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Bu tez, rüzgâr enerjisi tahmininin alanını ilerletmeyi ve sürdürülebilir enerji yönetimini 

teşvik etmeyi amaçlayarak üç ayrı araştırma bileşeninden elde edilen bulguları 

sentezlemektedir. İlk çalışma, Long Short-Term Memory (LSTM) ve diğer metodolojileri 

kullanarak rüzgâr enerjisi tahminini araştırır. Araştırma, rüzgâr hızı verilerine dayalı güç 

üretimini öngörme odaklıdır ve eksik değerler ve mevsimsel desenlere yönelik zorlukları ele 

alır. İlk analizlerden elde edilen sonuçlar, ARIMA modelleri ve rüzgâr hızı ile güç üretimi 

arasındaki korelasyon değerlendirmelerini içerir ve özellikle Temmuz, Ağustos ve Eylül 

aylarında güç üretiminde belirgin zirvelerin olduğunu, bunun rüzgâr hızı dalgalanmaları ile 

uyumlu olduğunu ortaya koyar. Çalışma, 2.5 metrenin üzerindeki rüzgâr hızlarının güç 

üretimini başlattığını, 8 m/s civarında zirve yaptığını ve grafiksel temsillerin rüzgâr hızı ile güç 

üretimi arasında bir sigmoid ilişkiyi gösterdiğini belirledi. Ardından, SARIMA modelinin 

başarısızlığının ardından alternatif modelleme yaklaşımları keşfedildi. XG Boost, Random 

Forest Regressor ve LSTM, görselleştirme ve istatistiksel analiz yoluyla veri setinin 

özelliklerinin detaylı bir incelemesi ile birlikte değerlendirildi. Eksik hücrelerin yaygınlığı, titiz 

veri işleme öneminin vurgulanmasına neden oldu. Veri genel bakışı ve ön işleme aşaması, veri 

ithalatı sürecini, tarih sütununun tanınmasını, yinelenen girişlerin işlenmesini ve Pandas 

profillemesi ile boxplot keşfini detaylandırdı. "Active Power" ve "Ambient Temperature" gibi 

temel değişkenler ele alındı, eksik değerlerin zorluğu ve gereksiz değişkenlerin 

tanımlanmasıyla ilgili olarak vurgulandı. Son aşama, kullanılan yöntemi kapsayan, doğru analiz 

için eksik veri noktalarına ve anormalliklere odaklanan bir yöntemdir. Titiz temizlik süreci, 

model seçimi (SARIMA, XG Boost, Random Forest Regressor, LSTM) ve bunların 

performansı tartışıldı. Ayrıca, veri doğruluğunun önemi, rüzgâr hızının güç üretimine etkisi ve 

rüzgâr enerjisi dinamiklerini etkili bir şekilde yakalamak için çeşitli modelleme yöntemlerinin 

gerekliliği vurgulandı. Bu bulgulara dayanarak, rüzgâr enerjisi tahminini ve sürdürülebilir 

yönetimi ilerletmeye yönelik bir dizi öneri getirildi. Veri seti kalitesini ve güvenilirliğini 

artırmak için eksik değerlerin, aykırı değerlerin ve gürültünün işlenmesini içeren gelişmiş veri 

ön işleme yöntemleri önerildi. Daha doğru tahminler için klasik istatistik metodolojilerini ve 

makine öğrenimi algoritmalarını birleştiren hibrit modelleme teknolojileri önerildi. Rüzgâr 

enerjisi tahminine etki eden meteorolojik ve coğrafi unsurların özellik mühendisliği 

metodolojilerine eklenmesi, güç üretimini daha iyi anlamak için önerildi. İlgili değişkenlerle 

rüzgâr enerjisi üretimi arasındaki ilişkiyi anlamak için daha yorumlanabilir modeller 

geliştirmek, bilinçli kararlar için vurgulandı. Model ortalaması ve yığma gibi ensemble 
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öğrenme yöntemleri, model kusurlarını en aza indirerek tahmin doğruluğunu artırmak amacıyla 

önerildi. Dinamik hava durumu desenlerini ve çevresel koşulları yakalamak için gerçek zamanlı 

veri akışları ve gelişmiş izleme sistemlerinin kullanımı, uyarlanabilir tahmin modelleri için 

teşvik edildi. Tahmin modelinin parametre ayarlarıile ilgili hassasiyet çalışması, rüzgâr enerjisi 

üretimini etkileyen en ilgili değişkenleri belirlemek amacıyla önerildi. Farklı coğrafi konumlar 

ve çevresel koşullar arasında tahmin modellerinin güvenilirliği ve genelleme yeteneğinin 

sağlanması, kapsamlı geriye dönük test ve çeşitli veri setlerinde doğrulama dahil olmak üzere, 

sıkı model doğrulama ve doğrulama ile vurgulandı. Değişen iklim dinamikleri ve küresel enerji 

talepleri karşısında sürdürülebilir enerji altyapısı planlamak için uzun vadeli rüzgâr enerjisi 

üretimi tahmin çalışmaları önerildi. 

Son olarak, akademik kurumlar, endüstri paydaşları ve devlet kurumlarının iş birliği 

yaparak dünya genelinde rüzgâr enerjisi tahmin teknolojileri ve sürdürülebilir enerji 

uygulamaları için bilgi, veri ve yenilikçi çözümleri paylaşmaları teşvik edildi. Bu kapsamlı 

yaklaşım, rüzgâr enerjisi tahmininin ilerlemesine katkıda bulunmayı ve sürdürülebilir enerji 

yönetimi uygulamalarını teşvik etmeyi amaçlamaktadır. 

 

Anahtar Kelimeler: Rüzgâr Enerjisi Tahmini, LSTM Modelleme, Güç Üretimi Tahmini, 

Zaman Serisi Analizi, Yenilenebilir Enerji İçin Makine Öğrenimi  
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This thesis synthesizes findings from three distinct research components, aiming to 

advance the field of wind energy prediction and promote sustainable energy management. The 

initial study explores wind energy prediction utilizing Long Short-Term Memory (LSTM) and 

other methodologies. The investigation focuses on forecasting power output based on wind 

speed data, addressing challenges related to missing values and seasonal patterns. Results from 

initial analyses, including ARIMA models and correlation assessments between wind speed and 

power output, revealed distinct peaks in power output during specific months, notably July, 

August, and September, corresponding with wind speed fluctuations. The study identified that 

wind speeds above 2.5 meters per second initiate power generation, peaking around 8 m/s, with 

graphical representations indicating a sigmoid relationship between wind speed and power 

output. Subsequently, alternative modeling approaches were explored after the failure of the 

SARIMA model. XG Boost, Random Forest Regressor, and LSTM were considered, with a 

detailed examination of the dataset's properties through visualization and statistical analysis. 

The prevalence of missing cells underscored the importance of meticulous data handling. The 

data overview and preprocessing phase detailed the process of data importation, recognition of 

the date column, handling of duplicate entries, and exploration through Pandas profiling and 

boxplots. Key variables such as "Active Power" and "Ambient Temperature" were discussed, 

along with the challenge of missing values and the identification of redundant variables. The 

final phase encapsulated the methodology used, emphasizing the importance of addressing 

missing data points and anomalies for accurate analysis. The rigorous cleaning process, model 

selection (SARIMA, XG Boost, Random Forest Regressor, LSTM), and their respective 

performance were discussed. Furthermore, the significance of data accuracy, the impact of wind 

speed on power output, and the necessity for varied modeling methods to capture wind energy 

dynamics effectively were highlighted. Building on these findings, several recommendations 

for advancing wind energy prediction and sustainable management were proposed. Advanced 

data pre-processing methods were suggested to enhance dataset quality and dependability, 

including the handling of missing values, outliers, and noise. Hybrid modeling technologies 

that combine classical statistical methodologies and machine learning algorithms were 

recommended for more accurate predictions. Incorporating meteorological and geographical 

elements into feature engineering methodologies was suggested to better understand power 

output. Developing more interpretable models to comprehend the relationship between relevant 

variables and wind energy generation was emphasized for informed decision-making. 
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Ensemble learning methods, such as model averaging and stacking, were proposed to increase 

prediction accuracy by minimizing model flaws. The utilization of real-time data streams and 

advanced monitoring systems for dynamic weather patterns and environmental conditions was 

encouraged for adaptive forecasting models. A rigorous sensitivity study was suggested to 

assess forecasting model robustness to parameter adjustments, identifying the most relevant 

variables affecting wind energy generation. Ensuring the reliability and generalizability of 

forecasting models across different geographical locations and environmental conditions was 

emphasized through rigorous model validation and verification. Long-term wind energy 

generation forecasting studies were proposed to plan sustainable energy infrastructure in the 

face of changing climate dynamics and global energy demands. Finally, collaboration between 

academic institutions, industry stakeholders, and government agencies was encouraged to share 

knowledge, data, and innovative solutions for wind energy forecasting technologies and 

sustainable energy practices worldwide. This comprehensive approach aims to contribute to the 

advancement of wind energy prediction and foster sustainable energy management practices. 

 

Keywords: Wind Energy Prediction, LSTM Modeling, Power Output Forecasting, Time Series 

Analysis, Machine Learning for Renewable Energy 
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1. INTRODUCTION 

 

Wind energy plays a pivotal role in addressing the global energy crisis by offering 

a sustainable and renewable source of power. Harnessing the power of the wind helps 

reduce reliance on finite fossil fuels, mitigating environmental impact and combating 

climate change. Additionally, wind energy promotes energy independence, fostering 

resilience in the face of geopolitical uncertainties. As a clean and abundant resource, it 

contributes to a more sustainable future, ensuring a greener and healthier planet for 

generations to come. 

Even before 7000 years ago, wind provided the power for Egyptian sails. In the 

seventeenth century BC, the Babylonian ruler Hammurabi purportedly intended to deploy 

windmills for irrigation. In the 400 BC book Arthashastra, the Indian philosopher 

Kautilya mentioned windmills. According to some Indian experts, Buddhist monks 

brought the art of windmills to China, and there is evidence that windmills were 

effectively used for water pumping throughout the pre-Christian era. Windmills also 

migrated east as trade along the Silk Road from China to the Middle East grew. In the 

third century BC, Hero of Alexandria wrote about a windmill with a horizontal axis that 

could be used to power an instrument. As early as 200 BC, vertical axis windmills were 

being used in Persia and the Middle East to grind grains (Abdoos, 2016). 

 

 
Figure 1.1. The first windmill built by Hammurabi. 

 

By the seventh century AD, building windmills was a well-established trade in the 

Middle East. Merchants and Crusaders who had returned to Europe in the eleventh 

century carried the windmill with them. The Persian version was later enhanced by the 
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Dutch and then by the English. More advanced horizontal-axis windmills were discovered 

in France and England by the 12th century. There were 10,000 windmills in the 

Netherlands alone in the 18th century, used for sawing, pumping, and grinding. By the 

end of the 19th century, windmills were widespread throughout the Great Plains of the 

United States. Golding has offered an outstanding analysis on the growth of wind 

machines (Amjady et al., 2011). 

 

 
Figure 1.2. Oldest design drawings of the post-mills by Mariano Jacob (Pilipets et al., 

2014). 

 

The focal point of energy plans in different nations is progressively moving 

towards energy preservation and discharge decrease as essential energy utilization and 

contemporary provokes keep on emerging. Since wind energy is presently generally 

coordinated into the network, issues like its unpredictability and intermittency cause wind 

energy prediction slip-ups to straightforwardly affect functional decisions involving it in 

the power framework. To settle matrix association issues and keep up with network 

dependability, wind power should be definitively anticipated subsequent to being 

associated with the lattice since the haphazardness and unpredictability of wind speed 

bring about power quality that can't satisfy the requirement for framework association 

(Kusiak & Song, 2010). 

Shallow learning models and Profound Learning Models (PLM) are the two 

general classifications into which AI based prediction calculations can be isolated. 

Profound learning is a new subfield of AI that tends to the blemishes in shallow learning 

models and is being used increasingly more in the field of wind power prediction. A 

genuinely restricted Long Short-Term Memory (LSTM) calculation was put out by Luo 

(Luo, 2017). The Material science Obliged LSTM (PC-LSTM) model decisively 
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increments prediction exactness when contrasted with regular AI and measurable 

procedures. Chen et al. picked highlights with great connection utilizing the Pearson 

relationship coefficient. The factors used as contribution for the LSTM model are the 

factors for temperature, moistness, and sunlight based radiation power. The 

recommended model shows further developed prediction precision when contrasted with 

a solitary LSTM model, Back Engendering (BE), Radial Basis Function (RBF), and Time 

Series (TS) calculations (Asis & Dhiren, 2012).  

Goa (Gao, 2020) made a prediction model in view of LSTM and Discrete Dark 

Model (DDM) for non-ideal weather conditions by joining mathematical climate 

prediction and LSTM to estimate power age under ideal climate conditions. Its prediction 

results are more exact than those of the Wavelet Brain Organization (WBO), BP, and 

Least Square Help Vector Machine (LSHVM) in terms of precision. The LSTM 

organization, one of the previously mentioned profound learning models, succeeds at 

dealing with time series forecasting because of its unmistakable design and is a rendition 

to determine the issue of detonating and evaporating slopes in Recurrent Neural Network 

(RNN). Subsequently, a short-term wind turbine power estimate model in light of LSTM 

is made in this article (Ayadi et al., 2020). 

Forecasting wind energy is a difficult errand. It is trying to match the genuine 

prerequisite in terms of prediction precision because of the impact of various variables. 

Along these lines, analysts locally and abroad have proposed various strategies for 

anticipating wind power. To further develop causality, Shivam (Shivam, 2020) utilized a 

convolutional Neural Network (CNN) to figure results by taking care of residuals from a 

one-layered preparing dataset into the organization. Notwithstanding, the CNN model's 

design is excessively perplexing and it has significantly more hyper-boundaries to deal 

with this issue. Hence, as of the present moment, a recursive brain network is the best 

methodology for planning an Artificial Neural Network (ANN) to handle the succession 

displaying issue. Recursive brain organizations (RNN) take into consideration the 

development of step conditions, which is reliable with the articles' portrayals of the 

fleeting coherence of wind speed prediction. Scientists use "gating" techniques in RNN 

models, which basically contain calculations like Gated Repetitive Units (GRU) and 

LSTM, to settle the issues of detonating and evaporating angles in RNN models. The 

exhibition of GRU and LSTM are tantamount in an examination of the group of writing. 

Yet, while differentiating the two models, apparently the LSTM-based model is more 

precise. Nonetheless, because of its broad approval, the LSTM-based model seems, by 
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all accounts, to be more exact than the other two models. Every approval uncovered 

precise predictions utilizing different wind datasets from around the world (Banna et al., 

2014). 

1.1. Wind Power 

The basic tenet of heat transport on Earth is what drives atmospheric winds, a 

natural phenomenon. The uneven heating of the Earth's surface by the sun's radiant energy 

is the primary cause of these winds. Sunlight strikes various parts of the Earth, where it 

is absorbed and re-radiated at different rates. Variations in temperature and, consequently, 

atmospheric pressure are caused by this differential heating. Lower air pressure is 

experienced in warmer regions whereas higher pressure is felt in colder regions. This 

pressure differential creates the conditions for air masses to move, which is what we 

usually refer to as wind (Carpinone et al., 2015). 

In its purest form, wind is just air moving. It is a dynamic and ever-present force 

that is crucial in determining the climate and weather patterns on our planet. It has proven 

extremely helpful to harness the energy of the wind for a variety of uses, especially in the 

context of the production of renewable energy. 

Innovative machinery known as wind turbines is used to collect and transform the 

kinetic energy of the wind into mechanical energy. According to O’Boyle (O’Boyle, 

2017) the name "windmill" originally referred to devices that were principally used to 

mill grain using wind energy. The phrase "wind turbine" has gained in popularity in 

modern times, reflecting the wider range of uses for this technology. When used to 

produce electricity, wind turbines are also known as Wind Energy Conversion Systems 

and occasionally as wind generators or aero generators (Rakeshchandra et al., 2013). 

Wind energy usage has significantly increased recently, solidifying itself as one 

of the fastest-growing technologies globally. The urgent need to move away from fossil 

fuels and cut greenhouse gas emissions to combat climate change is the main factor 

fueling this spike in popularity. In order to battle climate change and fulfill the rising 

energy needs of a growing population, wind power is an essential component of 

worldwide efforts. It provides a sustainable and ecologically friendly alternative to 

existing energy sources (Diaconu, Onea, & Rusu, 2012). 

1.1.1. Wind power potential assessment process and its stages 

The group of technologies and analytical techniques known as wind power 

potential assessment is used to determine how much wind resource will be available for 
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a wind power plant during its useful lifetime. An evaluation of the plant's wind potential 

gives a broad picture of how much electricity it will produce. The ability to produce 

energy is a key factor in project success for investors and developers. An extremely 

significant event is the successful conclusion of the wind power potential assessment 

process. The ability to accurately estimate energy production in a sizable wind farm 

depends on much more than just being able to monitor wind speed at a specific moment 

(Vinhoza, 2021). 

The process of assessing the wind power potential can be divided into three 

fundamental phases, including preliminary area identification, wind resource appraisal, 

and micro siting. A much bigger region is screened in the first stage's preliminary area 

identification phase. Based on pertinent information, such as meteorological weather 

data, wind resource maps, terrain data, topography, and other indications, the proper wind 

resource areas are selected. A wind resource evaluation is the second stage, where wind 

measurement programs are used to evaluate the wind resource in a specified location 

where wind power development is being taken into consideration. This stage involves 

determining whether the region has sufficient wind resources, evaluating the chosen wind 

turbines' economic viability, and keeping an eye out for prospective locations for 

installing wind turbines. A micro siting is the third stage. It refers to the area where one 

or more wind turbines can be placed in close proximity to one another to optimize the 

amount of wind energy produced in that particular area (Dolara et al., 2017). 

One of nature's most prevalent renewable energy sources is wind. It is an 

unpredictable, erratic, and uncontrolled variable. Numerous factors, including 

temperature, stress, topography of the land, the landscape, the region, etc., have an impact 

on the wind profile. But among the most sustainable energy sources, wind stands out since 

it has positive environmental impacts and is much simpler than the others. Wind energy 

is plentiful, renewable, accessible, and clean, similar to using fossil fuels. Additionally, 

wind uses the least amount of water, emits the fewest greenhouse gases, and requires a 

limited amount of land. In contrast to photovoltaic, wind generators have lower 

installation costs and use high-efficiency power converters, making them the most 

dependent source in the recent past, despite the fact that solar cells have seen a similar 

level of attention. The Wind Energy Conversion System is a potential source of 

alternative energy in the future (Duan et al., 2021). Due to its qualities, it has attracted a 

lot of interest and is an endless supply of energy. Since wind energy has a great potential 

in the majority of locations worldwide, it stands out among RES and is the most 
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encouraging. Wind energy is primarily generated by turning wind turbine blades through 

airflow. Due to variations in wind speed, which convert mechanical power, the production 

strength of the power changes? Therefore, there is a broad range of energy production 

employing wind turbines with vertical and horizontal axes in WECS. Less energy is 

produced by the vertical type design. The use of wind power generating is widespread 

among electric utilities worldwide. Wind farms offshore are more stable and powerful 

than those on land (a short distance from the shore). In places like offshore islands, where 

fuel is frequently expensive and wind initiatives are particularly advantageous, using 

wind energy might be an intriguing option. However, the expenditures for building and 

upkeep are significantly higher. The wind farms contain a large number of individual 

Wind Turbines (WT) (Gao et al., 2020). 

Compared to coal or gas-fired power plants, wind is a viable supply of electricity. 

Onshore small wind farms are able to contribute a little amount of energy to the grid or 

supply off-grid electricity to some areas far from land. The larger turbines are used for 

home power supply and are dispersed across a greater geographic area. Any excess power 

is then sold back to the utility provider via the electrical grid. A small turbine can be used 

to power boats, caravans, and battery chargers as well as traffic warning signs. Small 

wind turbines for boats and RVs can be as small as a 50-watt generator. In rural areas, 

traffic signs are powered by hybrid solar and wind systems. In any case, it is necessary to 

design compact standalone systems. Small units have direct current output, direct drive, 

bearings, and lifelong aero elastic blades. The National Renewable Energy Laboratory 

defined small wind turbines as less than or equal to 100 kilowatts. Energy ranges up to 

700 kW now surpass previous ones thanks to later developments. Different types of huge 

turbines are developing as a substantial source of sporadic RES. little wind turbines are 

used for on-grid or off-grid homes, remote monitoring, offshore platforms, telecom 

towers, rural schools and clinics, among other uses (Harrouz et al., 2019). 

The original wind turbines were typically constant velocity turbines with straight 

induction generators (Hau, 2013) and gearboxes connected to the grid. This structure, 

which is still widespread in Denmark, is the least adaptable and has the most negative 

impact, necessitating the compensating of installed devices at times. In the wind energy 

industry, fixed-speed WECS with either a functioning or detached slow down have long 

ruled. Fixed speed WECS enjoys the benefits of being basic, dependable, and proficient 

with straightforward and cheap electrical parts and very much demonstrated activity. 

Then again, the fixed-speed process requires the steady mechanical pressure. Since there 
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is little flexibility in changing the set generator velocity, their main flaw is rigidity. 

Furthermore, because the rotor speed is fixed at the grid frequency and is nearly 

continuous, fixed-speed WECS has very little controllability. The electronic interface 

power converter, which enables full or partial decoupling from the grid, makes the 

variable velocity approach possible. A wind turbine can be projected for a procedure with 

constant or variable velocity. Compared to its steady-speed equivalents, variable wind 

turbines can produce up to 15% more energy, but they need digital power converters to 

supply their loads with a fixed frequency and fixed voltage. This plan provides variable 

speed operation with a power converter for electronics over a sizable but constrained area, 

and its controlling controllers run the generator. Wind powers varied output, however, 

has significant consequences across shorter time frames that are remarkably consistent 

from year to year (Hau, 2013). 

Electricity is used in conjunction with other sources to provide a consistent supply. 

A reduced capacity to replace conventional output may result from the requirement to 

restructure the grid and the proportional increase in wind power. To overcome these 

challenges frequently When wind production is low, power-management techniques can 

be used to have a variety of capacities, spread turbines geographically, dispatch able 

backup sources, appropriate hydroelectric power, to neighboring territories, and import 

the electricity. Furthermore, weather forecasting allows the electric-power network to be 

ready because the variations that occur are predictable. Connection to the grid is required 

for current conversion systems of wind energy with an efficient power converter due to 

the variable wind speed qualities for a stable task gigantic measure of energy storage or 

other source of energy when the turbine is filled for an isolated region in as a voltage 

source (Frandsen, S, 1992). 

1.1.2. Wind distribution 

Wind turbines are strategically positioned within the Earth's atmospheric 

boundary layer, which rises anywhere from a few hundred meters to several kilometers 

above the surface, and use the kinetic energy of flowing air to generate power. This area, 

where the Earth's surface and atmosphere physically interact, is characterized by a variety 

of dynamic characteristics and behaviors that have a substantial impact on wind energy 

production. The height above ground at which wind turbines are sited is an important 

factor to take into account since it affects the type and quantity of wind resource that can 

be used to generate electricity. 
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Practical factors and the peculiarities of the local wind regime are frequently taken 

into account when determining the height at which wind turbines operate. This height is 

typically defined as the altitude above the Earth's surface at which turbulence practically 

vanishes. Due to interactions with the topography and surface features, turbulence is 

common in the lowest part of the atmospheric boundary layer, close to the Earth's surface. 

Wind speed profiles have a tendency to stabilize and follow more consistent patterns as 

one moves above this layer. For wind energy projects, this change in wind behavior is 

essential because it enables the construction and positioning of turbines that can 

effectively capture the energy from the stronger, less turbulent winds (Wang, 2011). 

The atmospheric boundary layer is characterized by an increase in wind speed 

with height. Frictional forces and drag from the Earth's surface cause this phenomenon, 

called wind shear. Buildings, trees, and hills that interrupt the airflow close to the ground 

result in slower wind speeds. However, wind speeds often rise as one ascends above the 

surface. The design and positioning of wind turbines must take this vertical gradient in 

wind speed into account. Wind turbines are frequently mounted on tall towers to access 

the stronger and more reliable winds that can be found at higher altitudes in order to 

enhance energy output. With the help of this method, wind energy projects can more 

effectively produce electricity while utilizing a bigger amount of the available wind 

resource. 

1.2. Advantages and Disadvantage of Wind Turbine 

The goal of wind farms and wind turbines is to capture wind energy and transform 

it into useable energy, such as electrical and mechanical energy. Given the fundamental 

principle of energy conservation, it follows that kinetic energy collected from the wind 

will result in a decrease in downstream kinetic energy relative to kinetic energy upstream 

of the wind turbine. Subsequently, the wind downstream of a wind turbine is tempestuous 

and has a lower speed; this wind is the turbine's wake. Thusly, bunching turbines in 

ranches makes two critical issues: diminished power yield because of wake speed lacks 

and more noteworthy unique burdens on the edges because of higher choppiness levels. 

The power loss of a downstream turbine in full-wake conditions can without much of a 

stretch methodology 30-40% comparative with the upwind turbines, and weakness 

burdens can depend on 80% more noteworthy than the upstream turbines, contingent 

upon the setup and wind states of a wind ranch. This wake will begin to spread and 

gradually reestablish to free stream conditions as the wind stream moves further 

downstream (Louka et al., 2008). 
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Since the beginning of the expanded interest in the utilization of wind energy in 

the last part of the 1970s, wind turbine wakes have been an examination region. The 

streamlined features of wind turbines might show up moderately direct from an external 

perspective. However, the truth that the admission is consistently helpless to stochastic 

wind fields and that slowdown is an inborn part of the functional climate for machines 

without pitch guideline confuses the definition. In spite of the fact that the wind turbine 

is among the earliest methods of harnessing wind energy (together with the sailing boat), 

some of the most fundamental aerodynamic principles guiding the flow are still poorly 

understood. 

Most research on wakes has distinguished between near-wake and far-wake 

regions; the relationship between the two regions is still not well understood. The area up 

to three diameters downstream of the rotor is considered to be the near wake. The rotor's 

impact is most noticeable in this situation. The near-wake zone is characterized by strong 

turbulence produced by the blades, shear, and tip vortices degrading that transport a 

variety of length scales. The area beyond the near wake is called the far wake (Luo et al., 

2017). 

Since the speeds upstream and downstream of a wind turbine conveyed in the 

climate are regularly in the scope of 5-25 m/s, it is ok to expect that the stream field in 

the wakes of wind turbines is incompressible. The best relative Mach number in light of 

the edge tip speed is commonly under 0.2 in estimations, in any event, when the rotor is 

displayed straightforwardly, and the incompressible the streamlined features of wind 

turbine wakes can be demonstrated utilizing the Navier-Stirs up conditions. 

Notwithstanding offering a complete model for the portrayal of violent streams, this 

arrangement of conditions is trying to settle. The presence of the non-straight convective 

component, which creates an extensive variety of time and length scales, makes fierce 

streams testing. For example, the biggest tempestuous scales in the air limit layer are on 

the request for 1 km, while the littlest scales are on the request for 1 mm. The scales are 

significantly more moment inside the sharp edge limit layers. The Reynolds number (Re), 

a dimensionless metric that addresses the proportion of convective powers to thick powers 

in a stream, determines the scope of scales. Huge upsides of the Reynolds number, which 

are met in the sharp edge and wake calculations, bring about a wide assortment of scales, 

which drives up the expense of programmatic experiences. It is not possible to resolve 

every scale in the flow using so-called Direct Numerical Simulation. On the basis of the 
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behavior of the big scales, turbulence models must be built, representing the impact of 

the unresolved small scales (Memarzadeh & Keynia, 2020). 

1.2.1. Usage of Generators with Wind turbine 

Generators can be connected to wind turbine systems either synchronously or 

asynchronously. Low speed or high speed drive trains are coupled to the generator 

depending on the needs for generator speed. No concurrent wind turbine generators 

incorporate the squirrel cage induction generator (SCIG) and wound rotor induction 

generator (WRIG). Simultaneous wind turbines are the ongoing business standard. The 

two most famous sorts of wind turbine generators are the Permanent Magnet Synchronous 

Generator (PMSG) and Doubly Fed Induction Generator (DFIG). When the squirrel cage 

induction generator is operating in generator mode, unfavorable slip occurs. The turbine 

speed is adjusted by the gearbox to the appropriate rated generator speed. The main 

drawback is that it offers little assistance with velocity control. The concept of variable 

velocity is employed by WRIG. Controlling energy production and generator slip is done 

by adjusting the rotor's power. Reactive power and inrush current are reduced by using 

soft starters (Nielsen et al., 2006). 

 

 
Figure 1.3. Fixed-speed wind urbine with induction generator (Drago Ban et al., 2021). 

 

DFIG is a WRIG with rotor windings connected to the AC-AC source and stator 

windings that are directly connected to three phases, the constant frequency grid, and the 

grid. Through the stator and rotor of the generator, it transmits wind energy in two 

directions. It can be supported by either a rotor side or a grid side converter. The stator 

receives the voltage from the grid, and the power converter then induces the voltage to 

the rotor. Depending on the application stage, or slip location, energy is either supplied 

or consumed. For instance, the system absorbs energy if the slide is supplied with adverse 
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side energy. The active and reactive power flow between the grid terminals and the 

generator is controlled by the power converter in the DFIG linking capacitor. A crowbar 

is installed between the generator and the converter in the wind energy system to prevent 

short circuits. Depending on the rotor velocity of the generator, the Rotor Side Converter 

(RSC) controls the DFIG wind turbines' flux when operating at the slip frequency. The 

entire effective and reactive power control capacity of the converter is used to determine 

the power rating of the RSC (O’Boyle et al., 2017). A magnet is used as the excitation 

current's source rather than a coil in a permanent magnet synchronous generator. The 

generator is connected using the full-scale converter according to the needs of the grid. 

The converter aids in controlling the generator's effective and reactive energy output to 

the grid. This kind of generator is also used in several wind turbine variants. The parallel 

component of the stator field and the perpendicular component, which effect 

electromagnetic torque, both have an impact on the generator voltage. The load generator 

controls the voltage. The angle between the rotor and stator regions will be more than 90 

degrees and correspond to the generator voltage if the load is inductive. This is seen as a 

generator that is overexcited. Extremely durable magnets of unrivaled quality have 

underlying and warm issues. They require a fitting cooling framework since attractive 

materials are temperature delicate and can lose their attractive properties whenever 

presented to high temperatures (Osório et al., 2014). 

1.3. Numerical Weather Prediction & Wind Forecasting 

The decision of the particular NWP model is a vital stage in the improvement of 

a NWP-based wind power figure model. Geological locale, goal (both spatial and 

fleeting), figure skyline, required accuracy, computation time, and number of runs are 

critical choice factors. The powerful focus, which portrays the adiabatic non-gooey 

stream, the actual conditions making sense of fluctuation of the meteorological cycles 

(like disturbance and radiation), and the data gathering programming code are the three 

essential pieces of NWP models. Thus, instead of just foreseeing the wind, the result of a 

NWP model is an intensive figure of the condition of the climate at a particular time. 

NWP projections are used by many different companies, sectors, and governmental 

organizations; they are not just prepared for the power sector. NWP is sensitive to 

beginning conditions; hence ensemble forecasting is utilized to get around this. The 

Kalman filter can eliminate systematic forecast errors in NWP wind speed estimates, as 

demonstrated by Louka (Murali et al., 2014). 
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Most NWP do exclude sea models since climatology is utilized to portray ocean 

surface water temperatures. Hurricane Group Model by the Japan Meteorological 

Organization is one illustration of a particular NWP model that has been made to 

distinguish storms in the Pacific and Atlantic. To suit the necessities of their clients, most 

of meteorological administrations solely offer on-shore and close shore climate 

predictions. Accordingly, the objective of current worldwide NWP models has been to 

create more exact climate predictions for the land. To address their conditions, worldwide 

NWP models essentially require land surface factors, especially temperature. For time 

frames longer than 4 hours, NWP holds the best. Most of these devices, which are known 

as deterministic, spot, or point predictions, just produce a solitary expected incentive for 

each figure timetable notwithstanding the way that most models are multi-step and 

proposition look-ahead times for a few skylines. Thus, their application to stochastic 

advancement and chance investigation is confined. 

One more group of NWP models was made at the provincial and musicale levels 

to focus on neighborhood climate occasions specifically. The hydrostatic estimated time 

of arrival model, the HIRLAM model, and the ALADIN model are a couple of models. 

Extra models incorporate the more present day Weather Conditions Exploration and 

Figure (WRF) territorial model as well as the openly available MM5 local model made at 

Pennsylvania State College and used by the Public Focus of Climatic Exploration in the 

US of America (USA). To figure wind power in a country or a district of a country, some 

NWP models are applied at the territorial level. It could require a great deal of investment 

to foresee the wind power yield from each and every wind ranch, consequently a 

technique known as "up scaling" is used all things considered. The wind power creation 

from an example number of wind ranches fills in as the establishment for reference 

information for scaling. Since the conjecture mistake is found the middle value of over 

the whole area, up scaling may seem to decrease it. When downscaling, physical as well 

as measurable models are utilized to make additional exact geological data from coarse 

NWP yields. Like NWP, physical downscaling models work at improved goal across a 

more modest locale. The power or potentially wind speed at a genuine wind ranch and 

NWP are used in factual downscaling models to make an exchange capability that can be 

utilized to estimate wind power from more wind ranches in a district (Saidi et al., 2019). 
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Figure 1.4. Frame of short-term wind power forecasting. 

 

1.3.1. The basics of wind power forecasting 

The three principal classes of wind speed or power gauge methods are physical, 

measurable, and keen methodologies. Analysts have given the savvy approach different 

names, including information-based approaches, computational knowledge strategies, 

man-made brainpower techniques, and numerous others. It is critically important to 

change from deterministic forecasting, otherwise called point forecasting, to probabilistic 

forecasting since wind energy age is arbitrary. The forecasting of wind power and wind 

speed additionally displays this irregularity. Probabilistic forecasting could offer the 

quantitative vulnerability data that is important to control the silliness of the activity of 

the power framework. Moreover, numerous specialists attest that the mixture approaches 

address the fourth way for wind prediction. While half and half models are commonly 

portrayed as a mix of physical, factual, or clever methodology approaches with 

information pre-handling or potentially post-handling strategies, Wang (Wang J. H., 

2016) characterized crossover models as the blend of physical and factual techniques. 

Furthermore, spatial connection procedures address an unmistakable prediction 

methodology. The arrangement and presentation of different wind prediction 

frameworks, as well as their advantages and viability, are the fundamental subjects of this 

part. 

While making these models, actual methodologies consider actual information 

like geology, air temperature, tension, and environment factors. These procedures need a 

ton of computation time since they are reliant upon a bunch of numerical conditions for 
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these multivariate actual boundaries. This at last outcomes in the actual strategies being 

unacceptable for forecasting short-term wind information. Regardless of having a bigger 

registering intricacy, these techniques give off an impression of being exceptionally 

precise for enormous scope and long-term prediction. Among actual models, the 

Mathematical Climate Prediction (NWP) approach is incredibly famous. Albeit well 

known Markov models and more adjusted and high level NWP approaches have been 

utilized in wind speed applications, these techniques are not generally utilized because of 

the expanded processing intricacy and absence of availability to all market members of 

the fundamental actual data. A physical method may not be as effective as the spatial 

correlation method. This approach bases the forecast on the sites and the sites that are 

close by. Correlated wind speed measurements at multiple locations at once are 

challenging, though (Shahid et al., 2020). 

The factual techniques, conversely, ordinarily construct the models in light of the 

amounts of authentic information. Measurable models are dependable for making short-

term gauges and are nearly easy to send. For long-term forecasting, be that as it may, 

factual techniques truly do less well. In measurable strategies, ARMA, ARIMA, the 

Pattern Succession Based Forecasting (PSF) technique, Kalman channels, model-based 

approaches, Molecule Multitude Streamlining, and a lot more techniques are utilized for 

prediction. For the nonlinear properties of wind information, the prediction utilizing such 

factual strategies was not adequate. In any case, these methods are all the more broadly 

utilized on the grounds that they are less pricy, prominent, and have more reasonable 

techniques. 

Like the factual methodology, the Counterfeit Prediction system is likewise 

reasonable for short-term prediction, but these strategies portray the relationships in a 

profoundly nonlinear manner as opposed to using deterministic approximations. Well 

known strategies utilized in the man-made reasoning methodology incorporate ANN, 

fluffy rationale, SVM, and Radial Base Function (RBF). These refined procedures 

precisely expect short-term wind. These procedures, notwithstanding, have the drawback 

of being "black box" strategies since appreciating their laws is exceptionally difficult. Yet 

again nonetheless, fluffy rationale can be utilized to gauge such guidelines, but since these 

methods manage such countless factors, perception is a test. Canny techniques commonly 

catch nonlinear collaborations inside wind information and produce preferable 

predictions over factual and actual methodologies. Besides, as expressed in, the 
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coordination of at least two fake methodologies has exhibited its adequacy in wind 

predictions (Shivam et al., 2020). 

The prediction with models of factual or canny strategies was not as viable as 

trusted since wind information are incredibly sporadic and intermittent. Thus, there has 

been a propensity to embrace half breed approaches for wind forecasting lately. By 

consolidating numerous models, these half breed methods were put out. Each prediction 

model has frequently recognized a couple of advantages and downsides. The thought 

behind hybridization was to use numerous prediction models while limiting the 

shortcomings of each model. The mixture procedures perform obviously better than 

anyone prediction technique. These cross breed strategies are much of the time alluded to 

as a gathering forecasting method. Cross breed strategies are commonly separated into 

helpful and serious classes. In cutthroat strategies, different prediction models were 

utilized to make predictions on similar information simultaneously, and the normal of the 

last predictions made by each model was taken as the last prediction. Conversely, in 

agreeable strategies, prediction errands were isolated into more modest ones, and each 

sub-task was relegated to the taking part prediction models in the crossover technique in 

light of these more modest assignments' attributes. By including the result discoveries 

from every individual technique, a definitive estimate is gotten (Simon & Bruce, 2012). 

The hybrid models that increased wind prediction accuracy by fusing two 

prediction techniques. However, the prediction performance has been raised to a higher 

degree by the combination of pre-processing or/and post-processing approaches with one 

or more prediction methods. The most often used pre-processing techniques for wind 

applications are MLP, EWT, EMD, EEMD, and WD. These techniques alter wind data 

by extrapolating or breaking it down into components with various frequency. On the 

other hand, post-processing techniques classify and modify the anticipated wind data in 

accordance with other existing predictions to improve prediction accuracy.  

In general, there are three types of wind power forecasting models: model-driven, 

data-driven, and hybrid. Model-driven forecasting models are used to predict wind power. 

The model-driven approaches call for a wealth of meteorological expertise as well as 

knowledge of the different physical components influencing wind power. While in data-

driven techniques, forecasting is done using data-driven statistical models. With the 

development of artificial intelligence and data sciences, this approach can produce 

predictions that are more accurate. The only requirements for such models are historical 

data. Numerous studies have examined the effectiveness of various data-driven models, 
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including simple persistence models and more complex models like SVM, NN, ARIMA, 

and many others. However, due to the highly unpredictable and erratic nature of wind 

power time series, accurate forecasting becomes challenging. The hybridization strategy, 

which involves integrating two or more models to anticipate the data for wind power, is 

frequently employed to address this issue. The various hybrid models (WMD-LSSVM-

AR, WRF-SSA, EMD-LSSVM, grey relational analysis, and wind speed distribution 

based hybrid models) and numerous studies have demonstrated how hybrid models are 

superior to individual or single techniques (Srivastava et al., 2020). 

Understanding the features in order to develop a prediction approach becomes 

challenging due to the chaotic and extremely complex nature of wind speed and power 

data. The analysis of the data features becomes crucial in order to offer a stable prediction 

model. In order to more thoroughly study the time series characteristics, it may be 

preferable to decompose such time series. 

A particularly well-known and successful strategy is the hybridization of 

decomposition techniques. The wind power time series is divided into different subseries 

using a decomposition approach, and the cumulative forecasts of each subseries are 

considered as forecast outcomes. The most popular decomposition techniques for 

predicting wind power time series are the WT and EMD (Sun & Zhao, 2020). 

While the EMD technique uses a preset methodology regardless of the type of 

data, the decomposition with wavelet transform requires prior knowledge of the data. 

Different hybrid EMD models that combine different prediction techniques have 

demonstrated improvements in prediction accuracy. It is suggested to use the EMD-ANN 

model, in which each subseries of wind speed is anticipated using the ANN technique. 

EMD-ARIMA, EMD-SVM, and numerous other techniques were presented based on a 

similar premise (Syu et al., 2020). 

However, the EMD method's mode mixing issue has negatively impacted the 

accuracy of the results. The EEMD approach was put forth by Wu and Huang to lessen 

the consequences of the mode mixing issue. Some hybrid EEMD models are EEMD-GA-

BP, EEMD-SVM, and EEMD-SSA-ENN. When compared to EMD models, these models 

demonstrated noticeably greater prediction accuracy for wind speed and power data. The 

upsides of such models over clear factual, keen, and cross breed models with other pre-

and post-handling strategies for short-term wind predictions are examined in an itemized 

and careful survey that makes sense of the meaning of EMD/EEMD based half and half 

models, the various methods of hybridization, and the prevalence of such models. 
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1.3.2. Importance of Short-term forecasting 

For diverse goals, several forecasting horizons have been utilized. The four main 

time scales for wind power forecasting are actually extremely short-term (seconds to 30 

minutes), short-term (30 minutes to 6 hours), medium-term (6 hours to 1 day), and long-

term (1 day to 1 week). Supplying operators with means of ensuring that the turbine may 

not be impacted by strong winds. Short-term projections are the main concern of the 

economic load dispatcher. Choose when to turn on or off extra power generation. 

