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A B S T R A C T   

This interdisciplinary study is conducted to find answers to two important questions which researchers often face 
in Machine Learning (ML) and Material Science (MS) fields. In this work, we measure the performance of the 
most popular ML algorithms (more than a dozen) on rare-class learning problem and determine the best learning 
algorithm for atom type prediction over the Mg-doped ZnO nanoparticles data obtained from the density- 
functional tight-binding method. As a result, we observe that tree-based ML algorithms such as Extreme 
Gradient Boosting (XGB), Decision Trees (DT), Random Forest (RF), outperform other types of ML algorithms, e. 
g., cost-sensitive learning, prototype models, support vector machines, kernel methods, on both rare-class 
learning and atom type prediction.   

1. Introduction 

We are in the big data era and most disciplines have started building 
data-centric applications using Machine Learning (ML) to solve their 
compelling problems. Thus, materials scientists have recently started 
adopting ML tools to bring solutions to the challenging research prob
lems in the field from a data-centric perspective. In this context, ML has 
widely been used in various fields of materials science (MS) from per
forming basic data analysis [1–5] to discovering new materials [6–9]. 
Besides, ML can predict the structure–property relationships over 
generated large data obtained from experimental and theoretical 
methods, especially in materials including many atoms. Most impor
tantly, ML has considerably contributed to speeding up density func
tional theory calculations [10–12]. 

Rare-class learning problem (a.k.a., Imbalanced Classification) is a 
well-known challenge in ML and commonly occurs in classification 
problems where most of the data points belong to one class and only a 
few data points belong to the other class which is usually more impor
tant to be learned by the model. For example; detecting patients with 
tumors using the data where only 1% of the patients have tumors. In the 
literature it is a fact that most ML algorithms fail to learn the rare-class in 
such data, e.g., Support Vector Machines [13,14], Decision Trees 
[15,16], K-Nearest Neighbors [17], Neural Networks [13], Bayesian 
Networks [18]. Many examples of these algorithms’ failure on various 
domains exist, e.g., fraud detection [19], text classification [20], 

detecting oil spills in satellite image [21], uncovering possible flaws in 
the manufacturing process [22]. [23] explains the issues of learning 
from imbalanced data in detail and [24] is a survey paper regarding 
rare-class learning. The research on rare-class learning is divided into 
three groups: (i) Observing the performance of ML algorithms over 
different domains (ii) Possible solutions to deal with rare-class problems, 
(iii) Designing better metrics to evaluate the goodness of classifiers 
while learning rare-classes. In this study, we address (i) over MS domain. 
More clearly, this study addresses the following research questions:  

• What type of ML algorithms perform well while tackling with the 
rare-class learning problem over MS domain?  

• Is it possible to build a ML system that can determine atom types, 
which are especially significant factors to understand material 
properties with many atoms and different species, under different 
conditions such as temperature, pressure and, etc.? 

In the literature, using a ML algorithm, a three-dimensional structure 
of metallic NPs have been studied [25] as well as applications of ML 
methods in solid-state materials were discussed in detail [26]. [27] 
discusses using ML techniques with density-functional tight-binding 
theory (DFTB) and [28] makes correlations with structural data using 
both neural-networks and tree-based ML models and obtains greater 
accuracy for structural properties. In this study, we focus on finding 
answers to the questions mentioned above, so we constructed more than 
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a dozens of ML models, as an example, over Mg-doped ZnO Nano
particles (NPs) using the following ML algorithms: Extreme Gradient 
Boosting (XGB), Random Forest (RF), Decision Tree (DT), Single Deci
sion Tree-based Rulesets (Ruleset), Flexible Discriminant Analysis 
(FDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), Monotone Multi- 
Layer Perceptron Neural Network (NN), Stacked Auto Encoder Deep 
Neural Network (DNN), Kernal Partial Least Squares (PLS), Support 
Vector Machines with Linear Kernel (SVM) and Regularized Logistic 
Regression (LR). In addition to these ML algorithms, we tested other 
types of ML techniques such as cost-sensitive learning, kernel methods, 
etc. and ran these algorithms with different parameters, e.g., SVM with 
Polynomial Kernels. However, we give the results for only these twelve 
ML algorithms in the experimental results section to increase the read
ability of the study since the additional models failed to learn the data. 

The paper continues with a background on the ML algorithms used in 
this study. In Section 3, we explain the properties of the Mg-doped ZnO 
data set and describe our system architecture from data generation to 
ML processes and present the performances of the ML algorithms. Sec
tion 4 is conclusion. All of our code is in R, and data and code are 
available at https://github.com/hasankurban/MgZnO-rare-class-lea 
rning.git. 

2. Background and related work 

In this section, we give a background on each ML algorithm used in 
this study. The algorithm list includes both old & popular ML algo
rithms, i.e., SVM, DT, NB and the state-of-the-art algorithms, i.e., XGB, 
DNN and different types of ML algorithms such as tree-based models, 
polynomial models, kernel methods, ensemble models, etc. The algo
rithms are examined as depending on their performances under two 
separate categories:  

• Tree-based models: XGB, DT, RF, Ruleset.  
• Others: FDA, NB, KNN, NN, DNN, PLS, LR, SVM. 

2.1. Tree-based models 

In a decision tree model, the nodes are used to present the input 
variables, and the edges and leaf nodes include the values for a specific 
variable and the class labels, respectively. DT models are built in two 
stages: (i) building trees and (ii) pruning trees. In (i) the training data is 
recursively partitioned depending on some conditions until obtaining 
the purest leaves – the all/most of the data points in each leaf node 
belong to the same class. Later, (ii) is applied to the DT obtained in (i) to 
overcome the overfitting problem. The main differences among the tree- 
based ML algorithms are as follows:  

• In the training phase, some ML algorithms build only one DT, but 
some others construct multiple DTs, e.g., RF, XGB.  

• The sampling methods have a great effect on the final prediction for 
the algorithms building multiple trees in the training step.  

• The pruning techniques deeply affect the performance of the models 
[29].  

• The metric that is used to partition the data while building the tree 
can change the final model, e.g., information gain, entropy, gini.  

• Voting strategy could change the final prediction of the algorithms 
generating multiple trees in the training step. 

Extreme Gradient Boosting (XGBoost/XGB): [30] introduced the 
gradient tree boosting algorithm and has been used on many problems 
as the de facto choice of ensemble method, i.,e., Netflix challenge [31]. 
Friedman then presented the stochastic gradient algorithm which is 
more compatible with big data as an extended gradient tree boosting 
algorithm [32]. XGB is recently designed the state-of-the-art ML algo
rithm [33] and a scalable tree boosting system which is proven to be 

champion of many ML competition over many domains in term of per
formance, e.g., text classification, motion detection, sales prediction. 
Unlike other gradient tree boosting algorithms, XGBoost is a new spar
sity aware-algorithm and weighted quantile sketch for approximate 
learning. Moreover, it beats the other tree-based boosting algorithms 
with its speed because its implementation includes cache access pat
terns, data compression, and sharding. 

In gradient Tree Boosting, the regularized cost function in Eq. (1) is 
solved while training the model in an additive manner since it cannot be 
solved using traditional optimization techniques in Euclidean spaces 
where distances among data points are meaningful. 

Jt =
∑n

i=1
h(yi, ŷi

t− 1
+ ft(xi))+ω(ft) (1)  

where ŷi represents the prediction for the ith data point and 

ŷi =
∑K

k=1
fk(xi), fk ∈ F  

the space of trees F = {f((x)) = gq((x)}(q : Rm→T, g ∈ RT),K; additive 
functions’ number, xi; ith data point, n; data size, m; input variables’ 
number, t; iteration number. q is the structure of the trees and fk is an 
output of an independent tree structure q with a leaf weight. h denotes a 
differentiable convex loss function and calculates the difference the true 
model y and our model ŷ. ω is the penalization parameter which is used 
to tune the complexity of the model and overcome the overfitting 
problem. [34] demonstrates optimization of Eq. (1) using second-order 
approximation step by step. 

