Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKose, Memduh
dc.contributor.authorTascioglu, Selcuk
dc.contributor.authorTelatar, Ziya
dc.date.accessioned2019-11-24T20:58:32Z
dc.date.available2019-11-24T20:58:32Z
dc.date.issued2019
dc.identifier.issn2169-3536
dc.identifier.urihttps://dx.doi.org/10.1109/ACCESS.2019.2896696
dc.identifier.urihttps://hdl.handle.net/20.500.12513/3103
dc.descriptionWOS: 000459611100001en_US
dc.description.abstractRadio frequency (RF) fingerprinting is considered as one of the promising techniques to enhance wireless security in the Internet of Things (IoT) applications. In this paper, a low-complexity RF fingerprinting method for classification of wireless IoT devices is proposed. The method is based on the energy spectrum of the transmitter turn-on transient signals from which unique characteristics of wireless devices are extracted. The number of spectral components to be used is determined through a proposed approach based on the estimated transient duration value. Transient duration estimation is achieved from the smoothed versions of the instantaneous amplitude characteristics of transmitter signals, which are obtained through a sliding window averaging method. Classification performance of the proposed spectral fingerprints is assessed using experimental data and described by a confusion matrix. The discrimination effectiveness of the spectral fingerprints is quantified by a class separability criterion and evaluated for different noise levels through Monte Carlo simulations. It is demonstrated that the proposed fingerprints outperform the classification performance of two existing fingerprints especially at low signal-to-noise ratio. Additionally, computational complexity analysis of the classifier using the proposed fingerprints is provided.en_US
dc.language.isoengen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.isversionof10.1109/ACCESS.2019.2896696en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInternet of Things (IoT) securityen_US
dc.subjectradio transmitter turn-on transienten_US
dc.subjectRF fingerprintingen_US
dc.subjecttransient energy spectrumen_US
dc.subjectwireless device identificationen_US
dc.titleRF Fingerprinting of IoT Devices Based on Transient Energy Spectrumen_US
dc.typearticleen_US
dc.relation.journalIEEE ACCESSen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Merkezi Araştırma ve Uygulama Laboratuvarıen_US
dc.identifier.volume7en_US
dc.identifier.startpage18715en_US
dc.identifier.endpage18726en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster