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A B S T R A C T   

The aim of this study is to provide the numerical outcomes of a nonlinear HIV infection system of latently 
infected CD4+ T cells exists in bioinformatics using Morlet wavelet (MW) artificial neural networks (ANNs) 
optimized initially with global search of genetic algorithms (GAs) hybridized for speedy local search of sequential 
quadratic programming (SQP), i.e., MW-ANN-GA-SQP. The design of an error function is presented by designing 
the MW-ANN models for the differential equations along with the initial conditions that represent the HIV 
infection system involving latently infected CD4+ T cells. The precision and persistence of the presented 
approach MW-ANN-GA-SQP are recognized through comparative studies from the results of the Runge-Kutta 
numerical scheme for solving the HIV infection spread system in case of single and multiple trails of the MW- 
ANN-GA-SQP. Statistical estimates with ‘Theil’s inequality coefficient’ and ‘root mean square error’ based 
indices further validate the sustainability and applicability of proposed MW-ANN-GA-SQP solver.   

Introduction 

There are many dangers, hazardous and harmful viruses, one of them 
is HIV virus that causes to manipulate the body fluids and destroy the 
immune system. The affected body from HIV virus fails to fight against 
infections and diseases, because HIV kills several CD4 or T-cells. The 
body’s performance to fight against diseases, illnesses and infections 
gets weak when the immune system of the body gets disturbed. Many 
global, serious diseases like AIDS/HIV, cancer and adaptable infections 
create the weak body’s advantage due to the immune system. For these 
dangerous diseases and harmful viruses, extensive efforts in order to 
increase the complexity of SIRS models, but still no treatment is 
discovered [1].Several researchers have tried to present many valuable 
mathematical designs to understand the HIV infection dynamics [2–6]. 
They showed that latently T-cells are provoked due to the occurrence of 
HIV virus and designed an HIV infection spread mathematical model in 
1989 [7]. The main topographies of this mathematical model have three 
terms: infected rate, uninfected rate (UR) and free from virus cells. 

Some HIV systems increased the complexity by incorporating the SIR 

model, where the diseased CD4+ T-cells are presumed to present the 
HIV infection [8]. A large number of strong T-cells lost because of the 
infection; however, a few T-cells may be infected productively, i.e., the 
state of latent or active. The most simplistic method of modeling HIV 
infection along with the initial values (IVs) is given as [9,10]: 
⎧
⎪⎪⎨

⎪⎪⎩

X ′

(t) = μ − dX − αXV, X0 = I1,

W ′

(t) = − (q − 1)αXV − eW − λW, W0 = I2,

Y ′

(t) = λW − aY + qαXV, Y0 = I3,

V
′

(t) = − V + kY, V0 = I4.

(1)  

where X, W, Y, and V used for susceptible virus, infected virus, recover 
virus and latently infected virus of CD4+ T cells, respectively. I1, I2,
I3 and I4are the respective initial conditions, α denotes the infection 
rate, λ is a constant indicate the recovery rate, μ stands the UR of CD4+ T 
cells, d shows the death ratio for susceptible CD4+ T cells, a denotes the 
death ratio of HIV improve cells, e is used for infection rate, k is called 
latently rate of infection of HIV cells and q is the elimination rate. To 
present the solution of the nonlinear biological HIV infection model of 
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latently infected CD4+ T cells given in equation (1), only a few existing 
schemes is available in the literature. Some of them are finite difference 
method [11], sequential Bayesian analysis technique [12], Legendre 
wavelet approach [13], a homotopy analysis scheme [14], the Bessel 
collocation approach [15] and approach based on differential trans
formation [16]. 