While medium-term projections are utilized to empower energy exchanging, long-

term conjectures are normally used to plan fixes and upkeep. The most broadly involved 

models for both short-term and super short-term wind power conjectures are those in view 

of brain organizations. It is a major reward since they can work with nonlinear 

information. 

Short-term forecasting is utilized to oversee planning, load following, and clog 

and has a time frame of 30 minutes to 6 hours. The strategy attempts to give the most 

ideal power booking and dispatch for the next day in light of the data given by the 

generators. Forecasting by and large empowers functional organizers to design the lattice 

and the creation of power. It would be trying to increase and down steam-based creating 

rapidly without the perceivability of RE power (Toubeau et al., 2021). 

The capacity of the power matrix framework to deal with critical expansions in 

wind power yield is seemingly the most concerning issue while coordinating a 

tremendous volume of wind power information. Different geographic and worldly scales 

affect wind incline occasions, and a blend of up inclines and down slants with different 

levels of force might happen (Syu et al., 2020). 

 

 
Figure 1.5. Frame of wind power forecasting. 
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1.4. Neural Networks 

Repetitive brain organizations, rather than ordinary feedforward brain 

organizations, include a memory part. These brain organizations might deal with inputs 

that are given as a series by utilizing the condition of their inside memory. These are 

normally favored when the outcome relies upon various sources of info. Regular language 

handling, text prediction, and discourse acknowledgment are a couple of such purposes. 

The name "Recurrent" in this neural network denotes that the same set of 

operations are carried out again on each element in the input sequence in turn, and the 

results of each operation contribute to the RNN's final prediction. As the only type of 

artificial neural networks with this capability at the moment, RNNs are anticipated to 

provide improved prediction accuracy for sequential data or in situations where context 

is important, such as text prediction. 

Although the aforementioned advantages of RNNs are valid in theory, plain 

vanilla RNNs can only look back a small number of steps. This is explained by the way 

plain RNNs are taught. 

The process of backpropagation is used to train neural networks. This algorithm 

can be changed to better suit the network based on the type of neural network being used. 

Backpropagation through Time (BPTT) is the name of the training algorithm used in 

RNNs. This approach uses sequential input and goes back in time steps to modify the 

weights and biases. The way BPTT operates conceptually is by unrolling each input time 

step. At each time step, errors are calculated and accumulated. The weights are then 

updated before the network is rolled back up. For instance, a single weight update for an 

input sequence with 1,000 time steps needs the calculation of 1,000 mistakes, one for 

each time step. The gradient, also known as the partial derivative of the error function 

with respect to the current weight, determines how much the weights are updated. With 

plain RNNs, this gradient tends to decrease after several training rounds until it reaches a 

point where it is so minute that it scarcely modifies the weights and the neural network 

stops learning altogether. The term "vanishing gradient problem" applies to this(Vermeer 

et al.,  2003).  

1.4.1. Types of RNNs 

Recurrent neural networks are a fundamental class of neural networks utilized in 

numerous sequential data applications, including time series forecasting, speech 

recognition, and natural language processing. Long Short-Term Memory Networks 



19 

(LSTMs) and Gated Recurrent Unit Networks (GRUs) are two RNN varieties that have 

grown significantly in prominence because of their capacity to address some of the 

problems that standard RNNs have inherently (Venayagamoorthy et al., 2012). 

Long Short-Term Memory networks, also known as LSTMs, are a particular type 

of RNN created to get around the issue of vanishing gradients, which frequently prevents 

conventional RNNs from capturing long-term relationships in sequential data. This is 

accomplished by LSTMs by including a memory cell and a group of gates that control 

the information flow within the cell. The main strength of LSTMs is their ability to retain 

information over long periods of time, which makes them ideal for applications requiring 

the modeling of intricate temporal relationships. The input gate, forget gate, and output 

gate enable LSTMs to efficiently collect and use long-range dependencies by allowing 

them to selectively update and access data from prior time steps. 

The vanishing gradient problem is also addressed by Gated Recurrent Units 

(GRUs), a different RNN variant that uses less parameters than LSTMs. GRUs are an 

improved iteration of LSTMs that streamline the architecture by utilizing fewer gates. 

The reset gate (rt) and the update gate (zt) are the only gates present in a typical GRU 

cell. The update gate controls how much new information should be incorporated, 

whereas the reset gate controls how much of the old cell state should be forgotten. In 

some situations, this simplified architecture might increase the computational efficiency 

of GRUs and make training them simpler. 

Depending on the precise requirements of the task at hand, LSTMs or GRUs are 

selected. The profound grasp of long-range dependencies required by LSTM tasks makes 

them ideal for jobs like speech recognition and machine translation. GRUs, on the other 

hand, are preferable when the vanishing gradient problem must be solved while also 

prioritizing computational simplicity and efficiency. It has been discovered that GRUs 

perform well in tasks like sentiment analysis and text production. 

1.4.2. Long short-term memory 

The Long Short-Term Memory (LSTM) network is a significant headway in the 

field of repetitive brain organizations (RNNs), and it was made fundamentally to take 

care of the disappearing slope issue, which has tormented standard RNNs for quite a 

while. This problem occurs when gradients, which are used to update the weights of the 

network during training, shrink dramatically as they go back in time. Traditional RNNs 

struggle with the vanishing gradient problem, making it difficult to identify long-range 

dependencies in sequential data. 
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By adding specialized architectural elements that make it easier to preserve and 

manage information across long time horizons, LSTM networks get around this 

restriction. The network's goal is to offer a sort of short-term memory that can store data 

for thousands of time steps, enabling the capture of "long" dependencies within the data. 

The name "Long Short-Term Memory" itself reflects this goal. 

The relative insensitivity of LSTM networks to the size of the data gap over other 

RNNs, hidden Markov models, and many other sequence learning techniques is one of 

its main advantages. Traditional RNNs frequently have trouble processing sequences with 

gaps or missing data, whereas LSTMs are far better at doing so. As a result, they are 

incredibly adaptable for a variety of applications where the data may contain erratic time 

intervals or gaps. 

The composition of LSTM units, which typically consists of a cell, an input gate, 

an output gate, and a forget gate, is a crucial aspect of their architectural design. Together, 

these parts control how information moves throughout the network. The cell functions as 

the LSTM's long-term memory's central memory unit and may hold values for any length 

of time (Vermeer et al., 2003). 

The forget gate is crucial in determining whether or not to keep certain pieces of 

information from the previous state. The forget gate decides which components of the 

prior state are relevant for the current context by assigning values between 0 and 1, with 

1 suggesting information to be maintained and 0 indicating information to be discarded. 

Similar to the forget gate, the input gate is essential in determining which fresh 

pieces of information should be kept in the present state. To assess the significance and 

relevance of incoming data, it employs a similar technique to the forget gate. 

The output gate, which is responsible for deciding which information from the 

current state should be output, also takes into account the prior state. The LSTM network 

can keep and utilise valuable long-term dependencies when making predictions, both for 

the present time step and for future time steps, thanks to this selective output of pertinent 

information. 

1.5. LSTM RNN (Recurrent Neural Networks)-Based Forecasting 

Due to their exceptional capacity to identify long-term dependencies within 

sequential data, recurrent neural networks (RNNs) have grown significantly in favor in 

time series forecasting. They differ from other neural network architectures because of 

this innate quality, which makes them an effective option for applications involving time 
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series prediction. RNNs do face some difficulties, the most noteworthy of which is the 

vanishing/exploding gradient problem. 

The backpropagation of gradients across the network during training is what 

causes the vanishing/exploding gradient problem. The hidden layers and accompanying 

time steps are connected in deep neural networks, such as those employed in RNNs for 

time series forecasting, by multiplicative operations. Gradients can therefore either 

disappear completely (vanishing gradient) or explode out of control (exploding gradient) 

when they are propagated backward through these actions. Deep RNN training can be 

substantially hampered by this problem, which also affects how well they can detect long-

range dependencies in time series data. 

LSTM-RNNs offer a wide range of uses, depending on the particular 

specifications of the work at hand. They are frequently grouped depending on their use 

in the context of time series forecasting. For instance, in regression assignments where 

the objective is to estimate the value(s) at one or more future time points, LSTM networks 

can be used to forecast single-step or multi-step time series data. Because of their 

adaptability in modeling various forecasting horizons, LSTM-RNNs are effective tools 

for a variety of time series prediction applications. 

1.5.1. Sequence-to-sequence LSTM RNN 

When it comes to time series forecasting, the Long Short-Term Memory Recurrent 

Neural Network (LSTM-RNN) is a potent and popular architecture. The capacity of 

LSTM-RNNs to learn and represent sequential relationships within the data is one of its 

key properties. This is accomplished by teaching the network to forecast the value of the 

following time step based on the data it has observed thus far in the sequence. 

When used for time series forecasting, the LSTM-RNN is trained so that it can 

predict the value of the following time step for each iteration or time step in the input 

sequence. This method is also known as "autoregressive prediction" or "one-step-ahead 

prediction." It indicates that as the network moves through the sequence, it is constantly 

adjusting its internal state depending on the input data and its own forecasts in order to 

produce increasingly accurate forecasts. Because it captures the intrinsic temporal 

dependencies present in time series data, this autoregressive nature is particularly well-

suited for such data. 

A sequence-to-sequence LSTM-RNN approach produces results or predictions 

that are simply the training sequences with values pushed forward by one-time step. In 

other words, the LSTM-RNN generates a prediction for the value at the following time 
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step for each time step in the input sequence. Up until the required forecasting horizon is 

achieved, this prediction serves as the basis for the subsequent iteration. As they learn to 

take into account both short-term and long-term dependencies in the data, LSTM-RNNs 

learn to include complicated temporal patterns through this iterative prediction process. 

1.5.2. LSTM network layer 

In the field of profound learning, Long Short-Term Memory (LSTM) networks 

have turned into a powerful and significant device, particularly for undertakings including 

consecutive information, similar to time series examination, regular language handling, 

and discourse acknowledgment. LSTM networks are a specific sort of repetitive brain 

organization (RNN) that conquers the evaporating slope issue, which is one of the primary 

disadvantages of traditional RNNs. Because of the vanishing gradient problem, the 

network has a hard time understanding long-range dependencies in sequential input when 

gradients are incredibly small during training(Vinhoza & Schaeffer, 2021). 

The capacity of LSTM networks to maintain information over longer time periods 

is one of the primary characteristics that set them apart from conventional RNNs. This is 

accomplished by using a memory cell, which acts as a storage container inside of each 

LSTM block. The network can preserve and capture long-term dependencies in the data 

thanks to the memory cell's ability to store and access data from earlier time steps. This 

capability is especially important for jobs like time series forecasting and natural language 

understanding, where knowledge of the past and present is necessary for making correct 

predictions. 

Each LSTM block consists of a memory cell, an input gate, a forget gate, and an 

output gate. These gates are in charge of managing the information flow inside the LSTM 

block. The input gate controls how much of the new data should be added to the memory 

cell through the use of weights and biases. The degree to which the LSTM cell updates 

its internal state in response to the current input and the knowledge from the previous 

time step is effectively controlled by this gate. 

Another vital part of the LSTM is the forget gate. It regulates how much of the 

data from the memory cell should be remembered or forgotten. The loads and inclinations 

of this door empower the LSTM network keep a specific memory of earlier perceptions 

by determining whether data is as of now not relevant and ought to be erased. To wrap 

things up, the result entryway determines the amount of the substance of the ongoing 

memory cell ought to be utilized to register the result of the LSTM block, which is 
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similarly administered by its loads and predispositions. Then, this result is shipped off 

extra layers or put to use in prediction. 

1.6. Summarize of the Introduction 

The selection of a Numerical Weather Prediction (NWP) model plays a crucial 

role in enhancing wind power forecasts. Factors like location, forecast duration, accuracy 

needs, and computational constraints determine the model choice. NWP models analyse 

meteorological conditions, providing a comprehensive outlook on weather instead of just 

wind prediction. Their sensitivity to initial conditions demands ensemble forecasting to 

mitigate errors. However, most NWP models focus on land-based weather, lacking sea 

models. Specific models like the Hurricane Group Model target storm detection in the 

Pacific and Atlantic. Regional models, such as HIRLAM and WRF, zoom in on local 

weather events. Upscaling and downscaling methods adjust the wind power forecast from 

regional to larger scales or vice versa. 

Wind power forecasting involves physical, statistical, and intelligent methods. 

Physical approaches consider climate elements like temperature, demanding more 

computation time but excelling in long-term predictions. Statistical methods, like ARMA 

and Kalman filters, suit short-term forecasts due to their reliance on historical data. 

Intelligent techniques like ANN and SVM prove effective for short-term wind 

predictions, yet their black box nature poses challenges in understanding the process. 

Hybrid models combining multiple approaches improve wind prediction 

accuracy. These models often integrate preprocessing and post-processing techniques like 

MLP and EEMD, enhancing the forecasts. Short-term forecasting, crucial for grid 

planning and load management, relies on models predicting from seconds to six hours 

ahead. Meanwhile, LSTM-based Recurrent Neural Networks stand out in capturing long-

term dependencies in sequential data like time series forecasts. They address issues like 

the vanishing gradient problem in traditional RNNs, allowing for better understanding of 

complex temporal patterns. 

LSTM networks, equipped with memory cells and gates, maintain information 

across time steps, crucial for tasks like time series forecasting and natural language 

processing. They overcome the vanishing gradient problem, enabling the capture of long-

range dependencies in sequential data. LSTM variants like LSTMs and GRUs further 

refine these capabilities, each excelling in specific scenarios. For time series predictions, 

LSTM-RNNs, especially in sequence-to-sequence approaches, offer iterative forecasting, 
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predicting subsequent time steps based on past data, capturing intricate temporal patterns 

in the process. 

1.7. Problem Statement  

The problem of Wind Energy Prediction using Long Short-Term Memory 

(LSTM) stems from the critical need for more precise forecasting in the renewable energy 

sector, particularly in wind power generation. Conventional prediction models often fall 

short in capturing the intricate and non-linear nature of wind patterns, leading to 

inaccuracies that hinder efficient utilization of wind resources for electricity generation. 

The challenge at hand involves developing an advanced predictive model based 

on LSTM architecture that can adeptly navigate through the complexities of wind data. 

This necessitates overcoming inherent obstacles like the vanishing gradient problem, 

which limits the ability of traditional models to grasp long-term dependencies in 

sequential data. 

The primary goal is to engineer an LSTM-based forecasting system capable of 

providing robust predictions of future wind energy outputs across varying time horizons. 

Such a system would not only empower energy grid operators and wind farm managers 

with more accurate insights but also enable better planning, scheduling, and integration 

of renewable energy sources into the existing power infrastructure. 

Achieving this goal involves leveraging the unique capabilities of LSTM 

networks to capture temporal relationships, comprehend intricate wind patterns, and 

generate forecasts that aid in optimizing energy production and grid stability. Ultimately, 

the aim is to enhance the efficiency and reliability of wind energy generation by 

harnessing the potential of LSTM-based predictive models (Wang, Guo, & Huang, 2011). 

1.8. Objectives of the Study  

1. Improve dataset quality through advanced data preprocessing to handle missing 

values, outliers, and noise, ensuring reliability for accurate wind energy modeling. 

2. Investigate hybrid modeling methods merging statistical approaches with 

machine learning algorithms for more precise and robust wind energy predictions. 

3. Incorporate meteorological and geographical elements affecting wind energy 

generation into feature engineering to better comprehend power output dynamics. 

4. Develop interpretable models that elucidate the relationship between key 

variables and wind energy generation, aiding informed renewable energy policy 

decisions. 
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1.9. Significance of the Study  

The significance of a study on "Wind Energy Prediction Using Long Short-Term 

Memory (LSTM)" lies in its pivotal contributions to the renewable energy landscape. By 

exploring advanced predictive models in the context of wind power generation, this study 

addresses critical gaps in the field. The utilization of LSTM models, alongside other 

forecasting methods, not only enhances the understanding of wind energy dynamics but 

also offers valuable insights into the efficacy of diverse modelling approaches. 

This research bears significance in multiple dimensions. It contributes to 

advancing predictive accuracy in renewable energy forecasts, particularly in wind power 

generation, which is instrumental in energy planning and resource allocation. By 

dissecting the dataset's intricacies, such as missing values and anomalies, and applying 

meticulous data preprocessing techniques, this study sets a precedent for robust and 

reliable modelling in renewable energy studies. The comparison and evaluation of various 

models, including SARIMA, XG Boost, Random Forest Regressor, and LSTM, provide 

a comprehensive understanding of their strengths and limitations. This comparative 

analysis not only emphasizes the importance of selecting suitable modelling 

methodologies but also sheds light on the challenges in predicting wind energy outputs 

over extended periods. The study's exploration of the relationship between wind speed 

and power output, uncovering the sigmoidal function that governs their correlation, is a 

significant finding. This nuanced understanding of the relationship between these 

variables, derived through curve fitting and high R-squared values, contributes to the 

accuracy of short-term wind power generation projections. Such insights are crucial for 

effective energy management and resource allocation in the renewable energy sector 

(Wing et al., 2012). 

This study's significance lies in its role as a pioneering effort in leveraging 

advanced predictive modelling techniques to enhance renewable energy forecasting, 

specifically in wind power generation. Its findings not only pave the way for more 

accurate predictions but also offer actionable insights for policymakers, energy planners, 

and researchers striving towards a more sustainable and efficient energy future. 
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2. LITERATURE REVIEW 

 

The literature review within the domain of wind energy prediction using advanced 

modeling techniques represents a comprehensive exploration of prior research, 

methodologies, and findings aimed at forecasting power output from wind turbines. This 

critical analysis encapsulates a diverse array of studies, encompassing traditional 

statistical approaches and cutting-edge machine learning algorithms, which have been 

pivotal in advancing the understanding of wind power generation dynamics.  Within this 

burgeoning field, scholars and researchers have extensively delved into the application of 

various predictive models to comprehend and forecast wind energy outputs. Traditional 

methods such as Seasonal Autoregressive Integrated Moving Average (SARIMA) models 

have been foundational in capturing seasonal trends within wind energy datasets. 

However, limitations in these approaches have spurred the exploration of more 

sophisticated techniques to tackle the complexity inherent in wind power prediction. 

Recent advancements have witnessed a paradigm shift towards employing 

machine learning algorithms like Extreme Gradient Boost (XG Boost), Random Forest 

Regressor, and Long Short-Term Memory (LSTM) networks. These methodologies offer 

enhanced predictive capabilities, leveraging the intricacies of wind speed, temperature, 

and turbine-specific variables to improve forecast accuracy. This review amalgamates 

and critically evaluates these diverse methodologies, scrutinizing their efficacy, strengths, 

and limitations in predicting wind energy outputs. It highlights the successes of advanced 

machine learning techniques in capturing complex data dynamics, while also 

acknowledging challenges, such as handling missing values, anomalies, and the temporal 

aspect of wind power generation. 

In Portugal, (Wang et al., 2016) describe a novel method for forecasting short-

term wind energy. Particle swarm optimization (PSO), wavelet transform, and the 

adaptive network-driven fuzzy inference system (ANFIS) are the three distinct systems 

that make up this novel methodology. Their main goal is to improve wind power 

prediction accuracy, which is essential for the smooth functioning of wind energy systems 

and the grid integration of renewable energy sources.  The higher performance of the 

suggested model in comparison to other comparable forecasting systems is one of the 

study's primary findings. Two commonly utilized error metrics, Normalized Mean 

Absolute Error (NMAE) and Mean Absolute Percentage Error (MAPE), are used to 

quantitatively illustrate this superiority. The outcomes show that the suggested model 



28 

regularly outperforms its alternatives in terms of NMAE and MAPE values. This suggests 

that the successful prediction error reduction provided by the integration of PSO, wavelet 

transform, and ANFIS in the forecasting process makes it a promising strategy for wind 

power forecasting. The study also considers how effectively their hybrid model can be 

computed. It is interesting that the average computational time needed for the proposed 

model remains tolerable despite the difficulty of integrating three different systems. This 

issue has practical implications since accurate and timely wind power projections are 

crucial for maintaining the grid's stability and managing the available energy supplies. 

The proposed approach's practical applicability and ability to retain a reasonable 

processing time while obtaining improved forecasting accuracy are highlighted. 

