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a b s t r a c t 

SARS-Cov-2(Covid-19) is a new strain of coronavirus and was firstly emerged in December 2019 in 

Wuhan, China. Now, there is no known specific treatment of Covid-19 available. COVID-19 main pro- 

tease is a potential drug target and is firstly crystallised by Liu et al (2020). In the study, we investigated 

the drug potential of molecules that the components of an important medicinal plant Passiflora by using 

molecular docking, molecular dynamic and drug possibility properties of these molecules. Docking perfor- 

mances were done by Autodock. Chloroquine, hydroxychloroquine were used as standarts for comparison 

of tested ligands. The molecular docking results showed that the Luteolin, Lucenin, Olealonic acid, Isoori- 

entin, Isochaphoside, Saponarin, Schaftoside etc. ligands was bound with COVID-19 main protease above 

-8,0 kcal/mol binding energy. Besides, ADME, drug-likeness features of compounds of Passiflora were in- 

vestigated using the rules of Lipinski, Veber, and Ghose. According to the results obtained, it has been 

shown that compounds of Passiflora have the potential to be an effective drug in the COVID-19 pandemic. 

Further studies are needed to reveal the drug potential of these ligands. Our results will be a source for 

these studies. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Passiflora (passion flowers) is the largest genus of the family 

assifloraceae. The species of this genus are distributed tropical re- 

ions of the World [1] . Many species of this genus have been found

hat contain anti-depressant properties. The leaves and the roots 

re generally more potent and have been used to improve the ac- 

ions of mind-altering drugs. Few species of Passiflora have been 

tudied according to its medicinal utility [2] . 

However, these plants have a major source of pharmacologically 

ctive compounds, including cytolysins, potential bactericid and 

nticancer drugs. For example, Passiflora quadrangularis is known 

ith antihelminthic action and also often used to treat bronchitis, 

sthma, and whooping cough [3] . 

The new coronavirus type SARS-Cov 2 (severe acute respiratory 

yndrome), that appeared in December 2019 in China and became 

 global pandemic. There is not any specific treatment available so 

ar. The viral particles effect both humans and animals, and can 
∗ Corresponding author. 
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ause some serious infections of especially respiratory system. Be- 

ides, some drugs including chloroquine, remdesivir and hydrox- 

chloroquine have been observed to be effective against Covid-19 

4] . 

Recent studies have shown that the genomic model of SARS- 

oV 2 is comparable to other coronaviruses. It is stated that these 

iruses generally collect a few polypeptides in their life cycle 

nd develop proteolytic degradation to produce 20 additional pro- 

eins. Among these proteases, it is emphasized that main protease 

Mpro) and papain-like protease (PLpro) proteases are of vital im- 

ortance in virus replication. Important studies have been done 

ith these proteases to discover specific inhibitors against COVID- 

9. Yu et.al reported the calculation of the potential binding of 

uteolin and other natural components versus Mpro. It was con- 

luded that luteolin also binds effectively with other target pro- 

eins of SARS-CoV-2 such as PLpro, Spike protein and RdRp [ 5 ]. 

An important therapeutic target for corona viruses is known to 

e the main protease, as this enzyme plays a key role in polypro- 

ein processing and is active in a dimeric form [ 6 ] . Amin et al,

021, stated that the main protease is the part of the replication 

achinery of the corona virus and can be used as a therapeutic 

https://doi.org/10.1016/j.molstruc.2021.130556
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2021.130556&domain=pdf
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Fig. 1. Solvation box of 6lu7(playmolecule.com). 

Fig. 2. The energy distribution of protein [ 27 , 28 ]. 
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arget against the corona virus [ 7 ]. Li and Kang 2020, emphasized

hat the main protease encoded by the viral genome could be an 

ttractive drug target, as it plays an important role in dividing viral 

olyproteins into functional proteins [ 8 ] In another study, it was 

oted that the sequence of the main protease is closely related to 

ther betacoronaviruses and aids drug discovery studies based on 

revious lead compounds [ 9 ]. Ghosh et al., 2021, identified impor- 

ant molecular properties that regulate Mpro inhibitory properties 

 10 ]. All these studies reveal that the main protease is a suitable

arget for identifying potential drug substances. We also used the 

ain protease in our study. Molecular docking is known a promis- 

ng and useful tool for drug desing. In the present study, we inves- 

igated drug potential of Passiflora components against COVID-19 

ain (PDB ID: 6LU7). We aimed to find the most stable complex 

y revealing the binding energies. 
2 
Molecular docking is known a promising and useful tool for 

rug desing. In the present study, we investigated drug potential 

f Passiflora components against COVID-19 main (PDB ID: 6LU7). 

e aimed to find the most stable complex by revealing the bind- 

ng energies. 

. Materials and methods 

.1. Molecular docking analyses 

Molecular docking calculations were performed in Autodock 

ina software [ 11 ]. The water molecules and cofactors were re- 

oved from the protein to clearly see the protein-ligand intera- 

ion [ 12 ]. COVID-19 main protease used as a protein and the struc- 

ure of this protein was freely available from the RCSB Protein Data 

ank as a 3D theoretical model (PDB ID: 6LU7). Twenty nine lig- 

nds were tested. Ligands that used in the study and their proper- 

ies were given in Table 1 ( https://pubchem.ncbi.nlm.nih.gov/ ). 

The binding potential of chloroquine and hydroxychloroquine 

as been reviewed as a control ligands. 2D structure of the ligands 

ere converted to energy minimized 3D-structure. All protein and 

igands were validated before performing the in silico computations 

 13 ]. 

.2. Molecular dynamic analyses 

The simulation of the ligand-protein complex was performed 

sing the playmolecule software [ 14–18 ] (playmolecule.com). MD 

imulation was performed for 20 ns to check the stability of the 

igand-protein complexes [ Fig. 1 ] . 

We determined the performance of MM/PB(GB)SA to iden- 

ify the correct binding poses for ligands, including from the 

chrödinger suite and Amber package ( http://cadd.zju.edu.cn/ 

arppi ) [ 19 ]. 

.3. Drug likeness and ADMET prediction for the components of 

assiflora 

Currently, computer-based ADME analyses are gaining for 

rug discovery [ 20 ]. Pharmacokinetics and drug-likeness predic- 

ion of drug candidate molecule(s) was performed by online 

https://pubchem.ncbi.nlm.nih.gov/
http://cadd.zju.edu.cn/farppi


S. Yalçın, S. Yalçınkaya and F. Ercan Journal of Molecular Structure 1240 (2021) 130556 

Table 1 

Ligands used in the study and their properties. 

No Ligands PubChem ID code Molecular 

weight(g.mol −1 ) 

Structure(3D) 

1 Oleanolic acid 10,494 456.7 g/mol 

2 Luteolin 5,280,445 286.24 g/mol 

3 Beta-Sitosterol 222,284 

414.7 g/mol 

4 Beta-amyrin 73,145 426.7 g/mol 

5 Stigmasterol 5,280,794 412.7 g/mol 

6 Apigenin 5,280,443 270.24 g/mol 

7 Chrysin 5,281,607 254.24 g/mol 

8 6-Hydroxyflavone 72,279 238.24 g/mol 

( continued on next page ) 
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Table 1 ( continued ) 

No Ligands PubChem ID code Molecular 

weight(g.mol −1 ) 

Structure(3D) 

9 Edulan-I 521,066 192.3 g/mol 

10 Edulan-II 6,432,428 192.3 g/mol 

12 Chimaphilin 101,211 186.21 g/mol 

13 Lucenin-2 442,615 610.5 g/mol 

14 Saponarin 441,381 594.5 g/mol 

15 Isoschaftoside 3,084,995 564.5 g/mol 

16 Schaftoside 442,658 564.5 g/mol 

17 Rutin 5,280,805 610.5 g/mol 

( continued on next page ) 
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Table 1 ( continued ) 

No Ligands PubChem ID code Molecular 

weight(g.mol −1 ) 

Structure(3D) 

19 Isoorientin 114,776 448.4 g/mol 

20 Orientin 5,281,675 448.4 g/mol 

21 Isovitexin 162,350 432.4 g/mol 

21 5,6-benzoflavone 2361 272.3 g/mol 

22 Kaempferol 5,280,863 286.24 g/mol 

23 Harmalol 3565 200.24 g/mol 

24 Harman 5,281,404 182.22 g/mol 

25 Harmol 68,094 198.22 g/mol 

26 Harmaline 3564 214.26 g/mol 

( continued on next page ) 
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Table 1 ( continued ) 

No Ligands PubChem ID code Molecular 

weight(g.mol −1 ) 

Structure(3D) 

27 Harmine 5,280,953 212.25 g/mol 

28 Remdevisir 121,304,016 602.6 g/mol 

29 Dexamethasone 5743 392.5 g/mol 

Table 2 

Target protein and drug candidate molecules (ligands) molecular docking results. 