Random Forest (RF): RF and XGB are similar algorithms (Decision 
Tree Ensembles). There are two major differences between the two al
gorithms. Although XGB builds the trees one tree a time in an additive 
manner (weak learner), RF produces the trees independently of each 
other (bagging). Furthermore, RF first builds all the trees and then 
combines the predictions of all the trees (voting) and finally determines 
the decision. However, XGB combines the results along the way. [35] 
introduced the RF algorithm which starts off building the T ∈ Z trees. 
While constructing the trees in the training phase, RF uses the bootstrap 
sampling method which ensures that each tree is being built on a 
different subset of the training data. The remaining training data, called 
out-of-bag, are used to estimate error, the strength of the classifiers and 
correlation among trees. While building trees, a randomly selected 
subset of variables is used to split each node, and class predictions are 
made using the majority voting technique. The majority unweighted 
voting gives each tree, no matter its accuracy, the same value of a vote. A 
priority vote weights each tree’s vote as a function of its relative accu
racy. RF’s performance depends on the relationship between the margin 
and the statistical correlation between the trees. The margin refers to the 
difference between how well a tree separates a correct class from an 
incorrect class. Research on improving the RF is collected under four 
categories. (1) through data [36] (2) using clustering [37] (3) with 
Boosting [38] (4) weighted voting and dynamic data reduction [39]. 

Decision Trees (DT) and Single Decision Tree-based Rulesets 
(Ruleset): Unlike ensemble tree models, DT and Ruleset construct only 
one tree-based model using all the data in the training phase, and then 
the tree itself is used for prediction. DT is a basic tree-based model [40] 
while Ruleset is a rule based tree model [41]. On the other hand, ID3 
[42], C4.5 [29], CART [43] are among most popular DT algorithms. [44] 
includes a survey of DT algorithms. 

2.2. Other models 

Flexible Discriminant Analysis (FDA): Linear Discriminant Anal
ysis (LDA) [45], as a classification algorithm, trains a model which is a 
linear combination of the input variables while maximizing the mean 
differences among the classes. In other words, LDA models the 
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conditional densities of the classes as multivariate normals and ap
proximates the Bayes classifier rule. 

P(Y = yj | X) =
P(Y = yj)P(X | Y = yj)

P(X)
(2)  

P(X) =
∑l

j=1
P(X | Y = yj)P(Y = yj)

P(Δ = X | Y = yj) ≈ N(μj,Σ)

Δ is the input data set, X ∈ Δand X ∈ Rd, Y = {y1, …, yl} are the 
classes, μj is the mean for the jth class and Σ is the pooled covariance. 

LDA first centers the data and then calculates the estimators; the class 
means, pooled covariance matrix and the class priors. The algorithm 
continues sphering the variables. Finally, it projects the feature space 
onto a smaller one while protecting the class separation. FDA [46] is a 
nonparametric discriminant analysis algorithm that replaces linear 
regression by any nonparametric regression technique. [47] contains the 
literature on discriminant analysis. 

K-Nearest Neighbor (KNN): Despite its simplicity, KNN is among 
the ten most popular algorithms used in academia and industry. [48]. 
Unlike most ML algorithms, KNN does not produce a model in the 
training step. The data is used itself while making predictions (lazy 
learning). The algorithm first determines most k-similar data points to a 
given test data and makes a prediction based on those points, e.g., ma
jority voting. The detailed information regarding various KNN algo
rithms can be found in Ref. [49]. Since the algorithm is designed to work 
on metric spaces, it fails over high dimensional data (a.k.a., the curse of 
dimensionality where the classifier fails as dimensions increasingly 
become too large). Choice of K and the metric greatly affect the pre
diction. If K is too small, the algorithm becomes sensitive to noise. 
However, if K is too large, it is more likely that the data from other 
classes will dominate the decision. [15] demonstrates that KNN does not 
perform badly while classifying test cases from the small classes. 

Naive Bayes (NB): Given a class variable with the classes Y = {y1,

…,yk}, NB assumes that the input variables {Xi,…,Xn} are conditionally 
independent. Therefore, the correlations among the input variables are 
ignored, and the multivariate problem is reduced to univariate prob
lems. The algorithms make predictions using the Bayesian rule as 
follows: 

P(yj|Xi) = argmaxyj∈Y P(yj)
∏

i
P(Xi|yj) (3)  

P(Xi,…,Xn|yj) = argmaxyj∈Y P(yj)
∏

i
P(Xi|yj)

Unlike most ML algorithms, feature scaling is not necessary for NB and 
NB works well on high dimensional data. [50] has a comprehensive 
study on NB. 

Monotone Multi-Layer Perceptron Neural Network (NN): Neural 
Network [51] is a weighted directed graph consisting of nodes and 
directed edges. Nodes represent the neurons, and directed edges with 
weights are the connections between neuron inputs and outputs. Neural 
networks are classified based on their connection architecture:  

• Recurrent Networks (Multilayer Perceptron): The weighted directed 
graph that does not contain loops. In other words, neurons are uni
directionally connected.  