All the above-stated methods have their separate advantages/dis
advantages, merits/demerits, while, the solvers based on the artificial 
neural systems (ANN) are found to be precise, efficient and reliable to 
handle optimization models arising in numerous fields [17–21]. 
Recently, some worthy applications of stochastic numerical solvers are 
nonlinear prey-predator models [22],spreading infection and treatment 
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Fig. 1. Graphical representations of proposed designed technique for HIV biological model of latently infected T-cells.  
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[23],singular systems represented with second kind nonlinear Lane- 
Emden model [24–25], thermal analysis of porous fin model [26],frac
tional Meyer wavelet neural networks[27–28],singular functional dif
ferential model [29–30], nano fluidic models [31], nonlinear Thomas- 
Fermi models [32], doubly-singular model [33], conduction of heat in 
the human head model [34], and nonlinear multi-singular third order 
model [35].Keeping in view these well-established applications in 
different fields, the authors are motivated to investigate the intelligent 
computing to design an alternate framework by exploiting the modeling 
ability of Morlet Wavelet (MW) artificial neural networks (ANN) opti
mized with genetic algorithms (GAs) enhanced with rapid sequential 
quadratic programming (SQP), i.e., MW-ANN-GA-SQP scheme for 
solving the HIV infection spread model. 

Some innovative contribution of proposed MW-ANN-GA-SQP solver 
are listed as follows:  

• A novel development of MW-ANN is presented to design an alternate, 
accurate, consistent and stable computational intelligent numerical 
solver for nonlinear biological HIV infection system of latently 
infected CD4+ T cells.  

• The solution of the nonlinear biological HIV infection system of 
latently infected CD4+ T cells is presented effectively by exploiting 
the strength of MW-ANN modeling and combined optimization 
capability of GAs-SQP.  

• The worth of the proposed MW-ANN-GA-SQP solver is certified with 
overlapping solutions of Runge-Kutta up to 5 to 7 decimal level of 
accuracy.  

• Validation through statistical enlightenments based on different 
performance indices for measures of central tendency and dispersion 
in terms of minimum, standard deviation, maximum and median. 

The other parts of this work are systematized as: Section 2 expresses 
the designed methodology using the MW-ANNs along with performance 
indices, Section 4 presents the detailed result and discussions. The 
conclusion is drawn in the final Section. 

Design procedure 

The designed arrangement of the MW-ANN to solve the HIV system 
given in Eq. (1) is provided in this section. The construction of fitness 
function using the MW-ANN along with the optimization of the GA-SQP 
is presented. Moreover, the graphical plots of GA-SQP is given in Fig. 1. 

2.1Modeled form of the MW-ANN 

The mathematical procedures of the HIV system (1) are represented 
with feed-forward ANN in the form of proposed solutionsX̂(t), Ŵ(t), 
Ŷ(t) and V̂(t) along with the nth derivatives are written as: 

[
X̂(t), Ŵ (t),
Ŷ (t), V̂ (t)

]

=

⎡

⎢
⎢
⎣

∑m

i = 1
ϕX,ig(ρX,it + bX,i),

∑m

i= 1
ϕW,ig(ρW,it + bW,i),

∑m

i= 1
ϕY,ig(ρY,it + bY,i),

∑m

i= 1
ϕV,ig(ρV,it + bV,i)

⎤

⎥
⎥
⎥
⎦
, (2) 

[
X̂

(n)
, Ŵ

(n)
,

Ŷ
(n)
, V̂

(n)

]

=
⎡

⎢
⎢
⎣

∑m

i = 1
ϕX,ig(n)(ρX,it + bX,i),

∑m

i= 1
ϕW,ig(n)(ρW,it + bW,i),

∑m

i= 1
ϕY,ig(n)(ρY,it + bY,i),

∑m

i= 1
ϕV,ig(n)(ρV,it + bV,i)

⎤

⎥
⎥
⎦

Where W denotes the unidentified weight vector, given as: 
W = [WX, WW, WY , WV ], forWX = [ϕX, ρX,

bX],WW = [ϕW, ρW, bW]WY = [ϕY , ρY , bY ] and WV = [ϕV , ρV , bV ]. where  

MW-ANN has never been used for solving the HIV model. The MW 
activation function is written as [36]: 

g(t) = (cos(1.75t) )*
(
exp
(
− 0.5t2) ) (3) 

Using Eq. (3), the updated form of system (2) is converted as:  

ϕX = [ϕX,1,ϕX,2, ...,ϕX,m], ϕW = [ϕW,1,ϕW,2, ...,ϕW,m], ϕY = [ϕY,1,ϕY,2, ...,ϕY,m], ϕV = [ϕV,1,ϕV,2, ...,ϕV,m],

ρX = [ρX,1, ρX,2, ..., ρX,m], ρW = [ρW,1, ρW,2, ..., ρW,m], ρY = [ρY,1, ρY,2, ..., ρY,m], ρV = [ρV,1, ρV,2, ..., ρV,m],

bX = [bX,1, bX,2, ..., bX,m], bW = [bW,1, bW,2, ..., bW,m], bY = [bY,1, bY,2, ..., bY,m], bV = [bV,1, bV,2, bV,3, ..., bV,m].

[
X̂(t), Ŵ (t),
Ŷ (t), V̂ (t)

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑m

i=1
ϕX,icos[1.75(ρX,it + bX,i)] × e− 0.5(ρX,i t+bX,i)

2
,

∑m

i=1
ϕW,icos[1.75(ρW,it + bW,i)] × e− 0.5(ρW,i t+bW,i)

2
,

∑m

i=1
ϕY,icos[1.75(ρY,it + bY,i)] × e− 0.5(ρY,i t+bY ,i)

2
,

∑m

i=1
ϕV,icos[1.75(ρV,it + bV,i)] × e− 0.5(ρV,i t+bV,i)

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

[
X̂

′

(t), Ŵ
′

(t),

Ŷ
′

(t), V̂
′

(t)

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑m

i=1
− ϕX,iρX,ie(

− 0.5(ρX,i t+bX,i)
2)

(
sin
{

1.75(ρX,it + bX,i)
}
+

(ρX,it + bX,i)cos
{

1.75(ρX,it + bX,i)
}

)

,

∑m

i=1
− ϕW,iρW,ie(

− 0.5(ρW,i t+bW,i)
2)

(
sin
{

1.75(ρW,it + bW,i)
}
+

(ρW,it + bW,i)cos
{

1.75(ρW,it + bW,i)
}

)

,

∑m

i=1
− ϕY,iρY,ie(

− 0.5(ρY,i t+bY,i)
2)

(
sin
{

1.75(ρY,it + bY,i)
}
+

(ρY,it + bY,i)cos
{

1.75(ρY,it + bY,i)
}

)

,

∑m

i=1
− ϕV,iρV,ie(

− 0.5(ρV,i t+bV,i)
2)

(
sin
{

1.75(ρV,it + bV,i)
}
+

(ρV,it + bV,i)cos
{

1.75(ρV,it + bV,i)
}

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)   
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Using the above network (4), an error functionEis given as: 

E = E1 +E2 +E3 +E4 +E5, (5)  

E1 =
1
N
∑N

m=1

(
X̂ ′

m + αX̂m + dX̂m − μ
)2
, (6)  

E2 =
1
N
∑N

m=1

(

Ŵ ′

m + (q − 1)αX̂m V̂ m + eŴ m + λŴ m

)2

, (7)  

E3 =
1
N
∑N

m=1

(

Ŷ ′

m − λŴ m + aŶ m − qαX̂m V̂ m

)2

, (8)  

E4 =
1
N
∑N

m=1

(

V̂ ′

m + V̂ m − kŶ m

)2

, (9)  

E5 =
1
4

((

X̂0 − I1

)2

+

(

Ŵ 0 − I2

)2

+

(

Ŷ 0 − I3

)2

+

(

V̂ 0 − I4

)2
)

,

(10)  

where Nh = 1, tm = mh, X̂m = X̂(tm), Ŵm = Ŵ(tm), Ŷm = Ŷ(tm),
V̂m = V̂(tm)The approximate results for susceptible X , infected W, 

recovered Y, and latently infected V classes are denoted as X̂m, Ŵm, Ŷm 

and V̂m, respectively. Accordingly, E1, E2, E3and E4show the error 
functions linked to differential forms of the HIV system (1), while, E5 is 
the error function associated with the initial conditions. The approxi
mate proposed results can be attained from the accessible best weights 
for which the error functions shown in Eq. (4) approaches to zero. 

Optimization procedure: GA-SQP 

The proficient weights based on ANNs by combining the integrated 
strength of meta-heuristic computing system for GA improved with SQP, 
i.e., ‘GA-SQP’. 