Ligands Binding Energy 

(kcal/mol) 

H bound 

Oleanolic acid -9.5 kcal/mol 1 

Asp-A289 

Luteolin -8.3 kcal/mol 3 

Gln-A110 

Thr-A111 

Asn-A151 

Beta-Sitosterol -8.0 kcal/mol 0 

Beta-amylin -8.0 kcal/mol 0 

Stigmasterol -7.6 kcal/mol 1 

Arg-A105 

Apigenin -7.6 kcal/mol 1 

Lys-A137 

Chrysin -7.3 kcal/mol 3 

Asn-A238 

Asp-A197 

Lys-A137 

6-Hydroxyflavone -7.1 kcal/mol 1 

Glu-A270 

Edulan-I -6.5 kcal/mol 1 

Gln-A110 

Edulan-II -5.8 kcal/mol 0 

Chimaphilin -6.1 kcal/mol 2 

Thr-A111 

Gln-A110 

Lucenin-2 -10.7 kcal/mol 4 

Phe-A219 

Leu-A220 

Arg-A222 

Asn-A274 

Saponarin -10.6 kcal/mol 3 

Arg-A40(2) 

Phe-A181 

Isoschaftoside -10.5 kcal/mol 3 

Arg-A222 

Asn-274 

Phe-A219 

( continued on next page ) 
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Table 2 ( continued ) 

Ligands Binding Energy 

(kcal/mol) 

H bound 

Schaftoside -10.2 kcal/mol 5 

Asp-A197 

Asn-A238 

Arg-A131(2) 

Lys-A137 

Rutin -9.7 kcal/mol 5 

Arg-A131 

Lys-A137(2) 

Asp-A289(2) 

Isoorientin -9.2 kcal/mol 3 

Pro-A52 

Tyr-A54 

Phe-A181 

Orientin -8.7 kcal/mol 3 

Thr-A199 

Lys-A137 

Leu-A287 

Isovitexin -8.7 kcal/mol 3 

Glu-A55 

Pro-A52 

Tyr-A54 

5,6-benzoflavone -8.4 kcal/mol 1 

Gln-A110 

Kaempferol -7.5 kcal/mol 4 

Leu-A287 

Arg-A131 

Asp-A197 

Asn-A238 

Harmalol -6.0 kcal/mol 1 

Thr-A199 

Harman -5.8 kcal/mol 0 

Harmol -5.7 kcal/mol 0 

Harmaline -5.5 kcal/mol 0 

Harmine -5.4 kcal/mol 1 

Leu-A220 

Remdesivir 

(Control) 

-9.4 kcal/mol 1 

Lys-A137 

Dexamethasone (Con- 

trol) 

-8.0 kcal/mol 3 

Lys-A137 

Thr-A198 

Tyr-A239 

Table 3 

Drug-likeness results of compounds. 

Ligand Drug likeness Bioavalibility 

Score 
Lipinski Ghose Veber 

Oleanolic acid Yes 

1 violation: 

MLOGP > 4.15 

No 

3 violations: 

WLOGP > 5.6, MR > 130, 

#atoms > 70 

Yes 0.56 

Luteolin Yes Yes Yes 0.55 

Beta-Sitosterol Yes 

1 violation: 

MLOGP > 4.15 

No 

3 violations: 

WLOGP > 5.6, MR > 130, 

#atoms > 70 

Yes 0.55 

Beta-amyrin Yes 

1 violation: 

MLOGP > 4.15 

No 

3 violations: 

WLOGP > 5.6, MR > 130, 

#atoms > 70 

Yes 0.55 

Stigmasterol Yes 

1 violation: 

MLOGP > 4.15 

No 

3 violations: 

WLOGP > 5.6, MR > 130, 

#atoms > 70 

Yes 0.55 

Apigenin Yes Yes Yes 0.55 

Chrysin Yes Yes Yes 0.55 

6-Hydroxyflavone Yes Yes Yes 0.55 

Edulan-I Yes Yes Yes 0.55 

Edulan-II Yes Yes Yes 0.55 

( continued on next page ) 
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Table 3 ( continued ) 

Ligand Drug likeness Bioavalibility 

Score 
Lipinski Ghose Veber 

Chimaphilin Yes Yes Yes 0.55 

Lucenin-2 No; 3 violations: 