• Feed-forward Networks: The weighted directed graph that has loops. 

NN [52,53] is a Recurrent Network with a monotone constraint. The 
constraint is used to monotonically increase the behavior of model 
output with respect to covariates. To handle the overfitting problem, 
bootstrap aggregation with early stopping is used. NNs is employed on 
various domains [54], e.g., speech recognition [55], image and signal 

processing [56,57]. [58] demonstrates that NN fails over rare-class 
learning problems. 

Stacked Auto-Encoder Deep Neural Network (DNN):A DNN 
[59–61] is a three layers feed-forward neural network in which the input 
and output layers are always almost identical. DNN aims to reconstruct 
its input with minimum reconstruction loss. A DNN consists of two 
components, encoder and decoder. The encoder is a function that maps 
the input x ∈ Rd (x ∈ Δ) to a hidden representation of y: 

y = f (W(1)x+ c(1)) (4)  

f (x) =
1

1 + exp(− x)

W represents the weight matrix and c is the bias vector. Additionally, 
the decoder is another function which is used to map y to ̂x so that x ≈ x̂ 

x̂ = f (W(2)y+ c(2)) (5)  

Let Θ = (W(1), c(1),W(2), c(2)) be the optimal parameter minimizing the 
reconstruction loss while regenerating the Δ from the output layer. The 
cost is defined as follows: 

J(Θ) = −
1
m

∑n

i=1

∑d

j=1
xijlog(x̂ij)+ (1 − xij)log(1 − x̂ij) (6)  

where n is the data size. 
Kernel Partial Least Squares (PLS): The conventional Partial Least 

Squares method [62] is used as a dimensionality reduction technique, 
classification and regression algorithms. Unlike other dimensionality 
techniques, it takes into account the class variable while reducing the 
dimensions [63]. PLS [64] outperforms the traditional Partial Least 
Squares method in terms of speed and accuracy. There are two different 
approaches to the PLS models: [65,66]:  

• The input data is nonlinearly mapped to a higher dimensional feature 
space. In other words, while keeping the inner relationship between 
the score vectors linear, the input variables are projected onto a 
nonlinear space. The models in this group are computationally more 
efficient.  

• Replace the linear relationship between the score vectors with a 
nonlinear configuration to have a nonlinear relationship between the 
zero-mean matrices. The models in this group have more explanatory 
abilities. 

Regularized Logistic Regression (LR): A logistic regression model 
[67] hΘ(x) simply takes a linear model ΘTx and puts it into the sigmoid 
function f(a) so that it can predict classes as follows: 

hΘ(x) = f (ΘT x) =
1

1 + e− ΘT x
(7)  

f (a) =
1

1 + e− a  

0⩽hΘ(x)⩽1  

The cost for a logistic regression model: 

J(Θ) = −
1
n
∑n

i=1
[yiloghΘ(xi)+ (1 − yi)log(1 − hΘ(xi))] (8)  

J(Θ) is a convex function, so it can be solved using various optimization 
techniques, e.g., gradient descent. To overcome the overfitting problem, 
for example, when the input data is very high dimensional, a penaliza
tion term is added to Eq. (10). Logistic regression with a penalization 
term (see Eq. (11)) is called LR [68]. 
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J(Θ) = −
1
n
∑n

i=1
[yiloghΘ(xi)+ (1 − yi)log(1 − hΘ(xi))]+

λ
2n

∑d

j=1
Θ2

j (9)  

Where n is the data size and d represents the number of input variables. 
The regularization is employed to reduce the complexity of ML models. 

Support Vector Machines with Linear Kernel (SVM): A SVM 
model is constructed while minimizing the cost function given in Eq. (9) 
with some modifications. The cost for SVM is (C is a constant): 

J(Θ) = C
∑n

i=1
[yicost1(ΘT xi)+ (1 − yi)cost0(ΘT xi)]+

λ
2n

∑d

j=1
Θ2

j (10)  

cost1(ΘT xi) = loghΘ(xi)

cost0(ΘT xi) = log(1 − hΘ(xi))]

so that SVM model predicts hΘ(x): 

hΘ(x) =
{

1, if ΘT x⩾0
0, otherwise

(11)  

[13] explains that SVM is among the weakest ML algorithms for rare- 
class learning problem. 