The competent global search scheme, i.e., GAs, presented by Holand 
at the last of the 19th century [37,38]. GA is applied for the weight 
vector W of ANN. The population formulation with candidate outcomes 
is attained using the real numbers. While, each distinct or candidate 
result is equal to unknown weights in ANN. GAs incorporated on the 
bases of its valuable components ‘crossover’, ‘selection’, ‘mutation’ and 
‘elitism’. Some well-known recent submissions of GA are cost optimized 
for a multi-energy source [39], development of emergency humanitar
ian logistics [40], glass transitions in boiling candies [41], applications 
of traveling salesman [42], building envelope project for populations 
[43], the optimal set of intersecting clusters [44], nanofluids models 
[45], execution in detection models [46], queen based models optimi
zation [47], to optimize the heterogeneous bin packing [48] and to 
present the military surveillance design systems [49]. 

GA combined with the rapid local search scheme for rapid conver
gence by allocating the best GA values as a starting initial guess. Thus, 
effective local based scheme SQP is useful to fine-tune of the parameters. 
SQP has various applications, like as dynamic of bipedal walking robot 
[50],economic load dispatch problems [51], economic production of 
multiproduct [52], system of heating in quick thermal cycling blow 
mold [53], guide wire deformation analysis in the blood vessels [54], 
temporary hydrothermal coordination [55], recovery of flight vector for 
aircraft transport [56], LNG process [57], damage localization at wind 
turbine support structures [58], problems of optimal power flow [59] 
and the solution of convex quadratic bi-level programming models [60]. 
In this work, the hybridization of GA-SQP is used for the solution of the 
nonlinear HIV model. The detail pseudo code step of GA-SQP is given in 
Table 1. 

Performance assessments 

The performance gages for the HIV nonlinear model represented in 
Eq. 1based on Theil’s inequality coefficient (TIC), root ‘mean square 
error (RMSE)’ and ‘mean absolute error (MAE)’. The mathematical 
symbolizations of these operatives are represented as:  

Table 1 
Pseudo code using MW-ANN-GA-SQP.  

Start of GA 
Inputs: 
“The chromosome having equal entries of the network” 
W = [WX, WW,WY ,WV ], WX = [ϕX,ρX ,bX], WW = [ϕW,ρW,bW], WY = [ϕY , ρY, bY ] and 

WV = [ϕV , ρV , bV ]. where  
ϕX = [ϕX,1 ,ϕX,2 , ...,ϕX,m], ϕW = [ϕW,1;ϕW,2; ...,ϕW,m ],

ϕY = [ϕY,1 ,ϕY,2 , ...,ϕY,m ], ϕV = [ϕV,1 ,ϕV,2 , ...,ϕV,m],

ρX = [ρX,1 , ρX,2, ..., ρX,m], ρW = [ρW,1; ρW,2 , ..., ρW,m],

ρY = [ρY,1 , ρY,2 , ..., ρY,m ], ρV = [ρV,1, ρV,2 , ..., ρV,m],

bX = [bX,1, bX,2, ..., bX,m], bW = [bW,1 , bW,2 , ..., bW,m],

bY = [bY,1 , bY,2 , ..., bY,m ], bV = [bV,1 , bV,2, bV,3 , ..., bV,m ].

Population: The chromosomes set is 
P = [(WX1, WX2,...,WXn), (WW1,WW2,...,WWn), (WY1 ,WY2 ,...,WYn),(WV1,WV2,...,WVn)]

[WXi, WWi,WYi,WVi] = [(ϕXi ,ρXi, bxi), (ϕWi,ρWi, bWi), (ϕYi ,ρYi, bYi), (ϕVi,ρVi , bVi)]