MW > 500, NorO > 10, 

NHorOH > 5 

No; 4 violations: 

MW > 480, 

WLOGP < -0.4, 

MR > 130, #atoms > 70 

No; 1 violation: 

TPSA > 140 

0.17 

Saponarin No; 3 violations: 

MW > 500, NorO > 10, 

NHorOH > 5 

No; 4 violations: 

MW > 480, 

WLOGP < -0.4, 

MR > 130, #atoms > 70 

No; 1 violation: 

TPSA > 140 

0.17 

Isoschaftoside No; 3 violations: 

MW > 500, NorO > 10, 

NHorOH > 5 

No; 3 violations: 

MW > 480, 

WLOGP < -0.4, MR > 130 

No; 1 violation: 

TPSA > 140 

0.17 

Schaftoside No; 3 violations: 

MW > 500, NorO > 10, 

NHorOH > 5 

No; 3 violations: 

MW > 480, 

WLOGP < -0.4, MR > 130 

No; 1 violation: 

TPSA > 140 

0.17 

Rutin No; 3 violations: 

MW > 500, NorO > 10, 

NHorOH > 5 

No; 4 violations: 

MW > 480, 

WLOGP < -0.4, 

MR > 130, #atoms > 70 

No; 1 violation: 

TPSA > 140 

0.17 

Isoorientin No; 2 violations: 

NorO > 10, NHorOH > 5 

No; 1 violation: 

WLOGP < -0.4 

No; 1 violation: 

TPSA > 140 

0.17 

Orientin No; 2 violations: 

NorO > 10, NHorOH > 5 

No; 1 violation: 

WLOGP < -0.4 

No; 1 violation: 

TPSA > 140 

0.17 

Isovitexin Yes; 1 violation: 

NHorOH > 5 

Yes No; 1 violation: 

TPSA > 140 

0.55 

5,6-benzoflavone - Yes Yes Yes 0.55 

Kaempferol Yes Yes Yes 0.55 

Harmalol Yes Yes Yes 0.55 

Harman Yes Yes Yes 0.55 

Harmol Yes Yes Yes 0.55 

Harmaline Yes Yes Yes 0.55 

Harmine Yes Yes Yes 0.55 

Table 4 

ADME results of compounds. 

Ligands Pharmacokinetics 

Oleanolic acid GI absorption Low 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -3.77 cm/s 

Luteolin GI absorption High 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -6.25 cm/s 

Beta-Sitosterol GI absorption Low 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -2.20 cm/s 

Beta-amyrin GI absorption Low 

BBB permeant No 

P-gp substrate No 

( continued on next page ) 
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Table 4 ( continued ) 

Ligands Pharmacokinetics 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -2.41 cm/s 

Stigmasterol GI absorption Low 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor Yes 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -2.74 cm/s 

Apigenin GI absorption High 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -5.80 cm/s 

Chrysin GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -5.35 cm/s 

6-Hydroxyflavone GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor Yes 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -5.18 cm/s 

Edulan-I GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -5.36 cm/s 

Edulan-II GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -5.36 cm/s 

Chimaphilin GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor Yes 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -5.62 cm/s 

Lucenin-2 GI absorption Low 

BBB permeant No 

( continued on next page ) 
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Table 4 ( continued ) 

Ligands Pharmacokinetics 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -11.88 cm/s 

Saponarin GI absorption Low 

BBB permeant No 

P-gp substrate Yes 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -11.06 cm/s 

Isoschaftoside GI absorption Low 

BBB permeant No 

P-gp substrate Yes 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -11.30 cm/s 

Schaftoside GI absorption Low 

BBB permeant No 

P-gp substrate Yes 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -11.30 cm/s 

Rutin GI absorption Low 

BBB permeant No 

P-gp substrate Yes 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -10.26 cm/s 

Isoorientin GI absorption Low 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -9.14 cm/s 

Orientin GI absorption Low 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -9.14 cm/s 

Isovitexin GI absorption Low 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -8.79 cm/s 

5,6-benzoflavone GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor Yes 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

( continued on next page ) 
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Table 4 ( continued ) 

Ligands Pharmacokinetics 

CYP3A4 inhibitor No 

Log K p (skin permeation) -4.82 cm/s 

Kaempferol GI absorption High 

BBB permeant No 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -6.70 cm/s 

Harmalol GI absorption High 

BBB permeant Yes 

P-gp substrate Yes 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

Log K p (skin permeation) -6.28 cm/s 

Harman GI absorption High 

BBB permeant Yes 

P-gp substrate Yes 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -5.08 cm/s 