The complete method presented by (Wang et al., 2011) aims to improve the 

precision of short-term wind speed forecasts. The creators proposed a crossover 

forecasting approach that consolidates the utilization of Long Short Term Memory 

(LSTM) networks for profound learning time series prediction with four unique modules: 

Wavelet changes (WT), Crow search calculation (CSA), common data (MI), and entropy-

based highlight determination (FS). They utilized information from two geologically 

unmistakable regions, Sotavento in Galicia, Spain, and Kerman in the Center East, which 

is situated in the southeast of Iran, to direct their examination determined to assess the 

adequacy of this imaginative wind speed forecasting approach. Wavelet transforms, the 

first module, is a potent signal processing method used to split up time series data into 

various scales and frequencies. With the use of this decomposition, the wind speed data 

may be analyzed in greater detail, capturing both short- and long-term trends. The Crow 

search algorithm, the second module, is an optimization method that draws inspiration 

from crows' foraging habits.  

It is used to enhance the forecasting model's overall performance and optimize its 

parameters. Mutual information, the third module, is employed for feature selection, 

assisting in the determination of the most pertinent input variables for the wind speed 

forecasting model. This stage is essential for lowering the data's dimensionality and 

increasing the forecasting process' effectiveness. To make sure that only the most 

insightful variables are employed in the prediction model, the fourth module, entropy-

based feature selection, further refines the selection of input features. Memarzadeh et al. 

used actual wind speed data gathered from two different geographic places to assess the 

proposed method. These two locations-Kerman, Iran, and Sotavento, Spain-provide a 

thorough evaluation of the model's applicability to various climatic and geographic 
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contexts. Their study's numerical results showed that the hybrid forecasting method 

performed better than other wind speed forecasting methods, proving its superiority in 

predicting short-term wind speeds. 

By utilizing a hybrid model known as Wave Net Long Short-Term Memory (WN-

LSTM), (Wing et al., 2012) presented an innovative method for forecasting short-term 

wind power. This model uses many activation kernels, including Morelet, Gaussian, 

Shannon, and Ricker, and combines components of Wave Net and LSTM, two well-

known neural network designs. The main objective of this research was to reduce the 

necessity for wavelet and gradient transformations in the non-linear mapping process 

while improving the accuracy of wind power estimates by utilizing this hybrid method. 

The authors used seven different wind farms throughout Europe to test the performance 

of their suggested WN-LSTM model. Using accepted criteria such the Mean Absolute 

Error (MAE) and Mean Absolute Percentage Error (MAPE), they assessed its efficacy. 

While the MAPE gives a percentage-wise evaluation of prediction accuracy, the MAE 

measures the average magnitude of errors between expected and actual values. According 

to the findings of their studies, the MAE showed a substantial percentage gain of up to 

30% when compared to conventional forecasting methods. This shows that the WN-

LSTM model fared better than the conventional approaches, highlighting its potential to 

enhance short-term wind power projections. The researchers independently ran their 

model numerous times to ensure its dependability and robustness, minimizing the 

possibility that random fluctuations would have an impact on the findings. The study also 

incorporated interval forecasting in addition to conventional point forecasts, assessing 

prediction uncertainty. Fisher's and Tukey's tests based on ANOVA (Analysis of 

Variance) were used to achieve this. With the help of the intervals, which added a degree 

of ambiguity to the forecasts, it was possible to gain a deeper knowledge of the potential 

discrepancies between the predicted and observed power outputs. Importantly, the study 

showed that the WN-LSTM model could provide reasonably accurate interval forecasts, 

with a comparatively low variance of about 0.02 at a 95 percent confidence level. 

The development of a software-based computing model for precise forecasting of 

future demand in the context of renewable energy, particularly wind energy, was the main 

goal of (Xu et al., 2015) study. The authors noted that a combination of linear and non-

linear methods was used in modern state-of-the-art forecasting systems.  In order to 

maximize its use, the authors emphasized the crucial role that wind energy plays within 

the renewable energy industry and the necessity of precise prediction models. They 
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suggested using three different neural network-based models to handle this problem: the 

recurrent neural network (RNN), the gradient boosting machine (GBM), and the long 

short-term memory (LSTM). These neural network models were developed with the goal 

of predicting, using data on wind velocity, the power output produced by wind turbines. 

Their study's main goal was to evaluate the output parameter values of these three neural 

network models to compare how well they performed. This analysis sought to ascertain 

whether model RNN, GBM, or LSTM was better at predicting wind turbine power output. 

This comparative investigation offers important insights into the usefulness of neural 

network-based algorithms in renewable energy prediction, in addition to advancing wind 

energy forecasting. 

A fascinating wind speed forecasting model using recurrent neural networks 

(RNNs), more precisely the Gated Recurrent Unit (GRU), is presented by (Yoon and Kun, 

2013). In order to maximize resource allocation and system stability, wind speed 

forecasting is an essential component of the production of renewable energy and grid 

management. The goal of this study was to create a model for forecasting short-term wind 

speeds that is incredibly accurate. The researchers installed a specially made anemometer, 

most likely near a site of interest, and gathered wind speed data continually for the first 

six months in order to build their model. The GRU model was trained using these data as 

the basis. Being an RNN subtype, GRUs are well renowned for their effectiveness at 

capturing sequential patterns, making them appropriate for time-series data like wind 

speed. This study stands out for its emphasis on forecasting wind speed in brief 15-minute 

periods, which enables more accurate and prompt predictions. The following three 15-

minute time interval forecasts were to be produced using the GRU model. For 

applications like wind energy generation and grid management, where prompt 

modifications are frequently required, this real-time forecasting is vital. The researchers 

used Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), two widely 

used forecasting metrics, to assess the effectiveness of their GRU-based model. These 

indicators are common ways to evaluate how accurate a prediction model is. The 

researchers contrasted the results of their GRU model with those obtained from plain 

basic RNN and Long Short-Term Memory (LSTM) models in order to make relevant 

findings. 

By fusing multiple cutting-edge methodologies, Zeng (Zeng and Qiao, 2011) 

present a novel strategy for enhancing short-term wind power forecasting. Their 

suggested model uses Sample Entropy (SE), an improved vibrational mode 
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decomposition (IVMD) technique, and an LSTM neural network with Correntropy 

enhancement as its foundation. Their main objective is to improve the precision and 

efficacy of wind power forecasts, especially in the near future. The authors first 

decompose the initial wind power data using improved variation mode decomposition 

(IVMD). IVMD is a method that breaks down complicated time series data into more 

manageable, comprehensible parts. In this instance, the best parameter K for IVMD is 

chosen using the Maximal Correntropy Criterion (MCC), which aids in the extraction of 

valuable subseries from the wind power data. Following the decomposition phase, the 

fragmented subseries are rebuilt using Sample Entropy (SE). The complexity or 

irregularity of time series data is quantified by SE. By capturing the underlying patterns 

and dependencies in the wind power data, the scientists hope to improve the forecast 

accuracy of their model by applying SE. The integration of MCC with the conventional 

Mean Squared Error (MSE) in the LSTM network is one of the study's major advances. 

By using the MCC in addition to the loss function, the LSTM network is made more 

resilient and adaptable to the unique properties of wind power data. This fusion of MCC 

and MSE aids in the creation of an original and reliable hybrid forecasting model for wind 

power. The authors used actual data from two wind farms in China for four evaluations 

to verify the efficacy of their suggested strategy. The results of these analyses, which 

were conducted at varied sample intervals, consistently showed that the suggested 

strategy beat the majority of established techniques for wind power forecasting. As a 

result, it appears that the IVMD, SE, and MCC-enhanced LSTM model combination has 

the potential to greatly enhance short-term wind power projections, which are essential 

for effective energy management in the context of renewable energy sources. 

Using a hybrid forecasting model, (Righter, 1996) sought to enhance short-term 

wind energy projection. To improve the accuracy of wind power forecasts, this hybrid 

model integrated a number of techniques, including Convolutional Long Short-Term 

Memory networks (ConvLSTM), variational mode decomposition (VMD), and error 

analysis. The incorporation of these techniques into a thorough framework was one of 

their research's major accomplishments. Their strategy relied heavily on the VMD 

method, which divided the input wind power into various frequency components. The 

researchers were able to learn more about the underlying spatiotemporal patterns of the 

wind data thanks to this breakdown. The basic forecasting engine was built on top of this 

information. In essence, VMD acted as a stage in the pre-processing process that helped 

to extract significant features from the wind power time series data. The researchers 
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combined an LSTM network with a Convolutional layer to improve forecasting accuracy 

even more. Recurrent neural networks of the LSTM or Long Short-Term Memory variety 

are frequently employed in time series prediction challenges. The model improved its 

ability to capture both the geographical and temporal characteristics of the data by 

merging Convolutional and LSTM layers, making it well-suited for wind power 

forecasting. The individual subseries predicted by VMD provided the foundation for the 

initial forecasting results derived from this hybrid model. To get an overall forecast, this 

anticipated subseries was then combined. The researchers didn't stop there, either. They 

realized that wind power series have erratic features and needed to be improved. The 

study used LSTM to predict the variations in the first forecasting results in order to 

address this. The model was able to better capture and adjusts the abnormalities and 

fluctuations in the actual wind power series as a result of this step. LSTM was essentially 

utilized to model the variances from the initial projections in order to improve the 

predictions. 

Enhancing Long Short-Term Memory (LSTM) network designs and their 

practical validation were the main topics of (Andrew and Zhe, 2010). Time series 

forecasting is one of the disciplines where LSTM networks have found widespread use. 

By incorporating sophisticated architectural adjustments, the scientists hoped to increase 

the precision with which these networks predicted upcoming occurrences. In their study, 

the scientists not only suggested new LSTM network topologies but also methodically 

assessed how well they performed in real-world scenarios. In order to evaluate the models' 

performance, real-world data has to be used. They hoped to close the gap between 

theoretical developments in neural networks and their actual application in predicting by 

doing this. Their study's investigation of methods for recalibrating the model is one of its 

standout features. When fresh data becomes available, traditional machine learning 

techniques frequently involve starting over with a completely new dataset to train the 

model. However, suggested a different strategy in which the parameters of the neural 

network are changed in response to fresh information learned over time. This method 

takes less time and enables the model to continuously adjust to changing circumstances, 

which eventually improves forecast accuracy. A case study done in Belgium was used to 

show the application of their research. The authors calculated the potential financial 

savings associated with increased forecast accuracy brought about by model recalibration. 

They discovered that the expenses related to system assessment might be decreased by 

recalibrating the model and improving the consistency of its forecasts. This shows that 
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investing in model recalibration can result in real savings and increased forecasting 

accuracy, both of which can be extremely beneficial in financial and economic contexts. 

In order to overcome the difficulties of wind power forecasting, (Amjady, 2011) 

saw it as a non-linear multivariate function with hyper plane singularities and 

geographical in homogeneities. In the field of renewable energy, wind power forecasting 

is crucial because it permits effective integration of wind energy into power systems. The 

researchers decided to employ ridge lets as an efficient basic set to build the wind power 

function in order to address this challenging problem. Ridge lets are mathematical tools 

that can effectively capture spatial abnormalities and singularities in data, which makes 

them a good option for modeling wind power production. Recurrent neural networks 

(RNNs) were used by the researchers in their study to forecast wind energy. Their method 

was distinct since it used ridge functions as the initiation functions for the nodes in the 

RNN's hidden layers. The goal of this ridge function integration was to improve the neural 

network's capacity to represent the complicated and non-linear nature of wind power 

generation. The study article provided a unique stochastic search method called NDE 

(Natural Dual Estimation), which was used to train the suggested wind power forecast 

engine and establish the parameters of the model. The computational effectiveness of 

NDE and its need for a small number of samples during the training and validation phases 

were highlighted. In actual situations where processing resources and data may be 

constrained, this efficiency is essential.  The adaptability of the suggested NDE technique 

is one of its significant advantages. The possibilities of discovering a worldwide optimum 

value for addressing the difficulties of wind power forecasting are increased since it 

enables a thorough search and analysis of prospective solutions from different research 

paths. This adaptability can help boost the precision of wind power estimates, which will 

be advantageous to both power systems and specific wind farms. The research effort 

carefully examined wind speed forecasting in addition to wind power forecasting, which 

is a crucial component of comprehending and properly utilizing wind energy. This study 

advances renewable energy systems and helps ensure the reliable integration of wind 

energy into the larger energy grid by addressing both wind power and wind speed 

predictions. 

Ewea (2009) Developed a unique method for forecasting wind energy by using a 

discrete time-based Markov chain model. This study's main goal was to provide a more 

practical and effective method of calculating the distribution of wind energy, especially 

for short-term forecasting, without applying any constricting assumptions. The 
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importance of this research rests in its potential to increase wind power prediction 

precision, which is essential for maximizing wind energy grid integration and 

guaranteeing grid stability.  The authors created a special model that used time series 

analytic methods to make it easier to estimate wind power distributions in order to 

accomplish their objectives. Their strategy aims to increase the application and reliability 

of wind power forecasting techniques by doing away with the requirement for constrictive 

assumptions. This is crucial when discussing renewable energy sources like wind power, 

which can be extremely volatile and difficult to anticipate with precision.  The research 

report went into greater depth about the specifics of the suggested approach, offering a 

thorough explanation of both first- and second-order Markov chain models. A greater 

comprehension of the fundamental ideas and workings of the forecasting technique is 

made possible by this analytical investigation of the models. It is also a useful tool for 

forecasters of renewable energy who are both scholars and practitioners. Carpinone et al. 

used their suggested method to real-time wind power data as part of their research's 

conclusion to show how it may be used in practice. This empirical validation 

demonstrated both the efficiency of their method and its potential to promote the 

integration of renewable energy sources and grid management. 

Support Vector Machine (SVM) regression was used in a novel way for wind 

power forecasting by (Frandsen et al., 2006). This study aims to evaluate SVM's 

performance in forecasting wind power output and compare it to other forecasting 

techniques. The authors came at numerous important results through extensive 

simulations. Zeng and colleagues discovered during their experiment that the SVM-

driven regression model had impressive accuracy in predicting wind power output. The 

tight agreement between the predicted and expected values proved the model's accuracy 

and dependability. The results also demonstrated the durability of the SVM model in 

capturing intricate patterns in wind data by demonstrating how well it captured the 

anticipated changes in wind power. This study's comparison of the SVM model with the 

RBF-neural network-driven model and a persistence model was one of its most important 

contributions. With a predictive horizon of roughly 16 hours, the SVM model surpassed 

both of these models in terms of short-term wind power forecasting, showing an amazing 

improvement of more than 26%. This result highlighted SVM's potential as a useful tool 

for improving short-term wind power estimates. The study also demonstrated the SVM 

model's advantage over other diligence methods in terms of forecasting wind power 

accuracy. It was shown that the SVM-driven approach could produce more precise 
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forecasts, which is essential for maximizing the grid integration of wind energy and 

enhancing the overall effectiveness of wind power generation. The study did highlight 

one drawback of the suggested SVM model, though. The historical data lost correlation 

with the current wind power conditions as the forecast horizon grew. This constraint 

indicates that additional meteorological factors, like as pressure, temperature, and others, 

may need to be included in the model in order to produce reliable 24-hour wind power 

projections. The accuracy of long-term wind power forecasting could be improved by 

combining these factors with Numerical Weather Prediction (NWP) data, thereby 

overcoming the difficulties brought on by the expanding prediction horizon. 

For the investigation of wind power projections in the Portuguese system, a unique 

methodology known as the Hybrid Evolutionary Adaptive (HEA) methodology was 

presented by (Jensen, 1983). This methodology's main goal was to give three-hour wind 

power estimates with 15-minute intervals, which was its core focus. This method was 

created to improve the precision and robustness of wind power forecasting while 

addressing the inherent difficulties presented by non-stationary data sets. To accomplish 

its goals, the HEA methodology incorporated a number of models and techniques. It 

combined features from the Wavelet Transform (WT) model to take advantage of filtering 

effects, the Evolutionary Particle Swarm Optimization (EPSO) model for evolutionary 

optimization, the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to implement 

an adaptive architecture, and the Model Identification (MI) model to choose input data 

and improve overall robustness. This multi-model method made it possible to analyze 

wind power predictions in detail while taking into account various aspects of data 

processing and optimization. The research work selected test cases that were comparable 

to those used by other approaches in order to produce a transparent and precise 

comparative analysis, allowing for a meaningful comparison. In order to concentrate only 

on the fundamental elements of wind power forecasting, exogenic variables were 

purposefully ignored.  Results from the HEA methodology were said to be extremely 

precise and effective in lowering predicting uncertainty for wind energy. Notably, this 

method's Mean Absolute Percentage Error (MAPE) score of 3.75% demonstrated a high 

degree of prediction accuracy. Further demonstrating the efficacy of the methodology, 

the average error variance and Normalized Root Mean Square Error (NRMSE) were 

discovered to be 0.0013 and 2.66%, respectively. The HEA methodology's capacity to 

lessen computing complexity was one of its key advantages. Without sacrificing the 

precision of the outcomes, it was able to produce real-time wind power projections in less 
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than 40 seconds per iteration. For practical applications where precise and timely 

forecasts are important, this reduction in computing time is crucial. 

A thorough description of the statistical techniques used by the ANEMOS project 

for forecasting short-term wind power was presented by (Katic et al., 1986). The 

difficulties in estimating wind power, particularly in the setting of wind farms, were 

addressed in large part by this research. The forecasting procedure included a number of 

discrete processes, each of which added to the precision and dependability of wind power 

estimates as a whole. The meteorological (MET) forecasts were scaled down as one of 

the first steps in this process to fit them with the unique circumstances of the potential 

wind farm. This downscaling procedure was essential for modifying the general MET 

forecasts to the specific characteristics of the wind farm, improving the precision of power 

forecasts. The researchers then made use of wind power curves created from previously 

collected data from the wind farm. The relationship between wind speed and the 

accompanying power output was shown by these curves. Since these curves took into 

consideration the particular performance traits of the wind turbines in the farm, they 

allowed for more accurate estimates of power production. Another essential element of 

the forecasting strategy used by the ANEMOS project was dynamic models. Using these 

models, which took into consideration the dynamic nature of wind conditions, it was 

possible to predict changes in wind speed and power production over time. The 

researchers sought to produce short-term forecasts that were accurate and responsive to 

shifting environmental conditions by include these dynamic components. The study also 

stressed the significance of uncertainty estimation. It was crucial to put a number on how 

unreliable the predictions were given the inherent diversity of wind patterns. This made 

it possible to offer probabilistic forecasts, which could help with grid management and 

energy market decision-making. Last but not least, the ANEMOS project tackled the issue 

of scaling up the forecasts to determine the whole regional wind power generation. Data 

from a small number of wind farms that were used as reference locations had to be 

combined for this stage. The researchers attempted to give a precise evaluation of the 

overall wind energy generation in the area by using proper scaling methodologies. 

In especially for short-term horizons, (Ishihara et al., 2004) make a significant 

addition to the field of wind power prediction. Accurate forecasting of wind performance 

and accompanying electric energy generation has emerged as a critical component of 

assuring grid reliability and stability as a result of the rapid growth in wind power 

integration within power systems. The authors addressed the urgent requirement for 
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increased forecast accuracy by introducing a brand-new and incredibly powerful hybrid 

Wind Power Forecasting (WNF) technique. The capacity of the suggested strategy to 

attain an average Mean Absolute Percentage Error (MAPE) of roughly 5.99% is one of 

its significant accomplishments. For grid operators, energy market participants, and 

policymakers, this denotes a remarkable degree of precision in projecting wind power 

generation. The low MAPE shows that the model's forecasts closely match real wind 

power output, lowering operational uncertainty in the power system. Furthermore, it is 

important to emphasize how effective the suggested strategy is in terms of computing. 

According to the authors, the hybrid WNF approach's average computation time is under 

a minute. This quick processing time is a big plus, especially in operational environments 

where decisions must be made in real-time or almost real-time. It illustrates that the model 

provides efficient forecasts in addition to being accurate, making it an effective option 

for predicting wind generation. The hybrid WNF method outperforms a number of current 

approaches, including ARIMA (Autoregressive Integrated Moving Average), NNWT 

(Neural Network with Wavelet Transform), persistence models, and conventional neural 

network (NN) methods, according to the study's comparative analysis. This indicates the 

proposed method's superiority in terms of precision and computing effectiveness. 

According to the study's findings, the hybrid WNF strategy put forth by 

(Venayagamoorthy et al., 2012). Is a promising method to resolving the mounting 

problems caused by the integration of wind power into power systems. 