Output: The best GA values is represented as WBest-GA 
Initialization 
Form weight vector W, i.e., a real numbers to denote a chromosome as: 
Initialize P,Set the declarations and generation 
Evaluation of Fitness 
To calculate the fitness E using Eq. (5) 
Ranking 
For smartness of the fitness values, rank each Win terms of P 
Termination 
Procedure terminates, when 
Fitness= E= 10–20,TolCon = 10–18, Generations → 50, TolFun = 10–18  
StallGenLimit → 100,PopulationSize → 300 
Other values: default. 
Go to [storage], 
Ranking 
Rank each W in population P for the quality of the fitnessE  
Reproduction 
Selection=~selectionuniform. 
Mutations= ~mutationadaptfeasible 
Crossover=~crossoverheuristic. 
Elitism= ~The best individuals ranked of “P” 
Continue [fitnessevaluation]step 
Storage 
Save WBest-GA, the value of fitness E, time, function count and generation 
GA Process End 
Procedure of SQP Start 
Inputs 
Start point: WBest-GA 
Output 
The best GA-SQP values are shown as WGA-SQP 
Initialize 
Bounded restrictions; assignments; generations; and other announced values. 
Terminate 
Terminate when to get: 
Fitness = 10–20, MaxFunEvals = 270000, Generations = 800, 
TolCon = TolX = TolFun ≤ 10–22 
While (termination) 
Fitness evaluation 
To evaluate the Fit values from the W 
Adjustments 
Invoke “fmincon” for the SQP. Adapt weight vector W for the E 
generations of SQP. Compute fit 
from the updated W 
Store 
Accumulate the weight vector WGA-SQP vector, E i.e., time of fitness, 
counts of function and iterations for the current runs of SQP. 
SQP Procedure End 
Data Generations 
Repeat 100 times this iterative process of GA-SQP to achieve a massive data-set of the 

optimization variables of ANNs for solving the nonlinear HIV model  
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[MADX ,MADW ,MADY ,MADV ] =

⎡

⎢
⎢
⎢
⎢
⎣

1
m

∑m

i=1

⃒
⃒
⃒Xi − X̂ i

⃒
⃒
⃒,

1
m

∑m

i=1

⃒
⃒
⃒
⃒Wi − Ŵ i

⃒
⃒
⃒
⃒,

1
m

∑m

i=1

⃒
⃒
⃒Yi − Ŷ i

⃒
⃒
⃒,

1
m

∑m

i=1

⃒
⃒
⃒
⃒Vi − V̂ i

⃒
⃒
⃒
⃒

⎤

⎥
⎥
⎥
⎥
⎦

(13)  

Results and discussion 

This section provides the detailed discussion for solving the HIV 
model given in Eq. (1) using 10 neurons. The relative study with Runge- 
Kutta results is provided to show the correctness and exactness of the 
proposed MW-ANN-GA-SQP. Moreover, statistical based results are 
accomplished to form the accuracy and precision. 

Infection model based on HIV 

The efficient form of the HIV model involving latently infected cells 
(IC) given in Eq. (1) by using different values provided in the literature 
based on the HIV infection model [10] as given in Table 2 

The updated form of the model (1), using the above table values is 
given as: 
⎧
⎪⎪⎨

⎪⎪⎩

X ′

(t) = 0.4 − 0.01X − 0.04XV, X(0) = 7
W ′

(t) = 0.008XV − 0.4W, W(0) = 2
Y

′

(t) = 0.3W − 0.2Y + 0.032XV, Y(0) = 1
V ′

(t) = − 0.03V + 0.6Y, V(0) = 4

(14) 

The fitness function of the above HIV model (14) is shown as: 
Optimization of the HIV model (1) is maintained by the hybrid of GA- 

SQP for hundred numbers of runs using 10 neurons to accomplish the 
system parameters. The set of best weights is provided to achieve the 
approximate values for the HIV model (1). The mathematical formula
tion of the approximate values becomes as:  

X̂(t) = 0.0277cos(1.75(1.2541t + 0.5959))e− 0.5(1.2541t+0.5959)2

− 0.3640cos(1.75(1.0005t + 2.3692))e− 0.5(1.0005t+2.3692)2

+0.3479cos(1.75(− 0.957t − 1.6996))e− 0.5(− 0.957t− 1.6996)2

+....+ 0.2947cos(1.75(0.6385t + 0.4466))e− 0.5(0.6385x+0.4466)2

(16)  

Ŵ (t) = 0.3430cos(1.75(0.1120t − 0.3491))e− 0.5(0.1120t− 0.3491)2

− 0.1062cos(1.75(1.7497t + 1.1354))e− 0.5(1.7497t+1.1354)2

− 0.0105cos(1.75(3.0663t + 3.4108))e− 0.5(3.0663t+3.4108)2

+....+ 1.0215cos(1.75(− 0.238t − 0.0919))e− 0.5(− 0.238t− 0.0919)2

(17)  

Ŷ (t) = − 0.0103cos(1.75(2.1909t + 1.0006))e− 0.5(2.1909t+1.0006)2

− 1.2340cos(1.75(0.6904t + 1.1908))e− 0.5(0.6904t+1.1908)2

+0.3644cos(1.75(2.1849t + 2.7584))e− 0.5(2.1849t+2.7584)2

+....+ 1.0215cos(1.75(− 0.238t − 0.0919))e− 0.5(− 0.238t− 0.0919)2

(18)  

[TICX ,TICW ,TICY ,TICV ] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1

(
Xi − X̂ i

)2
√

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1
X2

i

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1
X̂

2
i

√ ),

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1

(

Wi − Ŵ i

)2
√

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1
W2

i

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
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i=1
Ŵ

2
i

√ ),

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1

(
Yi − Ŷ i

)2
√
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1
m

∑m

i=1
Y2

i

√

+
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1
m
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i=1
Ŷ

2
i

√ ),

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(

Vi − V̂ i

)2
√

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
V2

i

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
V̂

2
i

√ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)  

[RMSEX ,RMSEW ,RMSEY ,RMSEV ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1

(
Xi − X̂ i

)2
√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1

(

Wi − Ŵ i

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(
Yi − Ŷ i

)2
√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(

Vi − V̂ i

)2
√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (12)   

E =
1
N

∑N

m=1

⎛

⎜
⎜
⎜
⎜
⎝

[

X̂ ′

m − 0.4 + 0.01*X̂m + 0.04*X̂m V̂ m

]2

+

[

Ŵ ′

m − 0.008*X̂m V̂ m + 0.4*V̂ m

]2

+

[

Ŷ ′

m − 0.3*Ŵ m + 0.2*Ŷ m − 0.032*X̂m*V̂ m

]2

+

[

V̂ ′

m + 0.03V̂ m − 0.6*Ŷ m

]2

⎞

⎟
⎟
⎟
⎟
⎠

+
1
4

((

X̂0 − 7
)2

+

(

Ŵ 0 − 2
)2

+

(

Ŷ 0 − 1
)2

+

(

V̂ 0 − 4
)2
)

,

(15)   
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V̂ (t) = 4.1003cos(1.75(0.1473t − 0.6740))e− 0.5(0.1473t− 0.6740)2

− 0.7278cos(1.75(0.5874t + 0.1598))e− 0.5(0.5874t+0.1598)2

+0.4354cos(1.75(0.1541t − 0.5522))e− 0.5(0.1541t− 0.5522)2

+.... − 0.8573cos(1.75(0.5221t − 0.7810))e− 0.5(0.5221t− 0.7810)2

(19) 

The graphic designs using GA-SQP using the parameters of the model 
(14) are plotted through Figs. 2–7 using 10 neurons based on the 
mathematical modelling of ANN. The set of trained weights for X(t);W 

(t); Y(t) and V(t) denoting the best values of the fitness for 10 neurons are 
expressed in Fig. 2. The result plots of the proposed method MW-ANN- 
GA-SQP and Runge-Kutta scheme are provided in Fig. 3.The results 
obtained by the stochastic and traditional methodologies are over
lapped, which indicate the validity and correctness of the designed MW- 
ANN-GA-SQP. The values of the absolute error (AE) are calculated for X 
(t) and W(t) in the first portion of the Fig. 4, whereas in the second half of 
Fig. 4, the AE values for Y(t) and V(t) are calculated. The existing out
comes are compared with the Runge-Kutta results. In Fig. 4, the com
parison of the obtained results with the standard Runge-Kutta values 
using 10 numbers of neurons in ANN models are given. It is depicted in 
Fig. 4(a), that the AE values for X(t) and W(t) lie around 10− 06 to 10− 08 

and 10− 07 to 10− 08, respectively. Although the values of AE for Y(t) and 
V(t) lie in the ranges of 10− 07 to 10− 08 and 10− 05 to 10− 07, respectively. 
The first portion of the Fig. 4 shows the comparison for X(t) and W(t), 
while the second portion is related to the values of Y(t) and V(t). The 
matching results of the current solutions with the Runge-Kutta numer
ical values show the precision and accuracy of the MW-ANN-GA-SQP. 

The performance values of the statistical gages TIC, RMSE and MAD 
along with the box plots and histogram are narrated in Figs. 5–7. It is 
observed on the behalf of the statistical results that most of the values of 
TIC lie between 10− 09 to 10− 10, while most of the values of RMSE and 
MAD lie around 10− 05 to 10− 07. One may conclude from these outcomes 
that 90% or more of independent trials attained the reasonable and 

(a): Weights of 10 neurons for X(t) (b): Weights of 10 neurons for W(t)

(c): Weights of 10 neurons for Y(t) (d): Weights of 10 neurons for V(t)

Fig. 2. Trained weights of MW-ANN for the best merit achieved.  

Table 2 
List of parameters used to study the HIV based infection model.  

Parameter Description Values [10] 

µ UR of CD4+T cells 0.4 
λ Rate of recovery of IC 0.3 
d Death UR of CD4+T cells 0.01 
q Removal rate of recombinants 0.8 
S1 IVs of UR of CD4+T cells 7 
S2 IVs of infected CD4+T cells 2 
S3 IVs of Virus free cells 1 
S4 IVs of latently IC 4 
α Increased infection rate 0.04 
e Rate of infection of recombinants 0.1 
a Death rate values of virus free cells 0.2 
u Death rate values of latently IC 0.03  
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precise level of the statistical TIC measures. However, the level is 
about80% in case of MAD and RMSE metrics. 

For strengthening the accuracy as well as convergence of the MW- 
ANN-GA-SQP, the precision analysis is observed based on the mini
mum (Min), ‘semi interquartile range (SIR)’ and median (Med). The 
statistical results in Min, SIR and Med for X(t) and W(t) are tabulated in 
Table 3, while the results for Y(t) and V(t) is drawn in Table 4. The scale 
of Min, Med and SIR values for all indexes lies around 10− 08 to 10− 11, 
10− 06 to 10− 08 and 10− 06 to 10− 07, respectively. 

Conclusions 

In this study, the Morlet wavelet artificial neural network is designed 
to solve the biological HIV infection system of latently infected cells. An 
error-based fitness function design by using the capability of differential 
system and boundary conditions. The optimization of this designed 
error-based function is performed by using the heuristic capability of 

genetic algorithm and fast local search sequential quadratic algorithm. 
The designed computing solver MW-ANN-GA-SQP is efficiently imple
mented to solve the biological HIV infection spread model. The accurate 
performance of the MW-ANN-GA-SQP is observed by comparing the 
obtained results and the reference solutions. The plots of the solution, 
AE along with statistical illustrations of the TIC, RMSE and MAD are 
drawn in satisfactory measures. The statistical performances based on 
100 executions indicate the reliability of the MW-ANN-GA-SQP to solve 
the HIV infection model. Moreover, the magnitudes of mean, median, 
semi-interquartile ranges authenticate the precision, trustworthiness 
and robustness of the MW-ANN-GA-SQP. In the future, the proposed 
MW-ANN-GA-SQP looks capable to solve the biological nonlinear sys
tems [61–63] and nonlinear fluid dynamic systems [64–68] and also 
some others [69–87]. 

V
alues

Inputs Inputs
(a): Variation of X(t) (b): Variation of W(t)

V
alues

Inputs Inputs
(c): Variation of Y(t) (d): Variation of V(t)

Fig. 3. Results of biological HIV virus infection model.  
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A
E

Input t
(a): AE valuesfor 10 neurons for X(t) and W(t)

A
E

Input t
(b):AE values for 10 neurons for Y(t) and V(t)

Fig. 4. Comparative study of AE values for 10 neurons.  
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Convergence measures on TIC for X(t),W(t), Y(t) and V(t)

(a): Histogramsof X(t) (b): Histograms of W(t) (c): Histograms ofY(t)

(d): Histogram for V(t) (e):Box plot for X(t) (f):Box plot for W(t)

(g):Box plots of Y(t) (h):Box plot of V(t)

Fig. 5. Statistics procedures for TIC using the histograms/box plots.  
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Convergence measures on RMSE for X(t),W(t), Y(t) and V(t)

(a): Histograms of X(t) (b): Histograms of W(t) (c): Histograms of Y(t)

(d): Histograms of V(t) (e):Box plots of X(t) (f):Box plots of W(t)

(g):Box plots of Y(t) (h):Box plots of V(t)

Fig. 6. Statistics procedures for RMSE with the histogram and box plots for 10 neurons.  
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Convergence measures on MAD for X(t),W(t), Y(t) and V(t)

(a): Histograms of X(t) (b): Histograms of W(t) (c): Histograms of Y(t)

(d): Histograms of V(t) (e):Box plots of X(t) (f):Box plots of W(t)

(g):Box plots of Y(t) (h):Box plots of V(t)

Fig. 7. Statistics procedures for MAD with the histogram and box plots for 10 neurons.  
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Table 3 
Statistics results for X(t) and W(t).  

t X(t) W(t)  

Min Median SIR Min Median SIR 

0 7.421E-10 1.510E-07 3.221E-07 9.927E-11 9.566E-08 1.858E-07 
0.1 7.602E-08 2.937E-06 2.144E-06 2.567E-08 2.043E-06 2.244E-06 
0.2 3.951E-08 3.665E-06 2.761E-06 1.465E-08 2.728E-06 2.334E-06 
0.3 2.651E-08 1.870E-06 2.070E-06 1.426E-08 1.303E-06 1.506E-06 
0.4 6.387E-09 1.487E-06 1.439E-06 2.013E-09 1.128E-06 1.143E-06 
0.5 1.971E-08 1.714E-06 1.939E-06 1.281E-08 1.569E-06 1.600E-06 
0.6 3.299E-09 1.874E-06 1.614E-06 9.106E-08 2.172E-06 1.695E-06 
0.7 3.746E-09 2.531E-06 1.547E-06 4.991E-08 1.823E-06 1.816E-06 
0.8 5.097E-09 2.440E-06 2.184E-06 2.011E-08 2.089E-06 1.817E-06 
0.9 1.472E-08 1.803E-06 1.503E-06 1.369E-08 1.285E-06 1.287E-06 
1 7.150E-08 2.224E-06 1.801E-06 1.548E-09 1.885E-06 1.576E-06  

Table 4 
Statistics based outcomes for Y(t) and V(t).  

t X(t) W(t)  

Min Median SIR Min Median SIR 

0 1.020E-09 1.503E-07 2.513E-07 4.277E-10 1.525E-07 2.813E-07 
0.1 2.621E-08 3.599E-06 1.827E-06 2.041E-08 4.338E-06 2.164E-06 
0.2 4.770E-08 4.207E-06 3.017E-06 3.278E-08 5.770E-06 5.121E-06 
0.3 7.338E-08 1.886E-06 1.386E-06 1.727E-08 3.091E-06 4.136E-06 
0.4 2.688E-08 8.841E-07 8.204E-07 2.317E-08 1.635E-06 1.321E-06 
0.5 2.640E-09 2.220E-06 1.333E-06 2.221E-08 2.144E-06 1.400E-06 
0.6 1.414E-08 3.283E-06 2.277E-06 3.994E-08 2.191E-06 1.396E-06 
0.7 1.177E-08 2.949E-06 1.901E-06 1.201E-07 4.870E-06 3.358E-06 
0.8 1.483E-08 2.304E-06 1.831E-06 1.178E-07 5.716E-06 4.977E-06 
0.9 1.145E-08 1.633E-06 1.488E-06 1.321E-07 3.166E-06 1.838E-06 
1 1.919E-08 3.315E-06 2.440E-06 1.059E-09 2.723E-06 2.181E-06  
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