Harmol GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor No 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -6.98 cm/s 

Harmaline GI absorption High 

BBB permeant Yes 

P-gp substrate Yes 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor No 

Log K p (skin permeation) -6.14 cm/s 

Harmine GI absorption High 

BBB permeant Yes 

P-gp substrate No 

CYP1A2 inhibitor Yes 

CYP2C19 inhibitor No 

CYP2C9 inhibitor No 

CYP2D6 inhibitor Yes 

CYP3A4 inhibitor Yes 

Log K p (skin permeation) -4.94 cm/s 

t
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ool SwissADME ( http://www.sib.swiss ) ( http://www.swissadme. 

h/index.php ) [ 21 , 22 ] . In addition, these toxicological predictions 

ave applied to Lipinski, Ghose, and Veber rules and bioavailability 

cores [ 23 –25 ]. 

. Results and discussion 

Plant compounds have been always attractive from scientists to 

esearch novel drug development. The experimental and clinical 

tudies are being continued for drug development, although sev- 

ral antiviral drugs used against Covid-19. 

Molecular docking results obtained from this study indicated 

 strong interactions between COVID-19 main protease and po- 

ential drug candidates. The binding strength was defined by use 

f scoring function based on the Lamarckian Generic Algorithm. 

he binding free energy may include electrostatic, hydrogen bond- 

ng, and van der Waals interactions [ 12 ]. The least binding energy 

efers to the most stable binding between protein and the ligand 
11 
he binding energy results calculated by Vina were presented in 

able 2 [ Fig. 6 ] . All of the docked structures were visualized in

MD [ 26 ]. 

The Remdesivir and Dexamethasone which is control drugs, also 

inds to Covid-19 protein with considerable affinity ( −9.4 and -8.0 

cal/mol, respectively). In this case, all the ligands have comparable 

inding affinity ( −5.4 to −10.7 kcal/mol) ( Figs. 2 –4 ). 

RSMD, a crucial parameter to analyze the equilibration of MD 

rajectories, is estimated for backbone atoms of the protein and 

igand-protein complexes. Measurements of the backbone RMSD 

or the two complexes provided insights into the conformational 

tability. The comparisons of the RMSD value of ligands-protein are 

hown in Fig. 5 . 

The RMSF of the backbone atoms of each residue in the ligand- 

rotein complex was analyzed to observe the flexibility of the en- 

yme backbone structure. The high RMSF value shows more flexi- 

ility whereas the low RMSF value shows limited movements. The 

MSF graph for ligand s -protein complex is shown in Fig. 5 (a–g). 

http://www.sib.swiss
http://www.swissadme.ch/index.php
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Fig. 3. Representation of Isoschaftoside molecule at the active site of 6LU7 in molecular docking. 

Fig. 4. Representation of Isoorientin molecule at the active site of 6LU7 in molecular docking. 
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ccording to molecular dynamic results, root mean square devia- 

ion (RMSD), root mean square fluctuation (RMSF) of C α atoms as 

 function of residue number as a function of simulation time was 

sed for studying the stability of the modeled domains during MD 

imulations. RMSD values of Isoorientin and Saponarin seem to be 

table between 21 to 25 nanosecond. 
12 
Since molecular docking scoring did not indicate an acceptable 

rediction for ligand binding affinities, the MM/PB(GB)SA analyses 

ere utilized to predict their binding affinities. MM/PB(GB)SA was 

etermined to identify the binding free energy for ligands, includ- 

ng from the Schrödinger suite and Amber package ( http://cadd.zju. 

http://cadd.zju.edu.cn/farppi
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Fig. 5. (a) Lucenin2 and 6LU7 Molecular dynamic results. (b) Isoorientin and 6LU7 Molecular dynamic results. (c) Isoshaphoside and 6LU7 Molecular dynamic results. (d) 

Oleolanic acid and 6LU7 Molecular dynamic results. (e) Saponarin and 6LU7 Molecular dynamic results. (f) Schaftoside and 6LU7 Molecular dynamic results. (g) Molecular 

dynamic results of Remdevisir and 6lu7. 

13 
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Fig. 5. Continued 

e
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c

1

a

du.cn/farppi ) [ 19 ]. In Fig. 6 (a–g) was shown MM/PB(GB)SA graph 

f ligands 

Furthermore, human intestinal absorption, aqueous solubility 

evels, BBB penetration, skin penetretion levels, CYP inhibition 

CYP1A2, CYP3A4, CYP2C19, CYP2C6, CYP2D6), P-gp subsrate of 

ompounds of Passiflora were evaluated by prediction models in 

his study. (Supplementery file). 

Drug-likeness can be characterized as a complex balance of dif- 

erent structural properties that determines whether a compound 

s a drug. These features, mainly lipophilicity, hydrogen bonding 
14 
roperties, molecule size, and pharmacophoric features and many 

thers [ 29 ] . In addition, drug-likeness results of compounds were 

hown in Tables 3 and 4 . 

According to Lipinski’s rule (Pfizer’s rule, Lipinski’s rule of five, 

O5), the active drug has no more than one violation of the fol- 

owing properties including molecular weight(MW) ≤500, LogP ≤5, 

ydrogen bond acceptors ≤10, hydrogen bond donors ≤5 [ 23 ] .Ac- 

ording to Veber rules, the active drug has total hydrogen bonds ≤
2, rotatable bonds ≤ 10, and Polar surface area PSA (Polar surface 

rea) ≤ 140 tend to have oral bioavailability ≥ 20% [ 25 ] . According 

http://cadd.zju.edu.cn/farppi
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Fig. 5. Continued 
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o Ghose rules, active drug has Log P(-0.4 ~5.6), MR(Molar refrac- 

ivity (40 ~150), MW(160 ~480), number of atoms(20 ~70), polar 

urface area (PSA) < 140 [ 24 ] . 

Based on the drug-likeness analysis, Oleanolic acid, Luteolin, 

eta-sitosterol, Beta-Amyrin, Sterigmasterol, Apigenin, Chrysin, 6- 

ydroxyflavone, Edulan I and II, Chimaphilin, Isovixetin, 5,6,- 

enzoflavone, Kaempferol, Harmalol, Harman, Harmol, Harmaline, 

armine were found in accordance with the Lipinski’s, Veber or 

hose’ rule. However, Lipinski’s rule of five may not apply to nat- 

ral compounds. The only half of all FDA-approved small-molecule 

rugs are both used and compatible with the ‘rule-of-five’ [ 30 ] . 

herefore, it has the potential to be used as a medicine in other 

olecules. 

Today, drug development studies are based on irreversible in- 

ibitors. Covalent inhibition is also a method used to obtain irre- 

ersible inhibition. Irreversible inhibitors interact with target pro- 

eins and the reaction tends to be complete rather than stable. 

ovalent inhibitors have some important advantages over non- 

ovalent ones. Covalent inhibitors may act on target proteins by 

uperficial binding cleavage leading to the development of new in- 

ibitors with higher potency than non-covalent inhibitors. Covalent 

rugs generally have stronger binding affinity to the target due to 

he covalent bond between the ligand and the protein. Thus, they 

how stronger potential while maintaining the size of pharmaco- 

ogically advantageous small molecules. Covalent interaction with 
15 
he target protein is an important point in terms of prolonging the 

uration of effect biologically. However, these inhibitors are a dis- 

dvantage as they tend to be toxic if they show off-target binding. 

herefore, the presence of such inhibitors should be considered in 

rug development [ 31 ]. 

. Conclusion 

Perforatum sp. used for many years as a medicinal plant for 

ifferent treatments, has recently become popular with research 

or its different properties. This medicinal plant has become avail- 

ble since the beneficial effects it on human health. In our re- 

earch based on this useful plant, the possibility of being used as a 

edicine in SARS-Cov-2 pandemic that our country and all coun- 

ries of the world have been fighting for a long time has been in- 

estigated. Based on the results, it was concluded that Perforatum 

ould be effective on SARS-Cov-2, but it is necessary to conduct 

aboratory tests in vitro and in vivo on animals and patients to ap- 

rove their validity in inhibiting Covid-19. 
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Fig. 6. (a) Binding free energy graph of Lucenin-2. (b) Binding free energy graph of Oleanolic acid. (c) Binding free energy graph of Isoorientin. (d) Binding free energy graph 

of Isoschaftoside. (e) Binding free energy graph of schaftoside. (f) Binding free energy graph of Saponarin. (g) Binding free energy graph of Remdivisir. 

16 



S. Yalçın, S. Yalçınkaya and F. Ercan Journal of Molecular Structure 1240 (2021) 130556 

Fig. 6. Continued 
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