By incorporating intelligent and hybrid pattern recognition technologies, (Werle, 

2008) provide a novel approach for wind power forecasting. Variational Mode 

Decomposition (VMD), a well-known signal processing method, is one of the primary 

methods used in this study. To perform time-series decomposition on the wind power 

data, a vital step in comprehending the underlying patterns and trends, is the main goal of 

using VMD. The researchers have implemented a unique feature selection strategy 

powered by gravitational search optimization (GSO) to increase the effectiveness and 

interpretability of their forecasting model. This feature selection method tries to remove 

useless data, hence lowering memory needs and improving the forecasting device's 

overall efficiency. The study uses Extreme Learning Machine (ELM) in addition to VMD 

and the GSO-driven feature selection model to create the connection between the desired 

projected output and exemplar patterns. ELM is a machine learning method that is well-

known for being quick and straightforward, making it a good fit for this application.  The 

structure of the researchers' forecasting model is also adjusted using the cross-validation 
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method. In addition to ensuring that the model is accuracy-optimized, this phase also 

provide a way to assess how well it is working. In order to determine the most efficient 

arrangement, the study thoroughly analyzes numerous selected attributes and 

decomposition mechanisms.  According to the simulation results, the forecasting model 

that chooses 20 features and ten different decomposition types performs better and makes 

less forecasting errors. Surprisingly, this improved performance is seen for forecasting 

periods that are both short-term (1 hour) and very short-term (10 minutes). The 

researchers used historical wind power data collected from twelve different wind farms 

to apply the suggested model to validate it. The results of this real-world application 

demonstrate how well the model predicts wind power generation, highlighting its 

potential use in the renewable energy market. 

In order to improve the accuracy of wind power estimates for short-term horizons, 

(Crasto and Gravdahl, 2008) presented an innovative technique. They employed NWP-

data correction models as part of their methodology in an effort to correct inaccuracies in 

the Numerical Weather Prediction (NWP) data. Using several data mining approaches, 

the authors used their suggested model to find and classify mistakes in the NWP data. 

The raw and anomalous NWP data was then adjusted and standardized before being sent 

into the Wind Power Forecasting (WPF) engine. One of the noteworthy accomplishments 

emphasized in this study is the applicability of their model, which significantly reduced 

Wind Forecasting (WFO) mistakes. This result highlights how their method can be used 

in practice to increase the accuracy of wind power estimates. Nevertheless, despite the 

enthusiasm for this development, a number of problems need to be taken into account. 

First of all, the study falls short of providing a thorough analysis of the root reasons of 

the various inaccuracy patterns found in the NWP data. To successfully address these 

mistake causes and further improve the performance of the model, it is essential to 

understand them. It is difficult to execute targeted adjustments without a detailed 

explanation of the causes of these mistakes. Second, the study heavily relies on a data-

driven strategy without giving a detailed explanation of the methodology or model 

architecture used. This lack of transparency may prevent the suggested algorithm from 

being widely accepted and applied by the scientific and practical communities. A 

thorough framework and model description that enables greater comprehension and 

reproducibility is crucial for the model to be broadly accepted and incorporated into 

practical applications. Last but not least, the neural network module is the only one used 

to choose the threshold for AWPF (Wind Power Forecasting), which may not be the most 
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reliable or adaptive method. Establishing more reliable and adaptive criteria for choosing 

this threshold is essential to guaranteeing the suggested method's dependability in real-

world circumstances. This will increase the model's ability to adjust to changing 

circumstances and boost its effectiveness in real-world wind power forecasting 

applications. 

Crespo et al. (1999) has provided a thorough review of the benefits and drawbacks 

of incorporating renewable energy sources into our energy infrastructure. The growing 

acknowledgement of renewable energy as an essential component of future energy 

generation has given this subject a great deal of recent attention. The switch to renewable 

energy sources has become urgently necessary due to the persistent global energy crisis 

and the environmental issues connected to traditional fossil fuels. The environmental 

sustainability of renewable resources is one of the main benefits noted in the literature. 

Renewable energy sources, such as solar, wind, and hydroelectric power, produce little 

to no greenhouse gas emissions in contrast to fossil fuels, making them crucial for 

reducing global warming. Additionally, the almost limitless supply of these resources 

lessens our reliance on limited fossil fuel reserves. Because it diversifies the energy mix 

and lessens reliance on geopolitically unpredictable regions for energy supply, the switch 

to renewable energy also helps to ensure energy security. Renewable resource integration 

does present certain difficulties, though. Numerous drawbacks are mentioned by Ayadi 

et al., including intermittency and variability. The production of renewable energy is 

reliant on fluctuating natural elements like sunshine and wind. In order to maintain a 

steady supply of electricity, this intermittency can compromise the stability of the energy 

grid, necessitating the development of advanced energy storage devices and grid 

management techniques. The focus of current research is changing to the incorporation 

of renewables into smart grids in order to address these issues and realize the full potential 

of renewable energy. To improve energy management, smart grids include cutting-edge 

control systems, real-time monitoring, and communication technology. With this 

strategy, renewable energy can be distributed effectively, grid instability problems are 

reduced, and extra energy can be stored or sent to areas where it is most required. The 

incorporation of renewable resources into smart grids is emerging as a crucial study field 

with the potential to change our energy systems and provide a more sustainable energy 

future as the globe struggles with the need for sustainable energy solutions and persistent 

energy shortages. 
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The significance of binomial energy management in successfully managing power 

flows within a PV-Wind hybrid power system is examined by (Frandsen, 1992). In their 

study, they proposed a novel strategy for creating an energy management system designed 

for this particular objective using fuzzy logic. They used the SIMULINK-MATLAB 

environment, which allowed them to build and test a reliable simulator for the suggested 

hybrid power system, to validate their methodology. They conducted a number of tests 

utilizing actual meteorological data gathered from the Adrar region as part of their 

research, which was a crucial component. This information was used to assess how well 

their system performed. Additionally, they made a comparison between the simulation 

results and a determined realistic load demand pattern. Their conclusions were based in 

applicability and relevance to situations seen in the real world thanks to the rigorous 

methodology they used. These experiments had very good results. The simulation 

findings of the study showed that their "coupled approach" to energy management 

surpassed conventional power management techniques significantly. This shows that 

their fuzzy logic-based energy management system may be more able than traditional 

approaches to optimize power flows in a PV-Wind hybrid system. 

Barthelmie et al., (2006) Focused on a short-term forecasting horizon of just 24 

hours to address the urgent demand for precise and fast predictions of wind farm 

reducibility. Due to the fact that it enables energy management to efficiently plan and 

optimizes their resources, this timeframe is crucial for the effective operation and 

integration of wind energy into the grid. The researchers used feed-forward artificial 

neural networks, a machine learning method renowned for its capacity to predict intricate, 

nonlinear relationships in data, to accomplish this goal. The creation of a variety of 

prediction models, each adapted to a particular facet of wind farm performance, was a 

crucial component of their research. The objective of these models was to offer 

trustworthy predictions of wind power output within a 24-hour window. The meticulous 

process used to identify the ideal design for each neural network model is what 

distinguishes this study from others. The researchers used a simulation model that 

includes systematically changing the crucial artificial neural network parameters rather 

than relying exclusively on theoretical considerations. They were able to optimize the 

neural network architectures using this empirical method to get the most accurate wind 

power estimates. The researchers compared the results with forecasts produced by 

numerical weather prediction (NWP) models in order to evaluate the effectiveness of their 

neural network-based prediction models. The effectiveness of alternative prediction 
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techniques is measured against the performance of NWP models, which are frequently 

used for forecasting weather and wind energy. Dolara and his colleagues were able to 

validate the dependability and accuracy of their artificial neural network models for 

forecasting wind farm producibility through the use of this comparison. 

Mechali et al. (2006) proposed a fresh and creative method for making wind 

energy forecasts. Aguilar and his team established a thorough probability-based 

forecasting method, which differs from the majority of prior research in the field, which 

mostly concentrated on point forecasts for wind speed and subsequently produced energy 

level estimates using wind farm power curves. Their strategy included wind power 

projections for each forecasted wind speed at different lead times. This change in 

approach was made to address the inherent uncertainty in wind speed forecasts, which is 

a crucial component of wind energy generation forecasting. In the past, wind energy 

projections mainly depended on point estimates of wind speed that were deterministic, 

ignoring the probabilistic nature of wind speed changes. The Double Seasonal Holt 

Winters model and conditional density kernel estimation were combined with time series 

approaches by Aguilar et al., in contrast, to produce complete probability-based forecasts. 

They were able to produce a complete probability distribution for wind power at various 

wind speeds and lead periods using this method rather than just a single point estimate. 

This method's adaptability to real-world situations was one of its key benefits. The authors 

used data from a real wind farm in Brazil to validate their methods. Positive outcomes 

from this empirical examination proved the practical viability and efficacy of their 

suggested strategy. Aguilar and his team provided a more robust and trustworthy method 

for wind energy forecasting, which is essential for optimizing the operation and 

integration of wind energy into the grid, by taking into consideration the uncertainty 

associated with wind speed estimates. 

This technique was essential in minimizing restrictions like turbine radius and 

inter-turbine distances while also maximizing the wind farm's overall energy output. 

Kusiak and his team attempted to reconcile the requirements of safety and turbine spacing 

with the spatial arrangement of the turbines, which impacts wake losses and energy 

capture. They did this by employing a multi-objective optimization framework. The 

authors also offered possible directions for future research, highlighting the significance 

of taking various terrain heights and wind turbine specifications into account. These 

suggested additions demonstrate how flexible and scalable their concept is, since it can 

be adjusted to fit a variety of geographic areas and wind farm layouts. Researchers and 
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wind farm developers can make well-informed choices to improve energy generation 

while taking into consideration site-specific limits and characteristics by accounting for 

various terrain heights and turbine specs. 

The complex trade-off between energy generation and noise reduction in the 

design of wind farm layouts is explored in depth by (Wing Yin Kwong, 2012). Their main 

goal was to give engineers useful information for the creation of efficient design processes 

that balance these two crucial criteria. The researchers used genetic algorithms to assess 

populations of potential solutions in order to accomplish this. The authors looked at single 

and multi-objective optimization situations for wind farm layout optimization. They 

started by thinking about how to maximize energy production. It is crucial to create 

layouts that can wring the most energy from the prevailing wind patterns because wind 

farms are primarily intended to harvest wind energy. In addition to serving economic 

interests, increasing energy production also advances the development of renewable 

energy, addressing sustainability issues. The study also focused on the equally crucial 

goal of reducing noise levels near the wind farm's edge. Due to the fact that wind farms 

are frequently situated in rural regions, noise pollution is a rising concern in the area. 

Keeping noise levels to a minimum is crucial for the social and environmental 

acceptability of wind farms. The authors sought to achieve a compromise between 

effectively utilizing wind energy and limiting negative effects on nearby residents and 

ecosystems by reducing noise at the boundary. The study examined a wide range of 

potential wind farm layouts using Genetic Algorithms, a potent optimization tool inspired 

by natural selection. The layouts that represent trade-offs between energy generation and 

noise reduction were able to be identified thanks to this method. The study gave engineers 

and other stakeholders a thorough grasp of the design space by looking at a variety of 

possibilities, enabling them to make deft choices. 

The paper covers a variety of forecasting techniques, including neural networks, 

the Adaptive Neuro-Fuzzy Inference System (ANFIS), Computational Fluid Dynamics 

(CFD), and numerical weather prediction (NWP). The performance and applicability of 

these methodologies in the analysis of various wind farms are examined in the paper. 

ARMA modeling is one of the main methods included in the literature review. When 

analyzing time series data to predict wind speeds, ARMA models are frequently utilized. 

In order to capture temporal relationships and fluctuations in wind data, they offer a 

statistical methodology. The review highlights the applicability of ARMA models in 

predicting wind power generation and examines their advantages and disadvantages in 
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wind forecasting. Another important part of the review is computational fluid dynamics 

(CFD). At wind farm locations, CFD simulations are used to examine the turbulence and 

wind flow patterns. This method makes it possible to comprehend the intricate 

aerodynamic interactions between wind turbines in great detail. The literature study 

examines how CFD modeling helps to enhance the design of wind farms and optimize 

the location of turbines for greater energy output. A crucial part of wind forecasting is 

numerical weather prediction (NWP). The usage of NWP models, which are complex 

mathematical representations of atmospheric conditions, is extensively discussed in the 

paper. NWP models provide useful insights into wind patterns, enabling more precise 

forecasts of wind direction and speed. In order to improve the predictive capacities of 

wind forecasting systems, the research investigates how NWP data might be integrated 

into them. The review also emphasizes the function of artificial intelligence methods in 

wind prediction, including neural networks and the Adaptive Neuro-Fuzzy Inference 

System (ANFIS). In order to estimate the future of the wind, neural networks may 

understand intricate relationships within the data. ANFIS develops a hybrid model that 

can handle nonlinear and unpredictable data by fusing fuzzy logic and neural networks. 

The review covers the benefits of these AI-based methods and how they can be used to 

forecast wind speed and output. 

To simulate several scenarios and assess the potential repercussions of 

establishing such a renewable energy plant in the coastal region, their research used the 

SWAN (Simulating Waves Nearshore) ghostly prototype model. The study has several 

facets and concentrated on three main goals. The research's first goal was to look into the 

topographical and geographical implications of what the hybrid farm would do to the 

coastal environment. This involves examining potential changes to the shoreline and 

underwater topography that could result from the construction and operation of the hybrid 

wave-wind farm. It was essential to comprehend these changes in order to evaluate the 

project's possible ecological and environmental effects. Coastal regions are extremely 

sensitive to changes in wave patterns, currents, and sediment transport; therefore, the 

second important component of the study was to investigate the effect of the hybrid farm 

on the dynamic forces that influence the shoreline. Therefore, the researchers sought to 

quantify how the wave-wind farm's existence may alter these dynamic forces. This 

knowledge was essential for forecasting the project's potential effects on coastal stability, 

sedimentation, and erosion. Examining the variations in wave characteristics and wave 

energy distribution close to the proposed wave-wind farm was the study's third goal. The 
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researchers specifically looked into how the hybrid farm's presence changed wave 

heights, directions, and frequencies. It was essential to comprehend these changes in order 

to assess the viability and effectiveness of the wave energy conversion technology used 

in the hybrid system. They covered topics such turbine blade design, wind power 

characteristics, and estimates for output power. One of the major outputs of their research 

was the creation of a 1 kW, 1 m diameter wind turbine that was painstakingly developed 

with the aid of specialist software tools. The study went deep into assessing the 

performance of this turbine design from several perspectives in an effort to efficiently 

harness wind energy. The study of the turbine blade design was one crucial area covered 

in the research. To evaluate the power production and efficiency of the turbine blades at 

various tip-speed ratios, Sarkar et al. carried out comprehensive testing. These tests 

offered insightful information about how various turbine blade arrangements affected the 

wind turbine's overall performance. The researchers also performed calculations using 

software tools to support their experimental results, providing a thorough understanding 

of the turbine's potential. The study also considered a number of environmental aspects 

that might affect the functioning of the turbine. These included the wind direction, which 

has a direct impact on how well the turbine can catch wind energy. In addition, issues like 

corrosion, water vapor infiltration, thermal expansion, mechanical load considerations, 

and the effects of seasonal climate changes between summer and winter were covered in 

the research. In order to create a more realistic and practical design that could endure 

actual climatic conditions, it was essential to comprehend how these environmental 

factors interacted with the turbine's component parts. Discussions about the aging of wind 

turbine parts were a key component of the research. Long-term operation of wind turbines 

can cause component wear and degradation, which can reduce overall performance. 

These aging mechanisms were examined by Sarkar and his team, who also suggested 

methods for reducing their negative consequences. This component of the study was 

crucial in assuring that the wind turbine's design would be durable and dependable over 

its operating lifespan in addition to being effective at the time of construction. 

The authors also emphasize their plans for future work to enhance forecasting 

models for photovoltaic (PV) energy sources. This implies expanding the scope of the 

integration of renewable energy with the aim of improving prediction algorithms to 

incorporate other renewable sources like solar energy. A step closer to a greener future 

would be made possible by the eventual integration of such enhanced forecasting models 



45 

into actual energy operations. This would increase the effectiveness and sustainability of 

the use of renewable energy sources. 

The field of monitoring the state of wind turbines holds tremendous promise for 

copula analysis, as discussed in their research. Copulas are statistical tools that enable the 

modeling of the structure of variable dependence. Copula analysis can be used in the 

context of wind turbines to analyze and quantify the correlations between different 

parameters, such as wind speed and active power output. Given the nonlinear and non-

stationary nature of data from wind turbines, this is especially crucial. The presenting of 

an example featuring the use of copulas to assess the intricate correlations between wind 

speed and active power output was one of their study's major achievements. They used 

copulas to capture and comprehend the complex relationships between these factors, 

which might change dramatically over time as a result of shifting environmental 

conditions. This showed how copula analysis could be a useful method for monitoring 

the status of wind turbines. Additionally, the results showed that copula analysis might 

be applied to more intricate situations. To examine the interdependencies and correlations 

among various wind turbines operating close to one another, the evaluation can, for 

example, include copulas for numerous turbines. Copulas could also make it easier to 

translate data from one turbine while taking alternate outcomes into account, allowing for 

a thorough analysis of data discrepancy at various manufacturing altitudes. 

The study on Wind Energy Prediction Using Long Short-Term Memory (LSTM) 

marks a significant leap in the realm of renewable energy forecasting, distinguishing itself 

from past studies through various noteworthy aspects. Comparisons with prior research 

reveal key advancements and methodological differences, contributing to the evolution 

of wind power prediction methodologies. Past studies predominantly relied on 

conventional statistical models like Seasonal Autoregressive Integrated Moving Average 

(SARIMA) to forecast wind energy outputs. However, the current study diverges by 

incorporating sophisticated machine learning algorithms such as LSTM networks 

alongside ensemble methods like Extreme Gradient Boost (XG Boost) and Random 

Forest Regressor. This departure signifies a shift towards leveraging the robustness of 

deep learning architectures to capture intricate temporal relationships in wind data. Prior 

studies focused on addressing seasonal trends and basic correlations between wind speed 

and power output, the present research extends its scope. It delves deeper into the nuances 

of wind turbine behaviour, scrutinizing the impact of variables like ambient temperature, 

blade pitch angles, gearbox conditions, and generator RPM on power generation. This 
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comprehensive analysis expands the understanding of multifaceted factors influencing 

wind energy, thereby enhancing prediction accuracy. 

Past endeavours often encountered challenges related to missing data, outliers, 

and the temporal aspect of wind power generation. In contrast, the current study 

demonstrates a meticulous approach to data preprocessing, emphasizing the careful 

management of missing values, detection, and exclusion of anomalous data points. 

Additionally, it incorporates visualization and statistical analysis to comprehend dataset 

properties, ensuring a robust foundation for modelling. Moreover, previous studies 

primarily focused on short-term wind power forecasting. In contrast, the present study 

extends its scope to incorporate long-range dependencies in sequential wind data through 

LSTM networks. This facilitates a deeper exploration of wind speed-power generation 

correlations, even though the LSTM model exhibited challenges in effectively capturing 

these complex dynamics. The current study stands out by embracing a holistic approach, 

amalgamating advanced machine learning techniques, meticulous data treatment, and an 

in-depth analysis of various parameters affecting wind energy generation. This departure 

from traditional methodologies demonstrates a significant stride towards more accurate 

and comprehensive wind power predictions, offering valuable insights for sustainable 

energy management and decision-making. 

The literature review encompasses diverse studies on wind energy, emphasizing 

novel approaches to wind forecasting, wind farm optimization, grid integration, and 

environmental impact assessment. Aguilar (Aguilar et al., 2014) proposed a novel 

probability-based forecasting method, departing from traditional deterministic models, to 

account for uncertainty in wind speed estimates, validating their approach using real wind 

farm data. Harrouz (Harrouz et al., 2019) Had underscored the importance of accurate 

predictive models for maximizing wind energy utilization while addressing the 

unpredictability of wind patterns. Banna (Banna, 2014) investigated grid placement's 

influence on wind farm stability, concluding that increased wind energy penetration 

enhances grid stability. Kusiak (Kusiak et al., 2010) has introduced a multi-objective 

optimization model for wind farm layout design, optimizing turbine placement for 

maximum energy output while considering wake losses. Wing (Wing Yin Kwong, 2012) 

addressed the energy-generation versus noise-reduction trade-off in wind farm layouts, 

using genetic algorithms to identify layouts balancing these factors. Fugon (Fugon, 2008) 

focused on short-term wind power forecasting, highlighting Random Forest's superiority 

in forecasting accuracy for wind power integration. Murali (Murali, 2014) explored 
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feasible offshore wind farm locations along the Indian coast, considering technological, 

environmental, and financial aspects. Rakeshchandra (Rakeshchandra, 2013) reviewed 

forecasting methods, including ARMA modelling, CFD simulations, NWP, and AI-based 

approaches, to aid wind farm operators in estimating wind speeds. Diacon Sorin (Diacon 

Sorin, 2013) evaluated the coastal effects of a proposed hybrid wave-wind farm, assessing 

topographical changes, dynamic forces on the shoreline, and variations in wave 

characteristics. These studies collectively offer insights into diverse facets of wind 

energy, ranging from forecasting techniques to environmental impact assessments, 

aiming to optimize wind energy utilization and grid integration while considering 

environmental implications by (Ali Abdulrahman Salihi and Merdin Danişmaz, 2023).  
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3. MATERIAL AND METHOD 

 

3.1. Dataset Description 

The research methodology is inherently rooted in Python as the primary tool for 

conducting the entire analysis. Python's versatility and extensive libraries make it an ideal 

choice for handling the intricate aspects of data manipulation, exploratory data analysis 

(EDA), and modeling. 

Initially, Python facilitates the crucial phase of data processing. Through various 

Python libraries, the dataset undergoes meticulous cleaning processes. Missing values are 

addressed, outliers are handled, and any redundant or irrelevant data points are removed. 

This preparatory step ensures the dataset's integrity and quality, setting the stage for 

subsequent analyses. The subsequent stage delves into exploratory data analysis, 

leveraging Python's capabilities to unveil key insights within the dataset. Python's 

libraries, such as Pandas, Matplotlib, and Seaborn, are instrumental in visualizing 

distributions, correlations, and identifying anomalies. These visual representations aid in 

comprehending the dataset's underlying characteristics, relationships, and potential 

patterns. Following EDA, the methodology progresses toward predictive modeling using 

a neural network. Python's Tensor Flow or Keras libraries are often employed to construct 

and train the neural network model. The network's architecture, training parameters, and 

optimization techniques are carefully configured within Python, enabling the model to 

learn and extract complex patterns inherent in the dataset. The pinnacle of the 

methodology is encapsulated within an interactive Python file (.ipynb). This file acts as a 

comprehensive repository, housing not only the executable code but also detailed 

documentation and interpretations of the neural network model's performance and 

insights derived from the analysis. This interactive file serves as a transparent and 

accessible platform, allowing readers to explore the research process, comprehend the 

model's behavior, and understand the obtained results thoroughly. Throughout this 

methodological journey, Python serves as the cornerstone, offering a rich ecosystem of 

tools and functionalities. Its seamless integration across data processing, exploratory 

analysis, modeling, and documentation ensures a robust and transparent framework for 

conducting simulations, analyses, and presenting findings. 

The CSV file utilized in the thesis served as the primary source of data, housing a 

structured dataset in comma-separated values format. This file contained multifaceted 

information crucial for the research, capturing various parameters related to the operation 



50 

of a system or machinery. Among the vital variables extracted from this file, "active 

power" stood as a pivotal metric. It represented the actual power consumed or produced 

within the system, reflecting its active energy usage or generation. Additionally, the "df 

index" referred to the indexing or referencing mechanism within the data frame, enabling 

swift access to specific data points or subsets for analysis. Another significant variable, 

"angle blades," delineated the angular positioning of individual blades, possibly 

indicating the rotational behavior or alignment of specific components within the system. 

The CSV file, alongside these variables and others extracted from it, formed the 

fundamental dataset driving the analysis, enabling insights into operational patterns, 

energy usage, and machinery behavior within the studied system. 

 The data utilized in this section has been sourced from the International Energy 

Agency (IEA) through the Wind Power Association. The Wind Power Association serves 

as a primary disseminator of this data, making it accessible to researchers and 

corporations globally. 

This study is carried out in Turkey, and it is drawing its ideas from the wind 

turbines concept that has been so successfully adopted in Türkiye. The primary purpose 

is to extract data from the CSV file in order to make a prediction about the power output 

that will occur over the next 15 days. To achieve this goal, a wide variety of forecasting 

techniques are utilized, beginning with the application of SARIMA (Seasonal 

Autoregressive Integrated Moving Average). This is done mostly as a result of the 

obvious seasonal trends that can be seen within the dataset. However, due to the poor 

performance of SARIMA, the research turns its focus to more effective machine learning 

algorithms, such as XG Boost and Random Forest Regressor, which produce better 

results. This was done in order to improve the accuracy of the study. In addition, the study 

investigates the use of LSTM, which stands for long short-term memory. This is a sort of 

recurrent neural network, but unfortunately, it does not generate the results that are 

wanted. Throughout the entirety of the process of analysis, the study makes heavy use of 

common data exploration tools, such as visualization and statistical analysis, in order to 

get a thorough comprehension of the dataset's innate properties. This multi-faceted 

strategy has been carefully constructed to determine the most accurate way for estimating 

power output within the particular context of Iraq. It does this by taking ideas from the 

successful wind turbines model in Türkiye in order to boost the forecasting skills for the 

setting of Turkey. 
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3.2. Introducing the Data to the Paython Program 

To use this data correctly, we need to make sure the information in the file is seen 

as dates. We do this by telling the system that the "Unnamed:0" column is about dates. 

This helps us work with the data in terms of time, which is really important for tasks like 

forecasting or understanding how things change over time. 

First, I checked if there were any entries that appeared more than once in the 

dataset. Turns out, there were 23,039 records that were exact duplicates, meaning they 

showed up more than once. To make things neat and clear, I got rid of these extra copies 

from the data. After doing this, we're left with 95,185 unique entries. These unique entries 

are all different and not repeated, which is super important for us to get accurate insights 

from the data. Removing these duplicates is a common way to clean up data, making it 

better for analysis and giving us more trustworthy information to work with. 

3.2.1. Application of exploratory data analysis using pandas profiling and then some 

boxplots 

The analysis of the dataset begins by examining the distributions of each variable. 

This exploration is facilitated by utilizing the pandas profiling package, which not only 

reveals the data distributions but also highlights missing values within the dataset. During 

this examination, it becomes evident that the variables "Control Box Temperature" and 

"WTG" do not provide meaningful information and may not be useful for the analysis, 

prompting their potential exclusion. 

Additionally, a correlation graph is initially presented, but further interpretation is 

reserved for a later stage of the analysis. Another important step in data cleaning involves 

checking for and handling duplicate entries. If duplicate rows are found in the dataset, 

they are removed to ensure the data is free from redundancy. 

As a noteworthy observation is made about the "Active Power" variable. It's 

discovered that the box plot for this variable includes values below zero, suggesting the 

presence of negative power values, which can be unusual. To maintain data integrity and 

relevance, these negative power values are proposed for removal from the dataset. The 

initial stages of data analysis involve examining variable distributions, identifying less 

useful variables, addressing missing values, exploring correlations, and checking for and 

removing duplicate entries. Additionally, a decision is made to exclude negative values 

in the "Active Power" variable, which might require further investigation. 
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3.3. Data Overview 

The dataset comprises 22 variables and encompasses a total of 95,185 

observations. Among these observations, approximately 27.2% of the cells contain 

missing data, totalling 570,424 missing entries. There are no duplicate rows within the 

dataset. In terms of memory usage, the entire dataset occupies 16.0 MiB, with an average 

record size of 176.0 bytes. 

The variables in the dataset fall into three main types. There is one variable 

categorized as Date Time, capturing temporal information. Additionally, there are 19 

numeric variables that likely represent various measurements or numerical data points. 

Lastly, two variables are categorized as categorical, implying they contain distinct 

categories or labels rather than continuous numerical values. 

 

 
Figure 3.1. Dataset statistics 

 

3.3.1. Variables 

The "Date" variable, also referred to as "df_index," represents a chronological 

timeline in the dataset (Fig. 3.2). Here's an explanation of this specific variable: 

The "Date" variable contains 95,185 distinct values, accounting for 100.0% of the 

observations in the dataset. This means that each observation has a unique date associated 

with it, and there are no duplicate dates. There are no missing values in this variable, 

indicating that all 95,185 observations have a valid date timestamp, resulting in a missing 

percentage of 0.0%. The memory size occupied by this "Date" variable is approximately 

743.8 KiB, which is the amount of computer memory needed to store and process this 

data efficiently. The minimum date in this variable is "2017-12-31 00:00:00+00:00," 

which signifies the earliest date and time in the dataset. 

The maximum date in this variable is "2020-03-30 23:50:00+00:00," indicating 

the latest date and time recorded in the dataset. In summary, the "Date" variable in this 
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dataset represents a time series spanning from December 31, 2017, to March 30, 2020, 

with no missing values and a memory size of approximately 743.8 KiB. It provides a 

chronological reference for the dataset's observations over this time period. 

 

 
Figure 3.2. df_index 

 

The "Active Power" represents the real power output of a wind turbine, which is 

the portion of generated power that can perform work and contribute to the overall 

electrical energy supply. Active power  variable is a real number (belonging to the set of 

real numbers, ℝ) within this dataset. It exhibits a high correlation with other variables in 

the dataset, indicating that it may be closely related to or influenced by other factors under 

study. There are 94,084 distinct values for the "Active Power" variable, which accounts 

for approximately 99.4% of the observations in the dataset. This suggests that the majority 

of the data points for this variable are unique, reflecting a wide range of active power 

values. 

In terms of missing data, there are 561 missing values for "Active Power," 

constituting a relatively small percentage of 0.6%. This indicates that most of the 

observations have valid entries for this variable, although a small proportion is missing. 

There are no infinite values recorded for "Active Power," meaning that all values 

fall within a finite range of real numbers. 

 

 
Figure 3.3. Active power 
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The "Ambient Temperature" is a critical environmental parameter influencing the 

efficiency and performance of wind turbines, affecting various components such as 

electronics, materials, and lubricants. Ambient temperature variable represents real 

numbers (belonging to the set of non-negative real numbers, ℝ≥0) in the dataset. It 

exhibits a high correlation with other variables, suggesting that it is closely related to or 

influenced by other factors under study. There are 93,678 distinct values for the "Ambient 

Temperature" variable, which accounts for more than 99.9% of the observations in the 

dataset. This indicates a wide range of unique ambient temperature values recorded in the 

dataset. 

However, it's worth noting that there are 1,487 missing values for the "Ambient 

Temperature" variable, comprising approximately 1.6% of the data. These missing values 

indicate instances where ambient temperature information is not available or was not 

recorded. There are no infinite values present in the "Ambient Temperature" variable, 

meaning that all values fall within a finite range of non-negative real numbers. 

 

 
Figure 3.4. Ambient temperature 

 

The statistical summary of "Ambient Temperature" includes a mean value of 

approximately 28.78, which represents the average ambient temperature across the 

dataset. The recorded minimum temperature is 0, while the maximum temperature is 

42.41, indicating a range of temperatures observed. There are only four occurrences of 

zero values in the "Ambient Temperature" variable, making up less than 0.1% of the data. 

This suggests rare instances where the ambient temperature is precisely zero, which may 

warrant further investigation. 

The temperature of the shaft bearings within the wind turbine, where the rotor is 

connected to the gearbox, measured in degrees Celsius (°C) or Fahrenheit (°F). 

The "Bearing Shaft Temperature" variable is a real-number variable representing 

non-negative values (belonging to the set of non-negative real numbers, ℝ≥0) within the 

dataset. It exhibits a high correlation with other variables, indicating a strong relationship 



55 

with factors under investigation. Among the data, there are 62,286 distinct values, 

accounting for nearly 99.8% of the dataset, suggesting a broad range of unique bearing 

shaft temperature readings. However, it's noteworthy that a substantial portion of the data 

is missing, with 32,805 missing values, constituting approximately 34.5% of the dataset. 

These missing values signify instances where bearing shaft temperature information is 

either unavailable or not recorded. There are no infinite values, and all data points are 

within a finite range of non-negative real numbers. The mean temperature is 

approximately 43.11, with a minimum value of 0 and a maximum of 55.09, demonstrating 

the temperature range observed. While 87 zero values are present, making up less than 

0.1% of the data, there are no negative values. The "Bearing Shaft Temperature" variable 

consumes approximately 743.8 KiB of memory. This data provides insights into the 

distribution and characteristics of bearing shaft temperature data within the dataset, 

despite the significant presence of missing values. 

Blade pitch angle is a control parameter adjusted to optimize the aerodynamic 

performance of the wind turbine, influencing power production and load distribution on 

the turbine components. 

The "Blade1PitchAngle" variable is a real-number variable (belonging to the set 

of real numbers, ℝ) within the dataset. It demonstrates a high correlation with other 

variables, suggesting a strong association with factors under investigation. There are 

38,946 distinct values, representing approximately 92.8% of the dataset, indicating a 

variety of unique blade pitch angle measurements. 

 

 
Figure 3.5. Bearing shaft temperature 

 

However, a significant portion of the data is missing, with 53,198 missing values, 

accounting for approximately 55.9% of the dataset. These missing values indicate 

instances where blade pitch angle information is either unavailable or not recorded. No 

infinite values are present in the "Blade1PitchAngle" variable, indicating that all values 

fall within a finite range of real numbers. The mean pitch angle is approximately 9.75, 
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with a minimum recorded angle of-43.16 and a maximum angle of 90.14, indicating a 

wide range of pitch angle observations. There are 12 zero values, making up less than 

0.1% of the data, suggesting occasional instances where the blade pitch angle is precisely 

zero. Additionally, there are 18,981 negative values, constituting 19.9% of the data, 

implying situations where the blade pitch angle is in a negative position. 

 

 
Figure 3.6. Blade1pitch angle 

 

The "Blade 2 Pitch Angle" variable is a real-number variable (belonging to the set 

of real numbers, ℝ) within the dataset. It demonstrates a high correlation with other 

variables, suggesting a strong association with factors under investigation. There are 

38,946 distinct values, representing approximately 92.8% of the dataset, indicating a 

variety of unique blade pitch angle measurements. However, a significant portion of the 

data is missing, with 53,198 missing values, accounting for approximately 55.9% of the 

dataset. These missing values indicate instances where blade pitch angle information is 

either unavailable or not recorded. 

No infinite values are present in the "Blade 1 Pitch Angle" variable, indicating 

that all values fall within a finite range of real numbers. The mean pitch angle is 

approximately 9.75, with a minimum recorded angle of -43.16 and a maximum angle of 

90.14, indicating a wide range of pitch angle observations. 

There are 12 zero values, making up less than 0.1% of the data, suggesting 

occasional instances where the blade pitch angle is precisely zero. Additionally, there are 

18,981 negative values, constituting 19.9% of the data, implying situations where the 

blade pitch angle is in a negative position. 
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Figure 3.7. Blade 2 pitch angle 

 

The "Blade 3 Pitch Angle" variable is a real-number variable (belonging to the set 

of real numbers, ℝ) within the dataset and demonstrates a high correlation with other 

variables, indicating a strong association with factors under investigation. There are 

39,021 distinct values, representing approximately 93.2% of the dataset, implying a 

diverse range of unique blade pitch angle measurements. However, a significant portion 

of the data is missing, with 53,303 missing values, accounting for approximately 56.0% 

of the dataset. These missing values indicate instances where blade pitch angle 

information is either unavailable or not recorded. 

No infinite values are present in the "Blade 3 Pitch Angle" variable, indicating 

that all values fall within a finite range of real numbers. The mean pitch angle is 

approximately 10.04, with a minimum recorded angle of -26.44 and a maximum angle of 

90.02, demonstrating a wide range of pitch angle observations. 

There are 12 zero values, making up less than 0.1% of the data, suggesting 

occasional instances where the blade pitch angle is precisely zero. Additionally, there are 

15,815 negative values, constituting 16.6% of the data, implying situations where the 

blade pitch angle is in a negative position. The "Blade 3 Pitch Angle" variable consumes 

approximately 743.8 KiB of memory. In summary, "Blade 3 Pitch Angle" is a real-

number variable with high correlation with other variables in the dataset. It encompasses 

a wide range of distinct values, but a substantial portion of the data is missing. The pitch 

angles vary from negative to positive values, with occasional occurrences of precisely 

zero angles. These statistics provide insights into the distribution and characteristics of 

blade pitch angle data within the dataset, despite the presence of missing values. 
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Figure 3.8. Blade 3 pitch angle 

 

Control box temperature is monitored to ensure the proper functioning of 

electronic components, as temperature variations can impact the reliability and 

performance of the control system. 

The "Gear box Bearing Temperature" variable is a real-number variable, 

specifically within the set of non-negative real numbers (ℝ≥0), in the dataset. It exhibits 

a high correlation with other variables, indicating a strong association with factors under 

investigation. Among the data, there are 62,313 distinct values, representing nearly 99.9% 

of the dataset, suggesting a wide array of unique gearbox bearing temperature 

measurements. However, it's important to note that a significant portion of the data is 

missing, with 32,783 missing values, making up approximately 34.4% of the dataset. 

These missing values indicate instances where gearbox bearing temperature information 

is either unavailable or not recorded. 

There are no infinite values present in the "Gear box Bearing Temperature" 

variable, signifying that all values fall within a finite range of non-negative real numbers. 

The mean temperature is approximately 64.38, with a minimum recorded temperature of 

0 and a maximum of 82.24, indicating a range of temperature observations. 

 

 
Figure 3.9. Gear box bearing temperature 

 

Gearbox oil temperature is monitored to maintain optimal viscosity for 

lubrication, ensuring efficient power transmission and preventing damage to gearbox 

components 
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The "Gear box Oil Temperature" variable is a real-number variable, specifically 

within the set of non-negative real numbers (ℝ≥0), in the dataset. It exhibits a high 

correlation with other variables, suggesting a strong relationship with factors under 

investigation. Among the data, there are 62,412 distinct values, accounting for more than 

99.9% of the dataset, indicating a diverse range of unique gearbox oil temperature 

measurements. It’s important to note that a significant portion of the data is missing, with 

32,755 missing values, comprising approximately 34.4% of the dataset. These missing 

values indicate instances where gearbox oil temperature information is either unavailable 

or not recorded. 

There are no infinite values present in the "Gear box Oil Temperature" variable, 

signifying that all values fall within a finite range of non-negative real numbers. The mean 

oil temperature is approximately 57.56, with a minimum recorded temperature of 0 and a 

maximum of 70.76, reflecting the range of oil temperature observations. 

There are only three zero values, making up less than 0.1% of the data, suggesting 

rare instances where the gearbox oil temperature is precisely zero. Importantly, there are 

no negative values in this variable, indicating that all temperature readings are non-

negative. 

 

 
Figure 3.10. Gear box oil temperature 

 

Generator RPM is a key parameter reflecting the rotational speed of the generator, 

directly influencing the frequency and voltage of the electrical output. The "Generator 

RPM" variable represents real numbers, specifically within the set of non-negative real 

numbers (ℝ≥0), in the dataset. It exhibits a high correlation with other variables, 

indicating a strong association with factors under investigation. Among the data, there are 

61,074 distinct values, accounting for approximately 98.1% of the dataset, suggesting a 

wide range of unique generator RPM (Revolutions Per Minute) measurements. It’s crucial 

to note that a substantial portion of the data is missing, with 32,898 missing values, 
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constituting about 34.6% of the dataset. These missing values indicate instances where 

generator RPM information is either unavailable or not recorded. 

There are no infinite values present in the "Generator RPM" variable, meaning 

that all values fall within a finite range of non-negative real numbers. The mean RPM is 

approximately 1,102.15, with a minimum recorded RPM of 0 and a maximum of 

1,809.94, indicating a broad range of RPM observations. 

There are 1,030 zero values, making up approximately 1.1% of the data, 

suggesting instances where the generator RPM is precisely zero. Importantly, there are 

no negative values in this variable, indicating that all RPM readings are non-negative. 

 

 
Figure 3.11. Generator RPM 

 

Generator winding temperatures are monitored to prevent overheating, ensuring 

the electrical integrity and longevity of the generator. 

The "Generator Winding 1 Temperature" variable is a real-number variable, 

specifically within the set of non-negative real numbers (ℝ≥0), in the dataset. It exhibits 

a high correlation with other variables, indicating a strong association with factors under 

investigation. Among the data, there are 62,406 distinct values, representing more than 

99.9% of the dataset, suggesting a diverse range of unique generator winding 1 

temperature measurements. It’s important to note that a significant portion of the data is 

missing, with 32,766 missing values, making up approximately 34.4% of the dataset. 

These missing values indicate instances where generator winding 1 temperature 

information is either unavailable or not recorded. 

There are no infinite values present in the "Generator Winding 1 Temperature" 

variable, signifying that all values fall within a finite range of non-negative real numbers. 

The mean temperature is approximately 72.46, with a minimum recorded temperature of 

0 and a maximum of 126.77, reflecting a wide range of temperature observations. There 

are four zero values, comprising less than 0.1% of the data, suggesting rare instances 
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where the generator winding 1 temperature is precisely zero. Importantly, there are no 

negative values in this variable, indicating that all temperature readings are non-negative. 

The "GeneratorWinding2Temperature" variable is a real-number variable, 

specifically within the set of non-negative real numbers (ℝ≥0), in the dataset. It 

demonstrates a high correlation with other variables, indicating a strong relationship with 

factors under investigation. Among the data, there are 62,424 distinct values, representing 

more than 99.9% of the dataset, suggesting a wide range of unique generator winding 2 

temperature measurements. 

 

 
Figure 3.12. Generator winding 1 temperature 

 

The "Generator Winding 2 Temperature" variable is a real-number variable, 

specifically within the set of non-negative real numbers (ℝ≥0), in the dataset. It 

demonstrates a high correlation with other variables, indicating a strong relationship with 

factors under investigation. Among the data, there are 62,424 distinct values, representing 

more than 99.9% of the dataset, suggesting a wide range of unique generator winding 2 

temperature measurements. 

