Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSirakaya M.
dc.contributor.authorCakmak E.K.
dc.date.accessioned2019-11-24T20:58:36Z
dc.date.available2019-11-24T20:58:36Z
dc.date.issued2018
dc.identifier.issn2197-8638
dc.identifier.urihttps://dx.doi.org/10.13152/IJRVET.5.1.1
dc.identifier.urihttps://hdl.handle.net/20.500.12513/3119
dc.description.abstractThis study aimed to test the impact of augmented reality (AR) use on student achievement and self-efficacy in vocational education and training. For this purpose, a marker-based AR application, called HardwareAR, was developed. HardwareAR provides information about characteristics of hardware components, ports and assembly. The research design was quasi experimental with pre-test post-test that included a control group. The study was conducted with 46 undergraduate students in the Computer Hardware Course. Computer hardware course achievement test, motherboard assembly self-efficacy questionnaire and unstructured observation form were used in the study for data collection purposes. The control group learned the theoretical and applied information about motherboard assembly by using their textbooks (print material) while students in the experimental group used HardwareAR application for the same purpose. It was found that the use of AR had a positive impact on student achievement in motherboard assembly whereas it had no impact on students self-efficacy related to theoretical knowledge and assembly skills. On the other hand, use of AR helped learners to complete the assembly process in a shorter time with less support. It is concluded that compared to control group students, experimental group students were more successful in computer hardware courses. This result shows that AR application can be effective in increasing achievement. It was concluded that AR application had no effect on students motherboard assembly theoretical knowledge self-efficacy and motherboard assembly skills self-efficacy. This result may have been affected from the fact that students had high levels of theoretical knowledge and assembly skills before the implementation. Observations showed that AR application enabled students to assemble motherboard in a shorter time with less support. It is thought that simultaneous interaction between virtual objects and real world provided by the AR application is effective in reducing assembly time. The students who were able to see the process steps and instructions directly with the help of HardwareAR application could complete the assembly by getting less help. Considering these results, it can be argued that, thanks to simultaneous interaction it provides, AR offers an important alternative for topics that need learner application and practice. © 2018 European Research Network Vocational Education and Training. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherEuropean Research Network Vocational Education and Trainingen_US
dc.relation.isversionof10.13152/IJRVET.5.1.1en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAugmented Realityen_US
dc.subjectComputer Assisted Instructionen_US
dc.subjectMotherboard Assemblyen_US
dc.subjectVETen_US
dc.subjectVocational Education and Trainingen_US
dc.subjectVocational Schoolen_US
dc.titleEffects of augmented reality on student achievement and self-efficacy in vocational education and trainingen_US
dc.typearticleen_US
dc.relation.journalInternational Journal for Research in Vocational Education and Trainingen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Mucur Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.identifier.volume5en_US
dc.identifier.issue1en_US
dc.identifier.startpage1en_US
dc.identifier.endpage18en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster