Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBurjanadze M.
dc.contributor.authorKaratas Y.
dc.contributor.authorKaskhedikar N.
dc.contributor.authorKogel L.M.
dc.contributor.authorKloss S.
dc.contributor.authorGentschev A.-C.
dc.contributor.authorHiller M.M.
dc.date.accessioned2019-11-24T20:39:07Z
dc.date.available2019-11-24T20:39:07Z
dc.date.issued2010
dc.identifier.issn0942-9352
dc.identifier.urihttps://dx.doi.org/10.1524/zpch.2010.0046
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2629
dc.description.abstractAn overview is given on polymer electrolytes based on organo-functionalized polyphosphazenes and polysiloxanes. Chemical and electrochemical properties are discussed with respect to the synthesis, the choice of side groups and the goal of obtaining membranes and thin films that combine high ionic conductivity and mechanical stability. Electrochemical stability, concentration polarization and the role of transference numbers are discussed with respect to possible applications in lithium batteries. It is shown that the ionic conductivities of salt-in-polymer membranes without additives and plasticizers are limited to maximum conductivities around 10-4 S/cm. Nevertheless, a straightforward strategy based on additives can increase the conductivities to at least 10-3 S/cm and maybe further. In this context, the future role of polymers for safe, alternative electrolytes in lithium batteries will benefit from concepts based on polymeric gels, composites and hybrid materials. Presently developed polymer electrolytes with oligoether sidechains are electrochemically stable in the potential range 0-4.5V (vs. Li/Li+ reference). © by Oldenbourg Wissenschaftsverlag, München.en_US
dc.description.sponsorshipDeutsche Forschungsgemeinschaft --This work was part of the research program A2 within the collaborative research center “SFB 458”, funded by the Deutsche Forschungsgemeinschaft. We thank K. Funke, R. Banhatti, H. Eckert, C. Cramer-Kellers, M. Schönhoff, A. Heuer, R. Pöttgen, B. Krebs, T. Nilges, N. Stolwijk, L. van Wüllen and D. Wilmer for helpful discussions, thanks also to all colleagues in the SFB 458 for the excellent collaboration. Finally, we would like to acknowledge the collaboration with D. Richter, R. Zorn, and W. Pyckhout-Hintzen on SANS experiments in Jülich, the collaboration with S. Passerini and M. Winter regarding the electrochemical analysis of polymer electrolytes in lithium ion cells, and we thank H. Gores (University Regensburg) and G. Röschenthaler (Jacobs University Bremen) for preparing and making available a number of novel lithium salts. --en_US
dc.language.isoengen_US
dc.relation.isversionof10.1524/zpch.2010.0046en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectrochemistryen_US
dc.subjectIonic conductivityen_US
dc.subjectPolymer electrolyteen_US
dc.subjectPolymer synthesisen_US
dc.subjectPolyphosphazeneen_US
dc.subjectPolysiloxaneen_US
dc.titleSalt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanesen_US
dc.typearticleen_US
dc.relation.journalZeitschrift fur Physikalische Chemieen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümüen_US
dc.identifier.volume224en_US
dc.identifier.issue10.Araen_US
dc.identifier.startpage1439en_US
dc.identifier.endpage1473en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster