.932			
	Triplet	-63.3149120917	1.178			
B ₂ Ti-3	Singlet	-63.2460461593	3.051			
	Triplet	-63.2482172278	2.992			
	Quintet	-63.2298142738	3.492			

Tablo 6.15 B_2 Ti nötr atom topaklarının hesaplama verileri

Şekil 6.10 B₂Ti Atom Topakları

*B*₂*Ti iyon atom topakları:*

		CEP121-G		6-311++G	6(d. p)	cc-PVDZ
	25.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂ Ti-1	Doublet	-63.4043960574	0	-898.977679224	0	-898.998915473
	Quartet	-63.4020923453	0.062	-898.968945797	0.237	-
B ₂ Ti-2	Doublet	-63.3643928259	1.087			
	Quartet	-63.3572051021	1.283			
B ₂ Ti-3	Doublet	-63.2967935674	2.925			
	Quartet	-63.3025794825	2.768			
	Sextet	-63.2995373793	2.851			

Tablo 6.16 B ₂ Ti iyon atom topaklarının hesaplama verileri	
--	--

6.3.3. B₃Ti Atom Topakları

B₃Ti nötr atom topakları:

	CEP121-G			6-311++G(d.p)		cc-PVDZ
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₃ Ti-1	Doublet	-66.0803868736	1.539			
	Quartet	-66.0707118444	1.802			
B ₃ Ti-2	Doublet	-65.9621779257	4.753			
	Quartet	-65.9586541672	4.849			
B ₃ Ti-3	Doublet	-66.1370005880	0	-923.785134649	0.060	-923.803161891
	Quartet	-66.1094806001	0.748	-923.754455954	0.894	-
B ₃ Ti-4	Doublet	-66.1069865452	0.816			
	Quartet	-66.1229419434	0.382			
	Sextet	-66.0804702425	1.537			
B ₃ Ti-5	Doublet	-66.0075293742	3.520			
	Quartet	-65.9982868455	3.771			

Tablo 6.17 B₃Ti nötr atom topaklarının hesaplama verileri

B ₃ Ti-6	Doublet	-66.0792753386	1.569
	Quartet	-66.0869756880	1.360
	Sextet	-66.0804667613	1.537

Tablo 6.17 (devam) B_3 Ti nötr atom topaklarının hesaplama verileri

Şekil 6.11 B₃Ti Atom Topakları

B₃Ti iyon atom topakları:

		CEP121-G		6-311++G(d.p)		cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₃ Ti-1	Singlet	-66.0494467979	3.733			
	Triplet	-66.1292613343	1.563			
	Quintet	-66.1248228077	1.683			
B ₃ Ti-2	Singlet	-66.0186568351	4.570			
	Triplet	-66.0464199621	3.815			
	Quintet	-66.0450317839	3.853			
B ₃ Ti-3	Singlet	-66.1862700446	0.012			
	Triplet	-66.1867442644	0.001			
	Quintet	-66.1765782047	0.276			
B ₃ Ti-4	Singlet	-66.1862704057	0.012	-923.835850428	0.006	-
	Triplet	-66.1867443079	0	-923.836088507	0	-923.852030978
	Quintet	-66.1765776987	0.276	-923.827910807	0.222	-
B ₃ Ti-5	Singlet	-66.0732150493	3.087			
	Triplet	-66.0927168740	2.556			
	Quintet	-66.0802886192	2.894			
B ₃ Ti-6	Singlet	-66.1438773780	1.165			
	Triplet	-66.1485933926	1.037			
	Quintet	-66.1542990370	0.882			
	Septet	-66.1254701202	1.666			

Tablo 6.18 B ₃ 11 iyon atom topaklarinin hesaplama verileri
--

6.3.4. B₄Ti Atom Topakları

B₄Ti nötr atom topakları:

		CEP121-G		6-311++G(d.p)		cc-PVDZ
	00.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₄ Ti-1	Singlet	-68.7853328181	3.166			
	Triplet	-68.8052537741	2.625			
	Quintet	-68.8209591220	2.197			
	Septet	-68.8114879026	2.455			
B ₄ Ti-2	Singlet	-68.6813669973	5.993			
	Triplet	-68.7032247422	5.399			
	Quintet	-68.7141046942	5.103			
	Septet	-68.7362798694	4.500			
	Nonet	-68,7040408112	5,377			
B ₄ Ti-3	Singlet	-68.6374583458	7.187			
	Triplet	-68.6690492360	6.328			
	Quintet	-68.7179261453	4.999			
	Septet	-68.7151560421	5.074			
B ₄ Ti-4	Singlet	-68.7372931907	4.472			
	Triplet	-68.7187796481	4.976			
B ₄ Ti-5	Singlet	-68.8519927832	1.354			
	Triplet	-68.8935950473	0.222			
	Quintet	-68.8721888593	0.804			
B ₄ Ti-6	Singlet	-68.8957697681	0.163	-948.618681628	0.148	-
	Triplet	-68.9017895869	0	-948.624127833	0	-948.638596495
	Quintet	-68.8731269971	0.779	-948.597861541	0.714	-
B ₄ Ti-7	Singlet	-68.7706340456	3.566			
	Triplet	-68.8204106238	2.212			
	Quintet	-68.8056484658	2.614			
B ₄ Ti-8	Singlet	-68.8647725609	1.006			
	Triplet	-68.8860363792	0.428			
	Quintet	-68.8565528560	1.230			
B ₄ Ti-9	Singlet	-68.8158642560	2.336			
	Triplet	-68.8644501454	1.015			
	Quintet	-68.8564473055	1.232			

Tablo 6.19 B₄Ti nötr atom topaklarının hesaplama verileri

			1	-	
B ₄ Ti-10	Singlet	-68.8455094069	1.530		
	Triplet	-68.8509573360	1.382		
	Quintet	-68.8564492738	1.232		
	Septet	-68.8290341765	1.978		
B ₄ Ti-11	Singlet	-68.8432450278	1.591		
	Triplet	-68.8420075802	1.625		
B ₄ Ti-12	Singlet	-68.8384099183	1.723		
	Triplet	-68.8497010109	1.416		
	Quintet	-68.8554668058	1.259		
	Septet	-68.7827574704	3.236		
B ₄ Ti-13	Singlet	-68.7640135117	3.746		
	Triplet	-68.7873934110	3.110		
	Quintet	-68.7680728374	3.636		
B4Ti-14	Singlet	-68.8641858414	1.022		
	Triplet	-68.8693007005	0.883		
	Quintet	-68.8564713498	1.232		

Tablo 6.19 (devam) B₄Ti nötr atom topaklarının hesaplama verileri

B₄Ti-4

B₄Ti-6

Şekil 6.12 B₄Ti Atom Topakları

Şekil 6.12 (devam) B4Ti Atom Topakları

B₄Ti iyon atom topakları:

		CEP121-G		6-311++G(d.p)		cc-PVDZ
	00.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₄ Ti-1	Doublet	-68.8771486688	2.197			
	Quartet	-68.8759790671	2.229			
B ₄ Ti-2	Doublet	-68.7884524728	4.609			
	Quartet	-68.7875294604	4.634			
B ₄ Ti-3	Doublet	-68.7471222893	5.733			
	Quartet	-68.7753996848	4.964			
	Sextet	-68.7886390350	4.604			
	Octet	-68.7765712595	4.932			
B ₄ Ti-4	Doublet	-68.8406010246	3.191			
	Quartet	-68.8229417165	3.671			
B ₄ Ti-5	Doublet	-68.9420702923	0.432			
	Quartet	-68.9511928807	0.184			
	Sextet	-68.9321272592	0.702			
B ₄ Ti-6	Doublet	-68.9579634694	0	-948.671571679	0.251	-
	Quartet	-68.9575925151	0.010	-948.680820368	0	-948.692510660
B ₄ Ti-7	Doublet	-68.8689885842	2.419			
	Quartet	-68.8878660091	1.906			
	Sextet	-68.8665253986	2.486			
B ₄ Ti-8	Doublet	-68.9556003499	0.064			
	Quartet	-68.9546714668	0.089			
B ₄ Ti-9	Doublet	-68.9146911943	1.176			
	Quartet	-68.9136974631	1.203			
B ₄ Ti-10	Doublet	-68.9053315606	1.431			
	Quartet	-68.8979413039	1.632			
B ₄ Ti-11	Doublet	-68.9141700398	1.190			
	Quartet	-68.9088177227	1.336			
B ₄ Ti-12	Doublet	-68.9103982038	1,293			
	Quartet	-68.9291762326	0,782			
	Sextet	-68.9006243136	1,559			
B4Ti-13	Doublet	-68.8634221507	2.570			
	Quartet	-68.8743677807	2.273			
	Sextet	-68.8646460035	2.537			

Tablo 6.20 B₄Ti iyon atom topaklarının hesaplama verileri

Tablo 6.20 (devam) B4Ti iyon atom topaklarının hesaplama verileri

B ₄ Ti-14	Doublet	-68.9202726069	1.024
	Quartet	-68.9302306405	0.754
	Sextet	-68.9202779155	1.024

$6.3.5.B_5$ Ti Atom Topakları

B₅Ti nötr atom topakları:

Tablo 6.21 B₅Ti nötr atom topaklarının hesaplama verileri

		CEP121-G		6-311++G(d.p)		cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₅ Ti-1	Doublet	-71.5300547644	3.664			
	Quartet	-71.5565168040	2.944			
	Sextet	-71.5641715341	2.736			
	Octet	-71.5513135516	3.085			
B ₅ Ti-2	Doublet	-71.4796285582	5.035			
	Quartet	-71.4518808897	5.789			
B5Ti-3	Doublet	-71.4300670367	6.382			
	Quartet	-71.4472823368	5.914			
	Sextet	-71.4422381479	6.051			
B5Ti-4	Doublet	-71.6542145836	0.287			
	Quartet	-71.6588386303	0.162			
	Sextet	-71.6275286709	1.013			
B ₅ Ti-5	Doublet	-71.6220942513	1.161			
	Quartet	-71.5930053396	1.952			
B5Ti-6	Doublet	-71.6106547869	1.472			
	Quartet	-71.6144979133	1.367			
	Sextet	-71.6209721973	1.191			
	Octet	-71.5470456522	3.202			
B ₅ Ti-7	Doublet	-71.6297727103	0.952			
	Quartet	-71.6061913706	1.593			
B ₅ Ti-8	Doublet	-71.6525062340	0.334	-973.453057231	0.301	-
	Quartet	-71.6648015259	0	-973.464153642	0	-973.475180219
	Sextet	-71.6275209874	1.013	-973.428973602	0.956	-
B5Ti-9	Doublet	-71.6390907850	0.699			
	Quartet	-71.6432239516	0.586			
	Sextet	-71.6129496004	1.409			

B5Ti-10	Doublet	-71.6359609979	0.784	
	Quartet	-71.6281597640	0.996	
B5Ti-11	Doublet	-71.4917867540	4.704	
	Quartet	-71.4981191314	4.532	
	Sextet	-71.4910164471	4.725	
B5Ti-12	Doublet	-71.5715370477	2.536	
	Quartet	-71.5690931214	2.602	
B5Ti-13	Doublet	-71.6190372608	1.244	
	Quartet	-71.6114380317	1.451	
B5Ti-14	Doublet	-71.6354880626	0.797	
	Quartet	-71.6221357726	1.160	
B5Ti-15	Doublet	-71.6448262935	0.543	
	Quartet	-71.6574576442	0.199	
	Sextet	-71.6249951819	1.082	
B5Ti-16	Doublet	-71.6141023566	1.378	
	Quartet	-71.6144979133	1.367	
	Sextet	-71.5942047108	1.919	
B5Ti-17	Doublet	-71.6324258361	0.880	
	Quartet	-71.6317164980	0.899	
B5Ti-18	Doublet	-71.5999138219	1.764	
	Quartet	-71.6322141292	0.886	
	Sextet	-71.6034014754	1.669	
B5Ti-19	Doublet	-71.5268525858	3.751	
	Quartet	-71.5233824606	3.845	

Tablo 6.21 (devam) B₅Ti nötr atom topaklarının hesaplama verileri

B₅Ti-3

Şekil 6.13 B5Ti Atom Topakları

B₅Ti-4

B₅Ti-6

B₅Ti-7

B₅Ti-8

B₅Ti-9

B₅Ti-10

B₅Ti-13

B₅Ti-12

B₅Ti-14 B₅Ti-15

Şekil 6.13 (devam) B5Ti Atom Topakları

Şekil 6.13 (devam2) B5Ti Atom Topakları

B₅Ti iyon atom topakları:

		5 1		1		
		CEP121-G		6-311++0	G(d.p)	cc-PVDZ
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize ener (a.u)
B ₅ Ti-1	Singlet	-71.6251649597	3.071			
	Triplet	-71.6296451175	2.949			
	Quintet	-71 6258350324	3 053			

Tablo 6.22 B₅Ti iyon atom topaklarının hesaplama verileri

	20.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji	
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)	
B ₅ Ti-1	Singlet	-71.6251649597	3.071				
	Triplet	-71.6296451175	2.949				
	Quintet	-71.6258350324	3.053				
B ₅ Ti-2	Singlet	-71.5492441340	5.136				
	Triplet	-71.5521827093	5.056				
	Quintet	-71.5536397762	5.016				
	Septet	-71.5368438724	5.473				
B ₅ Ti-3	Singlet	-71.5389937971	5.414				
	Triplet	-71.5342022389	5.545				

B ₅ Ti-4	Singlet	-71.7180054338	0.547			
	Triplet	-71.7216886059	0.446			
	Quintet	-71.7169273556	0.576			
B ₅ Ti-5	Singlet	-71.6692895170	1.871			
	Triplet	-71.6762994851	1.681			
	Quintet	-71.6471259559	2.474			
B5Ti-6	Singlet	-71.6610526425	2.095			
	Triplet	-71.6871734543	1.385			
	Quintet	-71.6914132842	1.270			
	Septet	-71.6361836640	2.772			
B5Ti-7	Singlet	-71.6946335596	1.182			
	Triplet	-71.7078524551	0.823			
	Quintet	-71.6840883662	1.469			
B ₅ Ti-8	Singlet	-71.7223306612	0.429			
	Triplet	-71.7248667019	0.360			
	Quintet	-71.7284998252	0.261			
	Septet	-71.6891429876	1.331			
B5Ti-9	Singlet	-71.7103344168	0.755			
	Triplet	-71.7102048169	0.759			
B5Ti-10	Singlet	-71.7375308496	0.016			
	Triplet	-71.7125936847	0.694			
B5Ti-11	Singlet	-71.5814331117	4.260			
	Triplet	-71.5914822688	3.987			
	Quintet	-71.5858466547	4.140			
B5Ti-12	Singlet	-71.6024815932	3.688			
	Triplet	-71.6460607171	2.503			
	Quintet	-71.6464631758	2.492			
	Septet	-71.6511478839	2.365			
	Nonet	-71.5803563274	4.290			
B5Ti-13	Singlet	-71.6953857712	1.162			
	Triplet	-71.6901686727	1.304			
B5Ti-14	Singlet	-71.7137971193	0.661	-973.532519342	0	-973.521537349
	Triplet	-71.7381266321	0	-973.530990359	0.041	-
	Quintet	-71.7069769325	0.847	-	-	-
B5Ti-15	Singlet	-71.7125962631	0.694			
	Triplet	-71.7105036649	0.751			
B5Ti-16	Singlet	-71.6610526426	2.095			
	Triplet	-71.6871734543	1.385			
	Quintet	-71.6844330632	1.460			
B5Ti-17	Singlet	-71.6840826962	1.469			
	Triplet	-71.7014118245	0.998			
	Quintet	-71.6969740776	1.119			
		·····				

Tablo 6.22 (devam) B5Ti iyon atom topaklarının hesaplama verileri

B5Ti-18	Singlet	-71.6722299430	1.791	
	Triplet	-71.6699314850	1.854	
B5Ti-19	Singlet	-71.5928403254	3.950	
	Triplet	-71.6291013577	2.964	
	Quintet	-71.6381121847	2.719	
	Septet	-71.5974953690	3.824	

Tablo 6.22 (devam2) B₅Ti iyon atom topaklarının hesaplama verileri

6.3.6. B₆Ti Atom Topakları

*B*₆*Ti nötr atom topakları*:

		CEP121-G		6-311++6	cc-PVDZ	
	00.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₆ Ti-1	Singlet	-74.2565048231	5.471			
	Triplet	-74.2805824724	4.817			
	Quintet	-74.3011616615	4.257			
	Septet	-74.3157028984	3.862			
	Nonet	-74,2839297615	4,726			
B ₆ Ti-2	Singlet	-74.0707676047	10.522			
	Triplet	-74.2187909013	6.497			
	Quintet	-74.0988303400	9.759			
B ₆ Ti-3	Singlet	-74.1589921490	8.123			
	Triplet	-74.2094582277	6.751			
	Quintet	-74.1955876134	7.128			
B ₆ Ti-4	Singlet	-74.4510323896	0.182	-998.334924443	0.182	-
	Triplet	-74.4577373195	0	-998.341624401	0	-998.348987322
	Quintet	-74.4297234816	0.761	-998.283869015	1.570	-
B ₆ Ti-5	Singlet	-74.3448017422	3.070			
	Triplet	-74.3322478686	3.412			
B ₆ Ti-6	Singlet	-74.4280672028	0.806			
	Triplet	-74.4294812275	0.768			
	Quintet	-74.4243553252	0.907			
B ₆ Ti-7	Singlet	-74.3993862174	1.586			
	Triplet	-74.3945949252	1.716			
B ₆ Ti-8	Singlet	-74.4098614911	1.301			
	Triplet	-74.4051156491	1.430			

Tablo 6.23 B₆Ti nötr atom topaklarının hesaplama verileri

Singlet	-74.4116366104	1.253	
Triplet	-74.4090587360	1.323	
Singlet	-74.4119043478	1.246	
Triplet	-74.4119043591	1.246	
Quintet	-74.3845642927	1.989	
Singlet	-74.4348130060	0.623	
Triplet	-74.4433119317	0.392	
Quintet	-74.4094758936	1.312	
Singlet	-73.9510811237	13.776	
Triplet	-73.9734898111	13.167	
Quintet	-74.0043475965	12.328	
Septet	-73.9822656189	12.929	
Singlet	-74.2827807627	4.757	
Triplet	-74.2907037607	4.541	
Quintet	-74.2731540036	5.019	
	Singlet Triplet Singlet Quintet Singlet Triplet Quintet Singlet Triplet Quintet Septet Singlet Triplet Quintet	Singlet -74.4116366104 Triplet -74.4090587360 Singlet -74.4119043478 Triplet -74.4119043478 Triplet -74.4119043591 Quintet -74.3845642927 Singlet -74.4348130060 Triplet -74.4348130060 Triplet -74.4094758936 Singlet -74.4094758936 Singlet -73.9510811237 Triplet -73.9734898111 Quintet -74.0043475965 Septet -73.9822656189 Singlet -74.2827807627 Triplet -74.2907037607 Quintet -74.2907037607	Singlet -74.4116366104 1.253 Triplet -74.4090587360 1.323 Singlet -74.4119043478 1.246 Triplet -74.4119043591 1.246 Quintet -74.4119043591 1.246 Quintet -74.4319043591 1.246 Quintet -74.43845642927 1.989 Singlet -74.4348130060 0.623 Triplet -74.4094758936 1.312 Quintet -74.4094758936 1.312 Singlet -73.9510811237 13.776 Triplet -73.9734898111 13.167 Quintet -74.0043475965 12.328 Septet -73.9822656189 12.929 Singlet -74.2827807627 4.757 Triplet -74.2907037607 4.541 Quintet -74.2731540036 5.019

Tablo 6.23 (devam) B₆Ti nötr atom topaklarının hesaplama verileri

B₆Ti-4

B₆Ti-5

B₆Ti-6

Şekil 6.14 B₆Ti Atom Topakları

Şekil 6.14 (devam) B₆Ti Atom Topakları

B₆Ti iyon atom topakları:

Tablo (6.24 B	₆ Ti	iyon	atom	topak	larının	hesapl	ama	veril	leri
	··- ·	0	-)							

		CEP121-G			6-311++G(d.p)		
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji	
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)	
B ₆ Ti-1	Doublet	-74.3875986561	3.923				
	Quartet	-74.3837018473	4.029				

B ₆ Ti-2	Doublet	-74.1622016918	10.052			
	Quartet	-74.1600235519	10.111			
B ₆ Ti-3	Doublet	-74.3070921652	6.112			
	Quartet	-74.2885749105	6.615			
B ₆ Ti-4	Doublet	-74.5297882950	0.056	-998.416821855	0	-998.420858082
	Quartet	-74.5318791961	0	-998.415971858	0.023	-
	Sextet	-74.4850259204	1.274	-	-	-
B ₆ Ti-5	Doublet	-74.4070670446	3.393			
	Quartet	-74.4447175719	2.370			
	Sextet	-74.3604177856	4.662			
B ₆ Ti-6	Doublet	-74.5036615894	0.767			
	Quartet	-74.5090945170	0.619			
	Sextet	-74.4839554672	1.303			
B ₆ Ti-7	Doublet	-74.4839080789	1.304			
	Quartet	-74.4826909717	1.337			
B ₆ Ti-8	Doublet	-74.4916557901	1.093			
	Quartet	-74.4950160371	1.002			
	Sextet	-74.4789533999	1.439			
B ₆ Ti-9	Doublet	-74.5163562527	0.422			
	Quartet	-74.4976362689	0.931			
B ₆ Ti-10	Doublet	-74.4715836640	1.639			
	Quartet	-74.4607032949	1.935			
B ₆ Ti-11	Doublet	-74.5192416217	0.343			
	Quartet	-74.4899077980	1.141			
B ₆ Ti-12	Doublet	-74.0792282117	12.308			
	Quartet	-74.0814783460	12.247			
	Sextet	-74.1022025535	11.683			
	Octet	-74.0902146309	12.009			
B ₆ Ti-13	Doublet	-74.3693261844	4.420			
	Quartet	-74.3804833579	4.116			
	Sextet	-74.3465679501	5.038			

Tablo 6.24 (devam) B_6Ti iyon atom topaklarının hesaplama verileri
6.4. KROM KATKILI BOR ATOM TOPAKLARI

6.4.1. BCr Atom Topağı

BCr nötr atom topakları:

Tablo 6.25 BCr nötr atom topaklarının hesaplama ve	nleri	Ĺ
--	-------	---

	CEP121-G			6-311 ++G	cc-PVDZ	
	20.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
BCr	Doublet	-89.0861441915	2.110	-1069.08893529	1.345	-
	Quartet	-89.1458655779	0.486	-1069.09265284	1.243	-
	Sextet	-89.1637686152	0	-1069.13840046	0	-1069.18042290
	Octet	-89.1547837910	0.244	-1069.12825314	0.275	-

Şekil 6.15 BCr Atom Topağı

BCr iyon atom topakları:

Tablo 6.26 BCr iyon atom topaklarının hesaplama verileri

		CEP121-G		6-311++0	G(d.p)	cc-PVDZ
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	2071	(a.u)	(eV)	(a.u)	(eV)	(a.u)
BCr	Singlet	-89.0759957599	3.240	-1069.06831159	2.904	-
	Triplet	-89.1416191577	1.456	-1069.12082840	1.476	-
	Quintet	-89.1951713664	0	-1069.17511015	0	-1069.195352990
	Septet	-89.1877304876	0.202	-1069.16520374	0.269	-

6.4.2. B₂Cr Atom Topakları

B₂Cr nötr atom topakları:

	CEP121-G			6-311++G	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂ Cr-1	Singlet	-91.8601249097	1.271	-1093.88552076	1.834	-
	Triplet	-91.9068823171	0	-1093.91561729	1.016	-
	Quintet	-91.8996795322	0.195	-1093.95299215	0	-898.922230834
	Septet	-	-	-1093.92517458	0.756	-
B ₂ Cr-2	Singlet	-91.8603712138	1.264			
	Triplet	-91.8354178027	1.943			
B ₂ Cr-3	Singlet	-91.7361754597	4.641			
	Triplet	-91.7876825882	3.241			
	Quintet	-91.7830265117	3.367			

Tablo 6.27 B₂Cr nötr atom topaklarının hesaplama verileri

Şekil 6.16 B₂Cr Atom Topakları

B₂Cr iyon atom topakları:

	CEP121-G			6-311++G	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	2071	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂ Cr-1	Doublet	-91.9351020321	0.935	-1093.96219914	1.780	-
	Quartet	-91.9694964631	0	-1094.02768294	0	-1094.06463655
	Sextet	-91.9435848692	0.704	-1094.00093039	0.727	-
B ₂ Cr-2	Doublet	-91.9350733418	0.936			
	Quartet	-91.8478318079	3.308			
B ₂ Cr-3	Doublet	-91.8223196008	4.002			
	Quartet	-91.8231743573	3.978			
	Sextet	-91.8441885300	3.407			
	Octet	-91.8595220375	2.990			
	Dectet	-91.8751738924	2.564			
	12-et	-91,7061301790	7,161			

6.4.3. B₃Cr Atom Topakları

B₃Cr nötr atom topakları:

Tablo 6.29 B₃Cr nötr atom topaklarının hesaplama verileri

	CEP121-G			6-311++0	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₃ Cr-1	Doublet	-94.5488832343	3.444			
	Quartet	-94.5688124378	2.902			
	Sextet	-94.6407741070	0.945			
	Octet	-94.6436220918	0.868			
	Dectet	-94.5976307431	2.118			
B ₃ Cr-2	Doublet	-94.4746974009	5.461			
	Quartet	-94.4915427854	5.003			
	Sextet	-94.5406559387	3.668			
	Octet	-94.5343596447	3.839			

			-			
B ₃ Cr-3	Doublet	-94.6453361816	0.821	-1118.78150010	0.972	-
	Quartet	-94.6716076915	0.107	-1118.80796213	0.253	-
	Sextet	-94.6755512011	0	-1118.81727555	0	-1118.849722060
	Octet	-94.6320216894	1.183	-1118.76799946	1.339	-
B ₃ Cr-4	Doublet	-94.6103120661	1.773			
	Quartet	-94.6716030429	0.107			
	Sextet	-94.6671533638	0.228			
B ₃ Cr-5	Doublet	-94.5181920155	4.278			
	Quartet	-94.5495187828	3.427			
	Sextet	-94.5441470974	3.573			
B ₃ Cr-6	Doublet	-94.5841416747	2.485			
	Quartet	-94.6349320969	1.104			
	Sextet	-94.6623889120	0.357			
	Octet	-94,6353730265	1,092			

Tablo 6.29 (devam) B₃Cr nötr atom topaklarının hesaplama verileri

B₃Cr-6

Şekil 6.17 B₃Cr Atom Topakları

B_3Cr iyon atom topakları:

		CEP121-G		6-311++0	6(d. p)	cc-PVDZ
	00.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₃ Cr-1	Singlet	-94.5382019513	5.532			
	Triplet	-94.6346866718	2.908			
	Quintet	-94.6959640605	1.242			
	Septet	-94.7101893683	0.855			
	Nonet	-94.6695019547	1.961			
B ₃ Cr-2	Singlet	-94.4970062715	6.652			
	Triplet	-94.6187798985	3.341			
	Quintet	-94.5982212134	3.900			
B ₃ Cr-3	Singlet	-94.6833860857	1.584	-1118.80252671	2.165	-
	Triplet	-94.7109903800	0.833	-1118.81256568	1.892	-
	Quintet	-94.7416499736	0	-1118.88216332	0	-1118.911863660
	Septet	-94.7140628035	0.750	-1118.85540480	0.727	-
B ₃ Cr-4	Singlet	-94.6543501153	2.373			
	Triplet	-94.7109900356	0.833			
	Quintet	-94.7416495586	0.001			
	Septet	-94.7323318192	0.253			
B ₃ Cr-5	Singlet	-94.6157266611	3.424			
	Triplet	-94.6007894069	3.830			
B ₃ Cr-6	Singlet	-94.6521815600	2.432			
	Triplet	-94.6705039811	1.934			
	Quintet	-94.7223449692	0.524			
	Septet	-94.7323318600	0.253			
	Nonet	94,6793206127	1,694			

Tablo 6.30 B ₃ Cr iyon atom topaklarının hesaplan	a verileri
--	------------

6.4.4. B₄Cr Atom Topakları

B₄Cr nötr atom topakları:

		CEP121-G		6-311++G(d.p)		cc-PVDZ
		Ontimiza ananii	Cäroli Enorii	Ontimiza ananii	Cäroli Enorii	Ontimiza ananii
	2S+1	(a u)	(eV)	(a u)	(eV)	(a u)
B4Cr-1	Singlet	-97 3690866211	2 364	(u.u)	(01)	(u.u)
5401 1	Triplet	-97.3805603307	2.052			
	Ouintet	-97.3697362614	2.347			
B₄Cr-2	Singlet	-97.1978777878	7.020			
• -	Triplet	-97.2422257683	5.814			
	Quintet	-97.2603282350	5.322			
	Septet	-97.2776238317	4.852			
	Nonet	-97.2967170976	4.332			
	11-et	-97,2386454810	5,911			
B ₄ Cr-3	Singlet	-97.2612505782	5.297			
	Triplet	-97.2386328260	5.912			
B ₄ Cr-4	Singlet	-97.2630855100	5.247			
	Triplet	-97.2179938034	6.473			
B ₄ Cr-5	Singlet	-97.3457609258	2.999			
	Triplet	-97.4063044109	1.352			
	Quintet	-97.4524903995	0.097			
	Septet	-97.3925834471	1.726			
B ₄ Cr-6	Singlet	-97.3946851501	1.668	-1143.60687347	1.695	-
	Triplet	-97.4093030925	1.271	-1143.64265868	0.722	-
	Quintet	-97.4560588686	0	-1143.66922933	0	-1143.69868094
	Septet	-97.4257503811	0.824	-1143.63927076	0.814	-
B ₄ Cr-7	Singlet	-97.3039071479	4.137			
	Triplet	-97.3004117623	4.232			
B ₄ Cr-8	Singlet	-97.3603444731	2.602			
	Triplet	97.3700628473	2.338			
	Quintet	-97.3627573853	2.537			
B ₄ Cr-9	Singlet	-97.3604333948	2.600			
	Triplet	-97.3817960644	2.019			
	Quintet	-97.3627135087	2.538			
B ₄ Cr-10	Singlet	-97.2968246229	4.329			
	Triplet	-97.3759955764	2.177			
	Quintet	-97.4154811034	1.103			
	Septet	-97.4289485301	0.737			
	Nonet	-97,3735109398	2,244			

Tablo 6.31 B₄Cr nötr atom topaklarının hesaplama verileri

B ₄ Cr-11	Singlet	-97.2355839306	5.995		
	Triplet	-97.3005886954	4.227		
	Quintet	-97.3288801557	3.458		
	Septet	-97.3045575384	4.119		
B ₄ Cr-12	Singlet	-97.3602999272	2.603	 	
	Triplet	-97.3778262933	2.127		
	Quintet	-97.4147037316	1.124		
	Septet	-97.4072022751	1.328		

Tablo 6.31 (devam) B₄Cr nötr atom topaklarının hesaplama verileri

Şekil 6.18 B4Cr Atom Topakları

Şekil 6.18 (devam) B4Cr Atom Topakları

*B*₄*Cr* iyon atom topakları:

	CEP121-G			6-311++0	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
		(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₄ Cr-1	Doublet	-97.4452670729	1.829			
	Quartet	-97.4371575685	2.050			
B ₄ Cr-2	Doublet	-97.3034734007	5.685			
	Quartet	-97.2832750476	6.234			
B ₄ Cr-3	Doublet	-97.2725432201	6.526			
	Quartet	-97.3488940410	4.450			
	Sextet	-97.2839817065	6.215			
B ₄ Cr-4	Doublet	-97.3301316983	4.960			
	Quartet	-97.3412664403	4.657			
	Sextet	-97.3442579322	4.576			
	Octet	-97.3370356073	4.772			

Tablo 6.32 B	₄ Cr iyon	atom t	opaklarının	hesapla	ıma verileri
			1		

B ₄ Cr-5	Doublet	-97.3988983952	3.090	-1143.61598447	2.972	-
	Quartet	-97.4940294517	0.503	-1143.70711890	0.494	-1143.734991470
	Sextet	-97.5125518451	0	-1143.70310353	0.604	-
	Octet	-97.4651446611	1.289	-	-	-
B ₄ Cr-6	Doublet	-97.4392765037	1.992			
	Quartet	-97.5067760858	0.157			
	Sextet	-97.5125476622	0.001			
	Octet	-97.4943477812	0.495			
B ₄ Cr-7	Doublet	-97.3772345727	3.679			
	Quartet	-97.4694707153	1.171			
	Sextet	-97.4280308681	2.298			
B ₄ Cr-8	Doublet	-97.4141696755	2.675			
	Quartet	-97.4091005870	2.813			
	Sextet	-97.4093119356	2.807			
	Octet	-97.4087033472	2.823			
B ₄ Cr-9	Doublet	-97.4448932454	1.839			
	Quartet	-97.4501466413	1.696			
	Sextet	-97.4380375035	2.026			
B4Cr-10	Doublet	-97.4048554128	2.928			
	Quartet	-97.4619238752	1.376			
	Sextet	-97.5030678852	0.257			
	Octet	-97.4943478313	0.495			
B ₄ Cr-11	Doublet	-97.3532354689	4.332			
	Quartet	-97.4091260629	2.812			
	Sextet	-97.4151134620	2.649			
	Octet	-97.4179604233	2.572			
	Dectet	-97,3751225522	3,736			
B ₄ Cr-12	Doublet	-97.4095458790	2.800			
	Quartet	-97.4464584052	1.797			
	Sextet	-97.5020597413	0.285			
	Octet	-97,4943479248	0,495			
B ₄ Cr-13	Doublet	-97.4710626429	1.128			
	Quartet	-97.4766756991	0.975			
	Sextet	-97.4942662070	0.497			
	Octet	-97.4487640061	1.734			

Tablo 6.32 (devam) B₄Cr iyon atom topaklarının hesaplama verileri

6.4.5. B₅Cr Atom Topakları

B₅Cr nötr atom topakları:

Tablo 6.33 B₅Cr nötr atom topaklarının hesaplama verileri

		CEP121-G		6-311++0	cc-PVDZ	
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₅ Cr-1	Doublet	-100.0877281130	3.551			
	Quartet	-100.1369690750	2.212			
	Sextet	-100.1360052650	2.239			
B ₅ Cr-2	Doublet	-100.0041223820	5.825			
	Quartet	-99.9566426221	7.116			
B ₅ Cr-3	Doublet	-100.0142189570	5.550			
	Quartet	-99.9828248851	6.404			
B ₅ Cr-4	Doublet	-100.1696904980	1.323			
	Quartet	-100.2111576230	0.195			
	Sextet	-100.2070969330	0.306			
B ₅ Cr-5	Doublet	-100.1124825660	2.878			
	Quartet	-100.1325968680	2.331			
	Sextet	-100.1086793830	2.982			
B ₅ Cr-6	Doublet	-100.0828293210	3.685			
	Quartet	-100.1792780020	1.062			
	Sextet	-100.1667182160	1.404			
B ₅ Cr-7	Doublet	-100.1156480540	2.792			
	Quartet	-100.1308236210	2.380			
	Sextet	-100.1297574970	2.409			
B ₅ Cr-8	Doublet	-100.1708906570	1.290	-1168.46439730	1.167	-
	Quartet	-100.1989722720	0.526	-1168.49949566	0.213	-
	Sextet	-100.2183525770	0	-1168.50732975	0	-1168.533934160
	Octet	-100.1723808210	1.250	-1168.46443174	1.166	-
B ₅ Cr-9	Doublet	-100.1375222420	2.197			
	Quartet	-100.1716662790	1.269			
	Sextet	-100.2162278520	0.057			
	Octet	-100,1514627780	1,818			
B5Cr-10	Doublet	-100.1606513040	1.569			
	Quartet	-100.1583773540	1.630			
	Sextet	-100.1533446190	1.767			

B5Cr-11	Doublet	-99.9615248175	6.983
	Quartet	-99.9843522856	6.362
	Sextet	-100.0361902540	4.953
	Octet	-100.0419413310	4.796
	Dectet	-100.0167055240	5.483
B5Cr-12	Doublet	-100.1241270580	2.562
	Quartet	-100.0657808230	4.148
B ₅ Cr-13	Doublet	-100.1111033240	2.916
	Quartet	-100.1531411930	1.773
	Sextet	-100.1633733290	1.494
	Octet	-100.1383844530	2.174
B5Cr-14	Doublet	-100.1572701530	1.660
	Quartet	-100.1553807110	1.712
B ₅ Cr-15	Doublet	-100.1679392820	1.370
	Quartet	-100.1660813080	1.421
B5Cr-16	Doublet	-100.1025456350	3.149
	Quartet	-100.1242811080	2.557
	Sextet	-100.1102044020	2.940
B ₅ Cr-17	Doublet	-100.1205864760	2.658
	Quartet	-100.1823254800	0.979
	Sextet	-100.1862604530	0.872
	Octet	-100.1783616000	1.087
B5Cr-18	Doublet	-100.0639010570	4.199
	Quartet	-100.1684149570	1.357
	Sextet	-100.2152894300	0.083
	Octet	-100.1745485040	1.191
B5Cr-19	Doublet	-100.0252117820	5.251
	Quartet	-100.0326906910	5.048
	Sextet	-100.0921271090	3.432
	Octet	-100.0345611010	4.997

Tablo 6.33 (devam) B₅Cr nötr atom topaklarının hesaplama verileri

Şekil 6.19 B5Cr Atom Topakları

Şekil 6.19 (devam) B_5Cr Atom Topakları

Şekil 6.19 (devam2) B5Cr Atom Topakları

B₅Cr iyon atom topakları:

		CEP121-G		6-311++0	cc-PVDZ	
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₅ Cr-1	Singlet	-100.0954933570	4.885			
	Triplet	-100.2298236720	1.232			
	Quintet	-100.2093424800	1.789			
B ₅ Cr-2	Singlet	-100.0573894190	5.921			
	Triplet	-100.0726422770	5.506			
	Quintet	-100.1200239090	4.218			
	Septet	-100.1244743960	4.097			
	Nonet	-100.1361707600	3.779			
	11-et	-100,1143071500	4,373			
B ₅ Cr-3	Singlet	-100.0298885650	6.669			
	Triplet	-100.0798481500	5.311			
	Quintet	-100.0855207790	5.156			
	Septet	-100.0984025150	4.806			
	Nonet	-100.1089227560	4.520			
B ₅ Cr-4	Singlet	-100.2064815700	1.867			
	Triplet	-100.2647408230	0.283			
	Quintet	-100.2739481620	0.033			
	Septet	-100.2568013820	0.499			
B ₅ Cr-5	Singlet	-100.1564254360	3.228			
	Triplet	-100.1559404640	3.241			
B5Cr-6	Singlet	-100.1999717570	2.044			
	Triplet	-100.2364056000	1.053			
	Quintet	-100.2355727810	1.076			
B ₅ Cr-7	Singlet	-100.2020388710	1.988			
	Triplet	-100.2221779990	1.440			
	Quintet	-100.2296198540	1.238			
	Septet	-100.1842647890	2.471			
B ₅ Cr-8	Singlet	-100.2069267510	1.855	-1168.50110216	1.527	-1168.522286760
	Triplet	-100.2681678730	0.190	-1168.49251201	1.761	-
	Quintet	-100.2698036430	0.145	-	-	-
	Septet	-100.2751631380	0	-	-	-
	Nonet	-100.2458944310	0.795	-	-	-

Tablo 6.34 B_5Cr iyon atom topaklarının hesaplama veri	leri
--	------

B ₅ Cr-9	Singlet	-100.0679443740	5.634
	Triplet	-100.0744978440	5.456
	Quintet	-100.1360737720	3.782
	Septet	-100.1178941340	4.276
B5Cr-10	Singlet	-100.1094052240	4.507
	Triplet	-100.1853319560	2.442
	Quintet	-100.1544009940	3.283
B ₅ Cr-11	Singlet	-100.2309930350	1.201
	Triplet	-100.2482860510	0.730
	Quintet	-100.2519694780	0.630
	Septet	-100.2181166400	1.551
B ₅ Cr-12	Singlet	-100.1909886010	2.288
	Triplet	-100.2518198890	0.634
	Quintet	-100.2667522140	0.228
	Septet	-100.2743067180	0.023
	Nonet	-100.2432176180	0.868
B ₅ Cr-13	Singlet	-100.1616214220	3.087
	Triplet	-100.2173047010	1.573
	Quintet	-100.2529480730	0.604
	Septet	-100.2327092050	1.154
B5Cr-14	Singlet	-100.1324286020	3.881
	Triplet	-100.2137062500	1.671
	Quintet	-100.2551431480	0.544
	Septet	-100.2508937130	0.659
B5Cr-15	Singlet	-100.1267077320	4.036
	Triplet	-100.1432493330	3.587
	Quintet	-100.1558521540	3.244
	Septet	-100.1503287230	3.394

Tablo 6.34 (devam) B5Cr iyon atom topaklarının hesaplama verileri

6.4.6. B₆Cr Atom Topakları

B₆Cr nötr atom topakları:

$\frac{\text{CEP121-G}}{2\text{S+1}} \qquad \begin{array}{c} \text{6-311++G(d.p)} & \text{cc-PVDZ} \\ \hline & & \\ \text{Optimize energi} & \text{Göreli Energi} & \text{Optimize energi} & \text{Göreli Energi} & \text{Optimize energi} \\ \hline & & \\ \text{(a.u)} & (eV) & (a.u) & (eV) & (a.u) \\ \hline \end{array}$

Tablo 6.35 B₆Cr nötr atom topaklarının hesaplama verileri

	28⊥1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	2011	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₆ Cr-1	Singlet	-102.8639048060	3.408			
	Triplet	-102.9006091220	2.410			
	Quintet	-102.8642879060	3.398			
B ₆ Cr-2	Singlet	-102.6722851700	8.619			
	Triplet	-102.6905444520	8.122			
	Quintet	-102.7659045140	6.073			
	Septet	-102.7313502380	7.013			
B ₆ Cr-3	Singlet	-102.6980992420	7.917			
	Triplet	-102.7697841960	5.968			
	Quintet	-102.7552779430	6.362			
B ₆ Cr-4	Singlet	-102.6679502210	8.737			
	Triplet	-102.6596720430	8.962			
B ₆ Cr-5	Singlet	-102.9320624850	1.555	-1193.31099285	1.498	-
	Triplet	-102.9892687380	0	-1193.36610672	0	-1193,38817692
	Quintet	-102.9778228310	0.311	-1193.34638422	0.536	-
B ₆ Cr-6	Singlet	-102.9175253890	1.950			
	Triplet	-102.9844936250	0.129			
	Quintet	-102.9761322600	0.357			
B ₆ Cr-7	Singlet	-102.8967759380	2.515			
	Triplet	-102.9401805450	1.334			
	Quintet	-102.9427416100	1.265			
	Septet	-102.9413647010	1.302			
B ₆ Cr-8	Singlet	-102.9082003740	2.204			
	Triplet	-102.9295775320	1.623			
	Quintet	-102.9143241090	2.037			
B ₆ Cr-9	Singlet	-102.9068569630	2.240			
	Triplet	-102.8985848030	2.465			
B ₆ Cr-10	Singlet	-102.8405068720	4.045			
	Triplet	-102.9212929120	1.848			
	Quintet	-102.8749428000	3.108			

B ₆ Cr-11	Singlet	-102.6098914870	10.316
	Triplet	-102.6197895930	10.046
	Quintet	-102.6255558360	9.890
	Septet	-102.6270611880	9.849
	Nonet	-102,4973178270	13,377

Tablo 6.35 (devam) B₆Cr nötr atom topaklarının hesaplama verileri

Şekil 6.20 B₆Cr Atom Topakları

Şekil 6.20 (devam) B_6Cr Atom Topakları

B₆Cr iyon atom topakları:

	Tablo 6.36 B ₆	Cr ivon atom	topaklarının l	nesaplama verileri
--	---------------------------	--------------	----------------	--------------------

	CEP121-G			6-311++0	cc-PVDZ	
	2S+1	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)	Göreli Enerji (eV)	Optimize enerji (a.u)
B ₆ Cr-1	Doublet	-102.9608251120	2.822			
	Quartet	-102.9737510690	2.470			
	Sextet	-102.9727022100	2.499			
B ₆ Cr-2	Doublet	-102.8047294570	7.066			
	Quartet	-102.8831911330	4.933			
	Sextet	-102.8603610290	5.554			
B ₆ Cr-3	Doublet	-102.8602774140	5.556			
	Quartet	-102.8857765560	4.863			
	Sextet	-102.8348383180	6.248			

B ₆ Cr-4	Doublet	-102.7825440470	7.670			
	Quartet	-102.7910872110	7.437			
	Sextet	-102.7689145620	8.040			
B ₆ Cr-5	Doublet	-103.0379400240	0.725	-1193.41666933	0.590	-
	Quartet	-103.0646200300	0	-1193.43838944	0	-1193.459043760
	Sextet	-103.0546814140	0.270	-1193.42731183	0.301	-
B ₆ Cr-6	Doublet	-102.9846895540	2.173			
	Quartet	-103.0264001150	1.039			
	Sextet	-103.0135457640	1.388			
B ₆ Cr-7	Doublet	-102.9877458320	2.090			
	Quartet	-103.0374077000	0.739			
	Sextet	-103.0366242400	0.761			
B ₆ Cr-8	Doublet	-103.0029362010	1.677			
	Quartet	-103.0350764750	0.803			
	Sextet	-102.9976203610	1.821			
B ₆ Cr-9	Doublet	-102.9811383970	2.270			
	Quartet	-102.9835341950	2.204			
	Sextet	-102.9728358640	2.495			
B ₆ Cr-10	Doublet	-102.9229785520	3.851			
	Quartet	-102.9364798540	3.484			
	Sextet	-103.0318204580	0.891			
	Octet	-103.0081118770	1.536			
B ₆ Cr-11	Doublet	-102.7032541470	9.826			
	Quartet	-102.7077697950	9.703			
	Sextet	-102.7036455640	9.815			
B ₆ Cr-12	Doublet	-102.8546624360	5.709			
	Quartet	-102.8720335340	5.236			
	Sextet	-102.8742760970	5.175			
	Octet	-102,8654849930	5,414			

Tablo 6.36 (devam) B₆Cr iyon atom topaklarının hesaplama verileri

6.5. MANGAN KATKILI BOR ATOM TOPAKLARI

6.5.1. BMn Atom Topağı

BMn nötr atom topakları:

		CEP121-G		6-311++0	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
BMn	Singlet	-106.400001177	2.370	-1175.59459906	2.238	-
	Triplet	-106.426091402	1.661	-1175.66977690	0.194	-
	Quintet	-106.487185783	0	-1175.67693329	0	-1175.73121053
	Septet	-106.464372218	0.620	-1175.63463573	1.150	-

Tablo 6.37 BMn nötr atom topaklarının hesaplama verileri

Şekil 6.21 BMn Atom Topağı

BMn iyon atom topakları:

Tablo 6.38 BMn iyon atom topaklarının hesaplama verileri

		CEP121-G		6-311++0	cc-PVDZ	
	2 \$⊥1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	2071	(a.u)	(eV)	(a.u)	(eV)	(a.u)
BMn	Doublet	-106.436364633	2.680	-1175.70296014	0.559	-
	Quartet	-106.534926689	0	-1175.72352396	0	-1175.77546861
	Sextet	-106.515872523	0.518	-1175.70237748	0.575	-

$6.5.2.B_2Mn$ Atom Topakları

B₂Mn nötr atom topakları:

		CEP121-G		6-311 ++G	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂ Mn-1	Doublet	-109.157716696	2.296	-1200.43294383	1.930	-
	Quartet	-109.242186383	0	-1200.50392604	0	-1200.55620591
	Sextet	-109.219201390	0.625	-1200.47988203	0.653	-
B ₂ Mn-2	Doublet	-109.218380044	0.647			
	Quartet	-109.222123609	0.545			
	Sextet	-109.209078054	0.900			
B ₂ Mn-3	Doublet	-109.095012153	4.001			
	Quartet	-109.128833697	3.082			
	Sextet	-109.091397098	4.100			

Tablo 6.39 B₂Mn nötr atom topaklarının hesaplama verileri

Şekil 6.22 B₂Mn Atom Topakları

B₂Mn iyon atom topakları:

		CEP121-G	6-311++G	cc-PVDZ		
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	25+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₂ Mn-1	Singlet	-109.211421532	2.309	-1200.48859591	1.993	-
	Triplet	-109.251151191	1.228	-1200.52198047	1.085	-
	Quintet	-109.296345811	0	-1200.56190960	0	-1200.61117260
	Septet	-109.284416120	0.324	-1200.54613830	0.428	-
B ₂ Mn-2	Singlet	-109.185467070	3.015			
	Triplet	-109.277077825	0.523			
	Quintet	-109.266396371	0.814			
B ₂ Mn-3	Singlet	-109.203350935	2.528			
	Triplet	-109.191079001	2.862			

Tabla	6 10	R.Mn	ivon	atom	ton	ablarinir	hacai	nlama	voril	ari
1 a010	0.40	\mathbf{D}_{21}	Tyon	atom	ιορ	aniaiiiii	incsa	piama	vern	UII

6.5.3. B₃Mn Atom Topakları

B₃Mn nötr atom topakları:

	CEP121-G			6-311 ++G	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₃ Mn-1	Singlet	-111.760418465	6.881			
	Triplet	-111.936329556	2.098			
	Quintet	-111.915499187	2.664			
B ₃ Mn-2	Singlet	-111.780922684	6.324			
	Triplet	-111.876626565	3.721			
	Quintet	-111.786562612	6.170			
B ₃ Mn-3	Singlet	-111.929381436	2.287	-1225.28397869	2.160	-
	Triplet	-111.946360436	1.825	-1225.29633337	1.824	-
	Quintet	-112.013491398	0	-1225.36344117	0	-1225.40863539
	Septet	-111.975006768	1.046	-1225.31663453	1.272	-

Tablo 6.41 B₃Mn nötr atom topaklarının hesaplama verileri

B ₃ Mn-4	Singlet	-111.917106283	2.620		
	Triplet	-111.974492397	1.060		
	Quintet	-111.979215205	0.932		
	Septet	-111.990301990	0.630		
	Nonet	-111.958981985	1.482		
B ₃ Mn-5	Singlet	-111.806270165	5.634	 	
	Triplet	-111.840065120	4.715		
	Quintet	-111.864075927	4.062		
	Septet	-111.868604320	3.939		
	Nonet	-111.854136095	4.333		
B ₃ Mn-6	Singlet	-111.900104223	3.083	 	
	Triplet	-111.984421219	0.790		
	Quintet	-111.965466120	1.305		

Tablo 6.41 (devam) B₃Mn nötr atom topaklarının hesaplama verileri

B₃Mn-6

Şekil 6.23 B_3 Mn Atom Topakları

B₃Mn iyon atom topakları:

		CEP121-G		6-311 ++G	6(d. p)	cc-PVDZ	
	28+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji	
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)	
B ₃ Mn-1	Doublet	-111.935321868	3.612				
	Quartet	-111.998194859	1.902				
	Sextet	-112.041044469	0.737				
	Octet	-112.032817039	0.961				
B ₃ Mn-2	Doublet	-111.944297355	3.368				
	Quartet	-111.941751833	3.437				
B ₃ Mn-3	Doublet	-111.986727455	2.214	-1225.34101944	2.101	_	
	Quartet	-112.028218997	1.086	-1225.38216300	0.982	-	
	Sextet	-112.068167773	0	-1225.40645858	0.321	-1225.46057702	
	Octet	-112.039347302	0.783	-1225.37563776	1.159	-	
B ₃ Mn-4	Doublet	-112.032064776	0.981				
	Quartet	-112.029585785	1.049				
B ₃ Mn-5	Doublet	-111.895318439	4.700				
	Quartet	-111.953683578	3.113				
	Sextet	-111.960679953	2.922				
	Octet	-111.943283760	3.395				
B ₃ Mn-6	Doublet	-111.967827796	2.728				
	Quartet	-112.047747466	0.555				
	Sextet	-112.059415575	0.237				
	Octet	-112.039656273	0.775				

Tablo 6.42 B_3Mn iyon atom topaklarının hesaplama verileri

6.5.4. B₄Mn Atom Topakları

B4Mn nötr atom topakları:

	CEP121-G			6-311++0	G(d. p)	cc-PVDZ		
	00.1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji		
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)		
B ₄ Mn-1	Doublet	-114.704143729	1.798					
	Quartet	-114.687287256	2.257					
B ₄ Mn-2	Doublet	-114.601843069	4.580					
	Quartet	-114.616045908	4.194					
	Sextet	-114.621531650	4.045					
	Octet	-114.624023541	3.977					
	Dectet	-114.616204717	4.189					
B ₄ Mn-3	Doublet	-114.640539513	3.528					
	Quartet	-114.608320979	4.404					
B ₄ Mn-4	Doublet	-114.516048958	6.913					
	Quartet	-114.532585028	6.463					
	Sextet	-114.566259136	5.548					
	Octet	-114.554533642	5.866					
B ₄ Mn-5	Doublet	-114.682779514	2.379					
	Quartet	-114.739434577	0.839					
	Sextet	-114.767391992	0.078					
	Octet	-114.711263863	1.605					
B ₄ Mn-6	Doublet	-114.721351349	1.330	-1250.14876354	1.150	-		
	Quartet	-114.765186513	0.138	-1250.18995704	0.030	-		
	Sextet	-114.770291283	0	-1250.19108384	0	-1250.23320688		
	Octet	-114.742850023	0.746	-1250.15565460	0.963	-		
B ₄ Mn-7	Doublet	-114.618758251	4.120					
	Quartet	-114.709268975	1.659					
	Sextet	-114.642413044	3.477					
B ₄ Mn-8	Doublet	-114.718999095	1.394					
	Quartet	-114.725805883	1.209					
	Sextet	-114.767392377	0.078					
	Octet	-114.693735456	2.081					
B ₄ Mn-9	Doublet	-114.676882122	2.539					
	Quartet	-114.668997113	2.754					

Tablo 6.43 B₄Mn nötr atom topaklarının hesaplama verileri

B ₄ Mn-10	Doublet	-114.701482357	1.871			
	Quartet	-114.693796865	2.080			
B ₄ Mn-11	Doublet	-114.703433119	1.818			
	Quartet	-114.707374568	1.710			
	Sextet	-114.674773600	2.597			
B ₄ Mn-12	Doublet	-114.652945677	3.190	 	 	
	Quartet	-114.658171441	3.048			
	Sextet	-114.653248768	3.182			

Tablo 6.43 (devam) B₄Mn nötr atom topaklarının hesaplama verileri

Şekil 6.24 B₄Mn Atom Topakları

Şekil 6.24 (devam) B₄Mn Atom Topakları

B₄Mn iyon atom topakları:

		CEP121-G		6-311++0	cc-PVDZ	
	26+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₄ Mn-1	Singlet	-114.635785213	5.403			
	Triplet	-114.767393462	1.824			
	Quintet	-114.760903279	2.001			
B ₄ Mn-2	Singlet	-114.591225020	6.615			
	Triplet	-114.693254830	3.840			
	Quintet	-114.709266095	3.405			
	Septet	-114.708035687	3.438			
B ₄ Mn-3	Singlet	-114.520340117	8.542			
	Triplet	-114.695280462	3.785			
	Quintet	-114.657188609	4.821			
B ₄ Mn-4	Singlet	-114.607193597	6.180			
	Triplet	-114.688487447	3.970			
	Quintet	-114.687763760	3.990			

Tablo 6.44 B₄Mn iyon atom topaklarının hesaplama verileri

			2.4.44	1050 1 1101 550		
B ₄ Mn-5	Singlet	-114.718973853	3.141	-1250.16181773	2.386	-
	Triplet	-114.784604881	1.356	-1250.21272639	1.001	-
	Quintet	-114.792208047	1.150	-1250.23943695	0.275	-
	Septet	-114.834501590	0	-1250.24956477	0	-1250.29155801
	Nonet	-114.763153961	1.940	-1250.16584770	2.276	-
B ₄ Mn-6	Singlet	-114.742064400	2.513			
	Triplet	-114.821620264	0.350			
	Quintet	-114.808200195	0.715			
B ₄ Mn-7	Singlet	-114.695940305	3.767			
	Triplet	-114.720639412	3.096			
	Quintet	-114.730690270	2.822			
	Septet	-114.779157845	1.504			
	Nonet	-114.748438354	2.340			
B ₄ Mn-8	Singlet	-114.770771307	1.732			
	Triplet	-114.819480211	0.408			
	Quintet	-114.820204966	0.388			
	Septet	-114.792816241	1.133			
B ₄ Mn-9	Singlet	-114.734347031	2.723			
	Triplet	-114.690721991	3.909			
B ₄ Mn-10	Singlet	-114.746421530	2.395			
	Triplet	-114.752596896	2.227			
	Quintet	-114.742096015	2.512			
B ₄ Mn-11	Singlet	-114.738241851	2.617			
	Triplet	-114.785955366	1.320			
	Quintet	-114.742216727	2.509			
B ₄ Mn-12	Singlet	-114.680228177	4.195			
	Triplet	-114.755137454	2.158			
	Quintet	-114.689885271	3.932			
B ₄ Mn-13	Singlet	-114.685931217	4.039			
	Triplet	-114.736396908	2.667			
	Quintet	-114.831246991	0.088			
	Septet	-114.822417763	0.328			

Tablo 6.44 (devam) B_4Mn iyon atom topaklarının hesaplama verileri

6.5.5. B₅Mn Atom Topakları

B₅Mn nötr atom topakları:

		CEP121-G		6-311++0	G(d.p)	cc-PVDZ
	2S+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
		(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₅ Mn-1	Singlet	-117.308171686	6.067			
	Triplet	-117.470992975	1.639			
	Quintet	-117.454932998	2.076			
B ₅ Mn-2	Singlet	-117.289725722	6.568			
	Triplet	-117.286440250	6.658			
B ₅ Mn-3	Singlet	-117.237909173	7.977			
	Triplet	-117.292031509	6.506			
	Quintet	-117.355688219	4.775			
	Septet	-117.352123765	4.872			
B ₅ Mn-4	Singlet	-117.457547588	2.005			
	Triplet	-117.525009291	0.171			
	Quintet	-117.518597661	0.345			
B ₅ Mn-5	Singlet	-117.406303090	3.398			
	Triplet	-117.432084212	2.697			
	Quintet	-117.447753897	2.271			
	Septet	-117.444457568	2.361			
B ₅ Mn-6	Singlet	-117.400003678	3.570			
	Triplet	-117.438641445	2.519			
	Quintet	-117.469698150	1.675			
	Septet	-117.477445801	1.464			
	Nonet	-117,489535490	1,135			
	11-et	-117,420719355	3,006			
B ₅ Mn-7	Singlet	-117.458485466	1.979	-1274.96286280	1.930	_
	Triplet	-117.526291111	0.136	-1275.02788495	0.162	_
	Quintet	-117.531298465	0	-1275.03385691	0	-1275.07171509
	Septet	-117.517461861	0.376	-1275.01681851	0.463	_
B ₅ Mn-8	Singlet	-117.433320994	2.664			
	Triplet	-117.520035262	0.306			
	Quintet	-117.528821754	0.067			
	Septet	-117.518400140	0.350			
B ₅ Mn-9	Singlet	-117.447857252	2.268			
	Triplet	-117.497137456	0.928			
	Ouintet	-117.495814446	0.964			

Tablo 6.45 B₅Mn nötr atom topaklarının hesaplama verileri

B ₅ Mn-10	Singlet	-117.307525787	6.084	
	Triplet	-117.382681540	4.041	
	Quintet	-117.366573164	4.479	
B5Mn-11	Singlet	-117.329931793	5.475	
	Triplet	-117.475423968	1.519	
	Quintet	-117.469599878	1.677	
B ₅ Mn-12	Singlet	-117.430787015	2.733	
	Triplet	-117.446988396	2.292	
	Quintet	-117.494170530	1.009	
	Septet	-117.470895753	1.642	
B ₅ Mn-13	Singlet	-117.462011483	1.884	
	Triplet	-117.424697031	2.898	
B ₅ Mn-14	Singlet	-117.445670021	2.261	
	Triplet	-117.520033544	0.238	
	Quintet	-117.528820997	0	
	Septet	-117.514417616	0.391	
B5Mn-15	Singlet	-117.446013944	2.319	
	Triplet	-117.486279152	1.224	
	Quintet	-117.485334270	1.249	
B ₅ Mn-16	Singlet	-117.404409575	3.450	
	Triplet	-117.491928751	1.070	
	Quintet	-117.505711809	0.695	
	Septet	-117.499948159	0.852	
B5Mn-17	Singlet	-117.408255868	3.345	
	Triplet	-117.476201415	1.498	
	Quintet	-117.501648974	0.806	
	Septet	-117.490781243	1.101	
B5Mn-18	Singlet	-117.347866640	4.987	
	Triplet	-117.396108511	3.676	
	Quintet	-117.378019001	4.167	

Tablo 6.45 (devam) B₅Mn nötr atom topaklarının hesaplama verileri

Şekil 6.25 B₅Mn Atom Topakları

Şekil 6.25 (devam) B5Mn Atom Topakları

Şekil 6.25 (devam2) B5Mn Atom Topakları

B₅Mn iyon atom topakları:

Tablo 6.46 B_5 Mn iyon atom to	paklarının hesap	lama verileri
----------------------------------	------------------	---------------

		CEP121-G		6-311++0	G(d. p)	cc-PVDZ
	26+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	28+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₅ Mn-1	Doublet	-117.456897619	4.101			
	Quartet	-117.548525525	1.610			
	Sextet	-117.522674391	2.313			
B ₅ Mn-2	Doublet	-117.459901177	4.020			
	Quartet	-117.457785488	4.077			
B ₅ Mn-3	Doublet	-117.342738326	7.205			
	Quartet	-117.435014690	4.696			
	Sextet	-117.451701902	4.243			
	Octet	-117.448648319	4.326			

B ₅ Mn-4	Doublet	-117.559335692	1.316			
	Quartet	-117.604048598	0.100			
	Sextet	-117.584326257	0.636			
B ₅ Mn-5	Doublet	-117.555130293	1.430			
	Quartet	-117.584855377	0.622			
	Sextet	-117.599404891	0.226			
	Octet	-117.519113330	2.409			
B ₅ Mn-6	Doublet	-117.457229489	4.092			
	Quartet	-117.565917392	1.137			
	Sextet	-117.567615781	1.091			
	Octet	-117.563957753	1.190			
B ₅ Mn-7	Doublet	-117.587903684	0.539	-1275.08906103	0.506	-
	Quartet	-117.607740744	0	-1275.10768511	0	-1275.14312722
	Sextet	-117.599447243	0.225	-1275.10215157	0.150	-
B ₅ Mn-8	Doublet	-117.549059784	1.595			
	Quartet	-117.600253805	0.203			
	Sextet	-117.586422991	0.579			
B ₅ Mn-9	Doublet	-117.532594289	2.043			
	Quartet	-117.600253480	0.203			
	Sextet	-117.586035779	0.590			
B ₅ Mn-10	Doublet	-117.406323819	5.476			
	Quartet	-117.467942796	3.801			
	Sextet	-117.461853392	3.966			
B5M-11	Doublet	-117.448917930	4.318			
	Quartet	-117.561054374	1.269			
	Sextet	-117.548248521	1.617			
B ₅ Mn-12	Doublet	-117.480972893	3.447			
	Quartet	-117.542318412	1.778			
	Sextet	-117.559179524	1.320			
	Octet	-117.548940670	1.598			
B ₅ Mn-13	Doublet	-117.554017442	1.460			
	Quartet	-117.600253563	0.203			
	Sextet	-117.576279285	0.855			
B ₅ Mn-14	Doublet	-117.516277758	2.487			
	Quartet	-117.598580540	0.249			
	Sextet	-117.598127737	0.261			
B ₅ Mn-15	Doublet	-117.535268682	1.970			
	Quartet	-117.568872186	1.056			
	Sextet	-117.553047287	1.487			

Tablo 6.46 (devam) B_5Mn iyon atom topaklarının hesaplama verileri

B ₅ Mn-16	Doublet	-117.529377169	2.130	 	
	Quartet	-117.571331172	0.990		
	Sextet	-117.585258127	0.611		
	Octet	-117.563626199	1.199		
B5Mn-17	Doublet	-117.546377416	1.668	 	
	Quartet	-117.581482905	0.714		
	Sextet	-117.554491601	1.447		
B ₅ Mn-18	Doublet	-117.470108815	3.742	 	
	Quartet	-117.490474403	3.188		
	Sextet	-117.455773028	4.132		

Tablo 6.46 (devam2) B₅Mn iyon atom topaklarının hesaplama verileri

$6.5.6.B_6$ Mn Atom Topakları

B₆Mn nötr atom topakları:

Tablo 6.47 B₆Mn nötr atom topaklarının hesaplama verileri

		CEP121-G		6-311++0	G(d. p)	cc-PVDZ
	26+1	Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji
	23+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)
B ₆ Mn-1	Doublet	-120.180020049	3.349			
	Quartet	-120.192357675	3.013			
	Sextet	-120.204058280	2.695			
	Octet	-120.201963657	2.752			
B ₆ Mn-2	Doublet	-120.012189234	7.912			
	Quartet	-120.109685189	5.261			
	Sextet	-120.114139763	5.140			
	Octet	-120.116121756	5.086			
	Dectet	-120.106169023	5.357			
B ₆ Mn-3	Doublet	-120.024141588	7.587			
	Quartet	-120.006011297	8.080			
B ₆ Mn-4	Doublet	-120.071079049	6.311			
	Quartet	-120.059503016	6.626			
B ₆ Mn-5	Doublet	-120.274648134	0.775			
	Quartet	-120.272948815	0.822			
B ₆ Mn-6	Doublet	-120.267064647	0.982	-1299.84539015	1.232	-
	Quartet	-120.303184508	0	-1299.87708553	0.370	-1299.91235255
	Sextet	-120.292517167	0.290	-1299.86781381	0.622	-
	•••••••••••••••••••••••••••••••••••••••	•	••••••			

B ₆ Mn-7	Doublet	-120.237264820	1.792	
	Quartet	-120.271731115	0.855	
	Sextet	-120.299857481	0.090	
	Octet	-120.297264588	0.160	
B ₆ Mn-8	Doublet	-120.252186450	1.386	
	Quartet	-120.263960789	1.066	
	Sextet	-120.245368432	1.572	
B ₆ Mn-9	Doublet	-120.230879242	1.966	
	Quartet	-120.220162231	2.257	
B ₆ Mn-10	Doublet	-120.246224137	1.548	
	Quartet	-120.297942564	0.142	
	Sextet	-120.275238102	0.759	
B ₆ Mn-11	Doublet	-119.938797144	9.908	
	Quartet	-119.948515957	9.644	
	Sextet	-119.942059971	9.819	
B ₆ Mn-12	Doublet	-120.105177603	5.384	
	Quartet	-120.111098619	5.223	
	Sextet	-120.111257187	5.218	
	Octet	-120.105978092	5.362	

Tablo 6.47 (devam) B₆Mn nötr atom topaklarının hesaplama verileri

Şekil 6.26 B₆Mn Atom Topakları

Şekil 6.26 (devam) B₆Mn Atom Topakları
B₆Mn iyon atom topakları:

		CEP121-G	CEP121-G		6-311++G(d.p)		
		Optimize enerji	Göreli Enerji	Optimize enerji	Göreli Enerji	Optimize enerji	
	2S+1	(a.u)	(eV)	(a.u)	(eV)	(a.u)	
B ₆ Mn-1	Singlet	-120.129620420	6.646				
	Triplet	-120.194095570	4.893				
	Quintet	-120.296474201	2.109				
	Septet	-120.296139822	2.119				
B ₆ Mn-2	Singlet	-120.107084181	7.259				
	Triplet	-120.175112502	5.409				
	Quintet	-120.210272153	4.453				
	Septet	-120.214337267	4.343				
	Nonet	-120.214500844	4.338				
	11-et	-120,206591210	4,554				
B ₆ Mn-3	Singlet	-120.211131993	4.430				
	Triplet	-120.113728368	7.079				
B ₆ Mn-4	Singlet	-120.013394459	9.807				
	Triplet	-120.183514550	5.181				
	Quintet	-120.181949634	5.224				
B ₆ Mn-5	Singlet	-120.334603186	1.073				
	Triplet	-120.327780112	1.258				
B ₆ Mn-6	Singlet	-120.328475909	1.239	-1299.91775420	0.777	-1299.89638648	
	Triplet	-120.374067246	0	-1299.91067088	0.969	-	
	Quintet	-120.370697708	0.091	-	-	-	
B ₆ Mn-7	Singlet	-120.309151386	1.765				
	Triplet	-120.361059118	0.353				
	Quintet	-120.355571151	0.502				
B ₆ Mn-8	Singlet	-120.324998076	1.334				
	Triplet	-120.367931512	0.166				
	Quintet	-120.350598146	0.638				
B ₆ Mn-9	Singlet	-120.329801068	1.203				
	Triplet	-120.366206878	0.213				
	Quintet	-120.359210271	0.403				
B ₆ Mn-10	Singlet	-120.276393011	2.655				
	Triplet	-120.293033410	2.203				
	Quintet	-120.297649256	2.077				
	Septet	-120.301519542	1.972				
	Nonet	-120.307776068	1.802				
		••••	•••••••••••••••••••••••••••••••••••••••		··		

Tablo 6.48 B₆Mn iyon atom topaklarının hesaplama verileri

B ₆ Mn-11	Singlet	-120.294858561	2.153		
	Triplet	-120.357672739	0.445		
	Quintet	-120.363771594	0.279		
	Septet	-120.346597320	0.746		
B ₆ Mn-12	Singlet	-120.087688319	7.787	 	
	Triplet	-120.039159822	9.106		

Tablo 6.48 (devam) B_6Mn iyon atom topaklarının hesaplama verileri

7. SONUÇ VE ÖNERİLER

Bu çalışma Bor atomunun Titanyum, Mangan ve Krom katkılanmış atom topakları şeklinde ayrı ayrı 3 ana kısımda incelendi. İlk kısımda bu atom topaklarının başlangıç geometrileri herhangi bir sınırlama olmaksızın Gauss View'de oluştuldu. Oluşturulan bu atom topakları Gaussian 09 paket programında DFT/B3LYP metodu CEP-121G temel seti kullanılarak hesaplandı. Hesaplamalar nötr ve iyon halleri için ayrı olarak yapıldı. Optimizasyon sonucunda bu topakların optimize enerjileri, elektronik ve yapısal özellikleri bulundu. Sonuçlar nötr ve iyon olarak ayrı tablolar halinde hazırlandı.

İkinci kısımda tablodaki atom topaklarından en kararlı olan yapılar belirlenerek B3LYP metodu 6-311++G(d,p) temel seti ile hesaplamalara devam edildi. Hesaplama sonuçları bulunarak tekrar tablolar oluşturuldu. Benzer şekilde nötr ve iyon halleri için ayrı tablolar hazırlandı.

Son kısımda ise sonuçlar karşılaştırılarak en kararlı atom topak yapılar yeniden belirlendi. Kararlı topaklar son olarak B3LYP metodu cc-pVDZ temel seti ile hesaplandı. Hesaplama sonuçları bulunarak tablolara aktarıldı. Moleküllerin elektronik enerjileri, en yüksek dolu molekül orbital enerjileri (HOMO), en düşük molekül orbital enerjileri (LUMO) belirlendi. Hesaplama sonuçlarında HOMO-LUMO enerji farkı (ΔE) bulunarak tartışıldı.

8. KAYNAKLAR

- [1] Erkoç, Ş. Nanobilim ve NanoTeknoloji, ODTÜ Yayıncılık, ANKARA, 2011.
- [2] M.R. Hoare, Adv. Chem. Phys. 40, 49, **1979**.
- [3] Ber. Bunsenges., Phys. Chem. Vol. 88, **1984**.
- [4] Surf. Sci. Vol. 156, **1985**.
- [5] Chem. Rev. Vol. 86, **1986**.
- [6] M. Moskovits, Ed., *Metal Clusters*, Wiley, **1986.**
- [7] NATO-ASI Series B Vol. 158, **1987**.
- [8] S. Sugano, Y. Nishina, and S. Ohnishi, Eds., *Microclusters*, Springer-Verlag, 1987.
- [9] T. Halicioglu and C. W. Bauschlicher, Jr., Rep. Prog. Phys. 51, 883, **1988**.
- [10] H. Kroto, A.W. Allat, and S.P. Balm, Chem. Rev. 91, 1213, **1991**.
- [11] J. Jortner, Z. Phys. D: At. Mol. Clusters 24, 247, **1992**.
- [12] NATO-ASI Series B Vol. 283, **1992**.
- [13] H. Haberland, Ed. Clusters of Atoms and Molecules, Springer-Verlag, 1994.
- [14] G. Schmid, Ed., *Clusters and Colloids*, VCH Pub., **1994**.
- [15] U. Kreibig and M. Vollmer, *Optical Properties of Metal Clusters*, Springer, 1995.
- [16] P. Jena and S. N. Behera, Eds., *Clusters and Nanostructured Materials*, Nova Science Pub., **1996**.
- [17] T. Kondow, K. Kaya, A. Terasaki, *Structures and Dynamics of Clusters*, Universal Academic Press, Tokyo, **1996**.
- [18] G. N. Chuev, V. D. Lakhno, and A. P. Nefedov, Eds., *Progress in the Physics of Clusters*, World Scientific, **1999**.
- [19] K. H. M. Broer, Ed., *Metal Clusters at Surfaces*, Springer, 2000.
- [20] H. Oymak and S. Erkoç, Phys. Rev. A 66, article no: 033202, 2002.
- [21] R. L. Johnston, Atomic and Molecular Clusters, Taylor and Francis, New York, 2002.
- [22] O. Sinanoglu, Adv. Chem. Phys. 12, 283, 1967.
- [23] S. Erkoc, Physics Reports 278, 79, **1997**.
- [24] S. Erkoc, in Ann. Rev. Comp. Phys. IX, Ed. D. Stauffer, World Scientific, 2001, pp: 1-103.