3. Methodology and experimental results 

3.1. Data and its properties 

Fig. 1 demonstrates the initial structures of studied ZnO NPs with 
various Mg-doped quantities. Each model includes 258 atoms. The ZnO 
NPs were characterized by 30*30*30 supercell of the hexagonal crystal 
structure (wurtzite, space group P6 3 mc). Fig. 2 shows a summary of 
statistical properties of the final ZnO NPs data sets, which were obtained 
from DFTB with the 3ob/3ob-3-1 Slater-Koster parameters [69,70] in 
the frame of DFTB + open-source code [71]. The final data includes 
1548 atoms from 6 NPs. Half of the final data consists of O atoms. Only 
4.7% of the atoms belong to the rare class in the final data. The rest is Zn 

atoms. In Fig. 2, x, y and z represent 3D geometrical locations of atoms. 
We observe that there is no linear relationship among the continuous 
input variables, and each continuous variable is almost normally 
distributed. 

3.2. Rare-class learning over Mg-doped MgZnO nanoparticles 

Fig. 3 explains the processes which were carried out during the 
experiment section of this study. We first generated pure ZnO and Mg- 
doped ZnO NPs. Each Δ represents a Mg-ZnO NP with a different Mg- 
doped amount. We then combine all Δ-s in the data generation step. 
In the ML step, after prepossessing Δ,Δ is partitioned as training and test 
data sets, Δx and Δy, respectively, with bootstrap sampling. The distri
butions of the atoms in Δ,Δx and Δy are the same and Δx has 75% of Δ 
whereas Δy has 25% of Δ. The ML models are built and then optimized 
over the training data set and the performance comparison of the best 
models, which were created with the training data, is measured over the 
test data. For example, the KNN algorithm was run with a set of K-values 
against the training data set, and the model with the best K was used for 
model comparison over the test data. The parameters of each ML algo
rithm are tuned with 10-fold cross-validation in the training step and 
each f represents a different ML algorithm as shown in Fig. 3. The best 
models are also run with 10-fold cross-validation against the test data 
while comparing the models. Moreover, to make the comparison fair, 
the algorithms were started with the default parameter values. 

In ML, the classifiers are commonly compared using the AUC (Area 
Under the Curve)-ROC (Receiver Operating Characteristics) curves and 
Precision-Recall curves for multi-class classification problems. ROC 
outputs a probability curve and the AUC explains how good the per
formance of the ML models are while separating different classes. 
Therefore, the optimal ML model is always the one which has the highest 
AUC. The Precision-Recall curves show the trade-off between the true 
positive rate and the positive predictive for a classifier based on various 
probability thresholds. Analyzing these curves is commonly the best 
strategy while comparing the ML algorithms over imbalanced data sets. 
Figs. 4 and 5 demonstrate the results for the ROC and precision-recall 
curves, respectively. The AUC values corresponding to the ROC curve 

Fig. 1. The initial structures of ZnO and Mg-doped ZnO NP models (Red is Oxygen, Gray is Zinc and Orange is Mg).  

H. Kurban and M. Kurban                                                                                                                                                                                                                    



Chemical Physics 546 (2021) 111159

5

for each class and algorithm are given in Table 1. In Table 2, we compare 
the models using accuracy, kappa and 95% confidence interval. None
theless, accuracy is a good metric while comparing the models over 
balanced data sets. Finally, we provide sensitivity and specificity values 

for each atom (class) and ML algorithm in Table 3 in order to compare 
the performance of the algorithms in more depth. Sensitivity and 
Specificity measure the true positive rate and the true negative rate of a 
classifier, respectively. 

Fig. 2. A summary of statistical properties of the Mg-doped MgZnO NPs.  

Fig. 3. An overview of the system architecture highlighting the MgZn0 data generation with DFTB and building models with ML.  
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Figs. 4 and 5 have six sub-figures each. In each sub-figure, only two 
algorithms are compared for simplicity and the algorithms are grouped 
based on their performances. While comparing the models, we observe 
that XBG, DT, RF and Ruleset algorithms are able to learn these data 
almost perfectly and outperform the other ML algorithms. In other 
words, the ML systems built based on these algorithms can easily 
separate Mg, Zn and O atoms. Even though the performances of those 
algorithms are very close to each other, XGB is slightly better than DT 
and DT is a little bit better than RF which performed slightly better than 
Ruleset. The results also show that NN, DNN, PLS, SVM, LR fail to learn 
those atoms. These algorithms performed the same or worse than the 
zero rule classifier. Some of these algorithms such as DNN, may have 
failed due to the data size since deep learning models are known to work 
better with big data. FDA, NB and KNN can be categorized as another 
group of ML algorithms since their performance is better than zero rule 
classifier and worse than XBG, DT, RF and Ruleset. 

The most striking result of this study is included in Table 3. We 
observe that most of the ML algorithms, NB, KNN, NN, DNN, PLS, SVM, 

LR are incapable of learning the rare-class, Mg. One can infer that XGB, 
DT, RF, Ruleset algorithms outperform the other algorithms while 
learning the rare-class. Moreover, FDA is able to learn a bit less than half 
of the Mg atoms. Finally, the caret package [72] and R programming 
language were made use of for this study. 

4. Conclusion 

In this work, we run more than a dozens of Machine Learning (ML) 
algorithms over Mg-doped ZnO NPs obtained from DFTB calculations 
and (1) built various ML models for atom type prediction using 3D 
geometric locations of the atoms (2) determined the ML algorithm type 
that brings the best solution to the rare-class learning and atom type 
prediction problems. Extreme Gradient Boosting (XGB), Random Forest 
(RF), Decision Tree (DT), Single Decision Tree-based Rulesets (Ruleset), 
Flexible Discriminant Analysis (FDA), Naive Bayes (NB), K-Nearest 
Neighbor (KNN), Monotone Multi-Layer Perceptron Neural Network 
(NN), Stacked Auto Encoder Deep Neural Network (DNN), Kernel Partial 

Fig. 4. The ROC Curves: Performance analysis of ML algorithms over the test data set.  

H. Kurban and M. Kurban                                                                                                                                                                                                                    



Chemical Physics 546 (2021) 111159

7

Least Squares (PLS), Support Vector Machines with Linear Kernel (SVM) 
and Regularized Logistic Regression (LR) ML algorithms are compared 
with the experiments to find answers to our research questions. 

The experimental results show that tree-based models dramatically 
perform better than other types of ML algorithms such as cost sensitive 
learning, SVM, prototype models, NN, DDN, etc., on both rare-class 

Fig. 5. The Precision – Recall Curves: Performance analysis of the learning algorithms over the test data.  

Table 1 
The comparison of the ML models based off the AUC values.  

Algorithm Mg O Zn Micro Macro 

XGB 0.997 1.00 0.999 0.999 0.998 
DT 0.995 1.00 0.998 0.999 0.997 
RF 0.992 1.00 0.999 0.999 0.996 
Ruleset 0.779 0.997 0.978 0.977 0.917 
FDA 0.973 0.901 0.889 0.936 0.920 
NB 0.971 0.755 0.80 0.851 0.841 
KNN 0.980 0.624 0.678 0.808 0.761 
NN 0.973 0.490 0.573 0.746 0.679 
DNN 0.572 0.516 0.484 0.728 0.524 
PLS 0.954 0.50 0.570 0.743 0.673 
SVM 0.973 0.505 0.585 0.747 0.688 
LR 0.969 0.466 0.555 0.733 0.663  

Table 2 
The comparison of the ML algorithms with Accuracy, Kappa and 95% CI.  

Algorithm Accuracy Kappa 95% CI 

XGB 0.99 0.97 (0.97, 0.99) 
DT 0.98 0.97 (0.96, 0.99) 
RF 0.98 0.96 (0.96, 0.99) 
Ruleset 0.97 0.93 (0.94, 0.98) 
FDA 0.78 0.59 (0.74, 0.82) 
NB 0.67 0.35 (0.62, 0.72) 
KNN 0.58 0.21 (0.53, 0.63) 
NN 0.50 0.07 (0.45, 0.55) 
DNN 0.50 0.00 (0.45, 0.55) 
PLS 0.50 0.02 (0.44, 0.55) 
SVM 0.50 0.00 (0.45, 0.55) 
LR 0.48 2e− 04 (0.40, 0.53)  
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learning and atom type prediction problems. Moreover, tree-based 
models are able to learn such data almost perfectly. Among tree-based 
models, we also observe that XGB performs slightly better than others 
which is compatible with our previous work [73]. Understanding and 
predicting the structural and electronic properties of NPs are crucial for 
material scientists. Consequently, tree-based ML algorithms look 
promising to solve many more such problems in Material Science (MS). 
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