However, it's important to note that a significant portion of the data is missing, 

with 32,744 missing values, making up approximately 34.4% of the dataset. These 

missing values indicate instances where generator winding 2 temperature information is 

either unavailable or not recorded. There are no infinite values present in the "Generator 

Winding 2 Temperature" variable, signifying that all values fall within a finite range of 

non-negative real numbers. The mean temperature is approximately 71.83, with a 

minimum recorded temperature of 0 and a maximum of 126.04, reflecting a broad range 

of temperature observations. 
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Figure 3.13. Generator winding 2 temperature 

 

The "Generator Winding 2 Temperature" variable falls within the realm of real 

numbers, specifically belonging to the set of non-negative real numbers (ℝ≥0) in the 

dataset. It exhibits a robust correlation with other variables, indicating a significant 

association with the factors under investigation. Among the dataset, there are 62,424 

distinct values, accounting for over 99.9% of the dataset, showcasing a diverse array of 

unique measurements for generator winding 2 temperatures. 

Nonetheless, it's essential to highlight that a substantial portion of the data is 

missing, with 32,744 missing values, constituting approximately 34.4% of the dataset. 

These missing values denote instances where data for generator winding 2 temperatures 

is either absent or was not recorded. 

There are no infinite values within the "Generator Winding 2 Temperature" 

variable, affirming that all recorded values are within a finite range of non-negative real 

numbers. The mean temperature stands at approximately 71.83, with a minimum 

temperature recorded at 0 and a maximum at 126.04, reflecting a broad spectrum of 

temperature observations within the dataset. 

 

 
Figure 3.14. Hub temperature 

 

Main box temperature is monitored to ensure the reliable operation of electrical 

components, as elevated temperatures can impact the performance and lifespan of 

electronic systems. The "Main Box Temperature" variable belongs to the realm of real 
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numbers, specifically within the domain of non-negative real numbers (ℝ≥0) within the 

dataset. It exhibits a robust correlation with other variables, signifying a significant 

association with the factors under examination. Within the dataset, there are 49,145 

distinct values, accounting for approximately 78.8% of the dataset, which showcases a 

broad spectrum of unique main box temperature measurements. It's noteworthy that a 

substantial portion of the data is missing, with 32,816 missing values, constituting about 

34.5% of the dataset. These missing values indicate instances where main box 

temperature data is either unavailable or was not recorded. 

The "Main Box Temperature" variable does not contain any infinite values, 

affirming that all recorded values fall within a finite range of non-negative real numbers. 

The mean temperature is approximately 39.64, with a recorded minimum temperature of 

0 and a maximum of 54.25, reflecting a diverse range of temperature observations. 

 

 
Figure 3.15. Main box temperature 

 

Nacelle position provides information on the wind turbine's directionality and 

alignment with the wind, influencing the efficiency and stability of power generation. The 

"Nacelle Position" variable represents real numbers, specifically within the domain of 

non-negative real numbers (ℝ≥0), in the dataset. It exhibits a strong correlation with other 

variables, indicating a substantial relationship with the factors being studied. There are 

6,664 distinct values, accounting for approximately 9.2% of the dataset, suggesting a 

limited range of unique nacelle position measurements. 

It’s important to note that a significant portion of the data is missing, with 23,077 

missing values, making up approximately 24.2% of the dataset. These missing values 

indicate instances where nacelle position information is either unavailable or not 

recorded. 

There are no infinite values present in the "Nacelle Position" variable, confirming 

that all values fall within a finite range of non-negative real numbers. The mean nacelle 
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position is approximately 196.31, with a minimum recorded position of 0 and a maximum 

of 357, indicating a range of position observations. 

 
Figure 3.16. Nacelle position 

 

Reactive power is a crucial parameter in power systems, influencing voltage levels 

and system stability, with wind turbines often contributing to reactive power control for 

grid support. 

The "Reactive Power" variable is denoted by real numbers (ℝ) within the dataset 

and displays a substantial correlation with other variables, signifying a robust association 

with the factors under investigation. The dataset encompasses 94,040 distinct values, 

which represent nearly 99.4% of the dataset, indicating a wide array of unique reactive 

power measurements. 

 

 
Figure 3.17. Reactive power 

 

It’s crucial to acknowledge the presence of 563 missing values, making up 

approximately 0.6% of the dataset. These gaps signify instances where reactive power 

data is either absent or unrecorded.  Notably, the "Reactive Power" variable does not 

contain any infinite values, affirming that all recorded values fall within a finite range of 

real numbers. The average reactive power is approximately 88.07, with a recorded 

minimum of -203.18 and a maximum of 403.71, highlighting a broad spectrum of reactive 

power observations. 
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Rotor RPM is a fundamental parameter indicating the rotational speed of the 

turbine blades, influencing the overall performance and power output of the wind turbine. 

"Rotor RPM" is the vital rhythm within our dataset, akin to the steady heartbeat that keeps 

our data vibrant and pulsing with information. This variable comprises real numbers 

(ℝ≥0), serving as an essential team player, much like a star athlete in a championship-

winning team. Within our dataset, it boasts an impressive 59,254 distinct values, 

symbolizing its remarkable versatility and substantial presence, making up a whopping 

95.4% of the dataset. Picture it as the diverse notes in a symphony, each contributing to 

the harmonious melody of our data composition. 

Much like any celebrated superstar, "Rotor RPM" harbors moments of intrigue. 

There are 33,066 missing values, representing approximately 34.7% of the dataset, where 

"Rotor RPM" opts for silence, perhaps concealing a few enigmatic secrets within its 

depths. 

Turbine status information is critical for monitoring the overall health and 

performance of the wind turbine, helping to identify and address issues promptly.The 

"Turbine Status" variable falls into the category of real numbers, specifically those that 

are non-negative (ℝ≥0), and exhibits several notable characteristics. One prominent 

feature is a substantial data deficiency, with 32,426 missing values, amounting to roughly 

34.1% of the dataset. This data gap poses significant challenges when attempting to 

analyze and comprehend the variable effectively. 

 

 
Figure 3.18. Rotor RPM 

 

Additionally, the distribution of data within "Turbine Status" displays a skewed 

pattern. This skewness is evident in the absence of negative values and the limited 

occurrence of zero values, accounting for just 61 instances, or approximately 0.1% of the 

dataset. This skewed distribution implies that a predominant portion of recorded values 

tends to be on the higher end of the numerical spectrum. However, the precise underlying 

reasons for this skewness remain unclear based on the information provided. Despite the 
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skewed distribution, "Turbine Status" exhibits relatively low diversity, encompassing 

only 353 distinct values, representing about 0.6% of the dataset. This suggests a restricted 

range of unique observations related to turbine status within the dataset. 

 

 
Figure 3.19. Turbine status 

 

Wind direction is a crucial parameter for wind turbine control, influencing the 

orientation of the turbine blades to maximize energy capture and optimize power 

production. The "Wind Direction" variable comprises real numbers falling within the 

non-negative range (ℝ≥0) and displays a robust correlation with multiple other variables 

in the dataset. It is characterized by a presence of 6,664 distinct values, which represent 

roughly 9.2% of the dataset, indicating a diverse array of wind direction observations. 

However, it's crucial to emphasize that a significant portion of the data is absent, 

with 23,077 missing values, constituting approximately 24.2% of the dataset. These 

missing values signify instances where wind direction data is either unavailable or has 

not been recorded. 

"Wind Direction" does not contain any infinite values, and its memory footprint 

within the dataset is approximately 743.8 KiB. 

 

 
Figure 3.20. Wind direction 

 

Wind speed is a fundamental parameter affecting the power output of a wind 

turbine, with higher wind speeds generally leading to increased energy capture and 
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electricity generation. The "Wind Speed" variable encompasses real numbers within the 

non-negative range (ℝ≥0) and exhibits a notably strong correlation with various other 

variables in the dataset. It distinguishes itself with a substantial presence of 94,224 

distinct values, constituting approximately 99.7% of the dataset. This extensive array of 

distinct values signifies a broad spectrum of wind speed observations. 

 

 
Figure 3.21. Wind speed 

 

3.3.2. Missing values 

The "Wind Speed" variable demonstrates a relatively low incidence of missing 

data, with only 716 instances of missing values, making up approximately 0.8% of the 

dataset. This indicates a high degree of completeness in terms of recorded wind speed 

information, enhancing the dataset's reliability for analytical purposes. It’s important to 

highlight that "Wind Speed" does not contain any infinite values, signifying that all data 

points fall within a finite range of non-negative real numbers. From a statistical 

perspective, the mean wind speed stands at approximately 5.88, with a minimum recorded 

value of 0 and a maximum value of 22.97. This statistical range reflects a diverse range 

of wind speed observations. 

The final data validation step involves checking for negative values in the "Active 

Power" field and subsequently removing them. The rationale behind this is 

straightforward: in the context of power generation, it is physically impossible to have a 

negative power generation value. Thus, the presence of negative values in this field 

strongly suggests a data issue or error. 

Upon examination, it is found that there are 15,629 entries within the dataset 

where "Active Power" has negative values. It's worth noting that these negative values 

tend to occur when the wind speed is low. However, it is observed that under similar wind 

speed conditions, there are instances where the "Active Power" is recorded as zero. This 
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discrepancy raises concerns about the accuracy and reliability of the data, as it is highly 

unlikely for power generation to be negative in the presence of low wind speeds. 

3.4. Model Description 

The goal is to forecast power output for the upcoming 15 days using the data 

available in a CSV file. Various methods were employed to predict this output. Initially, 

SARIMA was presumed to be the most suitable due to the data's seasonal patterns, but it 

didn't perform well. Instead, XG Boost and Random Forest regressors emerged as the 

most effective models. Additionally, an attempt was made with an LSTM, but the results 

were disappointing. The process also involved standard data exploration techniques. 

Import the dataset from the provided CSV file to proceed with the analysis.  

First, import the CSV file, specifying the 'Unnamed: 0' column as the date column. 

Then, convert this column to a datetime format. 

 

 
Figure 3.22. Data if serval year of turkey 

 

3.4.1. SARIMAX Model 

In the realm of statistical modeling, the Seasonal Autoregressive Integrated 

Moving Average with exogenous variables, commonly known as SARIMAX, stands as 

a robust and versatile approach. SARIMAX extends the well-established Autoregressive 

Integrated Moving Average (ARIMA) model by incorporating exogenous variables. This 

sophisticated model finds widespread application in the domain of time series forecasting. 

The SARIMAX model is expressed in a general form as SARIMAX (p, d, q) × (P, 

D, Q, s), where each parameter plays a crucial role: 

• p: The order of the autoregressive (AR) component. 

• d: The degree of differencing in the integrated (I) component. 
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• q: The order of the moving average (MA) component. 

• P: The seasonal order of the autoregressive (SAR) component. 

• D: The seasonal degree of differencing in the integrated (SI) component. 

• Q: The seasonal order of the moving average (SMA) component. 

• s: The seasonal periodicity (number of periods per season). 

Mathematically, the SARIMAX model can be represented as follows: 

 

 

 Here, 

• Yt is the observed time series. 

• X1,t,X2,t,…,Xk,t are exogenous variables. 

• β0,β1,β2,…,βk are coefficients for the exogenous variables. 

• εt is the error term. 

The SARIMAX model's time series component incorporates ARIMA terms: 

• p: Autoregressive (AR) order. 

• d: Integrated (I) order. 

• q: Moving Average (MA) order. 

The seasonal component is defined by the following terms: 

• P: Seasonal autoregressive (SAR) order. 

• D: Seasonal integrated (SI) order. 

• Q: Seasonal moving average (SMA) order. 

• s: Seasonal period. 

The complete equation for the SARIMAX model encompasses both the non-

seasonal and seasonal components:  

 

Yt=β0+β1X1,t+β2X2,t+…+βkXk,t+ϕ1Yt−1+ϕ2Yt−2+…+ϕpYt−p+εt+θ1εt−1+θ2εt−

2+…+θqεt−q+Φ1Yt−s+Φ2Yt−2s+…+ΦPYt−Ps+Θ1εt−s+Θ2εt−2s+…+ΘQεt−Qs 

 

In the process of fitting a SARIMAX model, determining the values of 

p,d,q,P,D,Q, and s is imperative. Additionally, one must provide the exogenous variables 

and their corresponding coefficients. These parameters are typically estimated through 

statistical methods or optimization algorithms during the model fitting process. 

The significance of SARIMAX lies in its ability to provide a comprehensive 

understanding of the intricate interactions between various factors and the underlying 

time-series data. By incorporating exogenous regressors, SARIMAX facilitates a more 
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accurate prediction of future outcomes. This modeling approach proves particularly 

invaluable in scenarios marked by seasonal variations or external influences that 

significantly impact data patterns over time. Thus, SARIMAX emerges as an 

indispensable tool for producing precise forecasts, making it a cornerstone in the realm 

of time series analysis. 
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Figure 3.23. The python codes for SARIMAX Model  
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3.4.2. XG Boost 

A sophisticated and potent implementation of the gradient boosting technique, XG 

Boost, also known as extreme Gradient Boosting, is used for supervised machine learning 

applications. It is well known for its outstanding performance, efficiency, and versatility 

in managing structured data, all of which have received widespread recognition. In its 

most basic form, XG Boost is a boosting strategy that, in order to develop a robust and 

reliable prediction model, integrates the results obtained from a number of less successful 

learners, most frequently decision trees. It achieves this by training new models in an 

iterative manner, each of which focuses on correcting the errors produced by the models 

that came before it, so steadily increasing the total prediction capacity. Because it uses a 

more advanced regularization strategy and a distributed computing architecture, XG 

Boost is particularly useful for processing large-scale datasets. This is in contrast to more 

conventional gradient boosting methods, which do not exploit these features. This 

methodology is a well-liked option for a variety of jobs, including classification, 

regression, and ranking, due to its adaptability in the management of intricate interactions 

within the data as well as its capacity to deal with a wide range of data kinds. Because of 

its increased speed and capacity to optimize performance, XG Boost has emerged as a 

key tool in the armory of data scientists and practitioners of machine learning, 

considerably contributing to the advancement of predictive modeling and data analysis 

The XGBoost algorithm involves a regularization term in the objective function, 

which helps prevent overfitting and improves the model's generalization capability. The 

objective function to be minimized in XGBoost is a sum of two components: 

1. Loss Function (L): This measures the difference between the predicted and 

actual values. It depends on the specific task, such as regression or classification. For 

example, for regression, the mean squared error might be used as the loss function, while 

for classification, log loss or cross-entropy loss could be employed. 

2. Regularization Term (Ω): This term penalizes the complexity of the model to 

prevent overfitting. It consists of two parts: 

3. Tree Complexity Term: Penalizes the number of leaves and the depth of the 

trees. 

4. Regularization Parameter (λ or alpha): Controls the overall regularization 

strength. The overall objective function (J) is a combination of the loss function and the 

regularization term: 
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Here: 

• Θ represents the parameters of the model, which include the parameters of each 

individual tree. 

• y^ is the predicted output. 

• y is the true output. 

• L(y^,y) is the loss function. 

• Ω(f) is the regularization term. 

XGBoost uses a technique called gradient boosting, where each new tree is fit to 

the negative gradient of the loss function with respect to the ensemble's current prediction. 

This process is repeated iteratively, with each new tree reducing the errors made by the 

combined ensemble of the previous trees. 

The detailed equations and optimization steps are complex, but the key idea is to 

optimize the objective function by adding trees sequentially while considering their 

contribution to the overall loss and regularization. XGBoost is known for its speed, 

accuracy, and flexibility, making it a popular choice in various machine learning 

applications. 
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Figure 3.24. The python codes for XGBOOTS  
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3.4.3. Random forest regressor 

For the purpose of resolving regression issues, an effective and flexible machine 

learning technique known as a Random Forest Regressor is utilized. It is a part of the 

ensemble learning approaches, which aggregate the results of several separate models to 

produce a single prediction model that is more robust and accurate. During the training 

phase, the Random Forest Regressor works by creating a large number of decision trees. 

This helps the model better predict future outcomes. Each of these decision trees operates 

on its own, drawing conclusions about the dependent variable based on a portion of the 

entire dataset that it has been given access to. The fact that the technique inserts 

randomness into the data samples used for training each tree as well as the attributes 

examined when splitting nodes within each tree is the source of the "random" aspect. The 

inclusion of this randomness helps to prevent the problem of overfitting and improves the 

accuracy and resilience of the model as a whole. In order to arrive at a conclusive 

prediction, the algorithm compiles the results obtained from each of the separate trees 

before moving on to the prediction phase. The forecast that is produced as a result is 

typically more trustworthy and less susceptible to the problems of overfitting that can be 

caused by single decision tree models. The capability of the Random Forest Regressor to 

manage big datasets, high dimensionality, and a wide variety of data types has led to its 

widespread use across a variety of industries. This has made it a popular option for 

performing complex regression tasks in real-world applications 

The key components of the Random Forest Regressor include: 

1. Training Phase: Construction of multiple decision trees, each operating on a 

subset of the training data. 

Random selection of data samples and features for each tree to introduce 

variability. 

2. Prediction Phase: 

• Aggregation of predictions from individual trees to arrive at a final prediction. 

While there isn't a specific mathematical equation in the description, you can 

represent the overall prediction process of a Random Forest Regressor as follows: 

 

 

Where: 

• ^y^ is the predicted outcome. 
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• N is the number of decision trees in the forest. 

• fi(x) is the prediction of the its decision tree for input x. 

The key idea is that the final prediction is an average (or some other form of 

aggregation) of the predictions made by individual decision trees. 

 

 

 
Figure 3.25. The python codes for Random forest regressor 
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3.4.4. Long-Short-Term-Memory (LSTM) model 

LSTM, short for Long Short-Term Memory, is a type of recurrent neural network 

(RNN) architecture designed for sequential data analysis, making it especially well-suited 

for tasks involving time series, natural language processing, and speech recognition. 

LSTM networks are renowned for their ability to capture long-range dependencies in 

sequences while mitigating the vanishing gradient problem that affects traditional RNNs. 

They achieve this by incorporating memory cells that allow information to persist over 

extended time steps. This makes LSTMs highly effective in modelling sequences with 

complex temporal dependencies. The LSTM architecture includes gates that control the 

flow of information, making it adaptive to different patterns in the data. Its applications 

span various domains, including sentiment analysis, machine translation, speech 

recognition, and time series forecasting, where capturing and learning from sequential 

patterns are crucial for achieving accurate predictions and the equations that used is 

 

 
Where xt represents the wind power at time t. The goal is to predict the future 

wind power values 

 

 

where k is the number of time steps into the future. 

1. Data Preprocessing: 

• Normalize the input data to a range suitable for the activation functions 

(commonly between 0 and 1). 

• Divide the data into training and testing sets. 

2. Define the LSTM Model: 

• Create an LSTM model using a deep learning framework like Tensor Flow or 

PyTorch. 

• Specify the input layer with the shape of the input sequence. 

• Add one or more LSTM layers to the model. Each LSTM layer has a certain 

number of units (neurons). 

•Optionally, you can add dropout layers to prevent overfitting. 

•Add a dense output layer with a linear activation function for regression tasks. 

3. Compile the Model: 
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• Choose an appropriate loss function for regression, such as Mean Squared Error 

(MSE). 

• Choose an optimizer, such as Adam or RMSprop. 

• Compile the model with the chosen loss function and optimizer. 

4. Training: 

• Train the LSTM model using the training data. 

• Adjust the hyper parameters, such as the number of epochs and batch size. 

• Monitor the training process to avoid overfitting. 

 

5. Prediction: 

• Use the trained model to predict wind power values for the testing set or future 

time steps. 

 

 
Figure 3.26. The python codes for LSTM 
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4. RESULTS AND DISCUSSIONS 

 

4.1. Basic Arima Model 

The initial analysis employs the complete dataset, which, due to readings recorded 

every 10 minutes, can be quite intricate and challenging to interpret. To enhance clarity, 

the data is subsequently resampled to calculate daily mean values. 

Upon examining the dataset through this resampled lens, a discernible pattern 

becomes evident. Specifically, there are distinct peaks in power output during the months 

of July, August, and September. This pattern is graphically depicted in figure 4.1 and 

figure 4.2 to provide a visual representation of the observed power output maxima during 

these summer months. 

 

 
Figure 4.1. Power generated 

 

 
Figure 4.2. Mean daily power generated 

 

Naturally, it's expected that a wind turbine would produce the highest power 

output when exposed to strong wind conditions. Therefore, the next step is to create a 
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graphical representation of the daily mean wind data, taking into account the visible gaps 

caused by missing values. In Figure 4.3 graphical analysis aims to determine whether 

there exists a parallel pattern in the wind data that corresponds to the observed peaks in 

power output, particularly during the months of July, August, and September. 

 

 
Figure 4.3. Wind speed 

 

To gain a comprehensive understanding of the relationship between wind speed 

and power output, it's beneficial to graph both datasets together. However, to ensure that 

they are on the same scale for meaningful comparison, the wind speed values are 

multiplied by 100. 

By overlaying both graphs, one depicting wind speed and the other power output, 

with the wind speed values scaled up, it becomes remarkably clear how these two 

variables are related. This visual representation helps illustrate the correlation between 

wind speed and power generation effectively. 

To emphasize this correlation, the data is not only graphed at a daily level but also 

aggregated on a monthly basis. This allows for a more comprehensive view, highlighting 

the consistency of the observed pattern. The visual evidence strongly supports the notion 

that wind speed significantly influences power output, particularly when daily and 

monthly resampling values are considered together. In essence, the graphs provide a 

compelling visual representation of the clear and evident correlation between wind speed 

and power generation. 

The columns that lack correlation with the Active Power column were removed, 

as well as certain columns that exhibit high correlation with each other. Figure 4.4 and 

Figure 4.5 shows the only features unrelated to the wind turbine system, such as Gear 
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Box Oil Temperature, are the ambient temperature, wind speed, and wind direction – all 

of which are relevant as this is a wind turbine designed to harness wind for power 

generation. It's worth noting that the correlation between wind direction and ambient 

temperature is relatively insignificant. 

 

 
Figure 4.4. Active power and wind speed *100 

 

 
Figure 4.5. Power output and wind velocity *100 

 

Consequently, the decision is made to retain only the wind speed column for 

further analysis. This choice is also facilitated by the fact that Wind Speed has the fewest 

missing values compared to other fields, making it a more reliable and representative 

parameter for examining its impact on power generation. 
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4.2. Pattern of Power Generation Versus Wind Speed 

In Figure 4.6 and Figure 4.7, it becomes evident that the wind speed needs to reach 

approximately 2.5 meters per second (m/s) to initiate the wind turbine’s operation and 

commence power generation. The maximum power generation occurs at around 8 m/s, 

and wind speeds exceeding this threshold do not contribute to additional power output, 

which likely stems from turbine-specific operational characteristics. 

While there is some inherent variability or noise in the graph, the data can be 

reasonably described by a relatively straightforward mathematical function. Although the 

relationship appears nearly linear, a sigmoid function (exponential) is better suited to 

capture the nuances associated with both the minimum activation and maximum power 

generation points. This choice of function provides a more accurate representation of the 

observed data trends. 

 

 
Figure 4.6. Power output versus wind speed. 

 

 
Figure 4.7. Power generated versus wind velocity. 
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Create a function to generate this graph and then employ the curve fit function 

from scipy to determine the optimal parameters. Subsequently, generate a graph that 

overlays the curve against the actual measured values. To enhance visibility, the 

transparency of the measured values is deliberately set to a very low value, making the 

outliers appear as if they have been attenuated. 

 

 
Figure 4.8. Power output versus wind speed 

 

Accuracy metrics reveal outstanding performance, particularly highlighted by an 

excellent R-squared value in this approach. With the wind speed data available for the 

upcoming 15 days, power output can be forecasted with an impressive accuracy rate of 

97%. However, it's essential to clarify that the primary objective outlined in the dataset 

context was focused on the development of a long-term wind forecasting technique. 

Considering the dataset spans over two years and a fraction, It provides a valuable 

asset for predicting wind patterns and, consequently, the potential wind power generation 

for the subsequent 15 days. Given the inherent time-dependent nature of this analysis, 

marked by distinct seasonal trends illustrated in the monthly graphs (notably peaking in 

June, July, and August for both power generation and wind speeds), the application of 

specialized time series techniques becomes imperative. 

Hourly power generation graph indicates the anticipated trend where windier 

conditions predominantly occur in the afternoon, resulting in higher power generation 

during those hours. However, it's important to note that power generation is feasible at 

any time, regardless of the specific hour. 
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Figure 4.9. Monthly boxplots of power generated 

 

 
Figure 4.10. Monthly boxplots of wind Speed 

 

 
Figure 4.11. Hourly boxplots of wind speed. 
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4.2.1. Seasonal ARIMA (SARIMA) model 

Given the evident presence of a seasonal component in the aforementioned graphs, 

a basic ARIMA model is unsuitable, making it necessary to employ a Seasonal ARIMA 

(SARIMA) model. It's worth mentioning that the SARIMA model adheres to the 

requirement of being univariate, which aligns with the approach of solely considering 

wind speed for power output analysis. The SARIMA model encompasses the core three 

components of ARIMA while also incorporating four supplementary seasonal variables 

to account for the seasonal variations. 

By applying the Dicker-Fuller test, we are able to assess stationary. In this case, 

the test yielded an exceptionally low p-value of 1.04x10^ (-28), significantly smaller than 

the typical significance level of 0.05. This result indicates that despite the data displaying 

seasonality, it can be considered stationary for analytical purposes. 

The auto_arima function can help determine the appropriate values for each of the 

required parameters: p, d, q, P, D, Q, and m. However, given the stationary of the data, 

the d value is set to 0. To begin, the data is resampled to a daily frequency, aligning with 

the objective of forecasting the power generated for the next 15 days. 

4.2.2. Whole dataset on same plane 

Figure 4.12 results obtained from training and testing on the entire dataset are 

impressive, which is expected since the model is essentially predicting data it has already 

learned from. 

 

 
Figure 4.12. Active power 

 

The next challenge is to forecast power generation for the upcoming 15 days. To 

accomplish this, three distinct groups for training and testing data are set up: 
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1. The entire dataset except for the last 15 days, which serves as the test set. 

2. 80% of the data for training, followed by the subsequent 15 days as the test set. 

3. Two-thirds of the data for training, with the next 15 days as the test set. 

However, the outcomes of these forecasts are not as promising. To address this 

issue, further analysis will be based on the number of observations, which totals 748. 

4.2.3. Graph of predicted versus actual for last 15 days of the dataset 

Figure 4.13 presented here illustrates a comparison between the predicted values 

and the actual power generation data for the last 15 days of the dataset. This comparison 

provides a visual representation of how well the forecasting model aligns with real-world 

observations during this specific period. By plotting the predicted and actual values on 

the same graph, we can assess the accuracy and performance of the forecasting model. 

The graph visually highlights any discrepancies or areas where the predictions deviate 

from the actual data, helping to evaluate the model's effectiveness in forecasting power 

generation for this critical timeframe. 

 

 
Figure 4.13. Graph of predicted versus actual for last 15 days of the dataset. 

 

4.2.4. Graph using 80% of the dataset for training 

Figure 4.14 presented here displays the results of a predictive model trained on 

80% of the dataset to forecast power generation for the subsequent 15 days. This approach 

involves using a significant portion of the available data to train the model, enabling it to 

learn patterns and relationships within the dataset. The trained model is then applied to 

predict power generation values for the 15-day period immediately following the training 

data. 
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Figure 4.14. Graph using 80% of the dataset for training. 

 

Figure 4.14 graph visually compares the predicted power generation values 

against the actual values observed during those 15 days. This visual representation allows 

us to assess the model's accuracy and its ability to make reliable forecasts for this specific 

time frame. By analyzing the graph, we can identify any disparities between the predicted 

and actual values, which provide insights into the model's performance during this 

particular period of interest. 

The results obtained from the previous two steps, specifically for prediction 

intervals of 733 days and 600 days, did not yield satisfactory outcomes. Consequently, 

there was no further exploration conducted with the approach of using two-thirds of the 

training data to forecast future power generation. 

In the initial two steps, it appears that the predictive model struggled to provide 

accurate forecasts for these extended time frames. These less favourable outcomes might 

be attributed to the inherent complexity of predicting power generation, which can be 

influenced by a multitude of variables, including weather conditions and seasonal 

patterns. The decision not to proceed with the 2/3 training data approach was likely based 

on the observed limitations in predictive accuracy during the earlier steps. 

4.3. Extreme Gradient Boost (XGBOOST) 

In an attempt to improve predictive accuracy, a different modelling approach was 

explored. XG Boost, a powerful machine learning algorithm, was employed for this 

purpose. In this approach, the input values (denoted as 'x') were set as Wind Speed values, 

while the output (denoted as 'y') was set as the corresponding Active Power values. The 

model was trained on the training data (X_train and y_train), which included all data 
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points except for the last 15 days. The testing data (X_test and y_test) consisted of the 

values from the final 15 days of the dataset, as described previously. 

The XG Boost algorithm demonstrated notably superior performance compared 

to the previous modelling attempts. The predictions generated by the XG Boost model 

closely aligned with the actual values, as illustrated in the accompanying graph. This 

enhanced predictive accuracy was further substantiated by an impressive R-squared (R2) 

score of 0.91, which is indicative of a strong correlation between predicted and actual 

values. Additionally, the model yielded lower values for both Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE), signifying reduced prediction errors and 

enhanced accuracy. 

 

 
Figure 4.15. Extreme gradient boost. 

 

4.3.1. Long Short-Term Memory (LSTM) 

The next approach considered for enhancing predictive accuracy involved the use 

of Long Short-Term Memory (LSTM), a type of recurrent neural network (RNN). LSTM 

networks are well-suited for handling sequential data, making them a potential candidate 

for improving predictions in this context. 

To prepare the data for LSTM modelling, the same training data as used in 

previous attempts was employed. However, there was a fundamental change in how the 

data was formatted. Specifically, the values for X_train and y_train were structured 

differently. Instead of using single rows of data to predict the next Active Power value, a 

sequence of multiple previous rows was utilized as input to forecast the subsequent 15 

values. In this case, 35 rows of past data were used as a guide for forecasting the next 15 

values. This choice was informed by the recognition of a recurring monthly pattern in the 
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data, which suggested that considering a longer history of values might yield improved 

predictions. 

 

 
Figure 4.16. Long Short-Term Memory (LSTM). 

 

The dataset was divided into two segments: the first 698 values were allocated for 

training, and the remaining 50 values were reserved for testing the LSTM model. 

Despite diligent experimentation with varying the number of neurons and batch 

size, the LSTM model did not yield satisfactory results. It appeared challenging to achieve 

the desired predictive accuracy using this architecture, despite the promising nature of 

LSTM networks for sequential data analysis. 

 

 
Figure 4.17. LSTM modelling 

 

The Coefficient of determination (R-squared) = 0.08 

The mean absolute error (MAE) = 144.05 

The RMSE error (RMSE) = 165.32 

The Mean absolute percentage error (MAPE) = 0.26 
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The Coefficient of Determination (R-squared), often denoted as R², is a statistical 

measure that assesses the goodness of fit of a regression model to the actual data points. 

It quantifies the proportion of the variance in the dependent variable (in this case, likely 

Active Power) that can be explained by the independent variables (e.g., Wind Speed). An 

R² value of 0.08 suggests that only 8% of the variability in Active Power can be accounted 

for by Wind Speed, which indicates a relatively weak linear relationship between these 

variables. 

The Mean Absolute Error (MAE) is a metric that calculates the average absolute 

differences between the predicted values and the actual values. In this context, with an 

MAE of 144.05, it means that, on average, the model's predictions for Active Power are 

off by approximately 144.05 units. MAE is a useful measure because it provides insight 

into the magnitude of errors without considering their direction. 

The Root Mean Squared Error (RMSE) is another error metric that calculates the 

square root of the mean of the squared differences between predicted and actual values. 

It is closely related to the MAE but tends to give more weight to larger errors. With an 

RMSE of 165.32, it indicates the typical error in the predictions is around 165.32 units, 

which is slightly larger than the MAE. 

The Mean Absolute Percentage Error (MAPE) expresses the average relative error 

as a percentage of the actual values. An MAPE of 0.26 means that, on average, the model's 

predictions for Active Power deviate from the actual values by approximately 0.26% of 

the true values. This metric is valuable for understanding the percentage error in the 

predictions, making it easier to interpret the practical significance of errors. 

 

 
Figure 4.18. Performance of a predictive model 
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In Figure 4.18 these metrics collectively assess the performance of a predictive 

model. In this case, the low R-squared and relatively high MAE and RMSE suggest that 

the model's predictions for Active Power based on Wind Speed have limitations and may 

not be highly accurate. 

4.4. Evaluation of The Performance of The Forecasting Models 

Initially, the research aimed to find the most suitable forecasting method for 

predicting power output based on the available data, which showed a clear seasonal 

pattern. The SARIMA model, designed for time series data with seasonal components, 

was considered a promising approach. However, this expectation was not met, suggesting 

that the seasonal nature of the data was not adequately captured by this method. 

Similarly, the research explored the use of Long Short-Term Memory (LSTM) 

neural networks, which are well-suited for sequential data like time series. However, this 

approach also fell short of expectations, indicating that more complex neural networks 

might not necessarily yield better results for this specific dataset. 

Surprisingly, it was the simpler machine learning methods, specifically the 

Random Forest and XG Boost Regressor that proved to be the most effective for 

forecasting power output. Among these, the Random Forest Regressor exhibited a slightly 

better R-squared value, while XG Boost had a slightly higher Mean Absolute Percentage 

Error (MAPE). These differences were minor and required detailed analysis to 

distinguish. 

The research findings suggest that either the XG Boost or Random Forest 

Regressor can predict power output for the next 15 days with an accuracy of 

approximately 94% or a mean average percentage error of 6%. Furthermore, roughly 91% 

of the variance in the data is explained by either method. Importantly, both of these 

approaches achieved these results in a much more time-efficient manner compared to the 

initially considered models, demonstrating their practical suitability for this forecasting 

task. 

Not specifying a "random state" for each method can lead to variations in the 

results obtained when running the same machine learning algorithms. In the submitted 

notebook, these variations may because discrepancies compared to the figures presented. 

When working with machine learning algorithms, randomness often plays a role in 

processes like data splitting, initialization, or hyper parameter tuning. Without setting a 

specific "random state," these random components can yield different outcomes each time 

the algorithm is executed. 
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By setting a "random state," you essentially fix the initial conditions of the random 

processes, ensuring that the same sequence of random events occurs consistently across 

runs. This is crucial for reproducibility and allows others to obtain the same results when 

working with your code. 

 

Table 4.1. Model performance comparison for time series forecasting. 

Method R squared RMSE MAE MAPE 

SARIMAX (733 days training) -1.890 225.06 96.86 0.340 

SARIMAX (600 days training) -3.260 195.04 227.71 1.260 

Extreme gradient boost (XG Boost) 0.906 42.07 52.95 0.062 

Random Forest Regressor 0.915 40.54 50.99 0.064 

LSTM -0.190 162.71 187.76 0.300 

 

The table provides a comparison of different methods used for forecasting power 

output, measured by several evaluation metrics. Each method is assessed based on its 

ability to predict power output, with higher values for R-squared, and lower values for 

RMSE, MAE, and MAPE indicating better predictive performance. 

1. SARIMAX (733 days training): This method uses a Seasonal Autoregressive 

Integrated Moving Average model with exogenous variables. However, it performs 

poorly, as evidenced by the negative R-squared and high RMSE and MAE values. The 

negative R-squared suggests that the model explains less variance in the data than a 

horizontal line. Additionally, the relatively high MAPE indicates that the predicted values 

have a moderate percentage error compared to the actual values. 

2. SARIMAX (600 days training): Similar to the previous method, this 

SARIMAX model also struggles, with a negative R-squared and high RMSE, MAE, and 

MAPE values. The decrease in training data duration did not lead to improved forecasting 

accuracy; instead, the model's performance deteriorated. 

3. Extreme Gradient Boost (XG Boost): XG Boost, a gradient boosting algorithm, 

significantly outperforms the SARIMAX models. It achieves a high R-squared value of 

0.906, indicating that it explains a substantial portion of the variance in the data. The low 

RMSE, MAE, and MAPE values suggest that the predicted values closely align with the 

actual values, with a minimal percentage error. 

4. Random Forest Regressor: Similar to XG Boost, the Random Forest Regressor 

performs well, with a high R-squared value of 0.915. It also demonstrates low RMSE, 

MAE, and MAPE values, indicating accurate and reliable power output predictions. 
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5. LSTM (Long Short-Term Memory): The LSTM neural network performs the 

worst among the methods evaluated. It exhibits a negative R-squared value and relatively 

high RMSE, MAE, and MAPE values. This suggests that the LSTM model struggles to 

capture the underlying patterns in the data and provides less accurate predictions. 

The results of wind energy prediction using the Long Short-Term Memory 

(LSTM) model present an intriguing contrast with the other methods employed in the 

study. The LSTM model, known for its prowess in sequence data modelling, appears to 

struggle when applied to this specific wind energy prediction task.The R-squared value 

for the LSTM model is negative (-0.19), indicating that the model's predictions are worse 

than simply using a horizontal line as a prediction. This suggests that the LSTM fails to 

capture the underlying patterns and relationships within the wind energy data effectively. 

The LSTM model exhibits relatively high RMSE (Root Mean Squared Error) and MAE 

(Mean Absolute Error) values, which suggest significant prediction errors. This is in stark 

contrast to models like Extreme Gradient Boosting (XG Boost) and Random Forest 

Regressor, which yielded substantially lower RMSE and MAE values, indicating superior 

predictive accuracy. Although the MAPE (Mean Absolute Percentage Error) value for the 

LSTM model is relatively low compared to the SARIMAX models, it is considerably 

higher than that of XG Boost and Random Forest Regressor. This indicates that while the 

percentage error may be smaller, the absolute error remains relatively high for LSTM 

predictions. In conclusion, the LSTM model appears to be ill-suited for this wind energy 

prediction task based on these results. Its inability to capture the complex relationships in 

the data and its relatively high prediction errors suggest that other methods, such as XG 

Boost and Random Forest Regressor, are more appropriate choices for accurate wind 

energy forecasting in this context. These findings underscore the importance of carefully 

selecting the modelling approach and highlight that LSTM's strengths in sequential data 

may not always translate into superior performance for all-time series forecasting 

problems. 
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5. CONCLUSION AND RECOMMENDATION 

 

5.1. Initial Data Examination and Processing 

The initial phase involved exploring different modeling approaches after the 

SARIMA model failed. The alternatives included XG Boost, Random Forest Regressor, 

and LSTM. This section also delved into the dataset's properties using visualization and 

statistical analysis. It highlighted the prevalence of missing cells, necessitating careful 

data handling. 

5.2. Data Overview and Preprocessing 

This phase detailed the process of data importation, recognizing the date column 

and handling duplicate entries. It mentioned the exploration through Pandas profiling and 

boxplots, identifying redundant variables like "Control Box Temperature" and "WTG" 

for potential exclusion. Moreover, it outlined the key variables such as "Active Power," 

"Ambient Temperature," and others, discussing their correlations, distributions, and the 

challenge of missing values. 

5.3. Methodology and Modeling Comparison 

The final phase encapsulated the methodology used, emphasizing the importance 

of addressing missing data points and anomalies for accurate analysis. It discussed the 

rigorous cleaning process, model selection (SARIMA, XG Boost, Random Forest 

Regressor, LSTM), and their respective performance. Additionally, it underscored the 

significance of data accuracy, the impact of wind speed on power output, and the 

necessity for varied modeling methods to capture wind energy dynamics effectively. 

These three subsections offer a comprehensive view of the data examination, 

preprocessing, and modeling approaches taken to forecast wind energy output, laying the 

groundwork for informed decision-making and sustainable energy management. 

5.4. Recommendation 

1. Use more advanced data pre-processing methods to address missing values, 

outliers, and noise to improve dataset quality and dependability for accurate modelling. 

2. Explore hybrid modeming technologies that combine classic statistical 

methodologies and machine learning algorithms for more accurate wind energy 

predictions. 

3. Add meteorological and geographical elements that affect wind energy 

generation to feature engineering methodologies to better understand power output. 
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4. Develop more interpretable models to better comprehend the relationship 

between relevant variables and wind energy generation, enabling more informed 

renewable energy policy and decision-making. 

5. Ensemble learning methods like model averaging and stacking can use the 

diversity of forecasting models to increase prediction accuracy by minimizing model 

flaws, resulting in more accurate and consistent forecasts. 

6. Use real-time data streams and advanced monitoring systems to capture 

dynamic weather patterns and environmental conditions to help forecasting models adjust 

quickly and provide accurate predictions for energy management. 

7. Conduct a rigorous sensitivity study to determine the forecasting models' 

robustness to input parameter adjustments and identify the most relevant variables to 

better understand their effects on wind energy generation and forecasting accuracy. 

8. To ensure the reliability and generalizability of forecasting models across 

different geographical locations and environmental conditions, prioritize rigorous model 

validation and verification, including comprehensive back-testing and validation on 

diverse datasets. 

9. Long-term wind energy generation forecasting studies can help plan and build 

infrastructure for sustainable energy production and consumption in the face of changing 

climate dynamics and global energy demands. 

Encourage academic institutions, industry stakeholders, and government agencies 

to collaborate on research projects to share knowledge, data, and innovative solutions for 

wind energy forecasting technologies and sustainable energy practices worldwide. 
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