- [25] P. Fantucci, V. Bonacic-Koutecky, J. Koutecky, Z. Phys. D 12, 307, 1989.
- [26] Selamet, Ö.F. Pdn (n=56-80) Atom Topaklarının Geometrik Yapıları ve Pd₇₈ topağının erime dinamiğinin incelenmesi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi-Fen Bilimleri Enstitüsü, Afyon, 54s, 2006.
- [27] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
- [28] Firsch, A., Nielsen, A. B., Holder, A. L., Gaussview Users Manual Gaussian Inc. Pitsburg, 2000.
- [29] Çelik, İ., Akkurt, M., İde, S., Tutar, A., Çakmak, O., "C₇H₈Br₄ molekülünün konformasyon analizi ve kuantum mekanik yöntemlerle optimizasyonu, elde edilen elektronik ve yapısal parametrelerin x-ışınları yapı analiz sonuçları ile karşılaştırılması", *Gazi University Journal of Science*, 16(1): 27-35, **2003**.
- [30] Höltje, H. D., Sippl, W., Rognan, D., Folkers, G., "Molecular Modelling, 2nd ed.", *Wiley-VCH*, 18-78, 2003.
- [31] Leach, A. E., "Molecular modelling principles and applications", *Paerson Education Limited*, England, 455-501, **2001**.
- [32] Jensen, F., "Introduction to Computational Chemistry", John Wiley and Sons Inc., NewYork, 5-67, 1999.

- [33] Pulay, P., "Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules", *Molecular Physic*, 17(2): 197-204, 1969.
- [34] Pople, J. A., Krishan, R., Schlegel, H. B., Binkley, J. S., *International Journal* of *Quantum Chemistry Symposium*, 13: 225, **1979**.
- [35] Pulay, P., "Analitical derivative methods in Quantum chemistry, Ab initio methods in Quantum chemistry", by K. P. Lawley 11nd ed., *John Wiley & Sons Ltd*, 118-143, **1987**.
- [36] Cramer, C. J., "Essentials of Computational Chemistry", *John Wiley & Sons*, University of Minnesota, 70-98, 2002.
- [37] Atkins, P. W., Freidman, R. S., "Molecular Quantum Mechanics", Oxford University Press, New York, 240-254, 1997.
- [38] Koch, W., Holthausen, M. C., "A Chemist's Guide to Density Functional Theory", Wiley-VCH, Amsterdam, 40-90, 2000.
- [39] Becke, A. D., "Density functional thermochemistry III, The role of exact exchange", *Journal of Chemical Physics*, 98(7): 5648-5652, **1993**.
- [40] Gill, P. M. W., "DFT, HF and selfconsistent field, Encyclopedia of Computational Chemistry", *John Wiley & Sons Ltd*, New York, 80-105, **1996**.
- [41] Parr, R.G., Yang, W., "Density Functional Theory", *Oxford University Press*, England, 60-101, **1989**.
- [42] Csizmadia, G. L., "Computational Adv. Inorganic chem., Molecular Str. And reactivity", Ed. by Ögretir, C., Csizmadia, G.L., NATO ASI series. *Kluwer Academic Publishers*, USA, 15-74, **1981**.
- [43] Peng, C.; Ayala, P. Y.; Schlegel, H. B.; and Frisch, M. J., "Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States", J. Comp. Chem., 17: 49-56, 1996.
- [44] Güventürk Uğurlu, 3-feniltiyofen molekülü ve florlu türevlerinin yapısal parametreleri, elektronik ve lineer olmayan optik özelliklerinin teorik olarak incelenmesi, tez gazi üniversitesi, **2006**.
- [45] Simons, J., "An Introduction to Theoretical Chemistry", Cambridge, Utah, 188-191, 2003.

- [46] L.S. Wang, Clusters, in Encylopedia of Chemical Physics and Physical Chemistry, edited by J.H. Moore and N. D. Spencer, (IOP Publishing Inc., Philadelphia, 2001) pp.2131-2130.
- [47] P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, and H. Topsoe, Science 295, 2053, 2002.
- [48] M.B. Knickelbein, Annu. Rev. Phys. Chem. 50,79, 1999.
- [49] D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, *Nature* 408,67, 2000.
- [50] S. J. Park, T. A. Taton, and C. A. Mirkin, *Science* 295,1503, 2002.
- [51] A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P.Russell, and V. M. Rotello, Nature (London) 404,746, 2000.
- [52] C. Binns, Surf. Sci. Rep. 44,1, 2001.
- [53] J. Jellinek, *Theory of Atomic and Molecular Clusters with a Glimpse at Experiments*, Springer Series in Cluster Physics (Springer, Berlin **1999**).
- [54] (a) Metal Clusters at Surfaces, edited by K.-H. Meiwes-Broer, Springer series in Cluster Physics (Springer, Berlin, 1999). (b) W. A. de Heer, W. D. Knight, M. Y. Chou, and M. L. Cohen, Solid State Phys. 40,3 (1987). (c) W. A. de Heer, Rev. Mod. Phys. 65,611 (1993). (d) V. Bonacic Koutecky, P. Fantucci, and J. Koutecky, Chem. Rev. 91,1035 (1991). (e) W. D. Knight et al., Phys. Rev. Lett. 52,2141 (1984). (f) W. Ekardt, Phys. Rev. B 29,1558 (1984). (g) M. L. Cohen et al., J. Phys. Chem. 91,3141, 1987.
- [55] (a) *Cluster of Atoms and Molecules* I, edited by H. Haberland, Springer Series in Chemical Physics 52 (Springer, Berlin 1995). (b) *Advances in Metal and Semiconductor Clusters*, edited by Michael A. Duncan, University of Georgia Volumes 1-4 Published by JAI Press, Inc.1993-1998. Volume 5 Published by Elsevier Science Publishers, 2001.
- [56] (a) H. W. Kroto, J. R. Heath, S. C. O'Brian, R. F. Curl, and R. E. Smalley, Nature 318,162 (1985). (b) W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347,354, **1990**.
- [57] X. Li, L. S. Wang, A. I. Boldyrev, and J. Simons, "Tetracoordinated Planar Carbon in the Al₄C⁻ Anion. A Combined Photoelectron Spectroscopy and Ab Inito Study", *J. Am. Chem. Soc.* 121,6033-6038, **1999**.

- [58] L. S. Wang, A. I. Boldyrev, X. Li, and J. Simons, "Experimental Observation of Pentaatomic Tetracoordinate Planar Carbon Cointaining Molecules", J. Am. Chem. Soc. 122,7681, 2000.
- [59] X. Li, H. J. Zhai, and L. S. Wang, "Photoelectron Spectroscopy of Pentaatomic Tetracoordinate Planar Carbon Molecules: CAl₃Si⁻ and Cal₃Ge⁻", *Chem. Phys. Lett.* 357,415-419, 2002.
- [60] H. Häkkinen, M. Moseler, and U. Landman, *Phys. Rev. Lett.* 89,033401, 2002.
- [61] F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. Kappes, J. Chem. Phys. 117,6982, 2002.
- [62] H. Häkkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A 107,6168-6175, 2003.
- [63] H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S. Wang, *Angew. Chem. Int. Ed.* 42,6004-6008, 2003.
- [64] H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, *Nature Materials* 2,827-833, 2003.
- [65] X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev, and L. S. Wang, *Science* 291,859-861, 2001.
- [66] A. E. Kuznetsov, A. I. Boldyrev, X. Li, and L. S. Wang, J. Am. Chem. Soc. 123,8825-8831, 2001.
- [67] J. Li, X. Li, H. J. Zhai, and L. S. Wang, *Science* 299,864-867, 2003.
- [68] B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang, B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang, *Proc. Natl. Acad. Sci.* (USA), 102,961-964, **2005**.
- [69] B. Kiran, X. Li, H. J. Zhai, L. F. Cui, and L. S. Wang, Angew. Chem. Int. Ed. 43,2125-2129, 2004.
- [70] Denis E. Bergeron, A. Welford Castleman Jr., Tsuguo Morisato, Shiv N. Khanna, Science 304,84, 2004.
- [71] H. Hubert, B. Devouard, L. A. J. Garvie, M. O_Keeffe, P. R.Buseck, W. T. Petuskey, P. F. McMillan, Nature **1998**, 391, 376.
- [72] M. Fujimori, T. Nakata, T. Nakayama, E. Nishibori, K. Kimura,M. Takata, M. Sakata, *Phys. Rev. Lett.* **1999**, 82, 4452.

- [73] R. Kawai, J. H. Weare, J. Chem. Phys. 1991, 95, 1151.
- [74] A. Ricca, C.W. Bauschlicher, Chem. Phys. 1996, 208, 233.
- [75] I. Boustani, *Phys. Rev.* B **1997**, 55, 16426.
- [76] (a) Vast, N.; Baronia, S.; Zerah, G.; Besson, J. M.; Polian, A.;
 Grimsditch, M.; Chervin, J. C. Phys. Rev. Lett. 1997, 78, 693–696.
 (b) Fujimori, M.; Nakata, T.; Nakayama, T.; Nishibori, E.; Kimura, K.;
 Takata, M.; Sakata, M. Phys. Rev. Lett. 1999, 82, 4452–44525.,
- [77] Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I. J. Chem. Phys. 2002, 117, 7917–7924. (b) Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. J. Phys. Chem. A 2003, 107, 1359–1369. (c) Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. J. Phys. Chem. A 2004, 108, 3509–3517. (d) Zhai, H. J.; Wang, L. S. Alexandrova, A. N.; Boldyrev, A. I.; Zakrzewski, V. G. J. Phys. Chem. A 2003, 107, 9319–9328. (e) Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. J. Chem. Phys. 2005, 122,054313.
- [78] Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. *Angew. Chem., Int. Ed.* 2003, 42, 6004–6008. (b) Alexandrova, A. N.; Zhai, H. J.; Wang, L. S.; Boldyrev, A. I. Inorg. Chem. 2004, 43, 3552–3554.
- [79] Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Nature Mater. 2003, 2, 827–833.
- [80] Kiran, B.; Bulusu, S.; Zhai, H. J.; Yoo, S.; Zeng, X. C.; Wang, L. S. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 961–964.
- [81] Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. Coord.Chem. Rev. 2006, 250, 2811–2866.
- [82] Zhai, H. J.; Wang, L. S.; Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A. 2006, 110, 1689–1693. (b) Wang, L. M.; Huang, W.; Averkiev, B. B.; Boldyrev, A. I.; Wang, L. S. Angew. Chem., Int. Ed. 2007, 46, 4550–4553. (c) Averkiev, B. B.; Zubarev, D. Y.; Wang, L. M.; Huang, W.; Wang, L. S.; Boldyrev, A. I. J. Am. Chem. Soc. 2008, 130, 9248–9250. (d) Averkiev, B. B.; Wang, L. M.; Huang, W.; Wang, L. S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2009, 11, 9840–9849.
- [83] Sergeeva, A. P.; Zubarev, D. Y.; Zhai, H. J.; Boldyrev, A. I.; Wang, L. S. J. Am. Chem. Soc. 2008, 130, 7244–7246.

- [84] Pan, L. L.; Li, J.; Wang, L. S. J. Chem. Phys. 2008, 129, 024302
- [85] Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. *Nature Chem.* 2010, 2, 202–206.
- [86] (a) Wang, L. M.; Averkiev, B. B.; Ramilowski, J. A.; Huang, W.; Wang, L. S.; Boldyrev, A. I. J. Am. Chem. Soc. 2010, 132, 14104–14112. (b) Zhai, H. J.; Miao, C. Q.; Li, S. D.; Wang, L. S. J. Phys. Chem. A 2010, 114, 12155–12161. (c) Galeev, T. R.; Ivanov, A. S.; Romanescu, C.; Li, W. L.; Bozhenko, K. V.; Wang, L. S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 8805–8810. (d) Romanescu, C.; Sergeeva, A. P.; Li, W. L.; Boldyrev, A. I.; Wang, L. S. J. Am. Chem. Soc.2011, 133, 8646–8653.
- [87] Sergeeva, A. P.; Averkiev, B. B.; Zhai, H. J.; Boldyrev, A. I.; Wang, L. S. J. Chem. Phys. 2011, 134, 224304.
- [88] Piazza, Z. A.; Li, W. L.; Romanescu, C. R.; Sergeeva, A. P.; Wang, L. S.; Boldyrev, A. I. J. Chem. Phys. 2012, 136, 104310.
- [89] Romanescu, C.; Harding, D. J.; Fielicke, A.; Wang, L. S. J. Chem. Phys. 2012, 137, 014317.
- [90] Oger, E.; Crawford, N. R. M.; Kelting, R.; Weis, P.; Kappes, M. M.; Ahlrichs, R. Angew. Chem., Int. Ed. 2007, 46, 8503–8506.
- [91] F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th ed. (Wiley-Interscience, New York, 1999).
- [92] N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements* (Butterworth-Heinemann, **1997**).
- [93] L. Hanley, J. L. Whitten, and S. L. Anderson, J. Phys. Chem. 92, 5803, 1988.
- [94] R. Kawai and J. H. Weare, J. Chem. Phys. 95, 1151, 1991.
- [95] H. Kato, K. Yamashita, and K. Morokuma, *Chem. Phys. Lett.* 190, 361, 1992.
- [96] I. Boustani, Int. J. Quantum Chem. 52, 1081, **1994**.
- [97] I. Boustani, Chem. Phys. Lett. 233, 273, 1995.
- [98] A. Ricca and C. W. Bauschlicher, *Chem. Phys.* 208, 233, **1996**.
- [99] I. Boustani, *Phys. Rev. B* 55, 16426, **1997**.
- [100] H. J. Zhai, L. S. Wang, A. N. Alexandrova, and A. I. Boldyrev, J. Chem. Phys. 117, 7917, 2002.

- [101] A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, L. S. Wang, E. Steiner, and P. W. Fowler, *J. Phys. Chem. A* 107, 1359, 2003.
- [102] H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S.Wang, *Angew. Chem.*, *Int. Ed.* 42, 6004, 2003.
- [103] H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, *Nature Mater.* 2, 827, 2003.
- [104] A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A 108, 3509, 2004.
- [105] B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang, Proc. Natl. Acad. Sci. U.S.A. 102, 961, 2005.
- [106] A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang, *Coord. Chem. Rev.* 250, 2811, 2006.
- [107] A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang, J. Am. Chem. Soc. 130, 7244, 2008.
- [108] W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, *Nature Chem.* 2, 202, 2010.
- [109] A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang, J. Chem. Phys. 134, 224304, 2011.
- [110] Z. A. Piazza, W.-L. Li, C. Romanescu, A. P. Sergeeva, L. S. Wang, and A. I. Boldyrev, J. Chem. Phys. 136, 104310, 2012.
- [111] E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs, Angew. Chem., Int. Ed. 46, 8503, 2007.
- [112] T. B. Tai, N. M. Tam, and M. T. Nguyen, Chem. Phys. Lett. 530, 71, 2012.
- [113] H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, L. S. Wang, Angew. Chem. 2003, 115, 6186 – 6190; Angew. Chem. Int. Ed. 2003, 42, 6004 – 6008.
- [114] H. J. Zhai, B. Kiran, J. Li, L. S. Wang, *Nat. Mater.* **2003**, 2, 827–833.
- [115] A. N. Alexandrova, H. J. Zhai, L. S.Wang, A. I. Boldyrev, *Inorg. Chem.* 2004, 43, 3552 3554.
- [116] A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, L. S. Wang, Coord. Chem. Rev. 2006, 250, 2811 – 2866.
- [117] D. Yu. Zubarev, A. I. Boldyrev, J. Comput. Chem. 2007, 28, 251 268.

- [118] W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S.Wang, A. I. Boldyrev, *Nat. Chem.* 2010, 2, 202 – 206
- [119] A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, L. S. Wang, J. Chem. Phys. 2011, 134, 224304.
- [120] E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, R. Ahlrichs, Angew. Chem. 2007, 119, 8656; Angew. Chem. Int. Ed. 2007, 46, 8503.
- [121] H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, L. S. Wang, Angew. Chem. 2003, 115, 6186; Angew. Chem. Int. Ed. 2003, 42, 6004.
- [122] H. J. Zhai, B. Kiran, Li, J., L. S. Wang, Nat. Mater. 2003, 2, 827.
- [123] A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, L. S. Wang, J. Am. Chem. Soc. 2008, 130, 7244.
- [124] W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S.Wang, A. I. Boldyrev, *Nat. Chem.* 2010, 2, 202.
- [125] B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, L. S. Wang, Proc. Natl. Acad. Sci. USA 2005, 102, 961.
- [126] The @ sign has already been used to indicate endohedral doping in 3D cage clusters, such as in He@C60 or Cu@Au16. We propose the _ sign to designate the central position of the doped atom in monocyclic structures in M_Bn-type planar clusters.
- [127] Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. Coord. Chem. Rev. 2006, 250, 2811.
- [128] Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Nat. Mater. 2003, 2, 827.
- [129] (a) Sergeeva, A. P.; Zubarev, D. Y.; Zhai, H. J.; Boldyrev, A. I.; Wang, L. S. J. Am. Chem. Soc. 2008, 130, 7244. (b) Sergeeva, A. P.; Averkiev, B. B.; Zhai, H. J.; Boldyrev, A. I.; Wang, L. S. J. Chem. Phys. 2011, 134, 224304.
- [130] (a) Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. *Nature Chem.* 2010, 2, 202. (b) Kiran, B.; Bulusu, S.; Zhai, H. J.; Yoo, S.; Zeng, X. C.; Wang, L. S. *Proc. Natl. Acad. Sci.* U.S.A. 2005, 102, 961.
- [131] Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. Angew. Chem., Int. Ed. 2003, 42, 6004.

- [132] Alexandrova, A. N.; Zhai, H. J.; Wang, L. S.; Boldyrev, A. I. *Inorg. Chem.* 2004, 43, 3552.
- [133] Fowler, P. W.; Gray, B. R. Inorg. Chem. 2007, 46, 2892.
- [134] H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S.Wang, *Angew. Chem. Int. Ed.* 42, 6004, 2003.
- [135] A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang, *Coord. Chem. Rev.* 250, 2811, 2006.
- [136] D. Y. Zubarev and A. I. Boldyrev, J. Comput. Chem. 28, 251, 2007.
- [137] H. J. Zhai, L. S. Wang, D. Y. Zubarev, and A. I. Boldyrev, J. Phys. Chem. A 110, 1689, 2006.
- [138] H. J. Zhai, C. Q. Miao, S. D. Li, and L. S. Wang, J. Phys. Chem. A 114, 12155, 2010.
- [139] K. Exner, P. von R. Schleyer, *Science* **2000**, 290, 1937
- [140] Z. X. Wang, P. von R. Schleyer, *Science* **2001**, 292, 2465.
- [141] R. M. Minyaev, T. N. Gribanova, A. G. Starikov, V. I. Minkin, *Mendeleev Commun.* 2001, 11, 213.
- [142] L. M. Wang, W. Huang, B. B. Averkiev, A. I. Boldyrev, L. S. Wang, Angew. Chem. 2007, 119, 4634; Angew. Chem. Int. Ed. 2007, 46, 4550.
- [143] B. B. Averkiev, D. Y. Zubarev, L. M. Wang, W. Huang, L. S. Wang, A. I. Boldyrev, J. Am. Chem. Soc. 2008, 130, 9248 – 9250.
- [144] K. Exner, P. v. R. Schleyer, *Science* **2000**, 290, 1937 1940.
- [145] Z.-X. Wang, P. v. R. Schleyer, Science 2001, 292, 2465 2469.
- [146] L. M. Wang, W. Huang, B. B. Averkiev, A. I. Boldyrev, L. S. Wang, Angew.
 Chem. 2007, 119, 4634 4637; Angew. Chem. Int. Ed. 2007, 46, 4550 4553.
- [147] B. B. Averkiev, D. Y. Zubarev, L. M. Wang, W. Huang, L. S. Wang, A. I.
 Boldyrev, J. Am. Chem. Soc. 2008, 130, 9248 9250.
- [148] R. Islas, T. Heine, K. Ito, P. v. R. Schleyer, G. Merino, J. Am. Chem. Soc.
 2007, 129, 14767 14774.
- [149] B. B. Averkiev, A. I. Boldyrev, Russ. J. Gen. Chem. 2008, 78, 769 773.
- [150] J. C. Guo, W. Z. Yao, Z. Li, S. D. Li, Sci. China Ser. B 2009, 52, 566 570.

- [151] C. Romanescu, T.R. Galeev, W.L. Li, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 50, 2011, 9334.
- [152] T.R. Galeev, C. Romanescu, W.L. Li, L.S. Wang, A.I. Boldyrev, Angew. Chem. Int. Ed. 51, 2012, 2101.
- [153] W.L. Li, C. Romanescu, T.R. Galeev, Z.A. Piazza, A.I. Boldyrev, L.S. Wang, J. Am. Chem. Soc. 134, 2012, 165.
- [154] H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 42, 2003, 6004
- [155] Q.O. Luo, Sci. China Ser. B e Chem. 51, 2008, 607.
- [156] Q.Y. Wu, Y.P. Tang, X.H. Zhang, Sci. China Ser. B e Chem. 52 (2009) 288.
- [157] Z. Yang, S.J. Xiong, J. Chem. Phys. 128, 2008, 184310.
- [158] C. Romanescu, A. P. Sergeeva, W. L. Li, A. I. Boldyrev, L. S. Wang, J. Am. Chem. Soc. 2011, 133, 8646 – 8653.
- [159] T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang, A. I. Boldyrev, J. Chem. Phys. 2011, 135, 104301.
- [160] W. L. Li, C. Romanescu, T. R. Galeev, L. S. Wang, A. I. Boldyrev, J. Phys. Chem. A 2011, 115, 10391 – 10397.
- [161] Galeev, T. R.; Romanescu, C.; Li, W. L.; Wang, L. S.; Boldyrev, A. I. J. Chem. Phys. 2011, 135, 104301.
- [162] Luo, Q. O. Sci. China B 2008, 51, 607.
- [163] Ito, K.; Pu, Z.; Li, Q. S.; Schleyer, P. v. R. Inorg. Chem. 2008, 47, 10906.
- [164] Li, S. D.; Miao, C. Q.; Guo, J. C. Sci. China B 2009, 52, 900.
- [165] Wu, Q. Y.; Tang, Y. P.; Zhang, X. H. Sci. China B 2009, 52, 288.
- [166] Pu, Z. F.; Ito, K.; Schleyer, P. V.; Li, Q. S. Inorg. Chem. 2009, 48, 10679.
- [167] Averkiev, B. B.; Wang, L. M.; Huang, W.; Wang, L. S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2009, 11, 9840.

ÖZGEÇMİŞ

1981 yılında Karabük'ün Yenice ilçesinde doğdu. İlk ve orta öğrenimini tamamladıktan sonra 2000 yılında İstanbul Bağcılar Lisesi'nden mezun oldu. 2004 yılında Zonguldak Karaelmas Üniversitesi Karabük Meslek Yüksekokulu Bilgisayar Teknolojisi ve Programlama bölümünde öğrenim görmeye hak kazandı. 2006 yılında bu bölümden mezun oldu. 2006 yılında Gazi Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümünün lisans programını kazandı. 2007 yılında Gazi Üniversitesi Bilgisayar ve Öğretim Teknolojileri Öğretmenliği bölümünü kazandı. 2010 yılında Bilgisayar ve Öğretim Teknolojileri Öğretmenliği bölümden mezun oldu. 2010 yılında Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı yüksek lisans programını şartlı olarak kazandı. 2011 yılında Erasmus Programıyla İşveç ülkesine giderek Linnaeus Üniversitesi'nde yüksek lisans eğitimine devam etti. 2013 yılında Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı'nda yüksek lisans eğitimini tamamladı.